xref: /linux/drivers/mtd/nand/raw/nand_legacy.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
4  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
5  *
6  *  Credits:
7  *	David Woodhouse for adding multichip support
8  *
9  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
10  *	rework for 2K page size chips
11  *
12  * This file contains all legacy helpers/code that should be removed
13  * at some point.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/nmi.h>
19 
20 #include "internals.h"
21 
22 /**
23  * nand_read_byte - [DEFAULT] read one byte from the chip
24  * @chip: NAND chip object
25  *
26  * Default read function for 8bit buswidth
27  */
28 static uint8_t nand_read_byte(struct nand_chip *chip)
29 {
30 	return readb(chip->legacy.IO_ADDR_R);
31 }
32 
33 /**
34  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
35  * @chip: NAND chip object
36  *
37  * Default read function for 16bit buswidth with endianness conversion.
38  *
39  */
40 static uint8_t nand_read_byte16(struct nand_chip *chip)
41 {
42 	return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R));
43 }
44 
45 /**
46  * nand_select_chip - [DEFAULT] control CE line
47  * @chip: NAND chip object
48  * @chipnr: chipnumber to select, -1 for deselect
49  *
50  * Default select function for 1 chip devices.
51  */
52 static void nand_select_chip(struct nand_chip *chip, int chipnr)
53 {
54 	switch (chipnr) {
55 	case -1:
56 		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
57 				      0 | NAND_CTRL_CHANGE);
58 		break;
59 	case 0:
60 		break;
61 
62 	default:
63 		BUG();
64 	}
65 }
66 
67 /**
68  * nand_write_byte - [DEFAULT] write single byte to chip
69  * @chip: NAND chip object
70  * @byte: value to write
71  *
72  * Default function to write a byte to I/O[7:0]
73  */
74 static void nand_write_byte(struct nand_chip *chip, uint8_t byte)
75 {
76 	chip->legacy.write_buf(chip, &byte, 1);
77 }
78 
79 /**
80  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
81  * @chip: NAND chip object
82  * @byte: value to write
83  *
84  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
85  */
86 static void nand_write_byte16(struct nand_chip *chip, uint8_t byte)
87 {
88 	uint16_t word = byte;
89 
90 	/*
91 	 * It's not entirely clear what should happen to I/O[15:8] when writing
92 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
93 	 *
94 	 *    When the host supports a 16-bit bus width, only data is
95 	 *    transferred at the 16-bit width. All address and command line
96 	 *    transfers shall use only the lower 8-bits of the data bus. During
97 	 *    command transfers, the host may place any value on the upper
98 	 *    8-bits of the data bus. During address transfers, the host shall
99 	 *    set the upper 8-bits of the data bus to 00h.
100 	 *
101 	 * One user of the write_byte callback is nand_set_features. The
102 	 * four parameters are specified to be written to I/O[7:0], but this is
103 	 * neither an address nor a command transfer. Let's assume a 0 on the
104 	 * upper I/O lines is OK.
105 	 */
106 	chip->legacy.write_buf(chip, (uint8_t *)&word, 2);
107 }
108 
109 /**
110  * nand_write_buf - [DEFAULT] write buffer to chip
111  * @chip: NAND chip object
112  * @buf: data buffer
113  * @len: number of bytes to write
114  *
115  * Default write function for 8bit buswidth.
116  */
117 static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
118 {
119 	iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len);
120 }
121 
122 /**
123  * nand_read_buf - [DEFAULT] read chip data into buffer
124  * @chip: NAND chip object
125  * @buf: buffer to store date
126  * @len: number of bytes to read
127  *
128  * Default read function for 8bit buswidth.
129  */
130 static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
131 {
132 	ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
133 }
134 
135 /**
136  * nand_write_buf16 - [DEFAULT] write buffer to chip
137  * @chip: NAND chip object
138  * @buf: data buffer
139  * @len: number of bytes to write
140  *
141  * Default write function for 16bit buswidth.
