xref: /linux/drivers/mtd/nand/raw/nandsim.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #define pr_fmt(fmt)  "[nandsim]" fmt
27 
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/math64.h>
34 #include <linux/slab.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/rawnand.h>
39 #include <linux/mtd/nand_bch.h>
40 #include <linux/mtd/partitions.h>
41 #include <linux/delay.h>
42 #include <linux/list.h>
43 #include <linux/random.h>
44 #include <linux/sched.h>
45 #include <linux/sched/mm.h>
46 #include <linux/fs.h>
47 #include <linux/pagemap.h>
48 #include <linux/seq_file.h>
49 #include <linux/debugfs.h>
50 
51 /* Default simulator parameters values */
52 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
53     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
54     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
55     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
56 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
57 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
58 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
59 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
60 #endif
61 
62 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
63 #define CONFIG_NANDSIM_ACCESS_DELAY 25
64 #endif
65 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
66 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
67 #endif
68 #ifndef CONFIG_NANDSIM_ERASE_DELAY
69 #define CONFIG_NANDSIM_ERASE_DELAY 2
70 #endif
71 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
72 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
73 #endif
74 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
75 #define CONFIG_NANDSIM_INPUT_CYCLE  50
76 #endif
77 #ifndef CONFIG_NANDSIM_BUS_WIDTH
78 #define CONFIG_NANDSIM_BUS_WIDTH  8
79 #endif
80 #ifndef CONFIG_NANDSIM_DO_DELAYS
81 #define CONFIG_NANDSIM_DO_DELAYS  0
82 #endif
83 #ifndef CONFIG_NANDSIM_LOG
84 #define CONFIG_NANDSIM_LOG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_DBG
87 #define CONFIG_NANDSIM_DBG        0
88 #endif
89 #ifndef CONFIG_NANDSIM_MAX_PARTS
90 #define CONFIG_NANDSIM_MAX_PARTS  32
91 #endif
92 
93 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
94 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
95 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
96 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
97 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
98 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
99 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
100 static uint log            = CONFIG_NANDSIM_LOG;
101 static uint dbg            = CONFIG_NANDSIM_DBG;
102 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
103 static unsigned int parts_num;
104 static char *badblocks = NULL;
105 static char *weakblocks = NULL;
106 static char *weakpages = NULL;
107 static unsigned int bitflips = 0;
108 static char *gravepages = NULL;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113 static u_char id_bytes[8] = {
114 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
115 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
116 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
117 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
118 	[4 ... 7] = 0xFF,
119 };
120 
121 module_param_array(id_bytes, byte, NULL, 0400);
122 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
123 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
124 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
125 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
126 module_param(access_delay,   uint, 0400);
127 module_param(programm_delay, uint, 0400);
128 module_param(erase_delay,    uint, 0400);
129 module_param(output_cycle,   uint, 0400);
130 module_param(input_cycle,    uint, 0400);
131 module_param(bus_width,      uint, 0400);
132 module_param(do_delays,      uint, 0400);
133 module_param(log,            uint, 0400);
134 module_param(dbg,            uint, 0400);
135 module_param_array(parts, ulong, &parts_num, 0400);
136 module_param(badblocks,      charp, 0400);
137 module_param(weakblocks,     charp, 0400);
138 module_param(weakpages,      charp, 0400);
139 module_param(bitflips,       uint, 0400);
140 module_param(gravepages,     charp, 0400);
141 module_param(overridesize,   uint, 0400);
142 module_param(cache_file,     charp, 0400);
143 module_param(bbt,	     uint, 0400);
144 module_param(bch,	     uint, 0400);
145 
146 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
147 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
148 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
149 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
150 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
151 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
152 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
153 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
154 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
155 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
156 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
157 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
158 MODULE_PARM_DESC(log,            "Perform logging if not zero");
159 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
160 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
161 /* Page and erase block positions for the following parameters are independent of any partitions */
162 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
163 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
164 				 " separated by commas e.g. 113:2 means eb 113"
165 				 " can be erased only twice before failing");
166 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
167 				 " separated by commas e.g. 1401:2 means page 1401"
168 				 " can be written only twice before failing");
169 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
170 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
171 				 " separated by commas e.g. 1401:2 means page 1401"
172 				 " can be read only twice before failing");
173 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
174 				 "The size is specified in erase blocks and as the exponent of a power of two"
175 				 " e.g. 5 means a size of 32 erase blocks");
176 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
177 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
178 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
179 				 "be correctable in 512-byte blocks");
180 
181 /* The largest possible page size */
182 #define NS_LARGEST_PAGE_SIZE	4096
183 
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186 	do { if (log) pr_debug(" log: " args); } while(0)
187 #define NS_DBG(args...) \
188 	do { if (dbg) pr_debug(" debug: " args); } while(0)
189 #define NS_WARN(args...) \
190 	do { pr_warn(" warning: " args); } while(0)
191 #define NS_ERR(args...) \
192 	do { pr_err(" error: " args); } while(0)
193 #define NS_INFO(args...) \
194 	do { pr_info(" " args); } while(0)
195 
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201 
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204 
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207 
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210 
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214 
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217 
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233 
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240 
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244 
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249 
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252 
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255 
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264 
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267 
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275 
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278 
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285 
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288 
289 /*
290  * A union to represent flash memory contents and flash buffer.
291  */
292 union ns_mem {
293 	u_char *byte;    /* for byte access */
294 	uint16_t *word;  /* for 16-bit word access */
295 };
296 
297 /*
298  * The structure which describes all the internal simulator data.
299  */
300 struct nandsim {
301 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
302 	unsigned int nbparts;
303 
304 	uint busw;              /* flash chip bus width (8 or 16) */
305 	u_char ids[8];          /* chip's ID bytes */
306 	uint32_t options;       /* chip's characteristic bits */
307 	uint32_t state;         /* current chip state */
308 	uint32_t nxstate;       /* next expected state */
309 
310 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
311 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
312 	uint16_t npstates;      /* number of previous states saved */
313 	uint16_t stateidx;      /* current state index */
314 
315 	/* The simulated NAND flash pages array */
316 	union ns_mem *pages;
317 
318 	/* Slab allocator for nand pages */
319 	struct kmem_cache *nand_pages_slab;
320 
321 	/* Internal buffer of page + OOB size bytes */
322 	union ns_mem buf;
323 
324 	/* NAND flash "geometry" */
325 	struct {
326 		uint64_t totsz;     /* total flash size, bytes */
327 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
328 		uint pgsz;          /* NAND flash page size, bytes */
329 		uint oobsz;         /* page OOB area size, bytes */
330 		uint64_t totszoob;  /* total flash size including OOB, bytes */
331 		uint pgszoob;       /* page size including OOB , bytes*/
332 		uint secszoob;      /* sector size including OOB, bytes */
333 		uint pgnum;         /* total number of pages */
334 		uint pgsec;         /* number of pages per sector */
335 		uint secshift;      /* bits number in sector size */
336 		uint pgshift;       /* bits number in page size */
337 		uint pgaddrbytes;   /* bytes per page address */
338 		uint secaddrbytes;  /* bytes per sector address */
339 		uint idbytes;       /* the number ID bytes that this chip outputs */
340 	} geom;
341 
342 	/* NAND flash internal registers */
343 	struct {
344 		unsigned command; /* the command register */
345 		u_char   status;  /* the status register */
346 		uint     row;     /* the page number */
347 		uint     column;  /* the offset within page */
348 		uint     count;   /* internal counter */
349 		uint     num;     /* number of bytes which must be processed */
350 		uint     off;     /* fixed page offset */
351 	} regs;
352 
353 	/* NAND flash lines state */
354         struct {
355                 int ce;  /* chip Enable */
356                 int cle; /* command Latch Enable */
357                 int ale; /* address Latch Enable */
358                 int wp;  /* write Protect */
359         } lines;
360 
361 	/* Fields needed when using a cache file */
362 	struct file *cfile; /* Open file */
363 	unsigned long *pages_written; /* Which pages have been written */
364 	void *file_buf;
365 	struct page *held_pages[NS_MAX_HELD_PAGES];
366 	int held_cnt;
367 };
368 
369 /*
370  * Operations array. To perform any operation the simulator must pass
371  * through the correspondent states chain.
