xref: /linux/drivers/mtd/nand/raw/nand_base.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46 
47 #include "internals.h"
48 
49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 				       struct mtd_pairing_info *info)
51 {
52 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 	int dist = 3;
54 
55 	if (page == lastpage)
56 		dist = 2;
57 
58 	if (!page || (page & 1)) {
59 		info->group = 0;
60 		info->pair = (page + 1) / 2;
61 	} else {
62 		info->group = 1;
63 		info->pair = (page + 1 - dist) / 2;
64 	}
65 
66 	return 0;
67 }
68 
69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 					const struct mtd_pairing_info *info)
71 {
72 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 	int page = info->pair * 2;
74 	int dist = 3;
75 
76 	if (!info->group && !info->pair)
77 		return 0;
78 
79 	if (info->pair == lastpair && info->group)
80 		dist = 2;
81 
82 	if (!info->group)
83 		page--;
84 	else if (info->pair)
85 		page += dist - 1;
86 
87 	if (page >= mtd->erasesize / mtd->writesize)
88 		return -EINVAL;
89 
90 	return page;
91 }
92 
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 	.ngroups = 2,
95 	.get_info = nand_pairing_dist3_get_info,
96 	.get_wunit = nand_pairing_dist3_get_wunit,
97 };
98 
99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101 	int ret = 0;
102 
103 	/* Start address must align on block boundary */
104 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 		pr_debug("%s: unaligned address\n", __func__);
106 		ret = -EINVAL;
107 	}
108 
109 	/* Length must align on block boundary */
110 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 		pr_debug("%s: length not block aligned\n", __func__);
112 		ret = -EINVAL;
113 	}
114 
115 	return ret;
116 }
117 
118 /**
119  * nand_extract_bits - Copy unaligned bits from one buffer to another one
120  * @dst: destination buffer
121  * @dst_off: bit offset at which the writing starts
122  * @src: source buffer
123  * @src_off: bit offset at which the reading starts
124  * @nbits: number of bits to copy from @src to @dst
125  *
126  * Copy bits from one memory region to another (overlap authorized).
127  */
128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 		       unsigned int src_off, unsigned int nbits)
130 {
131 	unsigned int tmp, n;
132 
133 	dst += dst_off / 8;
134 	dst_off %= 8;
135 	src += src_off / 8;
136 	src_off %= 8;
137 
138 	while (nbits) {
139 		n = min3(8 - dst_off, 8 - src_off, nbits);
140 
141 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 		*dst |= tmp << dst_off;
144 
145 		dst_off += n;
146 		if (dst_off >= 8) {
147 			dst++;
148 			dst_off -= 8;
149 		}
150 
151 		src_off += n;
152 		if (src_off >= 8) {
153 			src++;
154 			src_off -= 8;
155 		}
156 
157 		nbits -= n;
158 	}
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161 
162 /**
163  * nand_select_target() - Select a NAND target (A.K.A. die)
164  * @chip: NAND chip object
165  * @cs: the CS line to select. Note that this CS id is always from the chip
166  *	PoV, not the controller one
167  *
168  * Select a NAND target so that further operations executed on @chip go to the
169  * selected NAND target.
170  */
171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173 	/*
174 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 	 * not the case it's a bug and the caller should be fixed.
176 	 */
177 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 		return;
179 
180 	chip->cur_cs = cs;
181 
182 	if (chip->legacy.select_chip)
183 		chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186 
187 /**
188  * nand_deselect_target() - Deselect the currently selected target
189  * @chip: NAND chip object
190  *
191  * Deselect the currently selected NAND target. The result of operations
192  * executed on @chip after the target has been deselected is undefined.
193  */
194 void nand_deselect_target(struct nand_chip *chip)
195 {
196 	if (chip->legacy.select_chip)
197 		chip->legacy.select_chip(chip, -1);
198 
199 	chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202 
203 /**
204  * nand_release_device - [GENERIC] release chip
205  * @chip: NAND chip object
206  *
207  * Release chip lock and wake up anyone waiting on the device.
208  */
209 static void nand_release_device(struct nand_chip *chip)
210 {
211 	/* Release the controller and the chip */
212 	mutex_unlock(&chip->controller->lock);
213 	mutex_unlock(&chip->lock);
214 }
215 
216 /**
217  * nand_bbm_get_next_page - Get the next page for bad block markers
218  * @chip: NAND chip object
219  * @page: First page to start checking for bad block marker usage
220  *
221  * Returns an integer that corresponds to the page offset within a block, for
222  * a page that is used to store bad block markers. If no more pages are
223  * available, -EINVAL is returned.
224  */
225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227 	struct mtd_info *mtd = nand_to_mtd(chip);
228 	int last_page = ((mtd->erasesize - mtd->writesize) >>
229 			 chip->page_shift) & chip->pagemask;
230 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 		| NAND_BBM_LASTPAGE;
232 
233 	if (page == 0 && !(chip->options & bbm_flags))
234 		return 0;
235 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 		return 0;
237 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 		return 1;
239 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 		return last_page;
241 
242 	return -EINVAL;
243 }
244 
245 /**
246  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247  * @chip: NAND chip object
248  * @ofs: offset from device start
249  *
250  * Check, if the block is bad.
251  */
252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254 	int first_page, page_offset;
255 	int res;
256 	u8 bad;
257 
258 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 	page_offset = nand_bbm_get_next_page(chip, 0);
260 
261 	while (page_offset >= 0) {
262 		res = chip->ecc.read_oob(chip, first_page + page_offset);
263 		if (res < 0)
264 			return res;
265 
266 		bad = chip->oob_poi[chip->badblockpos];
267 
268 		if (likely(chip->badblockbits == 8))
269 			res = bad != 0xFF;
270 		else
271 			res = hweight8(bad) < chip->badblockbits;
272 		if (res)
273 			return res;
274 
275 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276 	}
277 
278 	return 0;
279 }
280 
281 /**
282  * nand_region_is_secured() - Check if the region is secured
283  * @chip: NAND chip object
284  * @offset: Offset of the region to check
285  * @size: Size of the region to check
286  *
287  * Checks if the region is secured by comparing the offset and size with the
288  * list of secure regions obtained from DT. Returns true if the region is
289  * secured else false.
290  */
291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292 {
293 	int i;
294 
295 	/* Skip touching the secure regions if present */
296 	for (i = 0; i < chip->nr_secure_regions; i++) {
297 		const struct nand_secure_region *region = &chip->secure_regions[i];
298 
299 		if (offset + size <= region->offset ||
300 		    offset >= region->offset + region->size)
301 			continue;
302 
303 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304 			 __func__, offset, offset + size);
305 
306 		return true;
307 	}
308 
309 	return false;
310 }
311 
312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313 {
314 	struct mtd_info *mtd = nand_to_mtd(chip);
315 
316 	if (chip->options & NAND_NO_BBM_QUIRK)
317 		return 0;
318 
319 	/* Check if the region is secured */
320 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321 		return -EIO;
322 
323 	if (mtd_check_expert_analysis_mode())
324 		return 0;
325 
326 	if (chip->legacy.block_bad)
327 		return chip->legacy.block_bad(chip, ofs);
328 
329 	return nand_block_bad(chip, ofs);
330 }
331 
332 /**
333  * nand_get_device - [GENERIC] Get chip for selected access
334  * @chip: NAND chip structure
335  *
336  * Lock the device and its controller for exclusive access
337  */
338 static void nand_get_device(struct nand_chip *chip)
339 {
340 	/* Wait until the device is resumed. */
341 	while (1) {
342 		mutex_lock(&chip->lock);
343 		if (!chip->suspended) {
344 			mutex_lock(&chip->controller->lock);
345 			return;
346 		}
347 		mutex_unlock(&chip->lock);
348 
349 		wait_event(chip->resume_wq, !chip->suspended);
350 	}
351 }
352 
353 /**
354  * nand_check_wp - [GENERIC] check if the chip is write protected
355  * @chip: NAND chip object
356  *
357  * Check, if the device is write protected. The function expects, that the
358  * device is already selected.
359  */
360 static int nand_check_wp(struct nand_chip *chip)
361 {
362 	u8 status;
363 	int ret;
364 
365 	/* Broken xD cards report WP despite being writable */
366 	if (chip->options & NAND_BROKEN_XD)
367 		return 0;
368 
369 	/* controller responsible for NAND write protect */
370 	if (chip->controller->controller_wp)
371 		return 0;
372 
373 	/* Check the WP bit */
374 	ret = nand_status_op(chip, &status);
375 	if (ret)
376 		return ret;
377 
378 	return status & NAND_STATUS_WP ? 0 : 1;
379 }
380 
381 /**
382  * nand_fill_oob - [INTERN] Transfer client buffer to oob
383  * @chip: NAND chip object
384  * @oob: oob data buffer
385  * @len: oob data write length
386  * @ops: oob ops structure
387  */
388 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
389 			      struct mtd_oob_ops *ops)
390 {
391 	struct mtd_info *mtd = nand_to_mtd(chip);
392 	int ret;
393 
394 	/*
395 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
396 	 * data from a previous OOB read.
397 	 */
398 	memset(chip->oob_poi, 0xff, mtd->oobsize);
399 
400 	switch (ops->mode) {
401 
402 	case MTD_OPS_PLACE_OOB:
403 	case MTD_OPS_RAW:
404 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
405 		return oob + len;
406 
407 	case MTD_OPS_AUTO_OOB:
408 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
409 						  ops->ooboffs, len);
410 		BUG_ON(ret);
411 		return oob + len;
412 
413 	default:
414 		BUG();
415 	}
416 	return NULL;
417 }
418 
419 /**
420  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
421  * @chip: NAND chip object
422  * @to: offset to write to
423  * @ops: oob operation description structure
424  *
425  * NAND write out-of-band.
426  */
427 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
428 			     struct mtd_oob_ops *ops)
429 {
430 	struct mtd_info *mtd = nand_to_mtd(chip);
431 	int chipnr, page, status, len, ret;
432 
433 	pr_debug("%s: to = 0x%08x, len = %i\n",
434 			 __func__, (unsigned int)to, (int)ops->ooblen);
435 
436 	len = mtd_oobavail(mtd, ops);
437 
438 	/* Do not allow write past end of page */
439 	if ((ops->ooboffs + ops->ooblen) > len) {
440 		pr_debug("%s: attempt to write past end of page\n",
441 				__func__);
442 		return -EINVAL;
443 	}
444 
445 	/* Check if the region is secured */
446 	if (nand_region_is_secured(chip, to, ops->ooblen))
447 		return -EIO;
448 
449 	chipnr = (int)(to >> chip->chip_shift);
450 
451 	/*
452 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
453 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
454 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
455 	 * it in the doc2000 driver in August 1999.  dwmw2.
456 	 */
457 	ret = nand_reset(chip, chipnr);
458 	if (ret)
459 		return ret;
460 
461 	nand_select_target(chip, chipnr);
462 
463 	/* Shift to get page */
464 	page = (int)(to >> chip->page_shift);
465 
466 	/* Check, if it is write protected */
467 	if (nand_check_wp(chip)) {
468 		nand_deselect_target(chip);
469 		return -EROFS;
470 	}
471 
472 	/* Invalidate the page cache, if we write to the cached page */
473 	if (page == chip->pagecache.page)
474 		chip->pagecache.page = -1;
475 
476 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
477 
478 	if (ops->mode == MTD_OPS_RAW)
479 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
480 	else
481 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
482 
483 	nand_deselect_target(chip);
484 
485 	if (status)
486 		return status;
487 
488 	ops->oobretlen = ops->ooblen;
489 
490 	return 0;
491 }
492 
493 /**
494  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
495  * @chip: NAND chip object
496  * @ofs: offset from device start
497  *
498  * This is the default implementation, which can be overridden by a hardware
499  * specific driver. It provides the details for writing a bad block marker to a
500  * block.
501  */
502 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
503 {
504 	struct mtd_info *mtd = nand_to_mtd(chip);
505 	struct mtd_oob_ops ops;
506 	uint8_t buf[2] = { 0, 0 };
507 	int ret = 0, res, page_offset;
508 
509 	memset(&ops, 0, sizeof(ops));
510 	ops.oobbuf = buf;
511 	ops.ooboffs = chip->badblockpos;
512 	if (chip->options & NAND_BUSWIDTH_16) {
513 		ops.ooboffs &= ~0x01;
514 		ops.len = ops.ooblen = 2;
515 	} else {
516 		ops.len = ops.ooblen = 1;
517 	}
518 	ops.mode = MTD_OPS_PLACE_OOB;
519 
520 	page_offset = nand_bbm_get_next_page(chip, 0);
521 
522 	while (page_offset >= 0) {
523 		res = nand_do_write_oob(chip,
524 					ofs + (page_offset * mtd->writesize),
525 					&ops);
526 
527 		if (!ret)
528 			ret = res;
529 
530 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
531 	}
532 
533 	return ret;
534 }
535 
536 /**
537  * nand_markbad_bbm - mark a block by updating the BBM
538  * @chip: NAND chip object
539  * @ofs: offset of the block to mark bad
540  */
541 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
542 {
543 	if (chip->legacy.block_markbad)
544 		return chip->legacy.block_markbad(chip, ofs);
545 
546 	return nand_default_block_markbad(chip, ofs);
547 }
548 
549 /**
550  * nand_block_markbad_lowlevel - mark a block bad
551  * @chip: NAND chip object
552  * @ofs: offset from device start
553  *
554  * This function performs the generic NAND bad block marking steps (i.e., bad
555  * block table(s) and/or marker(s)). We only allow the hardware driver to
556  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
557  *
558  * We try operations in the following order:
559  *
560  *  (1) erase the affected block, to allow OOB marker to be written cleanly
561  *  (2) write bad block marker to OOB area of affected block (unless flag
562  *      NAND_BBT_NO_OOB_BBM is present)
563  *  (3) update the BBT
564  *
565  * Note that we retain the first error encountered in (2) or (3), finish the
566  * procedures, and dump the error in the end.
567 */
568 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
569 {
570 	struct mtd_info *mtd = nand_to_mtd(chip);
571 	int res, ret = 0;
572 
573 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
574 		struct erase_info einfo;
575 
576 		/* Attempt erase before marking OOB */
577 		memset(&einfo, 0, sizeof(einfo));
578 		einfo.addr = ofs;
579 		einfo.len = 1ULL << chip->phys_erase_shift;
580 		nand_erase_nand(chip, &einfo, 0);
581 
582 		/* Write bad block marker to OOB */
583 		nand_get_device(chip);
584 
585 		ret = nand_markbad_bbm(chip, ofs);
586 		nand_release_device(chip);
587 	}
588 
589 	/* Mark block bad in BBT */
590 	if (chip->bbt) {
591 		res = nand_markbad_bbt(chip, ofs);
592 		if (!ret)
593 			ret = res;
594 	}
595 
596 	if (!ret)
597 		mtd->ecc_stats.badblocks++;
598 
599 	return ret;
600 }
601 
602 /**
603  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
604  * @mtd: MTD device structure
605  * @ofs: offset from device start
606  *
607  * Check if the block is marked as reserved.
608  */
609 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
610 {
611 	struct nand_chip *chip = mtd_to_nand(mtd);
612 
613 	if (!chip->bbt)
614 		return 0;
615 	/* Return info from the table */
616 	return nand_isreserved_bbt(chip, ofs);
617 }
618 
619 /**
620  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
621  * @chip: NAND chip object
622  * @ofs: offset from device start
623  * @allowbbt: 1, if its allowed to access the bbt area
624  *
625  * Check, if the block is bad. Either by reading the bad block table or
626  * calling of the scan function.
627  */
628 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
629 {
630 	/* Return info from the table */
631 	if (chip->bbt)
632 		return nand_isbad_bbt(chip, ofs, allowbbt);
633 
634 	return nand_isbad_bbm(chip, ofs);
635 }
636 
637 /**
638  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
639  * @chip: NAND chip structure
640  * @timeout_ms: Timeout in ms
641  *
642  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
643  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
644  * returned.
645  *
646  * This helper is intended to be used when the controller does not have access
647  * to the NAND R/B pin.
648  *
649  * Be aware that calling this helper from an ->exec_op() implementation means
650  * ->exec_op() must be re-entrant.
651  *
652  * Return 0 if the NAND chip is ready, a negative error otherwise.
653  */
654 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
655 {
656 	const struct nand_interface_config *conf;
657 	u8 status = 0;
658 	int ret;
659 
660 	if (!nand_has_exec_op(chip))
661 		return -ENOTSUPP;
662 
663 	/* Wait tWB before polling the STATUS reg. */
664 	conf = nand_get_interface_config(chip);
665 	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
666 
667 	ret = nand_status_op(chip, NULL);
668 	if (ret)
669 		return ret;
670 
671 	/*
672 	 * +1 below is necessary because if we are now in the last fraction
673 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
674 	 * small jiffy fraction - possibly leading to false timeout
675 	 */
676 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
677 	do {
678 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
679 					false);
680 		if (ret)
681 			break;
682 
683 		if (status & NAND_STATUS_READY)
684 			break;
685 
686 		/*
687 		 * Typical lowest execution time for a tR on most NANDs is 10us,
688 		 * use this as polling delay before doing something smarter (ie.
689 		 * deriving a delay from the timeout value, timeout_ms/ratio).
690 		 */
691 		udelay(10);
692 	} while	(time_before(jiffies, timeout_ms));
693 
694 	/*
695 	 * We have to exit READ_STATUS mode in order to read real data on the
696 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
697 	 * instruction.
698 	 */
699 	nand_exit_status_op(chip);
700 
701 	if (ret)
702 		return ret;
703 
704 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
705 };
706 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
707 
708 /**
709  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
710  * @chip: NAND chip structure
711  * @gpiod: GPIO descriptor of R/B pin
712  * @timeout_ms: Timeout in ms
713  *
714  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
715  * whitin the specified timeout, -ETIMEDOUT is returned.
716  *
717  * This helper is intended to be used when the controller has access to the
718  * NAND R/B pin over GPIO.
719  *
720  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
721  */
722 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
723 		      unsigned long timeout_ms)
724 {
725 
726 	/*
727 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
728 	 * +1 below is necessary because if we are now in the last fraction
729 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
730 	 * small jiffy fraction - possibly leading to false timeout.
731 	 */
732 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
733 	do {
734 		if (gpiod_get_value_cansleep(gpiod))
735 			return 0;
736 
737 		cond_resched();
738 	} while	(time_before(jiffies, timeout_ms));
739 
740 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
741 };
742 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
743 
744 /**
745  * panic_nand_wait - [GENERIC] wait until the command is done
746  * @chip: NAND chip structure
747  * @timeo: timeout
748  *
749  * Wait for command done. This is a helper function for nand_wait used when
750  * we are in interrupt context. May happen when in panic and trying to write
751  * an oops through mtdoops.
752  */
753 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
754 {
755 	int i;
756 	for (i = 0; i < timeo; i++) {
757 		if (chip->legacy.dev_ready) {
758 			if (chip->legacy.dev_ready(chip))
759 				break;
760 		} else {
761 			int ret;
762 			u8 status;
763 
764 			ret = nand_read_data_op(chip, &status, sizeof(status),
765 						true, false);
766 			if (ret)
767 				return;
768 
769 			if (status & NAND_STATUS_READY)
770 				break;
771 		}
772 		mdelay(1);
773 	}
774 }
775 
776 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
777 {
778 	return (chip->parameters.supports_set_get_features &&
779 		test_bit(addr, chip->parameters.get_feature_list));
780 }
781 
782 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
783 {
784 	return (chip->parameters.supports_set_get_features &&
785 		test_bit(addr, chip->parameters.set_feature_list));
786 }
787 
788 /**
789  * nand_reset_interface - Reset data interface and timings
790  * @chip: The NAND chip
791  * @chipnr: Internal die id
792  *
793  * Reset the Data interface and timings to ONFI mode 0.
794  *
795  * Returns 0 for success or negative error code otherwise.
796  */
797 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
798 {
799 	const struct nand_controller_ops *ops = chip->controller->ops;
800 	int ret;
801 
802 	if (!nand_controller_can_setup_interface(chip))
803 		return 0;
804 
805 	/*
806 	 * The ONFI specification says:
807 	 * "
808 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
809 	 * interface, the host shall use the Reset (FFh) command
810 	 * using SDR timing mode 0. A device in any timing mode is
811 	 * required to recognize Reset (FFh) command issued in SDR
812 	 * timing mode 0.
813 	 * "
814 	 *
815 	 * Configure the data interface in SDR mode and set the
816 	 * timings to timing mode 0.
817 	 */
818 
819 	chip->current_interface_config = nand_get_reset_interface_config();
820 	ret = ops->setup_interface(chip, chipnr,
821 				   chip->current_interface_config);
822 	if (ret)
823 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
824 
825 	return ret;
826 }
827 
828 /**
829  * nand_setup_interface - Setup the best data interface and timings
830  * @chip: The NAND chip
831  * @chipnr: Internal die id
832  *
833  * Configure what has been reported to be the best data interface and NAND
834  * timings supported by the chip and the driver.
835  *
836  * Returns 0 for success or negative error code otherwise.
837  */
838 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
839 {
840 	const struct nand_controller_ops *ops = chip->controller->ops;
841 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
842 	int ret;
843 
844 	if (!nand_controller_can_setup_interface(chip))
845 		return 0;
846 
847 	/*
848 	 * A nand_reset_interface() put both the NAND chip and the NAND
849 	 * controller in timings mode 0. If the default mode for this chip is
850 	 * also 0, no need to proceed to the change again. Plus, at probe time,
851 	 * nand_setup_interface() uses ->set/get_features() which would
852 	 * fail anyway as the parameter page is not available yet.