142  */
143 static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf,
144 			     int len)
145 {
146 	u16 *p = (u16 *) buf;
147 
148 	iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1);
149 }
150 
151 /**
152  * nand_read_buf16 - [DEFAULT] read chip data into buffer
153  * @chip: NAND chip object
154  * @buf: buffer to store date
155  * @len: number of bytes to read
156  *
157  * Default read function for 16bit buswidth.
158  */
159 static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
160 {
161 	u16 *p = (u16 *) buf;
162 
163 	ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1);
164 }
165 
166 /**
167  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
168  * @chip: NAND chip object
169  * @timeo: Timeout
170  *
171  * Helper function for nand_wait_ready used when needing to wait in interrupt
172  * context.
173  */
174 static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
175 {
176 	int i;
177 
178 	/* Wait for the device to get ready */
179 	for (i = 0; i < timeo; i++) {
180 		if (chip->legacy.dev_ready(chip))
181 			break;
182 		touch_softlockup_watchdog();
183 		mdelay(1);
184 	}
185 }
186 
187 /**
188  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
189  * @chip: NAND chip object
190  *
191  * Wait for the ready pin after a command, and warn if a timeout occurs.
192  */
193 void nand_wait_ready(struct nand_chip *chip)
194 {
195 	unsigned long timeo = 400;
196 
197 	if (in_interrupt() || oops_in_progress)
198 		return panic_nand_wait_ready(chip, timeo);
199 
200 	/* Wait until command is processed or timeout occurs */
201 	timeo = jiffies + msecs_to_jiffies(timeo);
202 	do {
203 		if (chip->legacy.dev_ready(chip))
204 			return;
205 		cond_resched();
206 	} while (time_before(jiffies, timeo));
207 
208 	if (!chip->legacy.dev_ready(chip))
209 		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
210 }
211 EXPORT_SYMBOL_GPL(nand_wait_ready);
212 
213 /**
214  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
215  * @chip: NAND chip object
216  * @timeo: Timeout in ms
217  *
218  * Wait for status ready (i.e. command done) or timeout.
219  */
220 static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo)
221 {
222 	int ret;
223 
224 	timeo = jiffies + msecs_to_jiffies(timeo);
225 	do {
226 		u8 status;
227 
228 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
229 		if (ret)
230 			return;
231 
232 		if (status & NAND_STATUS_READY)
233 			break;
234 		touch_softlockup_watchdog();
235 	} while (time_before(jiffies, timeo));
236 };
237 
238 /**
239  * nand_command - [DEFAULT] Send command to NAND device
240  * @chip: NAND chip object
241  * @command: the command to be sent
242  * @column: the column address for this command, -1 if none
243  * @page_addr: the page address for this command, -1 if none
244  *
245  * Send command to NAND device. This function is used for small page devices
246  * (512 Bytes per page).