372  */
373 static struct nandsim_operations {
374 	uint32_t reqopts;  /* options which are required to perform the operation */
375 	uint32_t states[NS_OPER_STATES]; /* operation's states */
376 } ops[NS_OPER_NUM] = {
377 	/* Read page + OOB from the beginning */
378 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
379 			STATE_DATAOUT, STATE_READY}},
380 	/* Read page + OOB from the second half */
381 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
382 			STATE_DATAOUT, STATE_READY}},
383 	/* Read OOB */
384 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
385 			STATE_DATAOUT, STATE_READY}},
386 	/* Program page starting from the beginning */
387 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
388 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389 	/* Program page starting from the beginning */
390 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
391 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392 	/* Program page starting from the second half */
393 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
394 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
395 	/* Program OOB */
396 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
397 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
398 	/* Erase sector */
399 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
400 	/* Read status */
401 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
402 	/* Read ID */
403 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
404 	/* Large page devices read page */
405 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
406 			       STATE_DATAOUT, STATE_READY}},
407 	/* Large page devices random page read */
408 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
409 			       STATE_DATAOUT, STATE_READY}},
410 };
411 
412 struct weak_block {
413 	struct list_head list;
414 	unsigned int erase_block_no;
415 	unsigned int max_erases;
416 	unsigned int erases_done;
417 };
418 
419 static LIST_HEAD(weak_blocks);
420 
421 struct weak_page {
422 	struct list_head list;
423 	unsigned int page_no;
424 	unsigned int max_writes;
425 	unsigned int writes_done;
426 };
427 
428 static LIST_HEAD(weak_pages);
429 
430 struct grave_page {
431 	struct list_head list;
432 	unsigned int page_no;
433 	unsigned int max_reads;
434 	unsigned int reads_done;
435 };
436 
437 static LIST_HEAD(grave_pages);
438 
439 static unsigned long *erase_block_wear = NULL;
440 static unsigned int wear_eb_count = 0;
441 static unsigned long total_wear = 0;
442 
443 /* MTD structure for NAND controller */
444 static struct mtd_info *nsmtd;
445 
446 static int nandsim_show(struct seq_file *m, void *private)
447 {
448 	unsigned long wmin = -1, wmax = 0, avg;
449 	unsigned long deciles[10], decile_max[10], tot = 0;
450 	unsigned int i;
451 
452 	/* Calc wear stats */
453 	for (i = 0; i < wear_eb_count; ++i) {
454 		unsigned long wear = erase_block_wear[i];
455 		if (wear < wmin)
456 			wmin = wear;
457 		if (wear > wmax)
458 			wmax = wear;
459 		tot += wear;
460 	}
461 
462 	for (i = 0; i < 9; ++i) {
463 		deciles[i] = 0;
464 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
465 	}
466 	deciles[9] = 0;
467 	decile_max[9] = wmax;
468 	for (i = 0; i < wear_eb_count; ++i) {
469 		int d;
470 		unsigned long wear = erase_block_wear[i];
471 		for (d = 0; d < 10; ++d)
472 			if (wear <= decile_max[d]) {
473 				deciles[d] += 1;
474 				break;
475 			}
476 	}
477 	avg = tot / wear_eb_count;
478 
479 	/* Output wear report */
480 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
481 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
482 	seq_printf(m, "Average number of erases: %lu\n", avg);
483 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
484 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
485 	for (i = 0; i < 10; ++i) {
486 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
487 		if (from > decile_max[i])
488 			continue;
489 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
490 			from,
491 			decile_max[i],
492 			deciles[i]);
493 	}
494 
495 	return 0;
496 }
497 DEFINE_SHOW_ATTRIBUTE(nandsim);
498 
499 /**
500  * nandsim_debugfs_create - initialize debugfs
501  * @dev: nandsim device description object
502  *
503  * This function creates all debugfs files for UBI device @ubi. Returns zero in
504  * case of success and a negative error code in case of failure.
505  */
506 static int nandsim_debugfs_create(struct nandsim *dev)
507 {
508 	struct dentry *root = nsmtd->dbg.dfs_dir;
509 	struct dentry *dent;
510 
511 	/*
512 	 * Just skip debugfs initialization when the debugfs directory is
513 	 * missing.
514 	 */
515 	if (IS_ERR_OR_NULL(root)) {
516 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
517 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
518 			NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
519 		return 0;
520 	}
521 
522 	dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
523 				   root, dev, &nandsim_fops);
524 	if (IS_ERR_OR_NULL(dent)) {
525 		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
526 		return -1;
527 	}
528 
529 	return 0;
530 }
531 
532 /*
533  * Allocate array of page pointers, create slab allocation for an array
534  * and initialize the array by NULL pointers.
535  *
536  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
537  */
538 static int __init alloc_device(struct nandsim *ns)
539 {
540 	struct file *cfile;
541 	int i, err;
542 
543 	if (cache_file) {
544 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
545 		if (IS_ERR(cfile))
546 			return PTR_ERR(cfile);
547 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
548 			NS_ERR("alloc_device: cache file not readable\n");
549 			err = -EINVAL;
550 			goto err_close;
551 		}
552 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
553 			NS_ERR("alloc_device: cache file not writeable\n");
554 			err = -EINVAL;
555 			goto err_close;
556 		}
557 		ns->pages_written =
558 			vzalloc(array_size(sizeof(unsigned long),
559 					   BITS_TO_LONGS(ns->geom.pgnum)));
560 		if (!ns->pages_written) {
561 			NS_ERR("alloc_device: unable to allocate pages written array\n");
562 			err = -ENOMEM;
563 			goto err_close;
564 		}
565 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
566 		if (!ns->file_buf) {
567 			NS_ERR("alloc_device: unable to allocate file buf\n");
568 			err = -ENOMEM;
569 			goto err_free;
570 		}
571 		ns->cfile = cfile;
572 		return 0;
573 	}
574 
575 	ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
576 	if (!ns->pages) {
577 		NS_ERR("alloc_device: unable to allocate page array\n");
578 		return -ENOMEM;
579 	}
580 	for (i = 0; i < ns->geom.pgnum; i++) {
581 		ns->pages[i].byte = NULL;
582 	}
583 	ns->nand_pages_slab = kmem_cache_create("nandsim",
584 						ns->geom.pgszoob, 0, 0, NULL);
585 	if (!ns->nand_pages_slab) {
586 		NS_ERR("cache_create: unable to create kmem_cache\n");
587 		return -ENOMEM;
588 	}
589 
590 	return 0;
591 
592 err_free:
593 	vfree(ns->pages_written);
594 err_close:
595 	filp_close(cfile, NULL);
596 	return err;
597 }
598 
599 /*
600  * Free any allocated pages, and free the array of page pointers.
601  */
602 static void free_device(struct nandsim *ns)
603 {
604 	int i;
605 
606 	if (ns->cfile) {
607 		kfree(ns->file_buf);
608 		vfree(ns->pages_written);
609 		filp_close(ns->cfile, NULL);
610 		return;
611 	}
612 
613 	if (ns->pages) {
614 		for (i = 0; i < ns->geom.pgnum; i++) {
615 			if (ns->pages[i].byte)
616 				kmem_cache_free(ns->nand_pages_slab,
617 						ns->pages[i].byte);
618 		}
619 		kmem_cache_destroy(ns->nand_pages_slab);
620 		vfree(ns->pages);
621 	}
622 }
623 
624 static char __init *get_partition_name(int i)
625 {
626 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
627 }
628 
629 /*
630  * Initialize the nandsim structure.
631  *
632  * RETURNS: 0 if success, -ERRNO if failure.