853 	 */
854 	if (!chip->best_interface_config)
855 		return 0;
856 
857 	request = chip->best_interface_config->timings.mode;
858 	if (nand_interface_is_sdr(chip->best_interface_config))
859 		request |= ONFI_DATA_INTERFACE_SDR;
860 	else
861 		request |= ONFI_DATA_INTERFACE_NVDDR;
862 	tmode_param[0] = request;
863 
864 	/* Change the mode on the chip side (if supported by the NAND chip) */
865 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
866 		nand_select_target(chip, chipnr);
867 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
868 					tmode_param);
869 		nand_deselect_target(chip);
870 		if (ret)
871 			return ret;
872 	}
873 
874 	/* Change the mode on the controller side */
875 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
876 	if (ret)
877 		return ret;
878 
879 	/* Check the mode has been accepted by the chip, if supported */
880 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
881 		goto update_interface_config;
882 
883 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
884 	nand_select_target(chip, chipnr);
885 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
886 				tmode_param);
887 	nand_deselect_target(chip);
888 	if (ret)
889 		goto err_reset_chip;
890 
891 	if (request != tmode_param[0]) {
892 		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
893 			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
894 			chip->best_interface_config->timings.mode);
895 		pr_debug("NAND chip would work in %s timing mode %d\n",
896 			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
897 			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
898 		goto err_reset_chip;
899 	}
900 
901 update_interface_config:
902 	chip->current_interface_config = chip->best_interface_config;
903 
904 	return 0;
905 
906 err_reset_chip:
907 	/*
908 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
909 	 * timing mode.
910 	 */
911 	nand_reset_interface(chip, chipnr);
912 	nand_select_target(chip, chipnr);
913 	nand_reset_op(chip);
914 	nand_deselect_target(chip);
915 
916 	return ret;
917 }
918 
919 /**
920  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
921  *                                NAND controller and the NAND chip support
922  * @chip: the NAND chip
923  * @iface: the interface configuration (can eventually be updated)
924  * @spec_timings: specific timings, when not fitting the ONFI specification
925  *
926  * If specific timings are provided, use them. Otherwise, retrieve supported
927  * timing modes from ONFI information.
928  */
929 int nand_choose_best_sdr_timings(struct nand_chip *chip,
930 				 struct nand_interface_config *iface,
931 				 struct nand_sdr_timings *spec_timings)
932 {
933 	const struct nand_controller_ops *ops = chip->controller->ops;
934 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
935 
936 	iface->type = NAND_SDR_IFACE;
937 
938 	if (spec_timings) {
939 		iface->timings.sdr = *spec_timings;
940 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
941 
942 		/* Verify the controller supports the requested interface */
943 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
944 					   iface);
945 		if (!ret) {
946 			chip->best_interface_config = iface;
947 			return ret;
948 		}
949 
950 		/* Fallback to slower modes */
951 		best_mode = iface->timings.mode;
952 	} else if (chip->parameters.onfi) {
953 		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
954 	}
955 
956 	for (mode = best_mode; mode >= 0; mode--) {
957 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
958 
959 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
960 					   iface);
961 		if (!ret) {
962 			chip->best_interface_config = iface;
963 			break;
964 		}
965 	}
966 
967 	return ret;
968 }
969 
970 /**
971  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
972  *                                  NAND controller and the NAND chip support
973  * @chip: the NAND chip
974  * @iface: the interface configuration (can eventually be updated)
975  * @spec_timings: specific timings, when not fitting the ONFI specification
976  *
977  * If specific timings are provided, use them. Otherwise, retrieve supported
978  * timing modes from ONFI information.
979  */
980 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
981 				   struct nand_interface_config *iface,
982 				   struct nand_nvddr_timings *spec_timings)
983 {
984 	const struct nand_controller_ops *ops = chip->controller->ops;
985 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
986 
987 	iface->type = NAND_NVDDR_IFACE;
988 
989 	if (spec_timings) {
990 		iface->timings.nvddr = *spec_timings;
991 		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
992 
993 		/* Verify the controller supports the requested interface */
994 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
995 					   iface);
996 		if (!ret) {
997 			chip->best_interface_config = iface;
998 			return ret;
999 		}
1000 
1001 		/* Fallback to slower modes */
1002 		best_mode = iface->timings.mode;
1003 	} else if (chip->parameters.onfi) {
1004 		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1005 	}
1006 
1007 	for (mode = best_mode; mode >= 0; mode--) {
1008 		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1009 
1010 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1011 					   iface);
1012 		if (!ret) {
1013 			chip->best_interface_config = iface;
1014 			break;
1015 		}
1016 	}
1017 
1018 	return ret;
1019 }
1020 
1021 /**
1022  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1023  *                            NAND controller and the NAND chip support
1024  * @chip: the NAND chip
1025  * @iface: the interface configuration (can eventually be updated)
1026  *
1027  * If specific timings are provided, use them. Otherwise, retrieve supported
1028  * timing modes from ONFI information.
1029  */
1030 static int nand_choose_best_timings(struct nand_chip *chip,
1031 				    struct nand_interface_config *iface)
1032 {
1033 	int ret;
1034 
1035 	/* Try the fastest timings: NV-DDR */
1036 	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1037 	if (!ret)
1038 		return 0;
1039 
1040 	/* Fallback to SDR timings otherwise */
1041 	return nand_choose_best_sdr_timings(chip, iface, NULL);
1042 }
1043 
1044 /**
1045  * nand_choose_interface_config - find the best data interface and timings
1046  * @chip: The NAND chip
1047  *
1048  * Find the best data interface and NAND timings supported by the chip
1049  * and the driver. Eventually let the NAND manufacturer driver propose his own
1050  * set of timings.
1051  *
1052  * After this function nand_chip->interface_config is initialized with the best
1053  * timing mode available.
1054  *
1055  * Returns 0 for success or negative error code otherwise.
1056  */
1057 static int nand_choose_interface_config(struct nand_chip *chip)
1058 {
1059 	struct nand_interface_config *iface;
1060 	int ret;
1061 
1062 	if (!nand_controller_can_setup_interface(chip))
1063 		return 0;
1064 
1065 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1066 	if (!iface)
1067 		return -ENOMEM;
1068 
1069 	if (chip->ops.choose_interface_config)
1070 		ret = chip->ops.choose_interface_config(chip, iface);
1071 	else
1072 		ret = nand_choose_best_timings(chip, iface);
1073 
1074 	if (ret)
1075 		kfree(iface);
1076 
1077 	return ret;
1078 }
1079 
1080 /**
1081  * nand_fill_column_cycles - fill the column cycles of an address
1082  * @chip: The NAND chip
1083  * @addrs: Array of address cycles to fill
1084  * @offset_in_page: The offset in the page
1085  *
1086  * Fills the first or the first two bytes of the @addrs field depending
1087  * on the NAND bus width and the page size.
1088  *
1089  * Returns the number of cycles needed to encode the column, or a negative
1090  * error code in case one of the arguments is invalid.
1091  */
1092 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1093 				   unsigned int offset_in_page)
1094 {
1095 	struct mtd_info *mtd = nand_to_mtd(chip);
1096 
1097 	/* Make sure the offset is less than the actual page size. */
1098 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1099 		return -EINVAL;
1100 
1101 	/*
1102 	 * On small page NANDs, there's a dedicated command to access the OOB
1103 	 * area, and the column address is relative to the start of the OOB
1104 	 * area, not the start of the page. Asjust the address accordingly.
1105 	 */
1106 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1107 		offset_in_page -= mtd->writesize;
1108 
1109 	/*
1110 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1111 	 * wide, then it must be divided by 2.
1112 	 */
1113 	if (chip->options & NAND_BUSWIDTH_16) {
1114 		if (WARN_ON(offset_in_page % 2))
1115 			return -EINVAL;
1116 
1117 		offset_in_page /= 2;
1118 	}
1119 
1120 	addrs[0] = offset_in_page;
1121 
1122 	/*
1123 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1124 	 * need 2
1125 	 */
1126 	if (mtd->writesize <= 512)
1127 		return 1;
1128 
1129 	addrs[1] = offset_in_page >> 8;
1130 
1131 	return 2;
1132 }
1133 
1134 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1135 				     unsigned int offset_in_page, void *buf,
1136 				     unsigned int len)
1137 {
1138 	const struct nand_interface_config *conf =
1139 		nand_get_interface_config(chip);
1140 	struct mtd_info *mtd = nand_to_mtd(chip);
1141 	u8 addrs[4];
1142 	struct nand_op_instr instrs[] = {
1143 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1144 		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1145 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1146 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1147 		NAND_OP_DATA_IN(len, buf, 0),
1148 	};
1149 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1150 	int ret;
1151 
1152 	/* Drop the DATA_IN instruction if len is set to 0. */
1153 	if (!len)
1154 		op.ninstrs--;
1155 
1156 	if (offset_in_page >= mtd->writesize)
1157 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1158 	else if (offset_in_page >= 256 &&
1159 		 !(chip->options & NAND_BUSWIDTH_16))
1160 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1161 
1162 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1163 	if (ret < 0)
1164 		return ret;
1165 
1166 	addrs[1] = page;
1167 	addrs[2] = page >> 8;
1168 
1169 	if (chip->options & NAND_ROW_ADDR_3) {
1170 		addrs[3] = page >> 16;
1171 		instrs[1].ctx.addr.naddrs++;
1172 	}
1173 
1174 	return nand_exec_op(chip, &op);
1175 }
1176 
1177 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1178 				     unsigned int offset_in_page, void *buf,
1179 				     unsigned int len)
1180 {
1181 	const struct nand_interface_config *conf =
1182 		nand_get_interface_config(chip);
1183 	u8 addrs[5];
1184 	struct nand_op_instr instrs[] = {
1185 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1186 		NAND_OP_ADDR(4, addrs, 0),
1187 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1188 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1189 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1190 		NAND_OP_DATA_IN(len, buf, 0),
1191 	};
1192 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1193 	int ret;
1194 
1195 	/* Drop the DATA_IN instruction if len is set to 0. */
1196 	if (!len)
1197 		op.ninstrs--;
1198 
1199 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1200 	if (ret < 0)
1201 		return ret;
1202 
1203 	addrs[2] = page;
1204 	addrs[3] = page >> 8;
1205 
1206 	if (chip->options & NAND_ROW_ADDR_3) {
1207 		addrs[4] = page >> 16;
1208 		instrs[1].ctx.addr.naddrs++;
1209 	}
1210 
1211 	return nand_exec_op(chip, &op);
1212 }
1213 
1214 static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
1215 {
1216 	/* lun is expected to be very small */
1217 	return (lun * pages_per_lun) + pages_per_lun - 1;
1218 }
1219 
1220 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1221 {
1222 	struct nand_memory_organization *memorg;
1223 	unsigned int ppl, first_lun, last_lun;
1224 
1225 	memorg = nanddev_get_memorg(&chip->base);
1226 	ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1227 	first_lun = chip->cont_read.first_page / ppl;
1228 	last_lun = chip->cont_read.last_page / ppl;
1229 
1230 	/* Prevent sequential cache reads across LUN boundaries */
1231 	if (first_lun != last_lun)
1232 		chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun);
1233 	else
1234 		chip->cont_read.pause_page = chip->cont_read.last_page;
1235 
1236 	if (chip->cont_read.first_page == chip->cont_read.pause_page) {
1237 		chip->cont_read.first_page++;
1238 		chip->cont_read.pause_page = min(chip->cont_read.last_page,
1239 						 rawnand_last_page_of_lun(ppl, first_lun + 1));
1240 	}
1241 
1242 	if (chip->cont_read.first_page >= chip->cont_read.last_page)
1243 		chip->cont_read.ongoing = false;
1244 }
1245 
1246 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1247 					  unsigned int offset_in_page, void *buf,
1248 					  unsigned int len, bool check_only)
1249 {
1250 	const struct nand_interface_config *conf =
1251 		nand_get_interface_config(chip);
1252 	u8 addrs[5];
1253 	struct nand_op_instr start_instrs[] = {
1254 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1255 		NAND_OP_ADDR(4, addrs, 0),
1256 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1257 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1258 		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1259 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1260 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1261 		NAND_OP_DATA_IN(len, buf, 0),
1262 	};
1263 	struct nand_op_instr cont_instrs[] = {
1264 		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1265 			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1266 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1267 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1268 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1269 		NAND_OP_DATA_IN(len, buf, 0),
1270 	};
1271 	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1272 	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1273 	int ret;
1274 
1275 	if (!len) {
1276 		start_op.ninstrs--;
1277 		cont_op.ninstrs--;
1278 	}
1279 
1280 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1281 	if (ret < 0)
1282 		return ret;
1283 
1284 	addrs[2] = page;
1285 	addrs[3] = page >> 8;
1286 
1287 	if (chip->options & NAND_ROW_ADDR_3) {
1288 		addrs[4] = page >> 16;
1289 		start_instrs[1].ctx.addr.naddrs++;
1290 	}
1291 
1292 	/* Check if cache reads are supported */
1293 	if (check_only) {
1294 		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1295 			return -EOPNOTSUPP;
1296 
1297 		return 0;
1298 	}
1299 
1300 	if (page == chip->cont_read.first_page)
1301 		ret = nand_exec_op(chip, &start_op);
1302 	else
1303 		ret = nand_exec_op(chip, &cont_op);
1304 	if (ret)
1305 		return ret;
1306 
1307 	if (!chip->cont_read.ongoing)
1308 		return 0;
1309 
1310 	if (page == chip->cont_read.last_page) {
1311 		chip->cont_read.ongoing = false;
1312 	} else if (page == chip->cont_read.pause_page) {
1313 		chip->cont_read.first_page++;
1314 		rawnand_cap_cont_reads(chip);
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1321 {
1322 	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1323 }
1324 
1325 /**
1326  * nand_read_page_op - Do a READ PAGE operation
1327  * @chip: The NAND chip
1328  * @page: page to read
1329  * @offset_in_page: offset within the page
1330  * @buf: buffer used to store the data
1331  * @len: length of the buffer
1332  *
1333  * This function issues a READ PAGE operation.
1334  * This function does not select/unselect the CS line.
1335  *
1336  * Returns 0 on success, a negative error code otherwise.
1337  */
1338 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1339 		      unsigned int offset_in_page, void *buf, unsigned int len)
1340 {
1341 	struct mtd_info *mtd = nand_to_mtd(chip);
1342 
1343 	if (len && !buf)
1344 		return -EINVAL;
1345 
1346 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1347 		return -EINVAL;
1348 
1349 	if (nand_has_exec_op(chip)) {
1350 		if (mtd->writesize > 512) {
1351 			if (rawnand_cont_read_ongoing(chip, page))
1352 				return nand_lp_exec_cont_read_page_op(chip, page,
1353 								      offset_in_page,
1354 								      buf, len, false);
1355 			else
1356 				return nand_lp_exec_read_page_op(chip, page,
1357 								 offset_in_page, buf,
1358 								 len);
1359 		}
1360 
1361 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1362 						 buf, len);
1363 	}
1364 
1365 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1366 	if (len)
1367 		chip->legacy.read_buf(chip, buf, len);
1368 
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(nand_read_page_op);
1372 
1373 /**
1374  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1375  * @chip: The NAND chip
1376  * @page: parameter page to read
1377  * @buf: buffer used to store the data
1378  * @len: length of the buffer
1379  *
1380  * This function issues a READ PARAMETER PAGE operation.
1381  * This function does not select/unselect the CS line.
1382  *
1383  * Returns 0 on success, a negative error code otherwise.
1384  */
1385 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1386 			    unsigned int len)
1387 {
1388 	unsigned int i;
1389 	u8 *p = buf;
1390 
1391 	if (len && !buf)
1392 		return -EINVAL;
1393 
1394 	if (nand_has_exec_op(chip)) {
1395 		const struct nand_interface_config *conf =
1396 			nand_get_interface_config(chip);
1397 		struct nand_op_instr instrs[] = {
1398 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1399 			NAND_OP_ADDR(1, &page,
1400 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1401 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1402 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1403 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1404 		};
1405 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1406 
1407 		/* Drop the DATA_IN instruction if len is set to 0. */
1408 		if (!len)
1409 			op.ninstrs--;
1410 
1411 		return nand_exec_op(chip, &op);
1412 	}
1413 
1414 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1415 	for (i = 0; i < len; i++)
1416 		p[i] = chip->legacy.read_byte(chip);
1417 
1418 	return 0;
1419 }
1420 
1421 /**
1422  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1423  * @chip: The NAND chip
1424  * @offset_in_page: offset within the page
1425  * @buf: buffer used to store the data
1426  * @len: length of the buffer
1427  * @force_8bit: force 8-bit bus access
1428  *
1429  * This function issues a CHANGE READ COLUMN operation.
1430  * This function does not select/unselect the CS line.
1431  *
1432  * Returns 0 on success, a negative error code otherwise.
1433  */
1434 int nand_change_read_column_op(struct nand_chip *chip,
1435 			       unsigned int offset_in_page, void *buf,
1436 			       unsigned int len, bool force_8bit)
1437 {
1438 	struct mtd_info *mtd = nand_to_mtd(chip);
1439 
1440 	if (len && !buf)
1441 		return -EINVAL;
1442 
1443 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1444 		return -EINVAL;
1445 
1446 	/* Small page NANDs do not support column change. */
1447 	if (mtd->writesize <= 512)
1448 		return -ENOTSUPP;
1449 
1450 	if (nand_has_exec_op(chip)) {
1451 		const struct nand_interface_config *conf =
1452 			nand_get_interface_config(chip);
1453 		u8 addrs[2] = {};
1454 		struct nand_op_instr instrs[] = {
1455 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1456 			NAND_OP_ADDR(2, addrs, 0),
1457 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1458 				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1459 			NAND_OP_DATA_IN(len, buf, 0),
1460 		};
1461 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1462 		int ret;
1463 
1464 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1465 		if (ret < 0)
1466 			return ret;
1467 
1468 		/* Drop the DATA_IN instruction if len is set to 0. */
1469 		if (!len)
1470 			op.ninstrs--;
1471 
1472 		instrs[3].ctx.data.force_8bit = force_8bit;
1473 
1474 		return nand_exec_op(chip, &op);
1475 	}
1476 
1477 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1478 	if (len)
1479 		chip->legacy.read_buf(chip, buf, len);
1480 
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1484 
1485 /**
1486  * nand_read_oob_op - Do a READ OOB operation
1487  * @chip: The NAND chip
1488  * @page: page to read
1489  * @offset_in_oob: offset within the OOB area
1490  * @buf: buffer used to store the data
1491  * @len: length of the buffer
1492  *
1493  * This function issues a READ OOB operation.
1494  * This function does not select/unselect the CS line.
1495  *
1496  * Returns 0 on success, a negative error code otherwise.
1497  */
1498 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1499 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1500 {
1501 	struct mtd_info *mtd = nand_to_mtd(chip);
1502 
1503 	if (len && !buf)
1504 		return -EINVAL;
1505 
1506 	if (offset_in_oob + len > mtd->oobsize)
1507 		return -EINVAL;
1508 
1509 	if (nand_has_exec_op(chip))
1510 		return nand_read_page_op(chip, page,
1511 					 mtd->writesize + offset_in_oob,
1512 					 buf, len);
1513 
1514 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1515 	if (len)
1516 		chip->legacy.read_buf(chip, buf, len);
1517 
1518 	return 0;
1519 }
1520 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1521 
1522 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1523 				  unsigned int offset_in_page, const void *buf,
1524 				  unsigned int len, bool prog)
1525 {
1526 	const struct nand_interface_config *conf =
1527 		nand_get_interface_config(chip);
1528 	struct mtd_info *mtd = nand_to_mtd(chip);
1529 	u8 addrs[5] = {};
1530 	struct nand_op_instr instrs[] = {
1531 		/*
1532 		 * The first instruction will be dropped if we're dealing
1533 		 * with a large page NAND and adjusted if we're dealing
1534 		 * with a small page NAND and the page offset is > 255.
1535 		 */
1536 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1537 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1538 		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1539 		NAND_OP_DATA_OUT(len, buf, 0),
1540 		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1541 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1542 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1543 	};
1544 	struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1545 							      instrs);
1546 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1547 
1548 	if (naddrs < 0)
1549 		return naddrs;
1550 
1551 	addrs[naddrs++] = page;
1552 	addrs[naddrs++] = page >> 8;
1553 	if (chip->options & NAND_ROW_ADDR_3)
1554 		addrs[naddrs++] = page >> 16;
1555 
1556 	instrs[2].ctx.addr.naddrs = naddrs;
1557 
1558 	/* Drop the last two instructions if we're not programming the page. */
1559 	if (!prog) {
1560 		op.ninstrs -= 2;
1561 		/* Also drop the DATA_OUT instruction if empty. */
1562 		if (!len)
1563 			op.ninstrs--;
1564 	}
1565 
1566 	if (mtd->writesize <= 512) {
1567 		/*
1568 		 * Small pages need some more tweaking: we have to adjust the
1569 		 * first instruction depending on the page offset we're trying
1570 		 * to access.
1571 		 */
1572 		if (offset_in_page >= mtd->writesize)
1573 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1574 		else if (offset_in_page >= 256 &&
1575 			 !(chip->options & NAND_BUSWIDTH_16))
1576 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1577 	} else {
1578 		/*
1579 		 * Drop the first command if we're dealing with a large page
1580 		 * NAND.