247  */
248 static void nand_command(struct nand_chip *chip, unsigned int command,
249 			 int column, int page_addr)
250 {
251 	struct mtd_info *mtd = nand_to_mtd(chip);
252 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
253 
254 	/* Write out the command to the device */
255 	if (command == NAND_CMD_SEQIN) {
256 		int readcmd;
257 
258 		if (column >= mtd->writesize) {
259 			/* OOB area */
260 			column -= mtd->writesize;
261 			readcmd = NAND_CMD_READOOB;
262 		} else if (column < 256) {
263 			/* First 256 bytes --> READ0 */
264 			readcmd = NAND_CMD_READ0;
265 		} else {
266 			column -= 256;
267 			readcmd = NAND_CMD_READ1;
268 		}
269 		chip->legacy.cmd_ctrl(chip, readcmd, ctrl);
270 		ctrl &= ~NAND_CTRL_CHANGE;
271 	}
272 	if (command != NAND_CMD_NONE)
273 		chip->legacy.cmd_ctrl(chip, command, ctrl);
274 
275 	/* Address cycle, when necessary */
276 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
277 	/* Serially input address */
278 	if (column != -1) {
279 		/* Adjust columns for 16 bit buswidth */
280 		if (chip->options & NAND_BUSWIDTH_16 &&
281 				!nand_opcode_8bits(command))
282 			column >>= 1;
283 		chip->legacy.cmd_ctrl(chip, column, ctrl);
284 		ctrl &= ~NAND_CTRL_CHANGE;
285 	}
286 	if (page_addr != -1) {
287 		chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
288 		ctrl &= ~NAND_CTRL_CHANGE;
289 		chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl);
290 		if (chip->options & NAND_ROW_ADDR_3)
291 			chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl);
292 	}
293 	chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
294 			      NAND_NCE | NAND_CTRL_CHANGE);
295 
296 	/*
297 	 * Program and erase have their own busy handlers status and sequential
298 	 * in needs no delay
299 	 */
300 	switch (command) {
301 
302 	case NAND_CMD_NONE:
303 	case NAND_CMD_PAGEPROG:
304 	case NAND_CMD_ERASE1:
305 	case NAND_CMD_ERASE2:
306 	case NAND_CMD_SEQIN:
307 	case NAND_CMD_STATUS:
308 	case NAND_CMD_READID:
309 	case NAND_CMD_SET_FEATURES:
310 		return;
311 
312 	case NAND_CMD_RESET:
313 		if (chip->legacy.dev_ready)
314 			break;
315 		udelay(chip->legacy.chip_delay);
316 		chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
317 				      NAND_CTRL_CLE | NAND_CTRL_CHANGE);
318 		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
319 				      NAND_NCE | NAND_CTRL_CHANGE);
320 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
321 		nand_wait_status_ready(chip, 250);
322 		return;
323 
324 		/* This applies to read commands */
325 	case NAND_CMD_READ0:
326 		/*
327 		 * READ0 is sometimes used to exit GET STATUS mode. When this
328 		 * is the case no address cycles are requested, and we can use
329 		 * this information to detect that we should not wait for the
330 		 * device to be ready.
331 		 */
332 		if (column == -1 && page_addr == -1)
333 			return;
334 		/* fall through */
335 
336 	default:
337 		/*
338 		 * If we don't have access to the busy pin, we apply the given
339 		 * command delay
340 		 */
341 		if (!chip->legacy.dev_ready) {
342 			udelay(chip->legacy.chip_delay);
343 			return;
344 		}
345 	}
346 	/*
347 	 * Apply this short delay always to ensure that we do wait tWB in
348 	 * any case on any machine.
349 	 */
350 	ndelay(100);
351 
352 	nand_wait_ready(chip);
353 }
354 
355 static void nand_ccs_delay(struct nand_chip *chip)
356 {
357 	/*
358 	 * The controller already takes care of waiting for tCCS when the RNDIN
359 	 * or RNDOUT command is sent, return directly.
360 	 */
361 	if (!(chip->options & NAND_WAIT_TCCS))
362 		return;
363 
364 	/*
365 	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
366 	 * (which should be safe for all NANDs).