633  */
634 static int __init init_nandsim(struct mtd_info *mtd)
635 {
636 	struct nand_chip *chip = mtd_to_nand(mtd);
637 	struct nandsim   *ns   = nand_get_controller_data(chip);
638 	int i, ret = 0;
639 	uint64_t remains;
640 	uint64_t next_offset;
641 
642 	if (NS_IS_INITIALIZED(ns)) {
643 		NS_ERR("init_nandsim: nandsim is already initialized\n");
644 		return -EIO;
645 	}
646 
647 	/* Force mtd to not do delays */
648 	chip->legacy.chip_delay = 0;
649 
650 	/* Initialize the NAND flash parameters */
651 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
652 	ns->geom.totsz    = mtd->size;
653 	ns->geom.pgsz     = mtd->writesize;
654 	ns->geom.oobsz    = mtd->oobsize;
655 	ns->geom.secsz    = mtd->erasesize;
656 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
657 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
658 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
659 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
660 	ns->geom.pgshift  = chip->page_shift;
661 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
662 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
663 	ns->options = 0;
664 
665 	if (ns->geom.pgsz == 512) {
666 		ns->options |= OPT_PAGE512;
667 		if (ns->busw == 8)
668 			ns->options |= OPT_PAGE512_8BIT;
669 	} else if (ns->geom.pgsz == 2048) {
670 		ns->options |= OPT_PAGE2048;
671 	} else if (ns->geom.pgsz == 4096) {
672 		ns->options |= OPT_PAGE4096;
673 	} else {
674 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
675 		return -EIO;
676 	}
677 
678 	if (ns->options & OPT_SMALLPAGE) {
679 		if (ns->geom.totsz <= (32 << 20)) {
680 			ns->geom.pgaddrbytes  = 3;
681 			ns->geom.secaddrbytes = 2;
682 		} else {
683 			ns->geom.pgaddrbytes  = 4;
684 			ns->geom.secaddrbytes = 3;
685 		}
686 	} else {
687 		if (ns->geom.totsz <= (128 << 20)) {
688 			ns->geom.pgaddrbytes  = 4;
689 			ns->geom.secaddrbytes = 2;
690 		} else {
691 			ns->geom.pgaddrbytes  = 5;
692 			ns->geom.secaddrbytes = 3;
693 		}
694 	}
695 
696 	/* Fill the partition_info structure */
697 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
698 		NS_ERR("too many partitions.\n");
699 		return -EINVAL;
700 	}
701 	remains = ns->geom.totsz;
702 	next_offset = 0;
703 	for (i = 0; i < parts_num; ++i) {
704 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
705 
706 		if (!part_sz || part_sz > remains) {
707 			NS_ERR("bad partition size.\n");
708 			return -EINVAL;
709 		}
710 		ns->partitions[i].name   = get_partition_name(i);
711 		if (!ns->partitions[i].name) {
712 			NS_ERR("unable to allocate memory.\n");
713 			return -ENOMEM;
714 		}
715 		ns->partitions[i].offset = next_offset;
716 		ns->partitions[i].size   = part_sz;
717 		next_offset += ns->partitions[i].size;
718 		remains -= ns->partitions[i].size;
719 	}
720 	ns->nbparts = parts_num;
721 	if (remains) {
722 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
723 			NS_ERR("too many partitions.\n");
724 			return -EINVAL;
725 		}
726 		ns->partitions[i].name   = get_partition_name(i);
727 		if (!ns->partitions[i].name) {
728 			NS_ERR("unable to allocate memory.\n");
729 			return -ENOMEM;
730 		}
731 		ns->partitions[i].offset = next_offset;
732 		ns->partitions[i].size   = remains;
733 		ns->nbparts += 1;
734 	}
735 
736 	if (ns->busw == 16)
737 		NS_WARN("16-bit flashes support wasn't tested\n");
738 
739 	printk("flash size: %llu MiB\n",
740 			(unsigned long long)ns->geom.totsz >> 20);
741 	printk("page size: %u bytes\n",         ns->geom.pgsz);
742 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
743 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
744 	printk("pages number: %u\n",            ns->geom.pgnum);
745 	printk("pages per sector: %u\n",        ns->geom.pgsec);
746 	printk("bus width: %u\n",               ns->busw);
747 	printk("bits in sector size: %u\n",     ns->geom.secshift);
748 	printk("bits in page size: %u\n",       ns->geom.pgshift);
749 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
750 	printk("flash size with OOB: %llu KiB\n",
751 			(unsigned long long)ns->geom.totszoob >> 10);
752 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
753 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
754 	printk("options: %#x\n",                ns->options);
755 
756 	if ((ret = alloc_device(ns)) != 0)
757 		return ret;
758 
759 	/* Allocate / initialize the internal buffer */
760 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
761 	if (!ns->buf.byte) {
762 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
763 			ns->geom.pgszoob);
764 		return -ENOMEM;
765 	}
766 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
767 
768 	return 0;
769 }
770 
771 /*
772  * Free the nandsim structure.
773  */
774 static void free_nandsim(struct nandsim *ns)
775 {
776 	kfree(ns->buf.byte);
777 	free_device(ns);
778 
779 	return;
780 }
781 
782 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
783 {
784 	char *w;
785 	int zero_ok;
786 	unsigned int erase_block_no;
787 	loff_t offset;
788 
789 	if (!badblocks)
790 		return 0;
791 	w = badblocks;
792 	do {
793 		zero_ok = (*w == '0' ? 1 : 0);
794 		erase_block_no = simple_strtoul(w, &w, 0);
795 		if (!zero_ok && !erase_block_no) {
796 			NS_ERR("invalid badblocks.\n");
797 			return -EINVAL;
798 		}
799 		offset = (loff_t)erase_block_no * ns->geom.secsz;
800 		if (mtd_block_markbad(mtd, offset)) {
801 			NS_ERR("invalid badblocks.\n");
802 			return -EINVAL;
803 		}
804 		if (*w == ',')
805 			w += 1;
806 	} while (*w);
807 	return 0;
808 }
809 
810 static int parse_weakblocks(void)
811 {
812 	char *w;
813 	int zero_ok;
814 	unsigned int erase_block_no;
815 	unsigned int max_erases;
816 	struct weak_block *wb;
817 
818 	if (!weakblocks)
819 		return 0;
820 	w = weakblocks;
821 	do {
822 		zero_ok = (*w == '0' ? 1 : 0);
823 		erase_block_no = simple_strtoul(w, &w, 0);
824 		if (!zero_ok && !erase_block_no) {
825 			NS_ERR("invalid weakblocks.\n");
826 			return -EINVAL;
827 		}
828 		max_erases = 3;
829 		if (*w == ':') {
830 			w += 1;
831 			max_erases = simple_strtoul(w, &w, 0);
832 		}
833 		if (*w == ',')
834 			w += 1;
835 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
836 		if (!wb) {
837 			NS_ERR("unable to allocate memory.\n");
838 			return -ENOMEM;
839 		}
840 		wb->erase_block_no = erase_block_no;
841 		wb->max_erases = max_erases;
842 		list_add(&wb->list, &weak_blocks);
843 	} while (*w);
844 	return 0;
845 }
846 
847 static int erase_error(unsigned int erase_block_no)
848 {
849 	struct weak_block *wb;
850 
851 	list_for_each_entry(wb, &weak_blocks, list)
852 		if (wb->erase_block_no == erase_block_no) {
853 			if (wb->erases_done >= wb->max_erases)
854 				return 1;
855 			wb->erases_done += 1;
856 			return 0;
857 		}
858 	return 0;
859 }
860 
861 static int parse_weakpages(void)
862 {
863 	char *w;
864 	int zero_ok;
865 	unsigned int page_no;
866 	unsigned int max_writes;
867 	struct weak_page *wp;
868 
869 	if (!weakpages)
870 		return 0;
871 	w = weakpages;
872 	do {
873 		zero_ok = (*w == '0' ? 1 : 0);
874 		page_no = simple_strtoul(w, &w, 0);
875 		if (!zero_ok && !page_no) {
876 			NS_ERR("invalid weakpages.\n");
877 			return -EINVAL;
878 		}
879 		max_writes = 3;
880 		if (*w == ':') {
881 			w += 1;
882 			max_writes = simple_strtoul(w, &w, 0);
883 		}
884 		if (*w == ',')
885 			w += 1;
886 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
887 		if (!wp) {
888 			NS_ERR("unable to allocate memory.\n");
889 			return -ENOMEM;
890 		}
891 		wp->page_no = page_no;
892 		wp->max_writes = max_writes;
893 		list_add(&wp->list, &weak_pages);
894 	} while (*w);
895 	return 0;
896 }
897 
898 static int write_error(unsigned int page_no)
899 {
900 	struct weak_page *wp;
901 
902 	list_for_each_entry(wp, &weak_pages, list)
903 		if (wp->page_no == page_no) {
904 			if (wp->writes_done >= wp->max_writes)
905 				return 1;
906 			wp->writes_done += 1;
907 			return 0;
908 		}
909 	return 0;
910 }
911 
912 static int parse_gravepages(void)
913 {
914 	char *g;
915 	int zero_ok;
916 	unsigned int page_no;
917 	unsigned int max_reads;
918 	struct grave_page *gp;
919 
920 	if (!gravepages)
921 		return 0;
922 	g = gravepages;
923 	do {
924 		zero_ok = (*g == '0' ? 1 : 0);
925 		page_no = simple_strtoul(g, &g, 0);
926 		if (!zero_ok && !page_no) {
927 			NS_ERR("invalid gravepagess.\n");
928 			return -EINVAL;
929 		}
930 		max_reads = 3;
931 		if (*g == ':') {
932 			g += 1;
933 			max_reads = simple_strtoul(g, &g, 0);
934 		}
935 		if (*g == ',')
936 			g += 1;
937 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
938 		if (!gp) {
939 			NS_ERR("unable to allocate memory.\n");
940 			return -ENOMEM;
941 		}
942 		gp->page_no = page_no;
943 		gp->max_reads = max_reads;
944 		list_add(&gp->list, &grave_pages);
945 	} while (*g);
946 	return 0;
947 }
948 
949 static int read_error(unsigned int page_no)
950 {
951 	struct grave_page *gp;
952 
953 	list_for_each_entry(gp, &grave_pages, list)
954 		if (gp->page_no == page_no) {
955 			if (gp->reads_done >= gp->max_reads)
956 				return 1;
957 			gp->reads_done += 1;
958 			return 0;
959 		}
960 	return 0;
961 }
962 
963 static void free_lists(void)
964 {
965 	struct list_head *pos, *n;
966 	list_for_each_safe(pos, n, &weak_blocks) {
967 		list_del(pos);
968 		kfree(list_entry(pos, struct weak_block, list));
969 	}
970 	list_for_each_safe(pos, n, &weak_pages) {
971 		list_del(pos);
972 		kfree(list_entry(pos, struct weak_page, list));
973 	}
974 	list_for_each_safe(pos, n, &grave_pages) {
975 		list_del(pos);
976 		kfree(list_entry(pos, struct grave_page, list));
977 	}
978 	kfree(erase_block_wear);
979 }
980 
981 static int setup_wear_reporting(struct mtd_info *mtd)
982 {
983 	size_t mem;
984 
985 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
986 	mem = wear_eb_count * sizeof(unsigned long);
987 	if (mem / sizeof(unsigned long) != wear_eb_count) {
988 		NS_ERR("Too many erase blocks for wear reporting\n");
989 		return -ENOMEM;
990 	}
991 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
992 	if (!erase_block_wear) {
993 		NS_ERR("Too many erase blocks for wear reporting\n");
994 		return -ENOMEM;
995 	}
996 	return 0;
997 }
998 
999 static void update_wear(unsigned int erase_block_no)
1000 {
1001 	if (!erase_block_wear)
1002 		return;
1003 	total_wear += 1;
1004 	/*
1005 	 * TODO: Notify this through a debugfs entry,
1006 	 * instead of showing an error message.