1581 		 */
1582 		op.instrs++;
1583 		op.ninstrs--;
1584 	}
1585 
1586 	return nand_exec_op(chip, &op);
1587 }
1588 
1589 /**
1590  * nand_prog_page_begin_op - starts a PROG PAGE operation
1591  * @chip: The NAND chip
1592  * @page: page to write
1593  * @offset_in_page: offset within the page
1594  * @buf: buffer containing the data to write to the page
1595  * @len: length of the buffer
1596  *
1597  * This function issues the first half of a PROG PAGE operation.
1598  * This function does not select/unselect the CS line.
1599  *
1600  * Returns 0 on success, a negative error code otherwise.
1601  */
1602 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1603 			    unsigned int offset_in_page, const void *buf,
1604 			    unsigned int len)
1605 {
1606 	struct mtd_info *mtd = nand_to_mtd(chip);
1607 
1608 	if (len && !buf)
1609 		return -EINVAL;
1610 
1611 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1612 		return -EINVAL;
1613 
1614 	if (nand_has_exec_op(chip))
1615 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1616 					      len, false);
1617 
1618 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1619 
1620 	if (buf)
1621 		chip->legacy.write_buf(chip, buf, len);
1622 
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1626 
1627 /**
1628  * nand_prog_page_end_op - ends a PROG PAGE operation
1629  * @chip: The NAND chip
1630  *
1631  * This function issues the second half of a PROG PAGE operation.
1632  * This function does not select/unselect the CS line.
1633  *
1634  * Returns 0 on success, a negative error code otherwise.
1635  */
1636 int nand_prog_page_end_op(struct nand_chip *chip)
1637 {
1638 	int ret;
1639 	u8 status;
1640 
1641 	if (nand_has_exec_op(chip)) {
1642 		const struct nand_interface_config *conf =
1643 			nand_get_interface_config(chip);
1644 		struct nand_op_instr instrs[] = {
1645 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1646 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1647 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1648 					 0),
1649 		};
1650 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1651 
1652 		ret = nand_exec_op(chip, &op);
1653 		if (ret)
1654 			return ret;
1655 
1656 		ret = nand_status_op(chip, &status);
1657 		if (ret)
1658 			return ret;
1659 	} else {
1660 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1661 		ret = chip->legacy.waitfunc(chip);
1662 		if (ret < 0)
1663 			return ret;
1664 
1665 		status = ret;
1666 	}
1667 
1668 	if (status & NAND_STATUS_FAIL)
1669 		return -EIO;
1670 
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1674 
1675 /**
1676  * nand_prog_page_op - Do a full PROG PAGE operation
1677  * @chip: The NAND chip
1678  * @page: page to write
1679  * @offset_in_page: offset within the page
1680  * @buf: buffer containing the data to write to the page
1681  * @len: length of the buffer
1682  *
1683  * This function issues a full PROG PAGE operation.
1684  * This function does not select/unselect the CS line.
1685  *
1686  * Returns 0 on success, a negative error code otherwise.
1687  */
1688 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1689 		      unsigned int offset_in_page, const void *buf,
1690 		      unsigned int len)
1691 {
1692 	struct mtd_info *mtd = nand_to_mtd(chip);
1693 	u8 status;
1694 	int ret;
1695 
1696 	if (!len || !buf)
1697 		return -EINVAL;
1698 
1699 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1700 		return -EINVAL;
1701 
1702 	if (nand_has_exec_op(chip)) {
1703 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1704 						len, true);
1705 		if (ret)
1706 			return ret;
1707 
1708 		ret = nand_status_op(chip, &status);
1709 		if (ret)
1710 			return ret;
1711 	} else {
1712 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1713 				     page);
1714 		chip->legacy.write_buf(chip, buf, len);
1715 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1716 		ret = chip->legacy.waitfunc(chip);
1717 		if (ret < 0)
1718 			return ret;
1719 
1720 		status = ret;
1721 	}
1722 
1723 	if (status & NAND_STATUS_FAIL)
1724 		return -EIO;
1725 
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1729 
1730 /**
1731  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1732  * @chip: The NAND chip
1733  * @offset_in_page: offset within the page
1734  * @buf: buffer containing the data to send to the NAND
1735  * @len: length of the buffer
1736  * @force_8bit: force 8-bit bus access
1737  *
1738  * This function issues a CHANGE WRITE COLUMN operation.
1739  * This function does not select/unselect the CS line.
1740  *
1741  * Returns 0 on success, a negative error code otherwise.
1742  */
1743 int nand_change_write_column_op(struct nand_chip *chip,
1744 				unsigned int offset_in_page,
1745 				const void *buf, unsigned int len,
1746 				bool force_8bit)
1747 {
1748 	struct mtd_info *mtd = nand_to_mtd(chip);
1749 
1750 	if (len && !buf)
1751 		return -EINVAL;
1752 
1753 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1754 		return -EINVAL;
1755 
1756 	/* Small page NANDs do not support column change. */
1757 	if (mtd->writesize <= 512)
1758 		return -ENOTSUPP;
1759 
1760 	if (nand_has_exec_op(chip)) {
1761 		const struct nand_interface_config *conf =
1762 			nand_get_interface_config(chip);
1763 		u8 addrs[2];
1764 		struct nand_op_instr instrs[] = {
1765 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1766 			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1767 			NAND_OP_DATA_OUT(len, buf, 0),
1768 		};
1769 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1770 		int ret;
1771 
1772 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1773 		if (ret < 0)
1774 			return ret;
1775 
1776 		instrs[2].ctx.data.force_8bit = force_8bit;
1777 
1778 		/* Drop the DATA_OUT instruction if len is set to 0. */
1779 		if (!len)
1780 			op.ninstrs--;
1781 
1782 		return nand_exec_op(chip, &op);
1783 	}
1784 
1785 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1786 	if (len)
1787 		chip->legacy.write_buf(chip, buf, len);
1788 
1789 	return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1792 
1793 /**
1794  * nand_readid_op - Do a READID operation
1795  * @chip: The NAND chip
1796  * @addr: address cycle to pass after the READID command
1797  * @buf: buffer used to store the ID
1798  * @len: length of the buffer
1799  *
1800  * This function sends a READID command and reads back the ID returned by the
1801  * NAND.
1802  * This function does not select/unselect the CS line.
1803  *
1804  * Returns 0 on success, a negative error code otherwise.
1805  */
1806 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1807 		   unsigned int len)
1808 {
1809 	unsigned int i;
1810 	u8 *id = buf, *ddrbuf = NULL;
1811 
1812 	if (len && !buf)
1813 		return -EINVAL;
1814 
1815 	if (nand_has_exec_op(chip)) {
1816 		const struct nand_interface_config *conf =
1817 			nand_get_interface_config(chip);
1818 		struct nand_op_instr instrs[] = {
1819 			NAND_OP_CMD(NAND_CMD_READID, 0),
1820 			NAND_OP_ADDR(1, &addr,
1821 				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1822 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1823 		};
1824 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1825 		int ret;
1826 
1827 		/* READ_ID data bytes are received twice in NV-DDR mode */
1828 		if (len && nand_interface_is_nvddr(conf)) {
1829 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1830 			if (!ddrbuf)
1831 				return -ENOMEM;
1832 
1833 			instrs[2].ctx.data.len *= 2;
1834 			instrs[2].ctx.data.buf.in = ddrbuf;
1835 		}
1836 
1837 		/* Drop the DATA_IN instruction if len is set to 0. */
1838 		if (!len)
1839 			op.ninstrs--;
1840 
1841 		ret = nand_exec_op(chip, &op);
1842 		if (!ret && len && nand_interface_is_nvddr(conf)) {
1843 			for (i = 0; i < len; i++)
1844 				id[i] = ddrbuf[i * 2];
1845 		}
1846 
1847 		kfree(ddrbuf);
1848 
1849 		return ret;
1850 	}
1851 
1852 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1853 
1854 	for (i = 0; i < len; i++)
1855 		id[i] = chip->legacy.read_byte(chip);
1856 
1857 	return 0;
1858 }
1859 EXPORT_SYMBOL_GPL(nand_readid_op);
1860 
1861 /**
1862  * nand_status_op - Do a STATUS operation
1863  * @chip: The NAND chip
1864  * @status: out variable to store the NAND status
1865  *
1866  * This function sends a STATUS command and reads back the status returned by
1867  * the NAND.
1868  * This function does not select/unselect the CS line.
1869  *
1870  * Returns 0 on success, a negative error code otherwise.
1871  */
1872 int nand_status_op(struct nand_chip *chip, u8 *status)
1873 {
1874 	if (nand_has_exec_op(chip)) {
1875 		const struct nand_interface_config *conf =
1876 			nand_get_interface_config(chip);
1877 		u8 ddrstatus[2];
1878 		struct nand_op_instr instrs[] = {
1879 			NAND_OP_CMD(NAND_CMD_STATUS,
1880 				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1881 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1882 		};
1883 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1884 		int ret;
1885 
1886 		/* The status data byte will be received twice in NV-DDR mode */
1887 		if (status && nand_interface_is_nvddr(conf)) {
1888 			instrs[1].ctx.data.len *= 2;
1889 			instrs[1].ctx.data.buf.in = ddrstatus;
1890 		}
1891 
1892 		if (!status)
1893 			op.ninstrs--;
1894 
1895 		ret = nand_exec_op(chip, &op);
1896 		if (!ret && status && nand_interface_is_nvddr(conf))
1897 			*status = ddrstatus[0];
1898 
1899 		return ret;
1900 	}
1901 
1902 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1903 	if (status)
1904 		*status = chip->legacy.read_byte(chip);
1905 
1906 	return 0;
1907 }
1908 EXPORT_SYMBOL_GPL(nand_status_op);
1909 
1910 /**
1911  * nand_exit_status_op - Exit a STATUS operation
1912  * @chip: The NAND chip
1913  *
1914  * This function sends a READ0 command to cancel the effect of the STATUS
1915  * command to avoid reading only the status until a new read command is sent.
1916  *
1917  * This function does not select/unselect the CS line.
1918  *
1919  * Returns 0 on success, a negative error code otherwise.
1920  */
1921 int nand_exit_status_op(struct nand_chip *chip)
1922 {
1923 	if (nand_has_exec_op(chip)) {
1924 		struct nand_op_instr instrs[] = {
1925 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1926 		};
1927 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1928 
1929 		return nand_exec_op(chip, &op);
1930 	}
1931 
1932 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1933 
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1937 
1938 /**
1939  * nand_erase_op - Do an erase operation
1940  * @chip: The NAND chip
1941  * @eraseblock: block to erase
1942  *
1943  * This function sends an ERASE command and waits for the NAND to be ready
1944  * before returning.
1945  * This function does not select/unselect the CS line.
1946  *
1947  * Returns 0 on success, a negative error code otherwise.
1948  */
1949 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1950 {
1951 	unsigned int page = eraseblock <<
1952 			    (chip->phys_erase_shift - chip->page_shift);
1953 	int ret;
1954 	u8 status;
1955 
1956 	if (nand_has_exec_op(chip)) {
1957 		const struct nand_interface_config *conf =
1958 			nand_get_interface_config(chip);
1959 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1960 		struct nand_op_instr instrs[] = {
1961 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1962 			NAND_OP_ADDR(2, addrs, 0),
1963 			NAND_OP_CMD(NAND_CMD_ERASE2,
1964 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1965 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1966 					 0),
1967 		};
1968 		struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1969 								      instrs);
1970 
1971 		if (chip->options & NAND_ROW_ADDR_3)
1972 			instrs[1].ctx.addr.naddrs++;
1973 
1974 		ret = nand_exec_op(chip, &op);
1975 		if (ret)
1976 			return ret;
1977 
1978 		ret = nand_status_op(chip, &status);
1979 		if (ret)
1980 			return ret;
1981 	} else {
1982 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1983 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1984 
1985 		ret = chip->legacy.waitfunc(chip);
1986 		if (ret < 0)
1987 			return ret;
1988 
1989 		status = ret;
1990 	}
1991 
1992 	if (status & NAND_STATUS_FAIL)
1993 		return -EIO;
1994 
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(nand_erase_op);
1998 
1999 /**
2000  * nand_set_features_op - Do a SET FEATURES operation
2001  * @chip: The NAND chip
2002  * @feature: feature id
2003  * @data: 4 bytes of data
2004  *
2005  * This function sends a SET FEATURES command and waits for the NAND to be
2006  * ready before returning.
2007  * This function does not select/unselect the CS line.
2008  *
2009  * Returns 0 on success, a negative error code otherwise.
2010  */
2011 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2012 				const void *data)
2013 {
2014 	const u8 *params = data;
2015 	int i, ret;
2016 
2017 	if (nand_has_exec_op(chip)) {
2018 		const struct nand_interface_config *conf =
2019 			nand_get_interface_config(chip);
2020 		struct nand_op_instr instrs[] = {
2021 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2022 			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2023 									tADL_min)),
2024 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2025 					      NAND_COMMON_TIMING_NS(conf,
2026 								    tWB_max)),
2027 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2028 					 0),
2029 		};
2030 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2031 
2032 		return nand_exec_op(chip, &op);
2033 	}
2034 
2035 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2036 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2037 		chip->legacy.write_byte(chip, params[i]);
2038 
2039 	ret = chip->legacy.waitfunc(chip);
2040 	if (ret < 0)
2041 		return ret;
2042 
2043 	if (ret & NAND_STATUS_FAIL)
2044 		return -EIO;
2045 
2046 	return 0;
2047 }
2048 
2049 /**
2050  * nand_get_features_op - Do a GET FEATURES operation
2051  * @chip: The NAND chip
2052  * @feature: feature id
2053  * @data: 4 bytes of data
2054  *
2055  * This function sends a GET FEATURES command and waits for the NAND to be
2056  * ready before returning.
2057  * This function does not select/unselect the CS line.
2058  *
2059  * Returns 0 on success, a negative error code otherwise.
2060  */
2061 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2062 				void *data)
2063 {
2064 	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2065 	int i;
2066 
2067 	if (nand_has_exec_op(chip)) {
2068 		const struct nand_interface_config *conf =
2069 			nand_get_interface_config(chip);
2070 		struct nand_op_instr instrs[] = {
2071 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2072 			NAND_OP_ADDR(1, &feature,
2073 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2074 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2075 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2076 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2077 					     data, 0),
2078 		};
2079 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2080 		int ret;
2081 
2082 		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2083 		if (nand_interface_is_nvddr(conf)) {
2084 			instrs[3].ctx.data.len *= 2;
2085 			instrs[3].ctx.data.buf.in = ddrbuf;
2086 		}
2087 
2088 		ret = nand_exec_op(chip, &op);
2089 		if (nand_interface_is_nvddr(conf)) {
2090 			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2091 				params[i] = ddrbuf[i * 2];
2092 		}
2093 
2094 		return ret;
2095 	}
2096 
2097 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2098 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2099 		params[i] = chip->legacy.read_byte(chip);
2100 
2101 	return 0;
2102 }
2103 
2104 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2105 			    unsigned int delay_ns)
2106 {
2107 	if (nand_has_exec_op(chip)) {
2108 		struct nand_op_instr instrs[] = {
2109 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2110 					 PSEC_TO_NSEC(delay_ns)),
2111 		};
2112 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2113 
2114 		return nand_exec_op(chip, &op);
2115 	}
2116 
2117 	/* Apply delay or wait for ready/busy pin */
2118 	if (!chip->legacy.dev_ready)
2119 		udelay(chip->legacy.chip_delay);
2120 	else
2121 		nand_wait_ready(chip);
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * nand_reset_op - Do a reset operation
2128  * @chip: The NAND chip
2129  *
2130  * This function sends a RESET command and waits for the NAND to be ready
2131  * before returning.
2132  * This function does not select/unselect the CS line.
2133  *
2134  * Returns 0 on success, a negative error code otherwise.
2135  */
2136 int nand_reset_op(struct nand_chip *chip)
2137 {
2138 	if (nand_has_exec_op(chip)) {
2139 		const struct nand_interface_config *conf =
2140 			nand_get_interface_config(chip);
2141 		struct nand_op_instr instrs[] = {
2142 			NAND_OP_CMD(NAND_CMD_RESET,
2143 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2144 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2145 					 0),
2146 		};
2147 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2148 
2149 		return nand_exec_op(chip, &op);
2150 	}
2151 
2152 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2153 
2154 	return 0;
2155 }
2156 EXPORT_SYMBOL_GPL(nand_reset_op);
2157 
2158 /**
2159  * nand_read_data_op - Read data from the NAND
2160  * @chip: The NAND chip
2161  * @buf: buffer used to store the data
2162  * @len: length of the buffer
2163  * @force_8bit: force 8-bit bus access
2164  * @check_only: do not actually run the command, only checks if the
2165  *              controller driver supports it
2166  *
2167  * This function does a raw data read on the bus. Usually used after launching
2168  * another NAND operation like nand_read_page_op().
2169  * This function does not select/unselect the CS line.
2170  *
2171  * Returns 0 on success, a negative error code otherwise.
2172  */
2173 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2174 		      bool force_8bit, bool check_only)
2175 {
2176 	if (!len || !buf)
2177 		return -EINVAL;
2178 
2179 	if (nand_has_exec_op(chip)) {
2180 		const struct nand_interface_config *conf =
2181 			nand_get_interface_config(chip);
2182 		struct nand_op_instr instrs[] = {
2183 			NAND_OP_DATA_IN(len, buf, 0),
2184 		};
2185 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2186 		u8 *ddrbuf = NULL;
2187 		int ret, i;
2188 
2189 		instrs[0].ctx.data.force_8bit = force_8bit;
2190 
2191 		/*
2192 		 * Parameter payloads (ID, status, features, etc) do not go
2193 		 * through the same pipeline as regular data, hence the
2194 		 * force_8bit flag must be set and this also indicates that in
2195 		 * case NV-DDR timings are being used the data will be received
2196 		 * twice.
2197 		 */
2198 		if (force_8bit && nand_interface_is_nvddr(conf)) {
2199 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2200 			if (!ddrbuf)
2201 				return -ENOMEM;
2202 
2203 			instrs[0].ctx.data.len *= 2;
2204 			instrs[0].ctx.data.buf.in = ddrbuf;
2205 		}
2206 
2207 		if (check_only) {
2208 			ret = nand_check_op(chip, &op);
2209 			kfree(ddrbuf);
2210 			return ret;
2211 		}
2212 
2213 		ret = nand_exec_op(chip, &op);
2214 		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2215 			u8 *dst = buf;
2216 
2217 			for (i = 0; i < len; i++)
2218 				dst[i] = ddrbuf[i * 2];
2219 		}
2220 
2221 		kfree(ddrbuf);
2222 
2223 		return ret;
2224 	}
2225 
2226 	if (check_only)
2227 		return 0;
2228 
2229 	if (force_8bit) {
2230 		u8 *p = buf;
2231 		unsigned int i;
2232 
2233 		for (i = 0; i < len; i++)
2234 			p[i] = chip->legacy.read_byte(chip);
2235 	} else {
2236 		chip->legacy.read_buf(chip, buf, len);
2237 	}
2238 
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL_GPL(nand_read_data_op);
2242 
2243 /**
2244  * nand_write_data_op - Write data from the NAND
2245  * @chip: The NAND chip
2246  * @buf: buffer containing the data to send on the bus
2247  * @len: length of the buffer
2248  * @force_8bit: force 8-bit bus access
2249  *
2250  * This function does a raw data write on the bus. Usually used after launching
2251  * another NAND operation like nand_write_page_begin_op().
2252  * This function does not select/unselect the CS line.
2253  *
2254  * Returns 0 on success, a negative error code otherwise.
2255  */
2256 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2257 		       unsigned int len, bool force_8bit)
2258 {
2259 	if (!len || !buf)
2260 		return -EINVAL;
2261 
2262 	if (nand_has_exec_op(chip)) {
2263 		struct nand_op_instr instrs[] = {
2264 			NAND_OP_DATA_OUT(len, buf, 0),
2265 		};
2266 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2267 
2268 		instrs[0].ctx.data.force_8bit = force_8bit;
2269 
2270 		return nand_exec_op(chip, &op);
2271 	}
2272 
2273 	if (force_8bit) {
2274 		const u8 *p = buf;
2275 		unsigned int i;
2276 
2277 		for (i = 0; i < len; i++)
2278 			chip->legacy.write_byte(chip, p[i]);
2279 	} else {
2280 		chip->legacy.write_buf(chip, buf, len);
2281 	}
2282 
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL_GPL(nand_write_data_op);
2286 
2287 /**
2288  * struct nand_op_parser_ctx - Context used by the parser
2289  * @instrs: array of all the instructions that must be addressed
2290  * @ninstrs: length of the @instrs array
2291  * @subop: Sub-operation to be passed to the NAND controller
2292  *
2293  * This structure is used by the core to split NAND operations into
2294  * sub-operations that can be handled by the NAND controller.
2295  */
2296 struct nand_op_parser_ctx {
2297 	const struct nand_op_instr *instrs;
2298 	unsigned int ninstrs;
2299 	struct nand_subop subop;
2300 };
2301 
2302 /**
2303  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2304  * @pat: the parser pattern element that matches @instr
2305  * @instr: pointer to the instruction to check
2306  * @start_offset: this is an in/out parameter. If @instr has already been
2307  *		  split, then @start_offset is the offset from which to start
2308  *		  (either an address cycle or an offset in the data buffer).
2309  *		  Conversely, if the function returns true (ie. instr must be
2310  *		  split), this parameter is updated to point to the first
2311  *		  data/address cycle that has not been taken care of.