367 	 */
368 	if (nand_has_setup_data_iface(chip))
369 		ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
370 	else
371 		ndelay(500);
372 }
373 
374 /**
375  * nand_command_lp - [DEFAULT] Send command to NAND large page device
376  * @chip: NAND chip object
377  * @command: the command to be sent
378  * @column: the column address for this command, -1 if none
379  * @page_addr: the page address for this command, -1 if none
380  *
381  * Send command to NAND device. This is the version for the new large page
382  * devices. We don't have the separate regions as we have in the small page
383  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
384  */
385 static void nand_command_lp(struct nand_chip *chip, unsigned int command,
386 			    int column, int page_addr)
387 {
388 	struct mtd_info *mtd = nand_to_mtd(chip);
389 
390 	/* Emulate NAND_CMD_READOOB */
391 	if (command == NAND_CMD_READOOB) {
392 		column += mtd->writesize;
393 		command = NAND_CMD_READ0;
394 	}
395 
396 	/* Command latch cycle */
397 	if (command != NAND_CMD_NONE)
398 		chip->legacy.cmd_ctrl(chip, command,
399 				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
400 
401 	if (column != -1 || page_addr != -1) {
402 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
403 
404 		/* Serially input address */
405 		if (column != -1) {
406 			/* Adjust columns for 16 bit buswidth */
407 			if (chip->options & NAND_BUSWIDTH_16 &&
408 					!nand_opcode_8bits(command))
409 				column >>= 1;
410 			chip->legacy.cmd_ctrl(chip, column, ctrl);
411 			ctrl &= ~NAND_CTRL_CHANGE;
412 
413 			/* Only output a single addr cycle for 8bits opcodes. */
414 			if (!nand_opcode_8bits(command))
415 				chip->legacy.cmd_ctrl(chip, column >> 8, ctrl);
416 		}
417 		if (page_addr != -1) {
418 			chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
419 			chip->legacy.cmd_ctrl(chip, page_addr >> 8,
420 					     NAND_NCE | NAND_ALE);
421 			if (chip->options & NAND_ROW_ADDR_3)
422 				chip->legacy.cmd_ctrl(chip, page_addr >> 16,
423 						      NAND_NCE | NAND_ALE);
424 		}
425 	}
426 	chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
427 			      NAND_NCE | NAND_CTRL_CHANGE);
428 
429 	/*
430 	 * Program and erase have their own busy handlers status, sequential
431 	 * in and status need no delay.
432 	 */
433 	switch (command) {
434 
435 	case NAND_CMD_NONE:
436 	case NAND_CMD_CACHEDPROG:
437 	case NAND_CMD_PAGEPROG:
438 	case NAND_CMD_ERASE1:
439 	case NAND_CMD_ERASE2:
440 	case NAND_CMD_SEQIN:
441 	case NAND_CMD_STATUS:
442 	case NAND_CMD_READID:
443 	case NAND_CMD_SET_FEATURES:
444 		return;
445 
446 	case NAND_CMD_RNDIN:
447 		nand_ccs_delay(chip);
448 		return;
449 
450 	case NAND_CMD_RESET:
451 		if (chip->legacy.dev_ready)
452 			break;
453 		udelay(chip->legacy.chip_delay);
454 		chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
455 				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
456 		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
457 				      NAND_NCE | NAND_CTRL_CHANGE);
458 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
459 		nand_wait_status_ready(chip, 250);
460 		return;
461 
462 	case NAND_CMD_RNDOUT:
463 		/* No ready / busy check necessary */
464 		chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART,
465 				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
466 		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
467 				      NAND_NCE | NAND_CTRL_CHANGE);
468 
469 		nand_ccs_delay(chip);
470 		return;
471 
472 	case NAND_CMD_READ0:
473 		/*
474 		 * READ0 is sometimes used to exit GET STATUS mode. When this
475 		 * is the case no address cycles are requested, and we can use
476 		 * this information to detect that READSTART should not be
477 		 * issued.
478 		 */
479 		if (column == -1 && page_addr == -1)
480 			return;
481 
482 		chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART,
483 				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
484 		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
485 				      NAND_NCE | NAND_CTRL_CHANGE);
486 
487 		/* fall through - This applies to read commands */
488 	default:
489 		/*
490 		 * If we don't have access to the busy pin, we apply the given
491 		 * command delay.
492 		 */
493 		if (!chip->legacy.dev_ready) {
494 			udelay(chip->legacy.chip_delay);
495 			return;
496 		}
497 	}
498 
499 	/*
500 	 * Apply this short delay always to ensure that we do wait tWB in
501 	 * any case on any machine.
502 	 */
503 	ndelay(100);
504 
505 	nand_wait_ready(chip);
506 }
507 
508 /**
509  * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
510  * @chip: nand chip info structure
511  * @addr: feature address.
512  * @subfeature_param: the subfeature parameters, a four bytes array.