1007 	 */
1008 	if (total_wear == 0)
1009 		NS_ERR("Erase counter total overflow\n");
1010 	erase_block_wear[erase_block_no] += 1;
1011 	if (erase_block_wear[erase_block_no] == 0)
1012 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1013 }
1014 
1015 /*
1016  * Returns the string representation of 'state' state.
1017  */
1018 static char *get_state_name(uint32_t state)
1019 {
1020 	switch (NS_STATE(state)) {
1021 		case STATE_CMD_READ0:
1022 			return "STATE_CMD_READ0";
1023 		case STATE_CMD_READ1:
1024 			return "STATE_CMD_READ1";
1025 		case STATE_CMD_PAGEPROG:
1026 			return "STATE_CMD_PAGEPROG";
1027 		case STATE_CMD_READOOB:
1028 			return "STATE_CMD_READOOB";
1029 		case STATE_CMD_READSTART:
1030 			return "STATE_CMD_READSTART";
1031 		case STATE_CMD_ERASE1:
1032 			return "STATE_CMD_ERASE1";
1033 		case STATE_CMD_STATUS:
1034 			return "STATE_CMD_STATUS";
1035 		case STATE_CMD_SEQIN:
1036 			return "STATE_CMD_SEQIN";
1037 		case STATE_CMD_READID:
1038 			return "STATE_CMD_READID";
1039 		case STATE_CMD_ERASE2:
1040 			return "STATE_CMD_ERASE2";
1041 		case STATE_CMD_RESET:
1042 			return "STATE_CMD_RESET";
1043 		case STATE_CMD_RNDOUT:
1044 			return "STATE_CMD_RNDOUT";
1045 		case STATE_CMD_RNDOUTSTART:
1046 			return "STATE_CMD_RNDOUTSTART";
1047 		case STATE_ADDR_PAGE:
1048 			return "STATE_ADDR_PAGE";
1049 		case STATE_ADDR_SEC:
1050 			return "STATE_ADDR_SEC";
1051 		case STATE_ADDR_ZERO:
1052 			return "STATE_ADDR_ZERO";
1053 		case STATE_ADDR_COLUMN:
1054 			return "STATE_ADDR_COLUMN";
1055 		case STATE_DATAIN:
1056 			return "STATE_DATAIN";
1057 		case STATE_DATAOUT:
1058 			return "STATE_DATAOUT";
1059 		case STATE_DATAOUT_ID:
1060 			return "STATE_DATAOUT_ID";
1061 		case STATE_DATAOUT_STATUS:
1062 			return "STATE_DATAOUT_STATUS";
1063 		case STATE_READY:
1064 			return "STATE_READY";
1065 		case STATE_UNKNOWN:
1066 			return "STATE_UNKNOWN";
1067 	}
1068 
1069 	NS_ERR("get_state_name: unknown state, BUG\n");
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * Check if command is valid.
1075  *
1076  * RETURNS: 1 if wrong command, 0 if right.
1077  */
1078 static int check_command(int cmd)
1079 {
1080 	switch (cmd) {
1081 
1082 	case NAND_CMD_READ0:
1083 	case NAND_CMD_READ1:
1084 	case NAND_CMD_READSTART:
1085 	case NAND_CMD_PAGEPROG:
1086 	case NAND_CMD_READOOB:
1087 	case NAND_CMD_ERASE1:
1088 	case NAND_CMD_STATUS:
1089 	case NAND_CMD_SEQIN:
1090 	case NAND_CMD_READID:
1091 	case NAND_CMD_ERASE2:
1092 	case NAND_CMD_RESET:
1093 	case NAND_CMD_RNDOUT:
1094 	case NAND_CMD_RNDOUTSTART:
1095 		return 0;
1096 
1097 	default:
1098 		return 1;
1099 	}
1100 }
1101 
1102 /*
1103  * Returns state after command is accepted by command number.
1104  */
1105 static uint32_t get_state_by_command(unsigned command)
1106 {
1107 	switch (command) {
1108 		case NAND_CMD_READ0:
1109 			return STATE_CMD_READ0;
1110 		case NAND_CMD_READ1:
1111 			return STATE_CMD_READ1;
1112 		case NAND_CMD_PAGEPROG:
1113 			return STATE_CMD_PAGEPROG;
1114 		case NAND_CMD_READSTART:
1115 			return STATE_CMD_READSTART;
1116 		case NAND_CMD_READOOB:
1117 			return STATE_CMD_READOOB;
1118 		case NAND_CMD_ERASE1:
1119 			return STATE_CMD_ERASE1;
1120 		case NAND_CMD_STATUS:
1121 			return STATE_CMD_STATUS;
1122 		case NAND_CMD_SEQIN:
1123 			return STATE_CMD_SEQIN;
1124 		case NAND_CMD_READID:
1125 			return STATE_CMD_READID;
1126 		case NAND_CMD_ERASE2:
1127 			return STATE_CMD_ERASE2;
1128 		case NAND_CMD_RESET:
1129 			return STATE_CMD_RESET;
1130 		case NAND_CMD_RNDOUT:
1131 			return STATE_CMD_RNDOUT;
1132 		case NAND_CMD_RNDOUTSTART:
1133 			return STATE_CMD_RNDOUTSTART;
1134 	}
1135 
1136 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Move an address byte to the correspondent internal register.
1142  */
1143 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1144 {
1145 	uint byte = (uint)bt;
1146 
1147 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1148 		ns->regs.column |= (byte << 8 * ns->regs.count);
1149 	else {
1150 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1151 						ns->geom.pgaddrbytes +
1152 						ns->geom.secaddrbytes));
1153 	}
1154 
1155 	return;
1156 }
1157 
1158 /*
1159  * Switch to STATE_READY state.
1160  */
1161 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1162 {
1163 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1164 
1165 	ns->state       = STATE_READY;
1166 	ns->nxstate     = STATE_UNKNOWN;
1167 	ns->op          = NULL;
1168 	ns->npstates    = 0;
1169 	ns->stateidx    = 0;
1170 	ns->regs.num    = 0;
1171 	ns->regs.count  = 0;
1172 	ns->regs.off    = 0;
1173 	ns->regs.row    = 0;
1174 	ns->regs.column = 0;
1175 	ns->regs.status = status;
1176 }
1177 
1178 /*
1179  * If the operation isn't known yet, try to find it in the global array
1180  * of supported operations.
1181  *
1182  * Operation can be unknown because of the following.
1183  *   1. New command was accepted and this is the first call to find the
1184  *      correspondent states chain. In this case ns->npstates = 0;
1185  *   2. There are several operations which begin with the same command(s)
1186  *      (for example program from the second half and read from the
1187  *      second half operations both begin with the READ1 command). In this
1188  *      case the ns->pstates[] array contains previous states.