2312  *
2313  * Some NAND controllers are limited and cannot send X address cycles with a
2314  * unique operation, or cannot read/write more than Y bytes at the same time.
2315  * In this case, split the instruction that does not fit in a single
2316  * controller-operation into two or more chunks.
2317  *
2318  * Returns true if the instruction must be split, false otherwise.
2319  * The @start_offset parameter is also updated to the offset at which the next
2320  * bundle of instruction must start (if an address or a data instruction).
2321  */
2322 static bool
2323 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2324 				const struct nand_op_instr *instr,
2325 				unsigned int *start_offset)
2326 {
2327 	switch (pat->type) {
2328 	case NAND_OP_ADDR_INSTR:
2329 		if (!pat->ctx.addr.maxcycles)
2330 			break;
2331 
2332 		if (instr->ctx.addr.naddrs - *start_offset >
2333 		    pat->ctx.addr.maxcycles) {
2334 			*start_offset += pat->ctx.addr.maxcycles;
2335 			return true;
2336 		}
2337 		break;
2338 
2339 	case NAND_OP_DATA_IN_INSTR:
2340 	case NAND_OP_DATA_OUT_INSTR:
2341 		if (!pat->ctx.data.maxlen)
2342 			break;
2343 
2344 		if (instr->ctx.data.len - *start_offset >
2345 		    pat->ctx.data.maxlen) {
2346 			*start_offset += pat->ctx.data.maxlen;
2347 			return true;
2348 		}
2349 		break;
2350 
2351 	default:
2352 		break;
2353 	}
2354 
2355 	return false;
2356 }
2357 
2358 /**
2359  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2360  *			      remaining in the parser context
2361  * @pat: the pattern to test
2362  * @ctx: the parser context structure to match with the pattern @pat
2363  *
2364  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2365  * Returns true if this is the case, false ortherwise. When true is returned,
2366  * @ctx->subop is updated with the set of instructions to be passed to the
2367  * controller driver.
2368  */
2369 static bool
2370 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2371 			 struct nand_op_parser_ctx *ctx)
2372 {
2373 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2374 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2375 	const struct nand_op_instr *instr = ctx->subop.instrs;
2376 	unsigned int i, ninstrs;
2377 
2378 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2379 		/*
2380 		 * The pattern instruction does not match the operation
2381 		 * instruction. If the instruction is marked optional in the
2382 		 * pattern definition, we skip the pattern element and continue
2383 		 * to the next one. If the element is mandatory, there's no
2384 		 * match and we can return false directly.
2385 		 */
2386 		if (instr->type != pat->elems[i].type) {
2387 			if (!pat->elems[i].optional)
2388 				return false;
2389 
2390 			continue;
2391 		}
2392 
2393 		/*
2394 		 * Now check the pattern element constraints. If the pattern is
2395 		 * not able to handle the whole instruction in a single step,
2396 		 * we have to split it.
2397 		 * The last_instr_end_off value comes back updated to point to
2398 		 * the position where we have to split the instruction (the
2399 		 * start of the next subop chunk).
2400 		 */
2401 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2402 						    &instr_offset)) {
2403 			ninstrs++;
2404 			i++;
2405 			break;
2406 		}
2407 
2408 		instr++;
2409 		ninstrs++;
2410 		instr_offset = 0;
2411 	}
2412 
2413 	/*
2414 	 * This can happen if all instructions of a pattern are optional.
2415 	 * Still, if there's not at least one instruction handled by this
2416 	 * pattern, this is not a match, and we should try the next one (if
2417 	 * any).
2418 	 */
2419 	if (!ninstrs)
2420 		return false;
2421 
2422 	/*
2423 	 * We had a match on the pattern head, but the pattern may be longer
2424 	 * than the instructions we're asked to execute. We need to make sure
2425 	 * there's no mandatory elements in the pattern tail.
2426 	 */
2427 	for (; i < pat->nelems; i++) {
2428 		if (!pat->elems[i].optional)
2429 			return false;
2430 	}
2431 
2432 	/*
2433 	 * We have a match: update the subop structure accordingly and return
2434 	 * true.
2435 	 */
2436 	ctx->subop.ninstrs = ninstrs;
2437 	ctx->subop.last_instr_end_off = instr_offset;
2438 
2439 	return true;
2440 }
2441 
2442 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2443 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2444 {
2445 	const struct nand_op_instr *instr;
2446 	char *prefix = "      ";
2447 	unsigned int i;
2448 
2449 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2450 
2451 	for (i = 0; i < ctx->ninstrs; i++) {
2452 		instr = &ctx->instrs[i];
2453 
2454 		if (instr == &ctx->subop.instrs[0])
2455 			prefix = "    ->";
2456 
2457 		nand_op_trace(prefix, instr);
2458 
2459 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2460 			prefix = "      ";
2461 	}
2462 }
2463 #else
2464 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2465 {
2466 	/* NOP */
2467 }
2468 #endif
2469 
2470 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2471 				  const struct nand_op_parser_ctx *b)
2472 {
2473 	if (a->subop.ninstrs < b->subop.ninstrs)
2474 		return -1;
2475 	else if (a->subop.ninstrs > b->subop.ninstrs)
2476 		return 1;
2477 
2478 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2479 		return -1;
2480 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2481 		return 1;
2482 
2483 	return 0;
2484 }
2485 
2486 /**
2487  * nand_op_parser_exec_op - exec_op parser
2488  * @chip: the NAND chip
2489  * @parser: patterns description provided by the controller driver
2490  * @op: the NAND operation to address
2491  * @check_only: when true, the function only checks if @op can be handled but
2492  *		does not execute the operation
2493  *
2494  * Helper function designed to ease integration of NAND controller drivers that
2495  * only support a limited set of instruction sequences. The supported sequences
2496  * are described in @parser, and the framework takes care of splitting @op into
2497  * multiple sub-operations (if required) and pass them back to the ->exec()
2498  * callback of the matching pattern if @check_only is set to false.
2499  *
2500  * NAND controller drivers should call this function from their own ->exec_op()
2501  * implementation.
2502  *
2503  * Returns 0 on success, a negative error code otherwise. A failure can be
2504  * caused by an unsupported operation (none of the supported patterns is able
2505  * to handle the requested operation), or an error returned by one of the
2506  * matching pattern->exec() hook.
2507  */
2508 int nand_op_parser_exec_op(struct nand_chip *chip,
2509 			   const struct nand_op_parser *parser,
2510 			   const struct nand_operation *op, bool check_only)
2511 {
2512 	struct nand_op_parser_ctx ctx = {
2513 		.subop.cs = op->cs,
2514 		.subop.instrs = op->instrs,
2515 		.instrs = op->instrs,
2516 		.ninstrs = op->ninstrs,
2517 	};
2518 	unsigned int i;
2519 
2520 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2521 		const struct nand_op_parser_pattern *pattern;
2522 		struct nand_op_parser_ctx best_ctx;
2523 		int ret, best_pattern = -1;
2524 
2525 		for (i = 0; i < parser->npatterns; i++) {
2526 			struct nand_op_parser_ctx test_ctx = ctx;
2527 
2528 			pattern = &parser->patterns[i];
2529 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2530 				continue;
2531 
2532 			if (best_pattern >= 0 &&
2533 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2534 				continue;
2535 
2536 			best_pattern = i;
2537 			best_ctx = test_ctx;
2538 		}
2539 
2540 		if (best_pattern < 0) {
2541 			pr_debug("->exec_op() parser: pattern not found!\n");
2542 			return -ENOTSUPP;
2543 		}
2544 
2545 		ctx = best_ctx;
2546 		nand_op_parser_trace(&ctx);
2547 
2548 		if (!check_only) {
2549 			pattern = &parser->patterns[best_pattern];
2550 			ret = pattern->exec(chip, &ctx.subop);
2551 			if (ret)
2552 				return ret;
2553 		}
2554 
2555 		/*
2556 		 * Update the context structure by pointing to the start of the
2557 		 * next subop.
2558 		 */
2559 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2560 		if (ctx.subop.last_instr_end_off)
2561 			ctx.subop.instrs -= 1;
2562 
2563 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2564 	}
2565 
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2569 
2570 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2571 {
2572 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2573 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2574 }
2575 
2576 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2577 				      unsigned int instr_idx)
2578 {
2579 	return subop && instr_idx < subop->ninstrs;
2580 }
2581 
2582 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2583 					     unsigned int instr_idx)
2584 {
2585 	if (instr_idx)
2586 		return 0;
2587 
2588 	return subop->first_instr_start_off;
2589 }
2590 
2591 /**
2592  * nand_subop_get_addr_start_off - Get the start offset in an address array
2593  * @subop: The entire sub-operation
2594  * @instr_idx: Index of the instruction inside the sub-operation
2595  *
2596  * During driver development, one could be tempted to directly use the
2597  * ->addr.addrs field of address instructions. This is wrong as address
2598  * instructions might be split.
2599  *
2600  * Given an address instruction, returns the offset of the first cycle to issue.
2601  */
2602 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2603 					   unsigned int instr_idx)
2604 {
2605 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2606 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2607 		return 0;
2608 
2609 	return nand_subop_get_start_off(subop, instr_idx);
2610 }
2611 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2612 
2613 /**
2614  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2615  * @subop: The entire sub-operation
2616  * @instr_idx: Index of the instruction inside the sub-operation
2617  *
2618  * During driver development, one could be tempted to directly use the
2619  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2620  * might be split.
2621  *
2622  * Given an address instruction, returns the number of address cycle to issue.
2623  */
2624 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2625 					 unsigned int instr_idx)
2626 {
2627 	int start_off, end_off;
2628 
2629 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2630 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2631 		return 0;
2632 
2633 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2634 
2635 	if (instr_idx == subop->ninstrs - 1 &&
2636 	    subop->last_instr_end_off)
2637 		end_off = subop->last_instr_end_off;
2638 	else
2639 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2640 
2641 	return end_off - start_off;
2642 }
2643 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2644 
2645 /**
2646  * nand_subop_get_data_start_off - Get the start offset in a data array
2647  * @subop: The entire sub-operation
2648  * @instr_idx: Index of the instruction inside the sub-operation
2649  *
2650  * During driver development, one could be tempted to directly use the
2651  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2652  * instructions might be split.
2653  *
2654  * Given a data instruction, returns the offset to start from.
2655  */
2656 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2657 					   unsigned int instr_idx)
2658 {
2659 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2660 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2661 		return 0;
2662 
2663 	return nand_subop_get_start_off(subop, instr_idx);
2664 }
2665 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2666 
2667 /**
2668  * nand_subop_get_data_len - Get the number of bytes to retrieve
2669  * @subop: The entire sub-operation
2670  * @instr_idx: Index of the instruction inside the sub-operation
2671  *
2672  * During driver development, one could be tempted to directly use the
2673  * ->data->len field of a data instruction. This is wrong as data instructions
2674  * might be split.
2675  *
2676  * Returns the length of the chunk of data to send/receive.
2677  */
2678 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2679 				     unsigned int instr_idx)
2680 {
2681 	int start_off = 0, end_off;
2682 
2683 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2684 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2685 		return 0;
2686 
2687 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2688 
2689 	if (instr_idx == subop->ninstrs - 1 &&
2690 	    subop->last_instr_end_off)
2691 		end_off = subop->last_instr_end_off;
2692 	else
2693 		end_off = subop->instrs[instr_idx].ctx.data.len;
2694 
2695 	return end_off - start_off;
2696 }
2697 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2698 
2699 /**
2700  * nand_reset - Reset and initialize a NAND device
2701  * @chip: The NAND chip
2702  * @chipnr: Internal die id
2703  *
2704  * Save the timings data structure, then apply SDR timings mode 0 (see
2705  * nand_reset_interface for details), do the reset operation, and apply
2706  * back the previous timings.
2707  *
2708  * Returns 0 on success, a negative error code otherwise.
2709  */
2710 int nand_reset(struct nand_chip *chip, int chipnr)
2711 {
2712 	int ret;
2713 
2714 	ret = nand_reset_interface(chip, chipnr);
2715 	if (ret)
2716 		return ret;
2717 
2718 	/*
2719 	 * The CS line has to be released before we can apply the new NAND
2720 	 * interface settings, hence this weird nand_select_target()
2721 	 * nand_deselect_target() dance.
2722 	 */
2723 	nand_select_target(chip, chipnr);
2724 	ret = nand_reset_op(chip);
2725 	nand_deselect_target(chip);
2726 	if (ret)
2727 		return ret;
2728 
2729 	ret = nand_setup_interface(chip, chipnr);
2730 	if (ret)
2731 		return ret;
2732 
2733 	return 0;
2734 }
2735 EXPORT_SYMBOL_GPL(nand_reset);
2736 
2737 /**
2738  * nand_get_features - wrapper to perform a GET_FEATURE
2739  * @chip: NAND chip info structure
2740  * @addr: feature address
2741  * @subfeature_param: the subfeature parameters, a four bytes array
2742  *
2743  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2744  * operation cannot be handled.
2745  */
2746 int nand_get_features(struct nand_chip *chip, int addr,
2747 		      u8 *subfeature_param)
2748 {
2749 	if (!nand_supports_get_features(chip, addr))
2750 		return -ENOTSUPP;
2751 
2752 	if (chip->legacy.get_features)
2753 		return chip->legacy.get_features(chip, addr, subfeature_param);
2754 
2755 	return nand_get_features_op(chip, addr, subfeature_param);
2756 }
2757 
2758 /**
2759  * nand_set_features - wrapper to perform a SET_FEATURE
2760  * @chip: NAND chip info structure
2761  * @addr: feature address
2762  * @subfeature_param: the subfeature parameters, a four bytes array
2763  *
2764  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2765  * operation cannot be handled.
2766  */
2767 int nand_set_features(struct nand_chip *chip, int addr,
2768 		      u8 *subfeature_param)
2769 {
2770 	if (!nand_supports_set_features(chip, addr))
2771 		return -ENOTSUPP;
2772 
2773 	if (chip->legacy.set_features)
2774 		return chip->legacy.set_features(chip, addr, subfeature_param);
2775 
2776 	return nand_set_features_op(chip, addr, subfeature_param);
2777 }
2778 
2779 /**
2780  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2781  * @buf: buffer to test
2782  * @len: buffer length
2783  * @bitflips_threshold: maximum number of bitflips
2784  *
2785  * Check if a buffer contains only 0xff, which means the underlying region
2786  * has been erased and is ready to be programmed.
2787  * The bitflips_threshold specify the maximum number of bitflips before
2788  * considering the region is not erased.
2789  * Note: The logic of this function has been extracted from the memweight
2790  * implementation, except that nand_check_erased_buf function exit before
2791  * testing the whole buffer if the number of bitflips exceed the
2792  * bitflips_threshold value.
2793  *
2794  * Returns a positive number of bitflips less than or equal to
2795  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2796  * threshold.
2797  */
2798 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2799 {
2800 	const unsigned char *bitmap = buf;
2801 	int bitflips = 0;
2802 	int weight;
2803 
2804 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2805 	     len--, bitmap++) {
2806 		weight = hweight8(*bitmap);
2807 		bitflips += BITS_PER_BYTE - weight;
2808 		if (unlikely(bitflips > bitflips_threshold))
2809 			return -EBADMSG;
2810 	}
2811 
2812 	for (; len >= sizeof(long);
2813 	     len -= sizeof(long), bitmap += sizeof(long)) {
2814 		unsigned long d = *((unsigned long *)bitmap);
2815 		if (d == ~0UL)
2816 			continue;
2817 		weight = hweight_long(d);
2818 		bitflips += BITS_PER_LONG - weight;
2819 		if (unlikely(bitflips > bitflips_threshold))
2820 			return -EBADMSG;
2821 	}
2822 
2823 	for (; len > 0; len--, bitmap++) {
2824 		weight = hweight8(*bitmap);
2825 		bitflips += BITS_PER_BYTE - weight;
2826 		if (unlikely(bitflips > bitflips_threshold))
2827 			return -EBADMSG;
2828 	}
2829 
2830 	return bitflips;
2831 }
2832 
2833 /**
2834  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2835  *				 0xff data
2836  * @data: data buffer to test
2837  * @datalen: data length
2838  * @ecc: ECC buffer
2839  * @ecclen: ECC length
2840  * @extraoob: extra OOB buffer
2841  * @extraooblen: extra OOB length
2842  * @bitflips_threshold: maximum number of bitflips
2843  *
2844  * Check if a data buffer and its associated ECC and OOB data contains only
2845  * 0xff pattern, which means the underlying region has been erased and is
2846  * ready to be programmed.
2847  * The bitflips_threshold specify the maximum number of bitflips before
2848  * considering the region as not erased.
2849  *
2850  * Note:
2851  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2852  *    different from the NAND page size. When fixing bitflips, ECC engines will
2853  *    report the number of errors per chunk, and the NAND core infrastructure
2854  *    expect you to return the maximum number of bitflips for the whole page.
2855  *    This is why you should always use this function on a single chunk and
2856  *    not on the whole page. After checking each chunk you should update your
2857  *    max_bitflips value accordingly.
2858  * 2/ When checking for bitflips in erased pages you should not only check
2859  *    the payload data but also their associated ECC data, because a user might
2860  *    have programmed almost all bits to 1 but a few. In this case, we
2861  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2862  *    this case.
2863  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2864  *    data are protected by the ECC engine.
2865  *    It could also be used if you support subpages and want to attach some
2866  *    extra OOB data to an ECC chunk.
2867  *
2868  * Returns a positive number of bitflips less than or equal to
2869  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2870  * threshold. In case of success, the passed buffers are filled with 0xff.
2871  */
2872 int nand_check_erased_ecc_chunk(void *data, int datalen,
2873 				void *ecc, int ecclen,
2874 				void *extraoob, int extraooblen,
2875 				int bitflips_threshold)
2876 {
2877 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2878 
2879 	data_bitflips = nand_check_erased_buf(data, datalen,
2880 					      bitflips_threshold);
2881 	if (data_bitflips < 0)
2882 		return data_bitflips;
2883 
2884 	bitflips_threshold -= data_bitflips;
2885 
2886 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2887 	if (ecc_bitflips < 0)
2888 		return ecc_bitflips;
2889 
2890 	bitflips_threshold -= ecc_bitflips;
2891 
2892 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2893 						  bitflips_threshold);
2894 	if (extraoob_bitflips < 0)
2895 		return extraoob_bitflips;
2896 
2897 	if (data_bitflips)
2898 		memset(data, 0xff, datalen);
2899 
2900 	if (ecc_bitflips)
2901 		memset(ecc, 0xff, ecclen);
2902 
2903 	if (extraoob_bitflips)
2904 		memset(extraoob, 0xff, extraooblen);
2905 
2906 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2907 }
2908 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2909 
2910 /**
2911  * nand_read_page_raw_notsupp - dummy read raw page function
2912  * @chip: nand chip info structure
2913  * @buf: buffer to store read data
2914  * @oob_required: caller requires OOB data read to chip->oob_poi
2915  * @page: page number to read
2916  *
2917  * Returns -ENOTSUPP unconditionally.
2918  */
2919 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2920 			       int oob_required, int page)
2921 {
2922 	return -ENOTSUPP;
2923 }
2924 
2925 /**
2926  * nand_read_page_raw - [INTERN] read raw page data without ecc
2927  * @chip: nand chip info structure
2928  * @buf: buffer to store read data
2929  * @oob_required: caller requires OOB data read to chip->oob_poi
2930  * @page: page number to read
2931  *
2932  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2933  */
2934 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2935 		       int page)
2936 {
2937 	struct mtd_info *mtd = nand_to_mtd(chip);
2938 	int ret;
2939 
2940 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2941 	if (ret)
2942 		return ret;
2943 
2944 	if (oob_required) {
2945 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2946 					false, false);
2947 		if (ret)
2948 			return ret;
2949 	}
2950 
2951 	return 0;
2952 }
2953 EXPORT_SYMBOL(nand_read_page_raw);
2954 
2955 /**
2956  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2957  * @chip: NAND chip info structure
2958  * @buf: buffer to store read data
2959  * @oob_required: caller requires OOB data read to chip->oob_poi
2960  * @page: page number to read
2961  *
2962  * This is a raw page read, ie. without any error detection/correction.
2963  * Monolithic means we are requesting all the relevant data (main plus
2964  * eventually OOB) to be loaded in the NAND cache and sent over the
2965  * bus (from the NAND chip to the NAND controller) in a single
2966  * operation. This is an alternative to nand_read_page_raw(), which
2967  * first reads the main data, and if the OOB data is requested too,
2968  * then reads more data on the bus.
2969  */
2970 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2971 				  int oob_required, int page)
2972 {
2973 	struct mtd_info *mtd = nand_to_mtd(chip);
2974 	unsigned int size = mtd->writesize;
2975 	u8 *read_buf = buf;
2976 	int ret;
2977 
2978 	if (oob_required) {
2979 		size += mtd->oobsize;
2980 
2981 		if (buf != chip->data_buf)
2982 			read_buf = nand_get_data_buf(chip);
2983 	}
2984 
2985 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2986 	if (ret)
2987 		return ret;
2988 
2989 	if (buf != chip->data_buf)
2990 		memcpy(buf, read_buf, mtd->writesize);
2991 
2992 	return 0;
2993 }
2994 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2995 
2996 /**
2997  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2998  * @chip: nand chip info structure
2999  * @buf: buffer to store read data
3000  * @oob_required: caller requires OOB data read to chip->oob_poi
3001  * @page: page number to read
3002  *
3003  * We need a special oob layout and handling even when OOB isn't used.