513  *
514  * Should be used by NAND controller drivers that do not support the SET/GET
515  * FEATURES operations.
516  */
517 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
518 				  u8 *subfeature_param)
519 {
520 	return -ENOTSUPP;
521 }
522 EXPORT_SYMBOL(nand_get_set_features_notsupp);
523 
524 /**
525  * nand_wait - [DEFAULT] wait until the command is done
526  * @chip: NAND chip structure
527  *
528  * Wait for command done. This applies to erase and program only.
529  */
530 static int nand_wait(struct nand_chip *chip)
531 {
532 
533 	unsigned long timeo = 400;
534 	u8 status;
535 	int ret;
536 
537 	/*
538 	 * Apply this short delay always to ensure that we do wait tWB in any
539 	 * case on any machine.
540 	 */
541 	ndelay(100);
542 
543 	ret = nand_status_op(chip, NULL);
544 	if (ret)
545 		return ret;
546 
547 	if (in_interrupt() || oops_in_progress)
548 		panic_nand_wait(chip, timeo);
549 	else {
550 		timeo = jiffies + msecs_to_jiffies(timeo);
551 		do {
552 			if (chip->legacy.dev_ready) {
553 				if (chip->legacy.dev_ready(chip))
554 					break;
555 			} else {
556 				ret = nand_read_data_op(chip, &status,
557 							sizeof(status), true);
558 				if (ret)
559 					return ret;
560 
561 				if (status & NAND_STATUS_READY)
562 					break;
563 			}
564 			cond_resched();
565 		} while (time_before(jiffies, timeo));
566 	}
567 
568 	ret = nand_read_data_op(chip, &status, sizeof(status), true);
569 	if (ret)
570 		return ret;
571 
572 	/* This can happen if in case of timeout or buggy dev_ready */
573 	WARN_ON(!(status & NAND_STATUS_READY));
574 	return status;
575 }
576 
577 void nand_legacy_set_defaults(struct nand_chip *chip)
578 {
579 	unsigned int busw = chip->options & NAND_BUSWIDTH_16;
580 
581 	if (nand_has_exec_op(chip))
582 		return;
583 
584 	/* check for proper chip_delay setup, set 20us if not */
585 	if (!chip->legacy.chip_delay)
586 		chip->legacy.chip_delay = 20;
587 
588 	/* check, if a user supplied command function given */
589 	if (!chip->legacy.cmdfunc)
590 		chip->legacy.cmdfunc = nand_command;
591 
592 	/* check, if a user supplied wait function given */
593 	if (chip->legacy.waitfunc == NULL)
594 		chip->legacy.waitfunc = nand_wait;
595 
596 	if (!chip->legacy.select_chip)
597 		chip->legacy.select_chip = nand_select_chip;
598 
599 	/* If called twice, pointers that depend on busw may need to be reset */
600 	if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte)
601 		chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte;
602 	if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf)
603 		chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf;
604 	if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte)
605 		chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte;
606 	if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf)
607 		chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf;
608 }
609 
610 void nand_legacy_adjust_cmdfunc(struct nand_chip *chip)
611 {
612 	struct mtd_info *mtd = nand_to_mtd(chip);
613 
614 	/* Do not replace user supplied command function! */
615 	if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command)
616 		chip->legacy.cmdfunc = nand_command_lp;
617 }
618 
619 int nand_legacy_check_hooks(struct nand_chip *chip)
620 {
621 	/*
622 	 * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is
623 	 * not populated.
624 	 */
625 	if (nand_has_exec_op(chip))
626 		return 0;
627 
628 	/*
629 	 * Default functions assigned for ->legacy.cmdfunc() and
630 	 * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be
631 	 *  populated.
632 	 */
633 	if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) &&
634 	    !chip->legacy.cmd_ctrl) {
635 		pr_err("->legacy.cmd_ctrl() should be provided\n");
636 		return -EINVAL;
637 	}
638 
639 	return 0;
640 }
641