1189  *
1190  * Thus, the function tries to find operation containing the following
1191  * states (if the 'flag' parameter is 0):
1192  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1193  *
1194  * If (one and only one) matching operation is found, it is accepted (
1195  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1196  * zeroed).
1197  *
1198  * If there are several matches, the current state is pushed to the
1199  * ns->pstates.
1200  *
1201  * The operation can be unknown only while commands are input to the chip.
1202  * As soon as address command is accepted, the operation must be known.
1203  * In such situation the function is called with 'flag' != 0, and the
1204  * operation is searched using the following pattern:
1205  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1206  *
1207  * It is supposed that this pattern must either match one operation or
1208  * none. There can't be ambiguity in that case.
1209  *
1210  * If no matches found, the function does the following:
1211  *   1. if there are saved states present, try to ignore them and search
1212  *      again only using the last command. If nothing was found, switch
1213  *      to the STATE_READY state.
1214  *   2. if there are no saved states, switch to the STATE_READY state.
1215  *
1216  * RETURNS: -2 - no matched operations found.
1217  *          -1 - several matches.
1218  *           0 - operation is found.
1219  */
1220 static int find_operation(struct nandsim *ns, uint32_t flag)
1221 {
1222 	int opsfound = 0;
1223 	int i, j, idx = 0;
1224 
1225 	for (i = 0; i < NS_OPER_NUM; i++) {
1226 
1227 		int found = 1;
1228 
1229 		if (!(ns->options & ops[i].reqopts))
1230 			/* Ignore operations we can't perform */
1231 			continue;
1232 
1233 		if (flag) {
1234 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1235 				continue;
1236 		} else {
1237 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1238 				continue;
1239 		}
1240 
1241 		for (j = 0; j < ns->npstates; j++)
1242 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1243 				&& (ns->options & ops[idx].reqopts)) {
1244 				found = 0;
1245 				break;
1246 			}
1247 
1248 		if (found) {
1249 			idx = i;
1250 			opsfound += 1;
1251 		}
1252 	}
1253 
1254 	if (opsfound == 1) {
1255 		/* Exact match */
1256 		ns->op = &ops[idx].states[0];
1257 		if (flag) {
1258 			/*
1259 			 * In this case the find_operation function was
1260 			 * called when address has just began input. But it isn't
1261 			 * yet fully input and the current state must
1262 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1263 			 * state must be the next state (ns->nxstate).
1264 			 */
1265 			ns->stateidx = ns->npstates - 1;
1266 		} else {
1267 			ns->stateidx = ns->npstates;
1268 		}
1269 		ns->npstates = 0;
1270 		ns->state = ns->op[ns->stateidx];
1271 		ns->nxstate = ns->op[ns->stateidx + 1];
1272 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1273 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1274 		return 0;
1275 	}
1276 
1277 	if (opsfound == 0) {
1278 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1279 		if (ns->npstates != 0) {
1280 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1281 					get_state_name(ns->state));
1282 			ns->npstates = 0;
1283 			return find_operation(ns, 0);
1284 
1285 		}
1286 		NS_DBG("find_operation: no operations found\n");
1287 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1288 		return -2;
1289 	}
1290 
1291 	if (flag) {
1292 		/* This shouldn't happen */
1293 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1294 		return -2;
1295 	}
1296 
1297 	NS_DBG("find_operation: there is still ambiguity\n");
1298 
1299 	ns->pstates[ns->npstates++] = ns->state;
1300 
1301 	return -1;
1302 }
1303 
1304 static void put_pages(struct nandsim *ns)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i < ns->held_cnt; i++)
1309 		put_page(ns->held_pages[i]);
1310 }
1311 
1312 /* Get page cache pages in advance to provide NOFS memory allocation */
1313 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1314 {
1315 	pgoff_t index, start_index, end_index;
1316 	struct page *page;
1317 	struct address_space *mapping = file->f_mapping;
1318 
1319 	start_index = pos >> PAGE_SHIFT;
1320 	end_index = (pos + count - 1) >> PAGE_SHIFT;
1321 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1322 		return -EINVAL;
1323 	ns->held_cnt = 0;
1324 	for (index = start_index; index <= end_index; index++) {
1325 		page = find_get_page(mapping, index);
1326 		if (page == NULL) {
1327 			page = find_or_create_page(mapping, index, GFP_NOFS);
1328 			if (page == NULL) {
1329 				write_inode_now(mapping->host, 1);
1330 				page = find_or_create_page(mapping, index, GFP_NOFS);
1331 			}
1332 			if (page == NULL) {
1333 				put_pages(ns);
1334 				return -ENOMEM;
1335 			}
1336 			unlock_page(page);
1337 		}
1338 		ns->held_pages[ns->held_cnt++] = page;
1339 	}
1340 	return 0;
1341 }
1342 
1343 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1344 {
1345 	ssize_t tx;
1346 	int err;
1347 	unsigned int noreclaim_flag;
1348 
1349 	err = get_pages(ns, file, count, pos);
1350 	if (err)
1351 		return err;
1352 	noreclaim_flag = memalloc_noreclaim_save();
1353 	tx = kernel_read(file, buf, count, &pos);
1354 	memalloc_noreclaim_restore(noreclaim_flag);
1355 	put_pages(ns);
1356 	return tx;
1357 }
1358 
1359 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1360 {
1361 	ssize_t tx;
1362 	int err;
1363 	unsigned int noreclaim_flag;
1364 
1365 	err = get_pages(ns, file, count, pos);
1366 	if (err)
1367 		return err;
1368 	noreclaim_flag = memalloc_noreclaim_save();
1369 	tx = kernel_write(file, buf, count, &pos);
1370 	memalloc_noreclaim_restore(noreclaim_flag);
1371 	put_pages(ns);
1372 	return tx;
1373 }
1374 
1375 /*
1376  * Returns a pointer to the current page.
1377  */
1378 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1379 {
1380 	return &(ns->pages[ns->regs.row]);
1381 }
1382 
1383 /*
1384  * Retuns a pointer to the current byte, within the current page.
1385  */
1386 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1387 {
1388 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1389 }
1390 
1391 static int do_read_error(struct nandsim *ns, int num)
1392 {
1393 	unsigned int page_no = ns->regs.row;
1394 
1395 	if (read_error(page_no)) {
1396 		prandom_bytes(ns->buf.byte, num);
1397 		NS_WARN("simulating read error in page %u\n", page_no);
1398 		return 1;
1399 	}
1400 	return 0;
1401 }
1402 
1403 static void do_bit_flips(struct nandsim *ns, int num)
1404 {
1405 	if (bitflips && prandom_u32() < (1 << 22)) {
1406 		int flips = 1;
1407 		if (bitflips > 1)
1408 			flips = (prandom_u32() % (int) bitflips) + 1;
1409 		while (flips--) {
1410 			int pos = prandom_u32() % (num * 8);
1411 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1412 			NS_WARN("read_page: flipping bit %d in page %d "
1413 				"reading from %d ecc: corrected=%u failed=%u\n",
1414 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1415 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1416 		}
1417 	}
1418 }
1419 
1420 /*
1421  * Fill the NAND buffer with data read from the specified page.
1422  */
1423 static void read_page(struct nandsim *ns, int num)
1424 {
1425 	union ns_mem *mypage;
1426 
1427 	if (ns->cfile) {
1428 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1429 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1430 			memset(ns->buf.byte, 0xFF, num);
1431 		} else {
1432 			loff_t pos;
1433 			ssize_t tx;
1434 
1435 			NS_DBG("read_page: page %d written, reading from %d\n",
1436 				ns->regs.row, ns->regs.column + ns->regs.off);
1437 			if (do_read_error(ns, num))
1438 				return;
1439 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1440 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1441 			if (tx != num) {
1442 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1443 				return;
1444 			}
1445 			do_bit_flips(ns, num);
1446 		}
1447 		return;
1448 	}
1449 
1450 	mypage = NS_GET_PAGE(ns);
1451 	if (mypage->byte == NULL) {
1452 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1453 		memset(ns->buf.byte, 0xFF, num);
1454 	} else {
1455 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1456 			ns->regs.row, ns->regs.column + ns->regs.off);
1457 		if (do_read_error(ns, num))
1458 			return;
1459 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1460 		do_bit_flips(ns, num);
1461 	}
1462 }
1463 
1464 /*
1465  * Erase all pages in the specified sector.