3004  */
3005 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
3006 				       int oob_required, int page)
3007 {
3008 	struct mtd_info *mtd = nand_to_mtd(chip);
3009 	int eccsize = chip->ecc.size;
3010 	int eccbytes = chip->ecc.bytes;
3011 	uint8_t *oob = chip->oob_poi;
3012 	int steps, size, ret;
3013 
3014 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3015 	if (ret)
3016 		return ret;
3017 
3018 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3019 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3020 		if (ret)
3021 			return ret;
3022 
3023 		buf += eccsize;
3024 
3025 		if (chip->ecc.prepad) {
3026 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3027 						false, false);
3028 			if (ret)
3029 				return ret;
3030 
3031 			oob += chip->ecc.prepad;
3032 		}
3033 
3034 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3035 		if (ret)
3036 			return ret;
3037 
3038 		oob += eccbytes;
3039 
3040 		if (chip->ecc.postpad) {
3041 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3042 						false, false);
3043 			if (ret)
3044 				return ret;
3045 
3046 			oob += chip->ecc.postpad;
3047 		}
3048 	}
3049 
3050 	size = mtd->oobsize - (oob - chip->oob_poi);
3051 	if (size) {
3052 		ret = nand_read_data_op(chip, oob, size, false, false);
3053 		if (ret)
3054 			return ret;
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 /**
3061  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3062  * @chip: nand chip info structure
3063  * @buf: buffer to store read data
3064  * @oob_required: caller requires OOB data read to chip->oob_poi
3065  * @page: page number to read
3066  */
3067 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3068 				int oob_required, int page)
3069 {
3070 	struct mtd_info *mtd = nand_to_mtd(chip);
3071 	int i, eccsize = chip->ecc.size, ret;
3072 	int eccbytes = chip->ecc.bytes;
3073 	int eccsteps = chip->ecc.steps;
3074 	uint8_t *p = buf;
3075 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3076 	uint8_t *ecc_code = chip->ecc.code_buf;
3077 	unsigned int max_bitflips = 0;
3078 
3079 	chip->ecc.read_page_raw(chip, buf, 1, page);
3080 
3081 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3082 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3083 
3084 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3085 					 chip->ecc.total);
3086 	if (ret)
3087 		return ret;
3088 
3089 	eccsteps = chip->ecc.steps;
3090 	p = buf;
3091 
3092 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3093 		int stat;
3094 
3095 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3096 		if (stat < 0) {
3097 			mtd->ecc_stats.failed++;
3098 		} else {
3099 			mtd->ecc_stats.corrected += stat;
3100 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3101 		}
3102 	}
3103 	return max_bitflips;
3104 }
3105 
3106 /**
3107  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3108  * @chip: nand chip info structure
3109  * @data_offs: offset of requested data within the page
3110  * @readlen: data length
3111  * @bufpoi: buffer to store read data
3112  * @page: page number to read
3113  */
3114 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3115 			     uint32_t readlen, uint8_t *bufpoi, int page)
3116 {
3117 	struct mtd_info *mtd = nand_to_mtd(chip);
3118 	int start_step, end_step, num_steps, ret;
3119 	uint8_t *p;
3120 	int data_col_addr, i, gaps = 0;
3121 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3122 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3123 	int index, section = 0;
3124 	unsigned int max_bitflips = 0;
3125 	struct mtd_oob_region oobregion = { };
3126 
3127 	/* Column address within the page aligned to ECC size (256bytes) */
3128 	start_step = data_offs / chip->ecc.size;
3129 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3130 	num_steps = end_step - start_step + 1;
3131 	index = start_step * chip->ecc.bytes;
3132 
3133 	/* Data size aligned to ECC ecc.size */
3134 	datafrag_len = num_steps * chip->ecc.size;
3135 	eccfrag_len = num_steps * chip->ecc.bytes;
3136 
3137 	data_col_addr = start_step * chip->ecc.size;
3138 	/* If we read not a page aligned data */
3139 	p = bufpoi + data_col_addr;
3140 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3141 	if (ret)
3142 		return ret;
3143 
3144 	/* Calculate ECC */
3145 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3146 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3147 
3148 	/*
3149 	 * The performance is faster if we position offsets according to
3150 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3151 	 */
3152 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3153 	if (ret)
3154 		return ret;
3155 
3156 	if (oobregion.length < eccfrag_len)
3157 		gaps = 1;
3158 
3159 	if (gaps) {
3160 		ret = nand_change_read_column_op(chip, mtd->writesize,
3161 						 chip->oob_poi, mtd->oobsize,
3162 						 false);
3163 		if (ret)
3164 			return ret;
3165 	} else {
3166 		/*
3167 		 * Send the command to read the particular ECC bytes take care
3168 		 * about buswidth alignment in read_buf.
3169 		 */
3170 		aligned_pos = oobregion.offset & ~(busw - 1);
3171 		aligned_len = eccfrag_len;
3172 		if (oobregion.offset & (busw - 1))
3173 			aligned_len++;
3174 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3175 		    (busw - 1))
3176 			aligned_len++;
3177 
3178 		ret = nand_change_read_column_op(chip,
3179 						 mtd->writesize + aligned_pos,
3180 						 &chip->oob_poi[aligned_pos],
3181 						 aligned_len, false);
3182 		if (ret)
3183 			return ret;
3184 	}
3185 
3186 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3187 					 chip->oob_poi, index, eccfrag_len);
3188 	if (ret)
3189 		return ret;
3190 
3191 	p = bufpoi + data_col_addr;
3192 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3193 		int stat;
3194 
3195 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3196 					 &chip->ecc.calc_buf[i]);
3197 		if (stat == -EBADMSG &&
3198 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3199 			/* check for empty pages with bitflips */
3200 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3201 						&chip->ecc.code_buf[i],
3202 						chip->ecc.bytes,
3203 						NULL, 0,
3204 						chip->ecc.strength);
3205 		}
3206 
3207 		if (stat < 0) {
3208 			mtd->ecc_stats.failed++;
3209 		} else {
3210 			mtd->ecc_stats.corrected += stat;
3211 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3212 		}
3213 	}
3214 	return max_bitflips;
3215 }
3216 
3217 /**
3218  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3219  * @chip: nand chip info structure
3220  * @buf: buffer to store read data
3221  * @oob_required: caller requires OOB data read to chip->oob_poi
3222  * @page: page number to read
3223  *
3224  * Not for syndrome calculating ECC controllers which need a special oob layout.
3225  */
3226 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3227 				int oob_required, int page)
3228 {
3229 	struct mtd_info *mtd = nand_to_mtd(chip);
3230 	int i, eccsize = chip->ecc.size, ret;
3231 	int eccbytes = chip->ecc.bytes;
3232 	int eccsteps = chip->ecc.steps;
3233 	uint8_t *p = buf;
3234 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3235 	uint8_t *ecc_code = chip->ecc.code_buf;
3236 	unsigned int max_bitflips = 0;
3237 
3238 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3239 	if (ret)
3240 		return ret;
3241 
3242 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3243 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3244 
3245 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3246 		if (ret)
3247 			return ret;
3248 
3249 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3250 	}
3251 
3252 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3253 				false);
3254 	if (ret)
3255 		return ret;
3256 
3257 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3258 					 chip->ecc.total);
3259 	if (ret)
3260 		return ret;
3261 
3262 	eccsteps = chip->ecc.steps;
3263 	p = buf;
3264 
3265 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3266 		int stat;
3267 
3268 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3269 		if (stat == -EBADMSG &&
3270 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3271 			/* check for empty pages with bitflips */
3272 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3273 						&ecc_code[i], eccbytes,
3274 						NULL, 0,
3275 						chip->ecc.strength);
3276 		}
3277 
3278 		if (stat < 0) {
3279 			mtd->ecc_stats.failed++;
3280 		} else {
3281 			mtd->ecc_stats.corrected += stat;
3282 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3283 		}
3284 	}
3285 	return max_bitflips;
3286 }
3287 
3288 /**
3289  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3290  *                                  data read from OOB area
3291  * @chip: nand chip info structure
3292  * @buf: buffer to store read data
3293  * @oob_required: caller requires OOB data read to chip->oob_poi
3294  * @page: page number to read
3295  *
3296  * Hardware ECC for large page chips, which requires the ECC data to be
3297  * extracted from the OOB before the actual data is read.
3298  */
3299 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3300 				   int oob_required, int page)
3301 {
3302 	struct mtd_info *mtd = nand_to_mtd(chip);
3303 	int i, eccsize = chip->ecc.size, ret;
3304 	int eccbytes = chip->ecc.bytes;
3305 	int eccsteps = chip->ecc.steps;
3306 	uint8_t *p = buf;
3307 	uint8_t *ecc_code = chip->ecc.code_buf;
3308 	unsigned int max_bitflips = 0;
3309 
3310 	/* Read the OOB area first */
3311 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3312 	if (ret)
3313 		return ret;
3314 
3315 	/* Move read cursor to start of page */
3316 	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3317 	if (ret)
3318 		return ret;
3319 
3320 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3321 					 chip->ecc.total);
3322 	if (ret)
3323 		return ret;
3324 
3325 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3326 		int stat;
3327 
3328 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3329 
3330 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3331 		if (ret)
3332 			return ret;
3333 
3334 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3335 		if (stat == -EBADMSG &&
3336 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3337 			/* check for empty pages with bitflips */
3338 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3339 							   &ecc_code[i],
3340 							   eccbytes, NULL, 0,
3341 							   chip->ecc.strength);
3342 		}
3343 
3344 		if (stat < 0) {
3345 			mtd->ecc_stats.failed++;
3346 		} else {
3347 			mtd->ecc_stats.corrected += stat;
3348 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3349 		}
3350 	}
3351 	return max_bitflips;
3352 }
3353 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3354 
3355 /**
3356  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3357  * @chip: nand chip info structure
3358  * @buf: buffer to store read data
3359  * @oob_required: caller requires OOB data read to chip->oob_poi
3360  * @page: page number to read
3361  *
3362  * The hw generator calculates the error syndrome automatically. Therefore we
3363  * need a special oob layout and handling.
3364  */
3365 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3366 				   int oob_required, int page)
3367 {
3368 	struct mtd_info *mtd = nand_to_mtd(chip);
3369 	int ret, i, eccsize = chip->ecc.size;
3370 	int eccbytes = chip->ecc.bytes;
3371 	int eccsteps = chip->ecc.steps;
3372 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3373 	uint8_t *p = buf;
3374 	uint8_t *oob = chip->oob_poi;
3375 	unsigned int max_bitflips = 0;
3376 
3377 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3378 	if (ret)
3379 		return ret;
3380 
3381 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3382 		int stat;
3383 
3384 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3385 
3386 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3387 		if (ret)
3388 			return ret;
3389 
3390 		if (chip->ecc.prepad) {
3391 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3392 						false, false);
3393 			if (ret)
3394 				return ret;
3395 
3396 			oob += chip->ecc.prepad;
3397 		}
3398 
3399 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3400 
3401 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3402 		if (ret)
3403 			return ret;
3404 
3405 		stat = chip->ecc.correct(chip, p, oob, NULL);
3406 
3407 		oob += eccbytes;
3408 
3409 		if (chip->ecc.postpad) {
3410 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3411 						false, false);
3412 			if (ret)
3413 				return ret;
3414 
3415 			oob += chip->ecc.postpad;
3416 		}
3417 
3418 		if (stat == -EBADMSG &&
3419 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3420 			/* check for empty pages with bitflips */
3421 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3422 							   oob - eccpadbytes,
3423 							   eccpadbytes,
3424 							   NULL, 0,
3425 							   chip->ecc.strength);
3426 		}
3427 
3428 		if (stat < 0) {
3429 			mtd->ecc_stats.failed++;
3430 		} else {
3431 			mtd->ecc_stats.corrected += stat;
3432 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3433 		}
3434 	}
3435 
3436 	/* Calculate remaining oob bytes */
3437 	i = mtd->oobsize - (oob - chip->oob_poi);
3438 	if (i) {
3439 		ret = nand_read_data_op(chip, oob, i, false, false);
3440 		if (ret)
3441 			return ret;
3442 	}
3443 
3444 	return max_bitflips;
3445 }
3446 
3447 /**
3448  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3449  * @chip: NAND chip object
3450  * @oob: oob destination address
3451  * @ops: oob ops structure
3452  * @len: size of oob to transfer
3453  */
3454 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3455 				  struct mtd_oob_ops *ops, size_t len)
3456 {
3457 	struct mtd_info *mtd = nand_to_mtd(chip);
3458 	int ret;
3459 
3460 	switch (ops->mode) {
3461 
3462 	case MTD_OPS_PLACE_OOB:
3463 	case MTD_OPS_RAW:
3464 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3465 		return oob + len;
3466 
3467 	case MTD_OPS_AUTO_OOB:
3468 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3469 						  ops->ooboffs, len);
3470 		BUG_ON(ret);
3471 		return oob + len;
3472 
3473 	default:
3474 		BUG();
3475 	}
3476 	return NULL;
3477 }
3478 
3479 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3480 				      u32 readlen, int col)
3481 {
3482 	struct mtd_info *mtd = nand_to_mtd(chip);
3483 	unsigned int first_page, last_page;
3484 
3485 	chip->cont_read.ongoing = false;
3486 
3487 	if (!chip->controller->supported_op.cont_read)
3488 		return;
3489 
3490 	/*
3491 	 * Don't bother making any calculations if the length is too small.
3492 	 * Side effect: avoids possible integer underflows below.
3493 	 */
3494 	if (readlen < (2 * mtd->writesize))
3495 		return;
3496 
3497 	/* Derive the page where continuous read should start (the first full page read) */
3498 	first_page = page;
3499 	if (col)
3500 		first_page++;
3501 
3502 	/* Derive the page where continuous read should stop (the last full page read) */
3503 	last_page = page + ((col + readlen) / mtd->writesize) - 1;
3504 
3505 	/* Configure and enable continuous read when suitable */
3506 	if (first_page < last_page) {
3507 		chip->cont_read.first_page = first_page;
3508 		chip->cont_read.last_page = last_page;
3509 		chip->cont_read.ongoing = true;
3510 		/* May reset the ongoing flag */
3511 		rawnand_cap_cont_reads(chip);
3512 	}
3513 }
3514 
3515 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3516 {
3517 	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3518 		return;
3519 
3520 	chip->cont_read.first_page++;
3521 	rawnand_cap_cont_reads(chip);
3522 }
3523 
3524 /**
3525  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3526  * @chip: NAND chip object
3527  * @retry_mode: the retry mode to use
3528  *
3529  * Some vendors supply a special command to shift the Vt threshold, to be used
3530  * when there are too many bitflips in a page (i.e., ECC error). After setting
3531  * a new threshold, the host should retry reading the page.
3532  */
3533 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3534 {
3535 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3536 
3537 	if (retry_mode >= chip->read_retries)
3538 		return -EINVAL;
3539 
3540 	if (!chip->ops.setup_read_retry)
3541 		return -EOPNOTSUPP;
3542 
3543 	return chip->ops.setup_read_retry(chip, retry_mode);
3544 }
3545 
3546 static void nand_wait_readrdy(struct nand_chip *chip)
3547 {
3548 	const struct nand_interface_config *conf;
3549 
3550 	if (!(chip->options & NAND_NEED_READRDY))
3551 		return;
3552 
3553 	conf = nand_get_interface_config(chip);
3554 	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3555 }
3556 
3557 /**
3558  * nand_do_read_ops - [INTERN] Read data with ECC
3559  * @chip: NAND chip object
3560  * @from: offset to read from
3561  * @ops: oob ops structure
3562  *
3563  * Internal function. Called with chip held.
3564  */
3565 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3566 			    struct mtd_oob_ops *ops)
3567 {
3568 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3569 	struct mtd_info *mtd = nand_to_mtd(chip);
3570 	int ret = 0;
3571 	uint32_t readlen = ops->len;
3572 	uint32_t oobreadlen = ops->ooblen;
3573 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3574 
3575 	uint8_t *bufpoi, *oob, *buf;
3576 	int use_bounce_buf;
3577 	unsigned int max_bitflips = 0;
3578 	int retry_mode = 0;
3579 	bool ecc_fail = false;
3580 
3581 	/* Check if the region is secured */
3582 	if (nand_region_is_secured(chip, from, readlen))
3583 		return -EIO;
3584 
3585 	chipnr = (int)(from >> chip->chip_shift);
3586 	nand_select_target(chip, chipnr);
3587 
3588 	realpage = (int)(from >> chip->page_shift);
3589 	page = realpage & chip->pagemask;
3590 
3591 	col = (int)(from & (mtd->writesize - 1));
3592 
3593 	buf = ops->datbuf;
3594 	oob = ops->oobbuf;
3595 	oob_required = oob ? 1 : 0;
3596 
3597 	if (likely(ops->mode != MTD_OPS_RAW))
3598 		rawnand_enable_cont_reads(chip, page, readlen, col);
3599 
3600 	while (1) {
3601 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3602 
3603 		bytes = min(mtd->writesize - col, readlen);
3604 		aligned = (bytes == mtd->writesize);
3605 
3606 		if (!aligned)
3607 			use_bounce_buf = 1;
3608 		else if (chip->options & NAND_USES_DMA)
3609 			use_bounce_buf = !virt_addr_valid(buf) ||
3610 					 !IS_ALIGNED((unsigned long)buf,
3611 						     chip->buf_align);
3612 		else
3613 			use_bounce_buf = 0;
3614 
3615 		/* Is the current page in the buffer? */
3616 		if (realpage != chip->pagecache.page || oob) {
3617 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3618 
3619 			if (use_bounce_buf && aligned)
3620 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3621 						 __func__, buf);
3622 
3623 read_retry:
3624 			/*
3625 			 * Now read the page into the buffer.  Absent an error,
3626 			 * the read methods return max bitflips per ecc step.
3627 			 */
3628 			if (unlikely(ops->mode == MTD_OPS_RAW))
3629 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3630 							      oob_required,
3631 							      page);
3632 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3633 				 !oob)
3634 				ret = chip->ecc.read_subpage(chip, col, bytes,
3635 							     bufpoi, page);
3636 			else
3637 				ret = chip->ecc.read_page(chip, bufpoi,
3638 							  oob_required, page);
3639 			if (ret < 0) {
3640 				if (use_bounce_buf)
3641 					/* Invalidate page cache */
3642 					chip->pagecache.page = -1;
3643 				break;
3644 			}
3645 
3646 			/*
3647 			 * Copy back the data in the initial buffer when reading
3648 			 * partial pages or when a bounce buffer is required.
3649 			 */
3650 			if (use_bounce_buf) {
3651 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3652 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3653 				    (ops->mode != MTD_OPS_RAW)) {
3654 					chip->pagecache.page = realpage;
3655 					chip->pagecache.bitflips = ret;
3656 				} else {
3657 					/* Invalidate page cache */
3658 					chip->pagecache.page = -1;
3659 				}
3660 				memcpy(buf, bufpoi + col, bytes);
3661 			}
3662 
3663 			if (unlikely(oob)) {
3664 				int toread = min(oobreadlen, max_oobsize);
3665 
3666 				if (toread) {
3667 					oob = nand_transfer_oob(chip, oob, ops,
3668 								toread);
3669 					oobreadlen -= toread;
3670 				}
3671 			}
3672 
3673 			nand_wait_readrdy(chip);
3674 
3675 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3676 				if (retry_mode + 1 < chip->read_retries) {
3677 					retry_mode++;
3678 					ret = nand_setup_read_retry(chip,
3679 							retry_mode);
3680 					if (ret < 0)
3681 						break;
3682 
3683 					/* Reset ecc_stats; retry */
3684 					mtd->ecc_stats = ecc_stats;
3685 					goto read_retry;
3686 				} else {
3687 					/* No more retry modes; real failure */
3688 					ecc_fail = true;
3689 				}
3690 			}
3691 
3692 			buf += bytes;
3693 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3694 		} else {
3695 			memcpy(buf, chip->data_buf + col, bytes);
3696 			buf += bytes;
3697 			max_bitflips = max_t(unsigned int, max_bitflips,
3698 					     chip->pagecache.bitflips);
3699 
3700 			rawnand_cont_read_skip_first_page(chip, page);
3701 		}
3702 
3703 		readlen -= bytes;
3704 
3705 		/* Reset to retry mode 0 */
3706 		if (retry_mode) {
3707 			ret = nand_setup_read_retry(chip, 0);
3708 			if (ret < 0)
3709 				break;
3710 			retry_mode = 0;
3711 		}
3712 
3713 		if (!readlen)
3714 			break;
3715 
3716 		/* For subsequent reads align to page boundary */
3717 		col = 0;
3718 		/* Increment page address */
3719 		realpage++;
3720 
3721 		page = realpage & chip->pagemask;
3722 		/* Check, if we cross a chip boundary */
3723 		if (!page) {
3724 			chipnr++;
3725 			nand_deselect_target(chip);
3726 			nand_select_target(chip, chipnr);
3727 		}
3728 	}
3729 	nand_deselect_target(chip);
3730 
3731 	if (WARN_ON_ONCE(chip->cont_read.ongoing))
3732 		chip->cont_read.ongoing = false;
3733 
3734 	ops->retlen = ops->len - (size_t) readlen;
3735 	if (oob)
3736 		ops->oobretlen = ops->ooblen - oobreadlen;
3737 
3738 	if (ret < 0)
3739 		return ret;
3740 
3741 	if (ecc_fail)
3742 		return -EBADMSG;
3743 
3744 	return max_bitflips;
3745 }
3746 
3747 /**
3748  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3749  * @chip: nand chip info structure
3750  * @page: page number to read
3751  */
3752 int nand_read_oob_std(struct nand_chip *chip, int page)
3753 {
3754 	struct mtd_info *mtd = nand_to_mtd(chip);
3755 
3756 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3757 }
3758 EXPORT_SYMBOL(nand_read_oob_std);
3759 
3760 /**
3761  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3762  *			    with syndromes
3763  * @chip: nand chip info structure
3764  * @page: page number to read
3765  */
3766 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3767 {
3768 	struct mtd_info *mtd = nand_to_mtd(chip);
3769 	int length = mtd->oobsize;
3770 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3771 	int eccsize = chip->ecc.size;
3772 	uint8_t *bufpoi = chip->oob_poi;
3773 	int i, toread, sndrnd = 0, pos, ret;
3774 
3775 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3776 	if (ret)
3777 		return ret;
3778 
3779 	for (i = 0; i < chip->ecc.steps; i++) {
3780 		if (sndrnd) {
3781 			int ret;
3782 
3783 			pos = eccsize + i * (eccsize + chunk);
3784 			if (mtd->writesize > 512)
3785 				ret = nand_change_read_column_op(chip, pos,
3786 								 NULL, 0,
3787 								 false);
3788 			else
3789 				ret = nand_read_page_op(chip, page, pos, NULL,
3790 							0);
3791 
3792 			if (ret)
3793 				return ret;
3794 		} else
3795 			sndrnd = 1;
3796 		toread = min_t(int, length, chunk);
3797 
3798 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3799 		if (ret)
3800 			return ret;
3801 
3802 		bufpoi += toread;
3803 		length -= toread;
3804 	}
3805 	if (length > 0) {
3806 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3807 		if (ret)
3808 			return ret;
3809 	}
3810 
3811 	return 0;
3812 }
3813 
3814 /**
3815  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3816  * @chip: nand chip info structure
3817  * @page: page number to write
3818  */
3819 int nand_write_oob_std(struct nand_chip *chip, int page)
3820 {
3821 	struct mtd_info *mtd = nand_to_mtd(chip);
3822 
3823 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3824 				 mtd->oobsize);
3825 }
3826 EXPORT_SYMBOL(nand_write_oob_std);
3827 
3828 /**
3829  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3830  *			     with syndrome - only for large page flash
3831  * @chip: nand chip info structure
3832  * @page: page number to write
3833  */
3834 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3835 {
3836 	struct mtd_info *mtd = nand_to_mtd(chip);
3837 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3838 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3839 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3840 	const uint8_t *bufpoi = chip->oob_poi;
3841 
3842 	/*
3843 	 * data-ecc-data-ecc ... ecc-oob
3844 	 * or
3845 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3846 	 */
3847 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3848 		pos = steps * (eccsize + chunk);
3849 		steps = 0;
3850 	} else
3851 		pos = eccsize;
3852 
3853 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3854 	if (ret)
3855 		return ret;
3856 
3857 	for (i = 0; i < steps; i++) {
3858 		if (sndcmd) {
3859 			if (mtd->writesize <= 512) {
3860 				uint32_t fill = 0xFFFFFFFF;
3861 
3862 				len = eccsize;
3863 				while (len > 0) {
3864 					int num = min_t(int, len, 4);
3865 
3866 					ret = nand_write_data_op(chip, &fill,
3867 								 num, false);
3868 					if (ret)
3869 						return ret;
3870 
3871 					len -= num;
3872 				}
3873 			} else {
3874 				pos = eccsize + i * (eccsize + chunk);
3875 				ret = nand_change_write_column_op(chip, pos,
3876 								  NULL, 0,
3877 								  false);
3878 				if (ret)
3879 					return ret;
3880 			}
3881 		} else
3882 			sndcmd = 1;
3883 		len = min_t(int, length, chunk);
3884 
3885 		ret = nand_write_data_op(chip, bufpoi, len, false);
3886 		if (ret)
3887 			return ret;
3888 
3889 		bufpoi += len;
3890 		length -= len;
3891 	}
3892 	if (length > 0) {
3893 		ret = nand_write_data_op(chip, bufpoi, length, false);
3894 		if (ret)
3895 			return ret;
3896 	}
3897 
3898 	return nand_prog_page_end_op(chip);
3899 }
3900 
3901 /**
3902  * nand_do_read_oob - [INTERN] NAND read out-of-band
3903  * @chip: NAND chip object
3904  * @from: offset to read from
3905  * @ops: oob operations description structure
3906  *
3907  * NAND read out-of-band data from the spare area.
3908  */
3909 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3910 			    struct mtd_oob_ops *ops)
3911 {
3912 	struct mtd_info *mtd = nand_to_mtd(chip);
3913 	unsigned int max_bitflips = 0;
3914 	int page, realpage, chipnr;
3915 	struct mtd_ecc_stats stats;
3916 	int readlen = ops->ooblen;
3917 	int len;
3918 	uint8_t *buf = ops->oobbuf;
3919 	int ret = 0;
3920 
3921 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3922 			__func__, (unsigned long long)from, readlen);
3923 
3924 	/* Check if the region is secured */
3925 	if (nand_region_is_secured(chip, from, readlen))
3926 		return -EIO;
3927 
3928 	stats = mtd->ecc_stats;
3929 
3930 	len = mtd_oobavail(mtd, ops);
3931 
3932 	chipnr = (int)(from >> chip->chip_shift);
3933 	nand_select_target(chip, chipnr);
3934 
3935 	/* Shift to get page */
3936 	realpage = (int)(from >> chip->page_shift);
3937 	page = realpage & chip->pagemask;
3938 
3939 	while (1) {
3940 		if (ops->mode == MTD_OPS_RAW)
3941 			ret = chip->ecc.read_oob_raw(chip, page);
3942 		else
3943 			ret = chip->ecc.read_oob(chip, page);
3944 
3945 		if (ret < 0)
3946 			break;
3947 
3948 		len = min(len, readlen);
3949 		buf = nand_transfer_oob(chip, buf, ops, len);
3950 
3951 		nand_wait_readrdy(chip);
3952 
3953 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3954 
3955 		readlen -= len;
3956 		if (!readlen)
3957 			break;
3958 
3959 		/* Increment page address */
3960 		realpage++;
3961 
3962 		page = realpage & chip->pagemask;
3963 		/* Check, if we cross a chip boundary */
3964 		if (!page) {
3965 			chipnr++;
3966 			nand_deselect_target(chip);
3967 			nand_select_target(chip, chipnr);
3968 		}
3969 	}
3970 	nand_deselect_target(chip);
3971 
3972 	ops->oobretlen = ops->ooblen - readlen;
3973 
3974 	if (ret < 0)
3975 		return ret;
3976 
3977 	if (mtd->ecc_stats.failed - stats.failed)
3978 		return -EBADMSG;
3979 
3980 	return max_bitflips;
3981 }
3982 
3983 /**
3984  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3985  * @mtd: MTD device structure
3986  * @from: offset to read from
3987  * @ops: oob operation description structure
3988  *
3989  * NAND read data and/or out-of-band data.
3990  */
3991 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3992 			 struct mtd_oob_ops *ops)
3993 {
3994 	struct nand_chip *chip = mtd_to_nand(mtd);
3995 	struct mtd_ecc_stats old_stats;
3996 	int ret;
3997 
3998 	ops->retlen = 0;
3999 
4000 	if (ops->mode != MTD_OPS_PLACE_OOB &&
4001 	    ops->mode != MTD_OPS_AUTO_OOB &&
4002 	    ops->mode != MTD_OPS_RAW)
4003 		return -ENOTSUPP;
4004 
4005 	nand_get_device(chip);
4006 
4007 	old_stats = mtd->ecc_stats;
4008 
4009 	if (!ops->datbuf)
4010 		ret = nand_do_read_oob(chip, from, ops);
4011 	else
4012 		ret = nand_do_read_ops(chip, from, ops);
4013 
4014 	if (ops->stats) {
4015 		ops->stats->uncorrectable_errors +=
4016 			mtd->ecc_stats.failed - old_stats.failed;
4017 		ops->stats->corrected_bitflips +=
4018 			mtd->ecc_stats.corrected - old_stats.corrected;
4019 	}
4020 
4021 	nand_release_device(chip);
4022 	return ret;
4023 }
4024 
4025 /**
4026  * nand_write_page_raw_notsupp - dummy raw page write function
4027  * @chip: nand chip info structure
4028  * @buf: data buffer
4029  * @oob_required: must write chip->oob_poi to OOB
4030  * @page: page number to write
4031  *
4032  * Returns -ENOTSUPP unconditionally.
4033  */
4034 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4035 				int oob_required, int page)
4036 {
4037 	return -ENOTSUPP;
4038 }
4039 
4040 /**
4041  * nand_write_page_raw - [INTERN] raw page write function
4042  * @chip: nand chip info structure
4043  * @buf: data buffer
4044  * @oob_required: must write chip->oob_poi to OOB
4045  * @page: page number to write
4046  *
4047  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4048  */
4049 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4050 			int oob_required, int page)
4051 {
4052 	struct mtd_info *mtd = nand_to_mtd(chip);
4053 	int ret;
4054 
4055 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4056 	if (ret)
4057 		return ret;
4058 
4059 	if (oob_required) {
4060 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4061 					 false);
4062 		if (ret)
4063 			return ret;
4064 	}
4065 
4066 	return nand_prog_page_end_op(chip);
4067 }
4068 EXPORT_SYMBOL(nand_write_page_raw);
4069 
4070 /**
4071  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4072  * @chip: NAND chip info structure
4073  * @buf: data buffer to write
4074  * @oob_required: must write chip->oob_poi to OOB
4075  * @page: page number to write
4076  *
4077  * This is a raw page write, ie. without any error detection/correction.
4078  * Monolithic means we are requesting all the relevant data (main plus
4079  * eventually OOB) to be sent over the bus and effectively programmed
4080  * into the NAND chip arrays in a single operation. This is an
4081  * alternative to nand_write_page_raw(), which first sends the main
4082  * data, then eventually send the OOB data by latching more data
4083  * cycles on the NAND bus, and finally sends the program command to
4084  * synchronyze the NAND chip cache.
4085  */
4086 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4087 				   int oob_required, int page)
4088 {
4089 	struct mtd_info *mtd = nand_to_mtd(chip);
4090 	unsigned int size = mtd->writesize;
4091 	u8 *write_buf = (u8 *)buf;
4092 
4093 	if (oob_required) {
4094 		size += mtd->oobsize;
4095 
4096 		if (buf != chip->data_buf) {
4097 			write_buf = nand_get_data_buf(chip);
4098 			memcpy(write_buf, buf, mtd->writesize);
4099 		}
4100 	}
4101 
4102 	return nand_prog_page_op(chip, page, 0, write_buf, size);
4103 }
4104 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4105 
4106 /**
4107  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4108  * @chip: nand chip info structure
4109  * @buf: data buffer
4110  * @oob_required: must write chip->oob_poi to OOB
4111  * @page: page number to write
4112  *
4113  * We need a special oob layout and handling even when ECC isn't checked.
4114  */
4115 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4116 					const uint8_t *buf, int oob_required,
4117 					int page)
4118 {
4119 	struct mtd_info *mtd = nand_to_mtd(chip);
4120 	int eccsize = chip->ecc.size;
4121 	int eccbytes = chip->ecc.bytes;
4122 	uint8_t *oob = chip->oob_poi;
4123 	int steps, size, ret;
4124 
4125 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4126 	if (ret)
4127 		return ret;
4128 
4129 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4130 		ret = nand_write_data_op(chip, buf, eccsize, false);
4131 		if (ret)
4132 			return ret;
4133 
4134 		buf += eccsize;
4135 
4136 		if (chip->ecc.prepad) {
4137 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4138 						 false);
4139 			if (ret)
4140 				return ret;
4141 
4142 			oob += chip->ecc.prepad;
4143 		}
4144 
4145 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4146 		if (ret)
4147 			return ret;
4148 
4149 		oob += eccbytes;
4150 
4151 		if (chip->ecc.postpad) {
4152 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4153 						 false);
4154 			if (ret)
4155 				return ret;
4156 
4157 			oob += chip->ecc.postpad;
4158 		}
4159 	}
4160 
4161 	size = mtd->oobsize - (oob - chip->oob_poi);
4162 	if (size) {
4163 		ret = nand_write_data_op(chip, oob, size, false);
4164 		if (ret)
4165 			return ret;
4166 	}
4167 
4168 	return nand_prog_page_end_op(chip);
4169 }
4170 /**
4171  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4172  * @chip: nand chip info structure
4173  * @buf: data buffer
4174  * @oob_required: must write chip->oob_poi to OOB
4175  * @page: page number to write
4176  */
4177 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4178 				 int oob_required, int page)
4179 {
4180 	struct mtd_info *mtd = nand_to_mtd(chip);
4181 	int i, eccsize = chip->ecc.size, ret;
4182 	int eccbytes = chip->ecc.bytes;
4183 	int eccsteps = chip->ecc.steps;
4184 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4185 	const uint8_t *p = buf;
4186 
4187 	/* Software ECC calculation */
4188 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4189 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4190 
4191 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4192 					 chip->ecc.total);
4193 	if (ret)
4194 		return ret;
4195 
4196 	return chip->ecc.write_page_raw(chip, buf, 1, page);
4197 }
4198 
4199 /**
4200  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4201  * @chip: nand chip info structure
4202  * @buf: data buffer
4203  * @oob_required: must write chip->oob_poi to OOB
4204  * @page: page number to write
4205  */
4206 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4207 				 int oob_required, int page)
4208 {
4209 	struct mtd_info *mtd = nand_to_mtd(chip);
4210 	int i, eccsize = chip->ecc.size, ret;
4211 	int eccbytes = chip->ecc.bytes;
4212 	int eccsteps = chip->ecc.steps;
4213 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4214 	const uint8_t *p = buf;
4215 
4216 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4217 	if (ret)
4218 		return ret;
4219 
4220 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4221 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4222 
4223 		ret = nand_write_data_op(chip, p, eccsize, false);
4224 		if (ret)
4225 			return ret;
4226 
4227 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4228 	}
4229 
4230 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4231 					 chip->ecc.total);
4232 	if (ret)
4233 		return ret;
4234 
4235 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4236 	if (ret)
4237 		return ret;
4238 
4239 	return nand_prog_page_end_op(chip);
4240 }
4241 
4242 
4243 /**
4244  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4245  * @chip:	nand chip info structure
4246  * @offset:	column address of subpage within the page
4247  * @data_len:	data length
4248  * @buf:	data buffer
4249  * @oob_required: must write chip->oob_poi to OOB
4250  * @page: page number to write
4251  */
4252 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4253 				    uint32_t data_len, const uint8_t *buf,
4254 				    int oob_required, int page)
4255 {
4256 	struct mtd_info *mtd = nand_to_mtd(chip);
4257 	uint8_t *oob_buf  = chip->oob_poi;
4258 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4259 	int ecc_size      = chip->ecc.size;
4260 	int ecc_bytes     = chip->ecc.bytes;
4261 	int ecc_steps     = chip->ecc.steps;
4262 	uint32_t start_step = offset / ecc_size;
4263 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4264 	int oob_bytes       = mtd->oobsize / ecc_steps;
4265 	int step, ret;
4266 
4267 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4268 	if (ret)
4269 		return ret;
4270 
4271 	for (step = 0; step < ecc_steps; step++) {
4272 		/* configure controller for WRITE access */
4273 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4274 
4275 		/* write data (untouched subpages already masked by 0xFF) */
4276 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4277 		if (ret)
4278 			return ret;
4279 
4280 		/* mask ECC of un-touched subpages by padding 0xFF */
4281 		if ((step < start_step) || (step > end_step))
4282 			memset(ecc_calc, 0xff, ecc_bytes);
4283 		else
4284 			chip->ecc.calculate(chip, buf, ecc_calc);
4285 
4286 		/* mask OOB of un-touched subpages by padding 0xFF */
4287 		/* if oob_required, preserve OOB metadata of written subpage */
4288 		if (!oob_required || (step < start_step) || (step > end_step))
4289 			memset(oob_buf, 0xff, oob_bytes);
4290 
4291 		buf += ecc_size;
4292 		ecc_calc += ecc_bytes;
4293 		oob_buf  += oob_bytes;
4294 	}
4295 
4296 	/* copy calculated ECC for whole page to chip->buffer->oob */
4297 	/* this include masked-value(0xFF) for unwritten subpages */
4298 	ecc_calc = chip->ecc.calc_buf;
4299 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4300 					 chip->ecc.total);
4301 	if (ret)
4302 		return ret;
4303 
4304 	/* write OOB buffer to NAND device */
4305 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4306 	if (ret)
4307 		return ret;
4308 
4309 	return nand_prog_page_end_op(chip);
4310 }
4311 
4312 
4313 /**
4314  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4315  * @chip: nand chip info structure
4316  * @buf: data buffer
4317  * @oob_required: must write chip->oob_poi to OOB
4318  * @page: page number to write
4319  *
4320  * The hw generator calculates the error syndrome automatically. Therefore we
4321  * need a special oob layout and handling.
4322  */
4323 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4324 				    int oob_required, int page)
4325 {
4326 	struct mtd_info *mtd = nand_to_mtd(chip);
4327 	int i, eccsize = chip->ecc.size;
4328 	int eccbytes = chip->ecc.bytes;
4329 	int eccsteps = chip->ecc.steps;
4330 	const uint8_t *p = buf;
4331 	uint8_t *oob = chip->oob_poi;
4332 	int ret;
4333 
4334 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4335 	if (ret)
4336 		return ret;
4337 
4338 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4339 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4340 
4341 		ret = nand_write_data_op(chip, p, eccsize, false);
4342 		if (ret)
4343 			return ret;
4344 
4345 		if (chip->ecc.prepad) {
4346 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4347 						 false);
4348 			if (ret)
4349 				return ret;
4350 
4351 			oob += chip->ecc.prepad;
4352 		}
4353 
4354 		chip->ecc.calculate(chip, p, oob);
4355 
4356 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4357 		if (ret)
4358 			return ret;
4359 
4360 		oob += eccbytes;
4361 
4362 		if (chip->ecc.postpad) {
4363 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4364 						 false);
4365 			if (ret)
4366 				return ret;
4367 
4368 			oob += chip->ecc.postpad;
4369 		}
4370 	}
4371 
4372 	/* Calculate remaining oob bytes */
4373 	i = mtd->oobsize - (oob - chip->oob_poi);
4374 	if (i) {
4375 		ret = nand_write_data_op(chip, oob, i, false);
4376 		if (ret)
4377 			return ret;
4378 	}
4379 
4380 	return nand_prog_page_end_op(chip);
4381 }
4382 
4383 /**
4384  * nand_write_page - write one page
4385  * @chip: NAND chip descriptor
4386  * @offset: address offset within the page
4387  * @data_len: length of actual data to be written
4388  * @buf: the data to write
4389  * @oob_required: must write chip->oob_poi to OOB
4390  * @page: page number to write
4391  * @raw: use _raw version of write_page
4392  */
4393 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4394 			   int data_len, const uint8_t *buf, int oob_required,
4395 			   int page, int raw)
4396 {
4397 	struct mtd_info *mtd = nand_to_mtd(chip);
4398 	int status, subpage;
4399 
4400 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4401 		chip->ecc.write_subpage)
4402 		subpage = offset || (data_len < mtd->writesize);
4403 	else
4404 		subpage = 0;
4405 
4406 	if (unlikely(raw))
4407 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4408 						  page);
4409 	else if (subpage)
4410 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4411 						 oob_required, page);
4412 	else
4413 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4414 
4415 	if (status < 0)
4416 		return status;
4417 
4418 	return 0;
4419 }
4420 
4421 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4422 
4423 /**
4424  * nand_do_write_ops - [INTERN] NAND write with ECC
4425  * @chip: NAND chip object
4426  * @to: offset to write to
4427  * @ops: oob operations description structure
4428  *
4429  * NAND write with ECC.
4430  */
4431 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4432 			     struct mtd_oob_ops *ops)
4433 {
4434 	struct mtd_info *mtd = nand_to_mtd(chip);
4435 	int chipnr, realpage, page, column;
4436 	uint32_t writelen = ops->len;
4437 
4438 	uint32_t oobwritelen = ops->ooblen;
4439 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4440 
4441 	uint8_t *oob = ops->oobbuf;
4442 	uint8_t *buf = ops->datbuf;
4443 	int ret;
4444 	int oob_required = oob ? 1 : 0;
4445 
4446 	ops->retlen = 0;
4447 	if (!writelen)
4448 		return 0;
4449 
4450 	/* Reject writes, which are not page aligned */
4451 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4452 		pr_notice("%s: attempt to write non page aligned data\n",
4453 			   __func__);
4454 		return -EINVAL;
4455 	}
4456 
4457 	/* Check if the region is secured */
4458 	if (nand_region_is_secured(chip, to, writelen))
4459 		return -EIO;
4460 
4461 	column = to & (mtd->writesize - 1);
4462 
4463 	chipnr = (int)(to >> chip->chip_shift);
4464 	nand_select_target(chip, chipnr);
4465 
4466 	/* Check, if it is write protected */
4467 	if (nand_check_wp(chip)) {
4468 		ret = -EIO;
4469 		goto err_out;
4470 	}
4471 
4472 	realpage = (int)(to >> chip->page_shift);
4473 	page = realpage & chip->pagemask;
4474 
4475 	/* Invalidate the page cache, when we write to the cached page */
4476 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4477 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4478 		chip->pagecache.page = -1;
4479 
4480 	/* Don't allow multipage oob writes with offset */
4481 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4482 		ret = -EINVAL;
4483 		goto err_out;
4484 	}
4485 
4486 	while (1) {
4487 		int bytes = mtd->writesize;
4488 		uint8_t *wbuf = buf;
4489 		int use_bounce_buf;
4490 		int part_pagewr = (column || writelen < mtd->writesize);
4491 
4492 		if (part_pagewr)
4493 			use_bounce_buf = 1;
4494 		else if (chip->options & NAND_USES_DMA)
4495 			use_bounce_buf = !virt_addr_valid(buf) ||
4496 					 !IS_ALIGNED((unsigned long)buf,
4497 						     chip->buf_align);
4498 		else
4499 			use_bounce_buf = 0;
4500 
4501 		/*
4502 		 * Copy the data from the initial buffer when doing partial page
4503 		 * writes or when a bounce buffer is required.