1466  */
1467 static void erase_sector(struct nandsim *ns)
1468 {
1469 	union ns_mem *mypage;
1470 	int i;
1471 
1472 	if (ns->cfile) {
1473 		for (i = 0; i < ns->geom.pgsec; i++)
1474 			if (__test_and_clear_bit(ns->regs.row + i,
1475 						 ns->pages_written)) {
1476 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1477 			}
1478 		return;
1479 	}
1480 
1481 	mypage = NS_GET_PAGE(ns);
1482 	for (i = 0; i < ns->geom.pgsec; i++) {
1483 		if (mypage->byte != NULL) {
1484 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1485 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1486 			mypage->byte = NULL;
1487 		}
1488 		mypage++;
1489 	}
1490 }
1491 
1492 /*
1493  * Program the specified page with the contents from the NAND buffer.
1494  */
1495 static int prog_page(struct nandsim *ns, int num)
1496 {
1497 	int i;
1498 	union ns_mem *mypage;
1499 	u_char *pg_off;
1500 
1501 	if (ns->cfile) {
1502 		loff_t off;
1503 		ssize_t tx;
1504 		int all;
1505 
1506 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1507 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1508 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1509 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1510 			all = 1;
1511 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1512 		} else {
1513 			all = 0;
1514 			tx = read_file(ns, ns->cfile, pg_off, num, off);
1515 			if (tx != num) {
1516 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1517 				return -1;
1518 			}
1519 		}
1520 		for (i = 0; i < num; i++)
1521 			pg_off[i] &= ns->buf.byte[i];
1522 		if (all) {
1523 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1524 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1525 			if (tx != ns->geom.pgszoob) {
1526 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1527 				return -1;
1528 			}
1529 			__set_bit(ns->regs.row, ns->pages_written);
1530 		} else {
1531 			tx = write_file(ns, ns->cfile, pg_off, num, off);
1532 			if (tx != num) {
1533 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1534 				return -1;
1535 			}
1536 		}
1537 		return 0;
1538 	}
1539 
1540 	mypage = NS_GET_PAGE(ns);
1541 	if (mypage->byte == NULL) {
1542 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1543 		/*
1544 		 * We allocate memory with GFP_NOFS because a flash FS may
1545 		 * utilize this. If it is holding an FS lock, then gets here,
1546 		 * then kernel memory alloc runs writeback which goes to the FS
1547 		 * again and deadlocks. This was seen in practice.
1548 		 */
1549 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1550 		if (mypage->byte == NULL) {
1551 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1552 			return -1;
1553 		}
1554 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1555 	}
1556 
1557 	pg_off = NS_PAGE_BYTE_OFF(ns);
1558 	for (i = 0; i < num; i++)
1559 		pg_off[i] &= ns->buf.byte[i];
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * If state has any action bit, perform this action.
1566  *
1567  * RETURNS: 0 if success, -1 if error.
1568  */
1569 static int do_state_action(struct nandsim *ns, uint32_t action)
1570 {
1571 	int num;
1572 	int busdiv = ns->busw == 8 ? 1 : 2;
1573 	unsigned int erase_block_no, page_no;
1574 
1575 	action &= ACTION_MASK;
1576 
1577 	/* Check that page address input is correct */
1578 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1579 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1580 		return -1;
1581 	}
1582 
1583 	switch (action) {
1584 
1585 	case ACTION_CPY:
1586 		/*
1587 		 * Copy page data to the internal buffer.
1588 		 */
1589 
1590 		/* Column shouldn't be very large */
1591 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1592 			NS_ERR("do_state_action: column number is too large\n");
1593 			break;
1594 		}
1595 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1596 		read_page(ns, num);
1597 
1598 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1599 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1600 
1601 		if (ns->regs.off == 0)
1602 			NS_LOG("read page %d\n", ns->regs.row);
1603 		else if (ns->regs.off < ns->geom.pgsz)
1604 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1605 		else
1606 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1607 
1608 		NS_UDELAY(access_delay);
1609 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1610 
1611 		break;
1612 
1613 	case ACTION_SECERASE:
1614 		/*
1615 		 * Erase sector.
1616 		 */
1617 
1618 		if (ns->lines.wp) {
1619 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1620 			return -1;
1621 		}
1622 
1623 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1624 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1625 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1626 			return -1;
1627 		}
1628 
1629 		ns->regs.row = (ns->regs.row <<
1630 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1631 		ns->regs.column = 0;
1632 
1633 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1634 
1635 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1636 				ns->regs.row, NS_RAW_OFFSET(ns));
1637 		NS_LOG("erase sector %u\n", erase_block_no);
1638 
1639 		erase_sector(ns);
1640 
1641 		NS_MDELAY(erase_delay);
1642 
1643 		if (erase_block_wear)
1644 			update_wear(erase_block_no);
1645 
1646 		if (erase_error(erase_block_no)) {
1647 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1648 			return -1;
1649 		}
1650 
1651 		break;
1652 
1653 	case ACTION_PRGPAGE:
1654 		/*
1655 		 * Program page - move internal buffer data to the page.
1656 		 */
1657 
1658 		if (ns->lines.wp) {
1659 			NS_WARN("do_state_action: device is write-protected, programm\n");
1660 			return -1;
1661 		}
1662 
1663 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1664 		if (num != ns->regs.count) {
1665 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1666 					ns->regs.count, num);
1667 			return -1;
1668 		}
1669 
1670 		if (prog_page(ns, num) == -1)
1671 			return -1;
1672 
1673 		page_no = ns->regs.row;
1674 
1675 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1676 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1677 		NS_LOG("programm page %d\n", ns->regs.row);
1678 
1679 		NS_UDELAY(programm_delay);
1680 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1681 
1682 		if (write_error(page_no)) {
1683 			NS_WARN("simulating write failure in page %u\n", page_no);
1684 			return -1;
1685 		}
1686 
1687 		break;
1688 
1689 	case ACTION_ZEROOFF:
1690 		NS_DBG("do_state_action: set internal offset to 0\n");
1691 		ns->regs.off = 0;
1692 		break;
1693 
1694 	case ACTION_HALFOFF:
1695 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1696 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1697 				"byte page size 8x chips\n");
1698 			return -1;
1699 		}
1700 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1701 		ns->regs.off = ns->geom.pgsz/2;
1702 		break;
1703 
1704 	case ACTION_OOBOFF:
1705 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1706 		ns->regs.off = ns->geom.pgsz;
1707 		break;
1708 
1709 	default:
1710 		NS_DBG("do_state_action: BUG! unknown action\n");
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 /*
1717  * Switch simulator's state.
1718  */
1719 static void switch_state(struct nandsim *ns)
1720 {
1721 	if (ns->op) {
1722 		/*
1723 		 * The current operation have already been identified.
1724 		 * Just follow the states chain.
1725 		 */
1726 
1727 		ns->stateidx += 1;
1728 		ns->state = ns->nxstate;
1729 		ns->nxstate = ns->op[ns->stateidx + 1];
1730 
1731 		NS_DBG("switch_state: operation is known, switch to the next state, "
1732 			"state: %s, nxstate: %s\n",
1733 			get_state_name(ns->state), get_state_name(ns->nxstate));
1734 
1735 		/* See, whether we need to do some action */
1736 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1737 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1738 			return;
1739 		}
1740 
1741 	} else {
1742 		/*
1743 		 * We don't yet know which operation we perform.
1744 		 * Try to identify it.
1745 		 */
1746 
1747 		/*
1748 		 *  The only event causing the switch_state function to
1749 		 *  be called with yet unknown operation is new command.