4504 		 */
4505 		if (use_bounce_buf) {
4506 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4507 					 __func__, buf);
4508 			if (part_pagewr)
4509 				bytes = min_t(int, bytes - column, writelen);
4510 			wbuf = nand_get_data_buf(chip);
4511 			memset(wbuf, 0xff, mtd->writesize);
4512 			memcpy(&wbuf[column], buf, bytes);
4513 		}
4514 
4515 		if (unlikely(oob)) {
4516 			size_t len = min(oobwritelen, oobmaxlen);
4517 			oob = nand_fill_oob(chip, oob, len, ops);
4518 			oobwritelen -= len;
4519 		} else {
4520 			/* We still need to erase leftover OOB data */
4521 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4522 		}
4523 
4524 		ret = nand_write_page(chip, column, bytes, wbuf,
4525 				      oob_required, page,
4526 				      (ops->mode == MTD_OPS_RAW));
4527 		if (ret)
4528 			break;
4529 
4530 		writelen -= bytes;
4531 		if (!writelen)
4532 			break;
4533 
4534 		column = 0;
4535 		buf += bytes;
4536 		realpage++;
4537 
4538 		page = realpage & chip->pagemask;
4539 		/* Check, if we cross a chip boundary */
4540 		if (!page) {
4541 			chipnr++;
4542 			nand_deselect_target(chip);
4543 			nand_select_target(chip, chipnr);
4544 		}
4545 	}
4546 
4547 	ops->retlen = ops->len - writelen;
4548 	if (unlikely(oob))
4549 		ops->oobretlen = ops->ooblen;
4550 
4551 err_out:
4552 	nand_deselect_target(chip);
4553 	return ret;
4554 }
4555 
4556 /**
4557  * panic_nand_write - [MTD Interface] NAND write with ECC
4558  * @mtd: MTD device structure
4559  * @to: offset to write to
4560  * @len: number of bytes to write
4561  * @retlen: pointer to variable to store the number of written bytes
4562  * @buf: the data to write
4563  *
4564  * NAND write with ECC. Used when performing writes in interrupt context, this
4565  * may for example be called by mtdoops when writing an oops while in panic.
4566  */
4567 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4568 			    size_t *retlen, const uint8_t *buf)
4569 {
4570 	struct nand_chip *chip = mtd_to_nand(mtd);
4571 	int chipnr = (int)(to >> chip->chip_shift);
4572 	struct mtd_oob_ops ops;
4573 	int ret;
4574 
4575 	nand_select_target(chip, chipnr);
4576 
4577 	/* Wait for the device to get ready */
4578 	panic_nand_wait(chip, 400);
4579 
4580 	memset(&ops, 0, sizeof(ops));
4581 	ops.len = len;
4582 	ops.datbuf = (uint8_t *)buf;
4583 	ops.mode = MTD_OPS_PLACE_OOB;
4584 
4585 	ret = nand_do_write_ops(chip, to, &ops);
4586 
4587 	*retlen = ops.retlen;
4588 	return ret;
4589 }
4590 
4591 /**
4592  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4593  * @mtd: MTD device structure
4594  * @to: offset to write to
4595  * @ops: oob operation description structure
4596  */
4597 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4598 			  struct mtd_oob_ops *ops)
4599 {
4600 	struct nand_chip *chip = mtd_to_nand(mtd);
4601 	int ret = 0;
4602 
4603 	ops->retlen = 0;
4604 
4605 	nand_get_device(chip);
4606 
4607 	switch (ops->mode) {
4608 	case MTD_OPS_PLACE_OOB:
4609 	case MTD_OPS_AUTO_OOB:
4610 	case MTD_OPS_RAW:
4611 		break;
4612 
4613 	default:
4614 		goto out;
4615 	}
4616 
4617 	if (!ops->datbuf)
4618 		ret = nand_do_write_oob(chip, to, ops);
4619 	else
4620 		ret = nand_do_write_ops(chip, to, ops);
4621 
4622 out:
4623 	nand_release_device(chip);
4624 	return ret;
4625 }
4626 
4627 /**
4628  * nand_erase - [MTD Interface] erase block(s)
4629  * @mtd: MTD device structure
4630  * @instr: erase instruction
4631  *
4632  * Erase one ore more blocks.
4633  */
4634 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4635 {
4636 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4637 }
4638 
4639 /**
4640  * nand_erase_nand - [INTERN] erase block(s)
4641  * @chip: NAND chip object
4642  * @instr: erase instruction
4643  * @allowbbt: allow erasing the bbt area
4644  *
4645  * Erase one ore more blocks.
4646  */
4647 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4648 		    int allowbbt)
4649 {
4650 	int page, pages_per_block, ret, chipnr;
4651 	loff_t len;
4652 
4653 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4654 			__func__, (unsigned long long)instr->addr,
4655 			(unsigned long long)instr->len);
4656 
4657 	if (check_offs_len(chip, instr->addr, instr->len))
4658 		return -EINVAL;
4659 
4660 	/* Check if the region is secured */
4661 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4662 		return -EIO;
4663 
4664 	/* Grab the lock and see if the device is available */
4665 	nand_get_device(chip);
4666 
4667 	/* Shift to get first page */
4668 	page = (int)(instr->addr >> chip->page_shift);
4669 	chipnr = (int)(instr->addr >> chip->chip_shift);
4670 
4671 	/* Calculate pages in each block */
4672 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4673 
4674 	/* Select the NAND device */
4675 	nand_select_target(chip, chipnr);
4676 
4677 	/* Check, if it is write protected */
4678 	if (nand_check_wp(chip)) {
4679 		pr_debug("%s: device is write protected!\n",
4680 				__func__);
4681 		ret = -EIO;
4682 		goto erase_exit;
4683 	}
4684 
4685 	/* Loop through the pages */
4686 	len = instr->len;
4687 
4688 	while (len) {
4689 		loff_t ofs = (loff_t)page << chip->page_shift;
4690 
4691 		/* Check if we have a bad block, we do not erase bad blocks! */
4692 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4693 					chip->page_shift, allowbbt)) {
4694 			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4695 				    __func__, (unsigned long long)ofs);
4696 			ret = -EIO;
4697 			goto erase_exit;
4698 		}
4699 
4700 		/*
4701 		 * Invalidate the page cache, if we erase the block which
4702 		 * contains the current cached page.
4703 		 */
4704 		if (page <= chip->pagecache.page && chip->pagecache.page <
4705 		    (page + pages_per_block))
4706 			chip->pagecache.page = -1;
4707 
4708 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4709 				    (chip->phys_erase_shift - chip->page_shift));
4710 		if (ret) {
4711 			pr_debug("%s: failed erase, page 0x%08x\n",
4712 					__func__, page);
4713 			instr->fail_addr = ofs;
4714 			goto erase_exit;
4715 		}
4716 
4717 		/* Increment page address and decrement length */
4718 		len -= (1ULL << chip->phys_erase_shift);
4719 		page += pages_per_block;
4720 
4721 		/* Check, if we cross a chip boundary */
4722 		if (len && !(page & chip->pagemask)) {
4723 			chipnr++;
4724 			nand_deselect_target(chip);
4725 			nand_select_target(chip, chipnr);
4726 		}
4727 	}
4728 
4729 	ret = 0;
4730 erase_exit:
4731 
4732 	/* Deselect and wake up anyone waiting on the device */
4733 	nand_deselect_target(chip);
4734 	nand_release_device(chip);
4735 
4736 	/* Return more or less happy */
4737 	return ret;
4738 }
4739 
4740 /**
4741  * nand_sync - [MTD Interface] sync
4742  * @mtd: MTD device structure
4743  *
4744  * Sync is actually a wait for chip ready function.
4745  */
4746 static void nand_sync(struct mtd_info *mtd)
4747 {
4748 	struct nand_chip *chip = mtd_to_nand(mtd);
4749 
4750 	pr_debug("%s: called\n", __func__);
4751 
4752 	/* Grab the lock and see if the device is available */
4753 	nand_get_device(chip);
4754 	/* Release it and go back */
4755 	nand_release_device(chip);
4756 }
4757 
4758 /**
4759  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4760  * @mtd: MTD device structure
4761  * @offs: offset relative to mtd start
4762  */
4763 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4764 {
4765 	struct nand_chip *chip = mtd_to_nand(mtd);
4766 	int chipnr = (int)(offs >> chip->chip_shift);
4767 	int ret;
4768 
4769 	/* Select the NAND device */
4770 	nand_get_device(chip);
4771 
4772 	nand_select_target(chip, chipnr);
4773 
4774 	ret = nand_block_checkbad(chip, offs, 0);
4775 
4776 	nand_deselect_target(chip);
4777 	nand_release_device(chip);
4778 
4779 	return ret;
4780 }
4781 
4782 /**
4783  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4784  * @mtd: MTD device structure
4785  * @ofs: offset relative to mtd start
4786  */
4787 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4788 {
4789 	int ret;
4790 
4791 	ret = nand_block_isbad(mtd, ofs);
4792 	if (ret) {
4793 		/* If it was bad already, return success and do nothing */
4794 		if (ret > 0)
4795 			return 0;
4796 		return ret;
4797 	}
4798 
4799 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4800 }
4801 
4802 /**
4803  * nand_suspend - [MTD Interface] Suspend the NAND flash
4804  * @mtd: MTD device structure
4805  *
4806  * Returns 0 for success or negative error code otherwise.
4807  */
4808 static int nand_suspend(struct mtd_info *mtd)
4809 {
4810 	struct nand_chip *chip = mtd_to_nand(mtd);
4811 	int ret = 0;
4812 
4813 	mutex_lock(&chip->lock);
4814 	if (chip->ops.suspend)
4815 		ret = chip->ops.suspend(chip);
4816 	if (!ret)
4817 		chip->suspended = 1;
4818 	mutex_unlock(&chip->lock);
4819 
4820 	return ret;
4821 }
4822 
4823 /**
4824  * nand_resume - [MTD Interface] Resume the NAND flash
4825  * @mtd: MTD device structure
4826  */
4827 static void nand_resume(struct mtd_info *mtd)
4828 {
4829 	struct nand_chip *chip = mtd_to_nand(mtd);
4830 
4831 	mutex_lock(&chip->lock);
4832 	if (chip->suspended) {
4833 		if (chip->ops.resume)
4834 			chip->ops.resume(chip);
4835 		chip->suspended = 0;
4836 	} else {
4837 		pr_err("%s called for a chip which is not in suspended state\n",
4838 			__func__);
4839 	}
4840 	mutex_unlock(&chip->lock);
4841 
4842 	wake_up_all(&chip->resume_wq);
4843 }
4844 
4845 /**
4846  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4847  *                 prevent further operations
4848  * @mtd: MTD device structure
4849  */
4850 static void nand_shutdown(struct mtd_info *mtd)
4851 {
4852 	nand_suspend(mtd);
4853 }
4854 
4855 /**
4856  * nand_lock - [MTD Interface] Lock the NAND flash
4857  * @mtd: MTD device structure
4858  * @ofs: offset byte address
4859  * @len: number of bytes to lock (must be a multiple of block/page size)
4860  */
4861 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4862 {
4863 	struct nand_chip *chip = mtd_to_nand(mtd);
4864 
4865 	if (!chip->ops.lock_area)
4866 		return -ENOTSUPP;
4867 
4868 	return chip->ops.lock_area(chip, ofs, len);
4869 }
4870 
4871 /**
4872  * nand_unlock - [MTD Interface] Unlock the NAND flash
4873  * @mtd: MTD device structure
4874  * @ofs: offset byte address
4875  * @len: number of bytes to unlock (must be a multiple of block/page size)
4876  */
4877 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4878 {
4879 	struct nand_chip *chip = mtd_to_nand(mtd);
4880 
4881 	if (!chip->ops.unlock_area)
4882 		return -ENOTSUPP;
4883 
4884 	return chip->ops.unlock_area(chip, ofs, len);
4885 }
4886 
4887 /* Set default functions */
4888 static void nand_set_defaults(struct nand_chip *chip)
4889 {
4890 	/* If no controller is provided, use the dummy, legacy one. */
4891 	if (!chip->controller) {
4892 		chip->controller = &chip->legacy.dummy_controller;
4893 		nand_controller_init(chip->controller);
4894 	}
4895 
4896 	nand_legacy_set_defaults(chip);
4897 
4898 	if (!chip->buf_align)
4899 		chip->buf_align = 1;
4900 }
4901 
4902 /* Sanitize ONFI strings so we can safely print them */
4903 void sanitize_string(uint8_t *s, size_t len)
4904 {
4905 	ssize_t i;
4906 
4907 	/* Null terminate */
4908 	s[len - 1] = 0;
4909 
4910 	/* Remove non printable chars */
4911 	for (i = 0; i < len - 1; i++) {
4912 		if (s[i] < ' ' || s[i] > 127)
4913 			s[i] = '?';
4914 	}
4915 
4916 	/* Remove trailing spaces */
4917 	strim(s);
4918 }
4919 
4920 /*
4921  * nand_id_has_period - Check if an ID string has a given wraparound period
4922  * @id_data: the ID string
4923  * @arrlen: the length of the @id_data array
4924  * @period: the period of repitition
4925  *
4926  * Check if an ID string is repeated within a given sequence of bytes at
4927  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4928  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4929  * if the repetition has a period of @period; otherwise, returns zero.
4930  */
4931 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4932 {
4933 	int i, j;
4934 	for (i = 0; i < period; i++)
4935 		for (j = i + period; j < arrlen; j += period)
4936 			if (id_data[i] != id_data[j])
4937 				return 0;
4938 	return 1;
4939 }
4940 
4941 /*
4942  * nand_id_len - Get the length of an ID string returned by CMD_READID
4943  * @id_data: the ID string
4944  * @arrlen: the length of the @id_data array
4945 
4946  * Returns the length of the ID string, according to known wraparound/trailing
4947  * zero patterns. If no pattern exists, returns the length of the array.
4948  */
4949 static int nand_id_len(u8 *id_data, int arrlen)
4950 {
4951 	int last_nonzero, period;
4952 
4953 	/* Find last non-zero byte */
4954 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4955 		if (id_data[last_nonzero])
4956 			break;
4957 
4958 	/* All zeros */
4959 	if (last_nonzero < 0)
4960 		return 0;
4961 
4962 	/* Calculate wraparound period */
4963 	for (period = 1; period < arrlen; period++)
4964 		if (nand_id_has_period(id_data, arrlen, period))
4965 			break;
4966 
4967 	/* There's a repeated pattern */
4968 	if (period < arrlen)
4969 		return period;
4970 
4971 	/* There are trailing zeros */
4972 	if (last_nonzero < arrlen - 1)
4973 		return last_nonzero + 1;
4974 
4975 	/* No pattern detected */
4976 	return arrlen;
4977 }
4978 
4979 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4980 static int nand_get_bits_per_cell(u8 cellinfo)
4981 {
4982 	int bits;
4983 
4984 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4985 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4986 	return bits + 1;
4987 }
4988 
4989 /*
4990  * Many new NAND share similar device ID codes, which represent the size of the
4991  * chip. The rest of the parameters must be decoded according to generic or
4992  * manufacturer-specific "extended ID" decoding patterns.
4993  */
4994 void nand_decode_ext_id(struct nand_chip *chip)
4995 {
4996 	struct nand_memory_organization *memorg;
4997 	struct mtd_info *mtd = nand_to_mtd(chip);
4998 	int extid;
4999 	u8 *id_data = chip->id.data;
5000 
5001 	memorg = nanddev_get_memorg(&chip->base);
5002 
5003 	/* The 3rd id byte holds MLC / multichip data */
5004 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5005 	/* The 4th id byte is the important one */
5006 	extid = id_data[3];
5007 
5008 	/* Calc pagesize */
5009 	memorg->pagesize = 1024 << (extid & 0x03);
5010 	mtd->writesize = memorg->pagesize;
5011 	extid >>= 2;
5012 	/* Calc oobsize */
5013 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5014 	mtd->oobsize = memorg->oobsize;
5015 	extid >>= 2;
5016 	/* Calc blocksize. Blocksize is multiples of 64KiB */
5017 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
5018 				       memorg->pagesize;
5019 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
5020 	extid >>= 2;
5021 	/* Get buswidth information */
5022 	if (extid & 0x1)
5023 		chip->options |= NAND_BUSWIDTH_16;
5024 }
5025 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5026 
5027 /*
5028  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5029  * decodes a matching ID table entry and assigns the MTD size parameters for
5030  * the chip.
5031  */
5032 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5033 {
5034 	struct mtd_info *mtd = nand_to_mtd(chip);
5035 	struct nand_memory_organization *memorg;
5036 
5037 	memorg = nanddev_get_memorg(&chip->base);
5038 
5039 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5040 	mtd->erasesize = type->erasesize;
5041 	memorg->pagesize = type->pagesize;
5042 	mtd->writesize = memorg->pagesize;
5043 	memorg->oobsize = memorg->pagesize / 32;
5044 	mtd->oobsize = memorg->oobsize;
5045 
5046 	/* All legacy ID NAND are small-page, SLC */
5047 	memorg->bits_per_cell = 1;
5048 }
5049 
5050 /*
5051  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5052  * heuristic patterns using various detected parameters (e.g., manufacturer,
5053  * page size, cell-type information).
5054  */
5055 static void nand_decode_bbm_options(struct nand_chip *chip)
5056 {
5057 	struct mtd_info *mtd = nand_to_mtd(chip);
5058 
5059 	/* Set the bad block position */
5060 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5061 		chip->badblockpos = NAND_BBM_POS_LARGE;
5062 	else
5063 		chip->badblockpos = NAND_BBM_POS_SMALL;
5064 }
5065 
5066 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5067 {
5068 	return type->id_len;
5069 }
5070 
5071 static bool find_full_id_nand(struct nand_chip *chip,
5072 			      struct nand_flash_dev *type)
5073 {
5074 	struct nand_device *base = &chip->base;
5075 	struct nand_ecc_props requirements;
5076 	struct mtd_info *mtd = nand_to_mtd(chip);
5077 	struct nand_memory_organization *memorg;
5078 	u8 *id_data = chip->id.data;
5079 
5080 	memorg = nanddev_get_memorg(&chip->base);
5081 
5082 	if (!strncmp(type->id, id_data, type->id_len)) {
5083 		memorg->pagesize = type->pagesize;
5084 		mtd->writesize = memorg->pagesize;
5085 		memorg->pages_per_eraseblock = type->erasesize /
5086 					       type->pagesize;
5087 		mtd->erasesize = type->erasesize;
5088 		memorg->oobsize = type->oobsize;
5089 		mtd->oobsize = memorg->oobsize;
5090 
5091 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5092 		memorg->eraseblocks_per_lun =
5093 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5094 					   memorg->pagesize *
5095 					   memorg->pages_per_eraseblock);
5096 		chip->options |= type->options;
5097 		requirements.strength = NAND_ECC_STRENGTH(type);
5098 		requirements.step_size = NAND_ECC_STEP(type);
5099 		nanddev_set_ecc_requirements(base, &requirements);
5100 
5101 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5102 		if (!chip->parameters.model)
5103 			return false;
5104 
5105 		return true;
5106 	}
5107 	return false;
5108 }
5109 
5110 /*
5111  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5112  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5113  * table.
5114  */
5115 static void nand_manufacturer_detect(struct nand_chip *chip)
5116 {
5117 	/*
5118 	 * Try manufacturer detection if available and use
5119 	 * nand_decode_ext_id() otherwise.
5120 	 */
5121 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5122 	    chip->manufacturer.desc->ops->detect) {
5123 		struct nand_memory_organization *memorg;
5124 
5125 		memorg = nanddev_get_memorg(&chip->base);
5126 
5127 		/* The 3rd id byte holds MLC / multichip data */
5128 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5129 		chip->manufacturer.desc->ops->detect(chip);
5130 	} else {
5131 		nand_decode_ext_id(chip);
5132 	}
5133 }
5134 
5135 /*
5136  * Manufacturer initialization. This function is called for all NANDs including
5137  * ONFI and JEDEC compliant ones.
5138  * Manufacturer drivers should put all their specific initialization code in
5139  * their ->init() hook.
5140  */
5141 static int nand_manufacturer_init(struct nand_chip *chip)
5142 {
5143 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5144 	    !chip->manufacturer.desc->ops->init)
5145 		return 0;
5146 
5147 	return chip->manufacturer.desc->ops->init(chip);
5148 }
5149 
5150 /*
5151  * Manufacturer cleanup. This function is called for all NANDs including
5152  * ONFI and JEDEC compliant ones.
5153  * Manufacturer drivers should put all their specific cleanup code in their
5154  * ->cleanup() hook.