1750 		 */
1751 		ns->state = get_state_by_command(ns->regs.command);
1752 
1753 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1754 
1755 		if (find_operation(ns, 0) != 0)
1756 			return;
1757 
1758 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1759 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1760 			return;
1761 		}
1762 	}
1763 
1764 	/* For 16x devices column means the page offset in words */
1765 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1766 		NS_DBG("switch_state: double the column number for 16x device\n");
1767 		ns->regs.column <<= 1;
1768 	}
1769 
1770 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1771 		/*
1772 		 * The current state is the last. Return to STATE_READY
1773 		 */
1774 
1775 		u_char status = NS_STATUS_OK(ns);
1776 
1777 		/* In case of data states, see if all bytes were input/output */
1778 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1779 			&& ns->regs.count != ns->regs.num) {
1780 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1781 					ns->regs.num - ns->regs.count);
1782 			status = NS_STATUS_FAILED(ns);
1783 		}
1784 
1785 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1786 
1787 		switch_to_ready_state(ns, status);
1788 
1789 		return;
1790 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1791 		/*
1792 		 * If the next state is data input/output, switch to it now
1793 		 */
1794 
1795 		ns->state      = ns->nxstate;
1796 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1797 		ns->regs.num   = ns->regs.count = 0;
1798 
1799 		NS_DBG("switch_state: the next state is data I/O, switch, "
1800 			"state: %s, nxstate: %s\n",
1801 			get_state_name(ns->state), get_state_name(ns->nxstate));
1802 
1803 		/*
1804 		 * Set the internal register to the count of bytes which
1805 		 * are expected to be input or output
1806 		 */
1807 		switch (NS_STATE(ns->state)) {
1808 			case STATE_DATAIN:
1809 			case STATE_DATAOUT:
1810 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1811 				break;
1812 
1813 			case STATE_DATAOUT_ID:
1814 				ns->regs.num = ns->geom.idbytes;
1815 				break;
1816 
1817 			case STATE_DATAOUT_STATUS:
1818 				ns->regs.count = ns->regs.num = 0;
1819 				break;
1820 
1821 			default:
1822 				NS_ERR("switch_state: BUG! unknown data state\n");
1823 		}
1824 
1825 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1826 		/*
1827 		 * If the next state is address input, set the internal
1828 		 * register to the number of expected address bytes
1829 		 */
1830 
1831 		ns->regs.count = 0;
1832 
1833 		switch (NS_STATE(ns->nxstate)) {
1834 			case STATE_ADDR_PAGE:
1835 				ns->regs.num = ns->geom.pgaddrbytes;
1836 
1837 				break;
1838 			case STATE_ADDR_SEC:
1839 				ns->regs.num = ns->geom.secaddrbytes;
1840 				break;
1841 
1842 			case STATE_ADDR_ZERO:
1843 				ns->regs.num = 1;
1844 				break;
1845 
1846 			case STATE_ADDR_COLUMN:
1847 				/* Column address is always 2 bytes */
1848 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1849 				break;
1850 
1851 			default:
1852 				NS_ERR("switch_state: BUG! unknown address state\n");
1853 		}
1854 	} else {
1855 		/*
1856 		 * Just reset internal counters.
1857 		 */
1858 
1859 		ns->regs.num = 0;
1860 		ns->regs.count = 0;
1861 	}
1862 }
1863 
1864 static u_char ns_nand_read_byte(struct nand_chip *chip)
1865 {
1866 	struct nandsim *ns = nand_get_controller_data(chip);
1867 	u_char outb = 0x00;
1868 
1869 	/* Sanity and correctness checks */
1870 	if (!ns->lines.ce) {
1871 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1872 		return outb;
1873 	}
1874 	if (ns->lines.ale || ns->lines.cle) {
1875 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1876 		return outb;
1877 	}
1878 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1879 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1880 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1881 		return outb;
1882 	}
1883 
1884 	/* Status register may be read as many times as it is wanted */
1885 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1886 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1887 		return ns->regs.status;
1888 	}
1889 
1890 	/* Check if there is any data in the internal buffer which may be read */
1891 	if (ns->regs.count == ns->regs.num) {
1892 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1893 		return outb;
1894 	}
1895 
1896 	switch (NS_STATE(ns->state)) {
1897 		case STATE_DATAOUT:
1898 			if (ns->busw == 8) {
1899 				outb = ns->buf.byte[ns->regs.count];
1900 				ns->regs.count += 1;
1901 			} else {
1902 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1903 				ns->regs.count += 2;
1904 			}
1905 			break;
1906 		case STATE_DATAOUT_ID:
1907 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1908 			outb = ns->ids[ns->regs.count];
1909 			ns->regs.count += 1;
1910 			break;
1911 		default:
1912 			BUG();
1913 	}
1914 
1915 	if (ns->regs.count == ns->regs.num) {
1916 		NS_DBG("read_byte: all bytes were read\n");
1917 
1918 		if (NS_STATE(ns->nxstate) == STATE_READY)
1919 			switch_state(ns);
1920 	}
1921 
1922 	return outb;
1923 }
1924 
1925 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
1926 {
1927 	struct nandsim *ns = nand_get_controller_data(chip);
1928 
1929 	/* Sanity and correctness checks */
1930 	if (!ns->lines.ce) {
1931 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1932 		return;
1933 	}
1934 	if (ns->lines.ale && ns->lines.cle) {
1935 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1936 		return;
1937 	}
1938 
1939 	if (ns->lines.cle == 1) {
1940 		/*
1941 		 * The byte written is a command.
1942 		 */
1943 
1944 		if (byte == NAND_CMD_RESET) {
1945 			NS_LOG("reset chip\n");
1946 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1947 			return;
1948 		}
1949 
1950 		/* Check that the command byte is correct */
1951 		if (check_command(byte)) {
1952 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1953 			return;
1954 		}
1955 
1956 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1957 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1958 			int row = ns->regs.row;
1959 
1960 			switch_state(ns);
1961 			if (byte == NAND_CMD_RNDOUT)
1962 				ns->regs.row = row;
1963 		}
1964 
1965 		/* Check if chip is expecting command */
1966 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1967 			/* Do not warn if only 2 id bytes are read */
1968 			if (!(ns->regs.command == NAND_CMD_READID &&
1969 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1970 				/*
1971 				 * We are in situation when something else (not command)
1972 				 * was expected but command was input. In this case ignore
1973 				 * previous command(s)/state(s) and accept the last one.
1974 				 */
1975 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1976 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1977 			}
1978 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1979 		}
1980 
1981 		NS_DBG("command byte corresponding to %s state accepted\n",
1982 			get_state_name(get_state_by_command(byte)));
1983 		ns->regs.command = byte;
1984 		switch_state(ns);
1985 
1986 	} else if (ns->lines.ale == 1) {
1987 		/*
1988 		 * The byte written is an address.
1989 		 */
1990 
1991 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1992 
1993 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
1994 
1995 			if (find_operation(ns, 1) < 0)
1996 				return;
1997 
1998 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1999 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2000 				return;
2001 			}
2002 
2003 			ns->regs.count = 0;
2004 			switch (NS_STATE(ns->nxstate)) {
2005 				case STATE_ADDR_PAGE:
2006 					ns->regs.num = ns->geom.pgaddrbytes;
2007 					break;
2008 				case STATE_ADDR_SEC:
2009 					ns->regs.num = ns->geom.secaddrbytes;
2010 					break;
2011 				case STATE_ADDR_ZERO:
2012 					ns->regs.num = 1;
2013 					break;
2014 				default:
2015 					BUG();
2016 			}
2017 		}
2018 
2019 		/* Check that chip is expecting address */
2020 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2021 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2022 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2023 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2024 			return;
2025 		}
2026 
2027 		/* Check if this is expected byte */
2028 		if (ns->regs.count == ns->regs.num) {
2029 			NS_ERR("write_byte: no more address bytes expected\n");
2030 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2031 			return;
2032 		}
2033 
2034 		accept_addr_byte(ns, byte);
2035 
2036 		ns->regs.count += 1;
2037 
2038 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2039 				(uint)byte, ns->regs.count, ns->regs.num);
2040 
2041 		if (ns->regs.count == ns->regs.num) {
2042 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2043 			switch_state(ns);
2044 		}
2045 
2046 	} else {
2047 		/*
2048 		 * The byte written is an input data.
2049 		 */
2050 
2051 		/* Check that chip is expecting data input */
2052 		if (!(ns->state & STATE_DATAIN_MASK)) {
2053 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2054 				"switch to %s\n", (uint)byte,
2055 				get_state_name(ns->state), get_state_name(STATE_READY));
2056 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2057 			return;
2058 		}
2059 
2060 		/* Check if this is expected byte */
2061 		if (ns->regs.count == ns->regs.num) {
2062 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2063 					ns->regs.num);
2064 			return;
2065 		}
2066 
2067 		if (ns->busw == 8) {
2068 			ns->buf.byte[ns->regs.count] = byte;
2069 			ns->regs.count += 1;
2070 		} else {
2071 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2072 			ns->regs.count += 2;
2073 		}
2074 	}
2075 
2076 	return;
2077 }
2078 
2079 static void ns_hwcontrol(struct nand_chip *chip, int cmd, unsigned int bitmask)
2080 {
2081 	struct nandsim *ns = nand_get_controller_data(chip);
2082 
2083 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2084 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2085 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2086 
2087 	if (cmd != NAND_CMD_NONE)
2088 		ns_nand_write_byte(chip, cmd);
2089 }
2090 
2091 static int ns_device_ready(struct nand_chip *chip)
2092 {
2093 	NS_DBG("device_ready\n");
2094 	return 1;
2095 }
2096 
2097 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
2098 			      int len)
2099 {
2100 	struct nandsim *ns = nand_get_controller_data(chip);
2101 
2102 	/* Check that chip is expecting data input */
2103 	if (!(ns->state & STATE_DATAIN_MASK)) {
2104 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2105 			"switch to STATE_READY\n", get_state_name(ns->state));
2106 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2107 		return;
2108 	}
2109 
2110 	/* Check if these are expected bytes */
2111 	if (ns->regs.count + len > ns->regs.num) {
2112 		NS_ERR("write_buf: too many input bytes\n");
2113 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2114 		return;
2115 	}
2116 
2117 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2118 	ns->regs.count += len;
2119 
2120 	if (ns->regs.count == ns->regs.num) {
2121 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2122 	}
2123 }
2124 
2125 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
2126 {
2127 	struct nandsim *ns = nand_get_controller_data(chip);
2128 
2129 	/* Sanity and correctness checks */
2130 	if (!ns->lines.ce) {
2131 		NS_ERR("read_buf: chip is disabled\n");
2132 		return;
2133 	}
2134 	if (ns->lines.ale || ns->lines.cle) {
2135 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2136 		return;
2137 	}
2138 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2139 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2140 			get_state_name(ns->state));
2141 		return;
2142 	}
2143 
2144 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2145 		int i;
2146 
2147 		for (i = 0; i < len; i++)
2148 			buf[i] = chip->legacy.read_byte(chip);
2149 
2150 		return;
2151 	}
2152 
2153 	/* Check if these are expected bytes */
2154 	if (ns->regs.count + len > ns->regs.num) {
2155 		NS_ERR("read_buf: too many bytes to read\n");
2156 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2157 		return;
2158 	}
2159 
2160 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2161 	ns->regs.count += len;
2162 
2163 	if (ns->regs.count == ns->regs.num) {
2164 		if (NS_STATE(ns->nxstate) == STATE_READY)
2165 			switch_state(ns);
2166 	}
2167 
2168 	return;
2169 }
2170 
2171 static int ns_attach_chip(struct nand_chip *chip)
2172 {
2173 	unsigned int eccsteps, eccbytes;
2174 
2175 	if (!bch)
2176 		return 0;
2177 
2178 	if (!mtd_nand_has_bch()) {
2179 		NS_ERR("BCH ECC support is disabled\n");
2180 		return -EINVAL;
2181 	}
2182 
2183 	/* Use 512-byte ecc blocks */
2184 	eccsteps = nsmtd->writesize / 512;
2185 	eccbytes = ((bch * 13) + 7) / 8;
2186 
2187 	/* Do not bother supporting small page devices */
2188 	if (nsmtd->oobsize < 64 || !eccsteps) {
2189 		NS_ERR("BCH not available on small page devices\n");
2190 		return -EINVAL;
2191 	}
2192 
2193 	if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2194 		NS_ERR("Invalid BCH value %u\n", bch);
2195 		return -EINVAL;
2196 	}
2197 
2198 	chip->ecc.mode = NAND_ECC_SOFT;
2199 	chip->ecc.algo = NAND_ECC_BCH;
2200 	chip->ecc.size = 512;
2201 	chip->ecc.strength = bch;
2202 	chip->ecc.bytes = eccbytes;
2203 
2204 	NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2205 
2206 	return 0;
2207 }
2208 
2209 static const struct nand_controller_ops ns_controller_ops = {
2210 	.attach_chip = ns_attach_chip,
2211 };
2212 
2213 /*
2214  * Module initialization function
2215  */
2216 static int __init ns_init_module(void)
2217 {
2218 	struct nand_chip *chip;
2219 	struct nandsim *nand;
2220 	int retval = -ENOMEM, i;
2221 
2222 	if (bus_width != 8 && bus_width != 16) {
2223 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2224 		return -EINVAL;
2225 	}
2226 
2227 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2228 	chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
2229 		       GFP_KERNEL);
2230 	if (!chip) {
2231 		NS_ERR("unable to allocate core structures.\n");
2232 		return -ENOMEM;
2233 	}
2234 	nsmtd       = nand_to_mtd(chip);
2235 	nand        = (struct nandsim *)(chip + 1);
2236 	nand_set_controller_data(chip, (void *)nand);
2237 
2238 	/*
2239 	 * Register simulator's callbacks.
2240 	 */
2241 	chip->legacy.cmd_ctrl	 = ns_hwcontrol;
2242 	chip->legacy.read_byte  = ns_nand_read_byte;
2243 	chip->legacy.dev_ready  = ns_device_ready;
2244 	chip->legacy.write_buf  = ns_nand_write_buf;
2245 	chip->legacy.read_buf   = ns_nand_read_buf;
2246 	chip->ecc.mode   = NAND_ECC_SOFT;
2247 	chip->ecc.algo   = NAND_ECC_HAMMING;
2248 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2249 	/* and 'badblocks' parameters to work */
2250 	chip->options   |= NAND_SKIP_BBTSCAN;
2251 
2252 	switch (bbt) {
2253 	case 2:
2254 		 chip->bbt_options |= NAND_BBT_NO_OOB;
2255 	case 1:
2256 		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2257 	case 0:
2258 		break;
2259 	default:
2260 		NS_ERR("bbt has to be 0..2\n");
2261 		retval = -EINVAL;
2262 		goto error;
2263 	}
2264 	/*
2265 	 * Perform minimum nandsim structure initialization to handle
2266 	 * the initial ID read command correctly
2267 	 */
2268 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2269 		nand->geom.idbytes = 8;
2270 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2271 		nand->geom.idbytes = 6;
2272 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2273 		nand->geom.idbytes = 4;
2274 	else
2275 		nand->geom.idbytes = 2;
2276 	nand->regs.status = NS_STATUS_OK(nand);
2277 	nand->nxstate = STATE_UNKNOWN;
2278 	nand->options |= OPT_PAGE512; /* temporary value */
2279 	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2280 	if (bus_width == 16) {
2281 		nand->busw = 16;
2282 		chip->options |= NAND_BUSWIDTH_16;
2283 	}
2284 
2285 	nsmtd->owner = THIS_MODULE;
2286 
2287 	if ((retval = parse_weakblocks()) != 0)
2288 		goto error;
2289 
2290 	if ((retval = parse_weakpages()) != 0)
2291 		goto error;
2292 
2293 	if ((retval = parse_gravepages()) != 0)
2294 		goto error;
2295 
2296 	chip->legacy.dummy_controller.ops = &ns_controller_ops;
2297 	retval = nand_scan(chip, 1);
2298 	if (retval) {
2299 		NS_ERR("Could not scan NAND Simulator device\n");
2300 		goto error;
2301 	}
2302 
2303 	if (overridesize) {
2304 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2305 		if (new_size >> overridesize != nsmtd->erasesize) {
2306 			NS_ERR("overridesize is too big\n");
2307 			retval = -EINVAL;
2308 			goto err_exit;
2309 		}
2310 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2311 		nsmtd->size = new_size;
2312 		chip->chipsize = new_size;
2313 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2314 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2315 	}
2316 
2317 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2318 		goto err_exit;
2319 
2320 	if ((retval = init_nandsim(nsmtd)) != 0)
2321 		goto err_exit;
2322 
2323 	if ((retval = nand_create_bbt(chip)) != 0)
2324 		goto err_exit;
2325 
2326 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2327 		goto err_exit;
2328 
2329 	/* Register NAND partitions */
2330 	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2331 				     nand->nbparts);
2332 	if (retval != 0)
2333 		goto err_exit;
2334 
2335 	if ((retval = nandsim_debugfs_create(nand)) != 0)
2336 		goto err_exit;
2337 
2338         return 0;
2339 
2340 err_exit:
2341 	free_nandsim(nand);
2342 	nand_release(chip);
2343 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2344 		kfree(nand->partitions[i].name);
2345 error:
2346 	kfree(chip);
2347 	free_lists();
2348 
2349 	return retval;
2350 }
2351 
2352 module_init(ns_init_module);
2353 
2354 /*
2355  * Module clean-up function
2356  */
2357 static void __exit ns_cleanup_module(void)
2358 {
2359 	struct nand_chip *chip = mtd_to_nand(nsmtd);
2360 	struct nandsim *ns = nand_get_controller_data(chip);
2361 	int i;
2362 
2363 	free_nandsim(ns);    /* Free nandsim private resources */
2364 	nand_release(chip); /* Unregister driver */
2365 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2366 		kfree(ns->partitions[i].name);
2367 	kfree(mtd_to_nand(nsmtd));        /* Free other structures */
2368 	free_lists();
2369 }
2370 
2371 module_exit(ns_cleanup_module);
2372 
2373 MODULE_LICENSE ("GPL");
2374 MODULE_AUTHOR ("Artem B. Bityuckiy");
2375 MODULE_DESCRIPTION ("The NAND flash simulator");
2376