5155  */
5156 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5157 {
5158 	/* Release manufacturer private data */
5159 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5160 	    chip->manufacturer.desc->ops->cleanup)
5161 		chip->manufacturer.desc->ops->cleanup(chip);
5162 }
5163 
5164 static const char *
5165 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5166 {
5167 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5168 }
5169 
5170 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5171 {
5172 	/* Use an arbitrary size for the check */
5173 	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5174 		chip->controller->supported_op.data_only_read = 1;
5175 }
5176 
5177 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5178 {
5179 	/* The supported_op fields should not be set by individual drivers */
5180 	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5181 
5182 	if (!nand_has_exec_op(chip))
5183 		return;
5184 
5185 	rawnand_check_data_only_read_support(chip);
5186 }
5187 
5188 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5189 {
5190 	struct mtd_info *mtd = nand_to_mtd(chip);
5191 
5192 	if (!chip->parameters.supports_read_cache)
5193 		return;
5194 
5195 	if (chip->read_retries)
5196 		return;
5197 
5198 	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5199 					    mtd->writesize, true))
5200 		chip->controller->supported_op.cont_read = 1;
5201 }
5202 
5203 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5204 {
5205 	/* The supported_op fields should not be set by individual drivers */
5206 	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5207 
5208 	/*
5209 	 * Too many devices do not support sequential cached reads with on-die
5210 	 * ECC correction enabled, so in this case refuse to perform the
5211 	 * automation.
5212 	 */
5213 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5214 		return;
5215 
5216 	if (!nand_has_exec_op(chip))
5217 		return;
5218 
5219 	/*
5220 	 * For now, continuous reads can only be used with the core page helpers.
5221 	 * This can be extended later.
5222 	 */
5223 	if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5224 	      chip->ecc.read_page == nand_read_page_syndrome ||
5225 	      chip->ecc.read_page == nand_read_page_swecc))
5226 		return;
5227 
5228 	rawnand_check_cont_read_support(chip);
5229 }
5230 
5231 /*
5232  * Get the flash and manufacturer id and lookup if the type is supported.
5233  */
5234 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5235 {
5236 	const struct nand_manufacturer_desc *manufacturer_desc;
5237 	struct mtd_info *mtd = nand_to_mtd(chip);
5238 	struct nand_memory_organization *memorg;
5239 	int busw, ret;
5240 	u8 *id_data = chip->id.data;
5241 	u8 maf_id, dev_id;
5242 	u64 targetsize;
5243 
5244 	/*
5245 	 * Let's start by initializing memorg fields that might be left
5246 	 * unassigned by the ID-based detection logic.
5247 	 */
5248 	memorg = nanddev_get_memorg(&chip->base);
5249 	memorg->planes_per_lun = 1;
5250 	memorg->luns_per_target = 1;
5251 
5252 	/*
5253 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5254 	 * after power-up.
5255 	 */
5256 	ret = nand_reset(chip, 0);
5257 	if (ret)
5258 		return ret;
5259 
5260 	/* Select the device */
5261 	nand_select_target(chip, 0);
5262 
5263 	rawnand_early_check_supported_ops(chip);
5264 
5265 	/* Send the command for reading device ID */
5266 	ret = nand_readid_op(chip, 0, id_data, 2);
5267 	if (ret)
5268 		return ret;
5269 
5270 	/* Read manufacturer and device IDs */
5271 	maf_id = id_data[0];
5272 	dev_id = id_data[1];
5273 
5274 	/*
5275 	 * Try again to make sure, as some systems the bus-hold or other
5276 	 * interface concerns can cause random data which looks like a
5277 	 * possibly credible NAND flash to appear. If the two results do
5278 	 * not match, ignore the device completely.
5279 	 */
5280 
5281 	/* Read entire ID string */
5282 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5283 	if (ret)
5284 		return ret;
5285 
5286 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5287 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5288 			maf_id, dev_id, id_data[0], id_data[1]);
5289 		return -ENODEV;
5290 	}
5291 
5292 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5293 
5294 	/* Try to identify manufacturer */
5295 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5296 	chip->manufacturer.desc = manufacturer_desc;
5297 
5298 	if (!type)
5299 		type = nand_flash_ids;
5300 
5301 	/*
5302 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5303 	 * override it.
5304 	 * This is required to make sure initial NAND bus width set by the
5305 	 * NAND controller driver is coherent with the real NAND bus width
5306 	 * (extracted by auto-detection code).
5307 	 */
5308 	busw = chip->options & NAND_BUSWIDTH_16;
5309 
5310 	/*
5311 	 * The flag is only set (never cleared), reset it to its default value
5312 	 * before starting auto-detection.
5313 	 */
5314 	chip->options &= ~NAND_BUSWIDTH_16;
5315 
5316 	for (; type->name != NULL; type++) {
5317 		if (is_full_id_nand(type)) {
5318 			if (find_full_id_nand(chip, type))
5319 				goto ident_done;
5320 		} else if (dev_id == type->dev_id) {
5321 			break;
5322 		}
5323 	}
5324 
5325 	if (!type->name || !type->pagesize) {
5326 		/* Check if the chip is ONFI compliant */
5327 		ret = nand_onfi_detect(chip);
5328 		if (ret < 0)
5329 			return ret;
5330 		else if (ret)
5331 			goto ident_done;
5332 
5333 		/* Check if the chip is JEDEC compliant */
5334 		ret = nand_jedec_detect(chip);
5335 		if (ret < 0)
5336 			return ret;
5337 		else if (ret)
5338 			goto ident_done;
5339 	}
5340 
5341 	if (!type->name)
5342 		return -ENODEV;
5343 
5344 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5345 	if (!chip->parameters.model)
5346 		return -ENOMEM;
5347 
5348 	if (!type->pagesize)
5349 		nand_manufacturer_detect(chip);
5350 	else
5351 		nand_decode_id(chip, type);
5352 
5353 	/* Get chip options */
5354 	chip->options |= type->options;
5355 
5356 	memorg->eraseblocks_per_lun =
5357 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5358 					   memorg->pagesize *
5359 					   memorg->pages_per_eraseblock);
5360 
5361 ident_done:
5362 	if (!mtd->name)
5363 		mtd->name = chip->parameters.model;
5364 
5365 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5366 		WARN_ON(busw & NAND_BUSWIDTH_16);
5367 		nand_set_defaults(chip);
5368 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5369 		/*
5370 		 * Check, if buswidth is correct. Hardware drivers should set
5371 		 * chip correct!
5372 		 */
5373 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5374 			maf_id, dev_id);
5375 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5376 			mtd->name);
5377 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5378 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5379 		ret = -EINVAL;
5380 
5381 		goto free_detect_allocation;
5382 	}
5383 
5384 	nand_decode_bbm_options(chip);
5385 
5386 	/* Calculate the address shift from the page size */
5387 	chip->page_shift = ffs(mtd->writesize) - 1;
5388 	/* Convert chipsize to number of pages per chip -1 */
5389 	targetsize = nanddev_target_size(&chip->base);
5390 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5391 
5392 	chip->bbt_erase_shift = chip->phys_erase_shift =
5393 		ffs(mtd->erasesize) - 1;
5394 	if (targetsize & 0xffffffff)
5395 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5396 	else {
5397 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5398 		chip->chip_shift += 32 - 1;
5399 	}
5400 
5401 	if (chip->chip_shift - chip->page_shift > 16)
5402 		chip->options |= NAND_ROW_ADDR_3;
5403 
5404 	chip->badblockbits = 8;
5405 
5406 	nand_legacy_adjust_cmdfunc(chip);
5407 
5408 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5409 		maf_id, dev_id);
5410 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5411 		chip->parameters.model);
5412 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5413 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5414 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5415 	return 0;
5416 
5417 free_detect_allocation:
5418 	kfree(chip->parameters.model);
5419 
5420 	return ret;
5421 }
5422 
5423 static enum nand_ecc_engine_type
5424 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5425 {
5426 	enum nand_ecc_legacy_mode {
5427 		NAND_ECC_INVALID,
5428 		NAND_ECC_NONE,
5429 		NAND_ECC_SOFT,
5430 		NAND_ECC_SOFT_BCH,
5431 		NAND_ECC_HW,
5432 		NAND_ECC_HW_SYNDROME,
5433 		NAND_ECC_ON_DIE,
5434 	};
5435 	const char * const nand_ecc_legacy_modes[] = {
5436 		[NAND_ECC_NONE]		= "none",
5437 		[NAND_ECC_SOFT]		= "soft",
5438 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5439 		[NAND_ECC_HW]		= "hw",
5440 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5441 		[NAND_ECC_ON_DIE]	= "on-die",
5442 	};
5443 	enum nand_ecc_legacy_mode eng_type;
5444 	const char *pm;
5445 	int err;
5446 
5447 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5448 	if (err)
5449 		return NAND_ECC_ENGINE_TYPE_INVALID;
5450 
5451 	for (eng_type = NAND_ECC_NONE;
5452 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5453 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5454 			switch (eng_type) {
5455 			case NAND_ECC_NONE:
5456 				return NAND_ECC_ENGINE_TYPE_NONE;
5457 			case NAND_ECC_SOFT:
5458 			case NAND_ECC_SOFT_BCH:
5459 				return NAND_ECC_ENGINE_TYPE_SOFT;
5460 			case NAND_ECC_HW:
5461 			case NAND_ECC_HW_SYNDROME:
5462 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5463 			case NAND_ECC_ON_DIE:
5464 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5465 			default:
5466 				break;
5467 			}
5468 		}
5469 	}
5470 
5471 	return NAND_ECC_ENGINE_TYPE_INVALID;
5472 }
5473 
5474 static enum nand_ecc_placement
5475 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5476 {
5477 	const char *pm;
5478 	int err;
5479 
5480 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5481 	if (!err) {
5482 		if (!strcasecmp(pm, "hw_syndrome"))
5483 			return NAND_ECC_PLACEMENT_INTERLEAVED;
5484 	}
5485 
5486 	return NAND_ECC_PLACEMENT_UNKNOWN;
5487 }
5488 
5489 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5490 {
5491 	const char *pm;
5492 	int err;
5493 
5494 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5495 	if (!err) {
5496 		if (!strcasecmp(pm, "soft"))
5497 			return NAND_ECC_ALGO_HAMMING;
5498 		else if (!strcasecmp(pm, "soft_bch"))
5499 			return NAND_ECC_ALGO_BCH;
5500 	}
5501 
5502 	return NAND_ECC_ALGO_UNKNOWN;
5503 }
5504 
5505 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5506 {
5507 	struct device_node *dn = nand_get_flash_node(chip);
5508 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5509 
5510 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5511 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5512 
5513 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5514 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5515 
5516 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5517 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5518 }
5519 
5520 static int of_get_nand_bus_width(struct nand_chip *chip)
5521 {
5522 	struct device_node *dn = nand_get_flash_node(chip);
5523 	u32 val;
5524 	int ret;
5525 
5526 	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5527 	if (ret == -EINVAL)
5528 		/* Buswidth defaults to 8 if the property does not exist .*/
5529 		return 0;
5530 	else if (ret)
5531 		return ret;
5532 
5533 	if (val == 16)
5534 		chip->options |= NAND_BUSWIDTH_16;
5535 	else if (val != 8)
5536 		return -EINVAL;
5537 	return 0;
5538 }
5539 
5540 static int of_get_nand_secure_regions(struct nand_chip *chip)
5541 {
5542 	struct device_node *dn = nand_get_flash_node(chip);
5543 	struct property *prop;
5544 	int nr_elem, i, j;
5545 
5546 	/* Only proceed if the "secure-regions" property is present in DT */
5547 	prop = of_find_property(dn, "secure-regions", NULL);
5548 	if (!prop)
5549 		return 0;
5550 
5551 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5552 	if (nr_elem <= 0)
5553 		return nr_elem;
5554 
5555 	chip->nr_secure_regions = nr_elem / 2;
5556 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5557 				       GFP_KERNEL);
5558 	if (!chip->secure_regions)
5559 		return -ENOMEM;
5560 
5561 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5562 		of_property_read_u64_index(dn, "secure-regions", j,
5563 					   &chip->secure_regions[i].offset);
5564 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5565 					   &chip->secure_regions[i].size);
5566 	}
5567 
5568 	return 0;
5569 }
5570 
5571 /**
5572  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5573  * @dev: Device that will be parsed. Also used for managed allocations.
5574  * @cs_array: Array of GPIO desc pointers allocated on success
5575  * @ncs_array: Number of entries in @cs_array updated on success.
5576  * @return 0 on success, an error otherwise.
5577  */
5578 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5579 			     unsigned int *ncs_array)
5580 {
5581 	struct gpio_desc **descs;
5582 	int ndescs, i;
5583 
5584 	ndescs = gpiod_count(dev, "cs");
5585 	if (ndescs < 0) {
5586 		dev_dbg(dev, "No valid cs-gpios property\n");
5587 		return 0;
5588 	}
5589 
5590 	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5591 	if (!descs)
5592 		return -ENOMEM;
5593 
5594 	for (i = 0; i < ndescs; i++) {
5595 		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5596 						    GPIOD_OUT_HIGH);
5597 		if (IS_ERR(descs[i]))
5598 			return PTR_ERR(descs[i]);
5599 	}
5600 
5601 	*ncs_array = ndescs;
5602 	*cs_array = descs;
5603 
5604 	return 0;
5605 }
5606 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5607 
5608 static int rawnand_dt_init(struct nand_chip *chip)
5609 {
5610 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5611 	struct device_node *dn = nand_get_flash_node(chip);
5612 	int ret;
5613 
5614 	if (!dn)
5615 		return 0;
5616 
5617 	ret = of_get_nand_bus_width(chip);
5618 	if (ret)
5619 		return ret;
5620 
5621 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5622 		chip->options |= NAND_IS_BOOT_MEDIUM;
5623 
5624 	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5625 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5626 
5627 	of_get_nand_ecc_user_config(nand);
5628 	of_get_nand_ecc_legacy_user_config(chip);
5629 
5630 	/*
5631 	 * If neither the user nor the NAND controller have requested a specific
5632 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5633 	 */
5634 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5635 
5636 	/*
5637 	 * Use the user requested engine type, unless there is none, in this
5638 	 * case default to the NAND controller choice, otherwise fallback to
5639 	 * the raw NAND default one.
5640 	 */
5641 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5642 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5643 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5644 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5645 
5646 	chip->ecc.placement = nand->ecc.user_conf.placement;
5647 	chip->ecc.algo = nand->ecc.user_conf.algo;
5648 	chip->ecc.strength = nand->ecc.user_conf.strength;
5649 	chip->ecc.size = nand->ecc.user_conf.step_size;
5650 
5651 	return 0;
5652 }
5653 
5654 /**
5655  * nand_scan_ident - Scan for the NAND device
5656  * @chip: NAND chip object
5657  * @maxchips: number of chips to scan for
5658  * @table: alternative NAND ID table
5659  *
5660  * This is the first phase of the normal nand_scan() function. It reads the
5661  * flash ID and sets up MTD fields accordingly.
5662  *
5663  * This helper used to be called directly from controller drivers that needed
5664  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5665  * prevented dynamic allocations during this phase which was unconvenient and
5666  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5667  */
5668 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5669 			   struct nand_flash_dev *table)
5670 {
5671 	struct mtd_info *mtd = nand_to_mtd(chip);
5672 	struct nand_memory_organization *memorg;
5673 	int nand_maf_id, nand_dev_id;
5674 	unsigned int i;
5675 	int ret;
5676 
5677 	memorg = nanddev_get_memorg(&chip->base);
5678 
5679 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5680 	chip->cur_cs = -1;
5681 
5682 	mutex_init(&chip->lock);
5683 	init_waitqueue_head(&chip->resume_wq);
5684 
5685 	/* Enforce the right timings for reset/detection */
5686 	chip->current_interface_config = nand_get_reset_interface_config();
5687 
5688 	ret = rawnand_dt_init(chip);
5689 	if (ret)
5690 		return ret;
5691 
5692 	if (!mtd->name && mtd->dev.parent)
5693 		mtd->name = dev_name(mtd->dev.parent);
5694 
5695 	/* Set the default functions */
5696 	nand_set_defaults(chip);
5697 
5698 	ret = nand_legacy_check_hooks(chip);
5699 	if (ret)
5700 		return ret;
5701 
5702 	memorg->ntargets = maxchips;
5703 
5704 	/* Read the flash type */
5705 	ret = nand_detect(chip, table);
5706 	if (ret) {
5707 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5708 			pr_warn("No NAND device found\n");
5709 		nand_deselect_target(chip);
5710 		return ret;
5711 	}
5712 
5713 	nand_maf_id = chip->id.data[0];
5714 	nand_dev_id = chip->id.data[1];
5715 
5716 	nand_deselect_target(chip);
5717 
5718 	/* Check for a chip array */
5719 	for (i = 1; i < maxchips; i++) {
5720 		u8 id[2];
5721 
5722 		/* See comment in nand_get_flash_type for reset */
5723 		ret = nand_reset(chip, i);
5724 		if (ret)
5725 			break;
5726 
5727 		nand_select_target(chip, i);
5728 		/* Send the command for reading device ID */
5729 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5730 		if (ret)
5731 			break;
5732 		/* Read manufacturer and device IDs */
5733 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5734 			nand_deselect_target(chip);
5735 			break;
5736 		}
5737 		nand_deselect_target(chip);
5738 	}
5739 	if (i > 1)
5740 		pr_info("%d chips detected\n", i);
5741 
5742 	/* Store the number of chips and calc total size for mtd */
5743 	memorg->ntargets = i;
5744 	mtd->size = i * nanddev_target_size(&chip->base);
5745 
5746 	return 0;
5747 }
5748 
5749 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5750 {
5751 	kfree(chip->parameters.model);
5752 	kfree(chip->parameters.onfi);
5753 }
5754 
5755 int rawnand_sw_hamming_init(struct nand_chip *chip)
5756 {
5757 	struct nand_ecc_sw_hamming_conf *engine_conf;
5758 	struct nand_device *base = &chip->base;
5759 	int ret;
5760 
5761 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5762 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5763 	base->ecc.user_conf.strength = chip->ecc.strength;
5764 	base->ecc.user_conf.step_size = chip->ecc.size;
5765 
5766 	ret = nand_ecc_sw_hamming_init_ctx(base);
5767 	if (ret)
5768 		return ret;
5769 
5770 	engine_conf = base->ecc.ctx.priv;
5771 
5772 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5773 		engine_conf->sm_order = true;
5774 
5775 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5776 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5777 	chip->ecc.total = base->ecc.ctx.total;
5778 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5779 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5780 
5781 	return 0;
5782 }
5783 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5784 
5785 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5786 				 const unsigned char *buf,
5787 				 unsigned char *code)
5788 {
5789 	struct nand_device *base = &chip->base;
5790 
5791 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5792 }
5793 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5794 
5795 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5796 			       unsigned char *buf,
5797 			       unsigned char *read_ecc,
5798 			       unsigned char *calc_ecc)
5799 {
5800 	struct nand_device *base = &chip->base;
5801 
5802 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5803 }
5804 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5805 
5806 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5807 {
5808 	struct nand_device *base = &chip->base;
5809 
5810 	nand_ecc_sw_hamming_cleanup_ctx(base);
5811 }
5812 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5813 
5814 int rawnand_sw_bch_init(struct nand_chip *chip)
5815 {
5816 	struct nand_device *base = &chip->base;
5817 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5818 	int ret;
5819 
5820 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5821 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5822 	base->ecc.user_conf.step_size = chip->ecc.size;
5823 	base->ecc.user_conf.strength = chip->ecc.strength;
5824 
5825 	ret = nand_ecc_sw_bch_init_ctx(base);
5826 	if (ret)
5827 		return ret;
5828 
5829 	chip->ecc.size = ecc_conf->step_size;
5830 	chip->ecc.strength = ecc_conf->strength;
5831 	chip->ecc.total = base->ecc.ctx.total;
5832 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5833 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5834 
5835 	return 0;
5836 }
5837 EXPORT_SYMBOL(rawnand_sw_bch_init);
5838 
5839 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5840 				    const unsigned char *buf,
5841 				    unsigned char *code)
5842 {
5843 	struct nand_device *base = &chip->base;
5844 
5845 	return nand_ecc_sw_bch_calculate(base, buf, code);
5846 }
5847 
5848 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5849 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5850 {
5851 	struct nand_device *base = &chip->base;
5852 
5853 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5854 }
5855 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5856 
5857 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5858 {
5859 	struct nand_device *base = &chip->base;
5860 
5861 	nand_ecc_sw_bch_cleanup_ctx(base);
5862 }
5863 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5864 
5865 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5866 {
5867 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5868 
5869 	switch (ecc->placement) {
5870 	case NAND_ECC_PLACEMENT_UNKNOWN:
5871 	case NAND_ECC_PLACEMENT_OOB:
5872 		/* Use standard hwecc read page function? */
5873 		if (!ecc->read_page)
5874 			ecc->read_page = nand_read_page_hwecc;
5875 		if (!ecc->write_page)
5876 			ecc->write_page = nand_write_page_hwecc;
5877 		if (!ecc->read_page_raw)
5878 			ecc->read_page_raw = nand_read_page_raw;
5879 		if (!ecc->write_page_raw)
5880 			ecc->write_page_raw = nand_write_page_raw;
5881 		if (!ecc->read_oob)
5882 			ecc->read_oob = nand_read_oob_std;
5883 		if (!ecc->write_oob)
5884 			ecc->write_oob = nand_write_oob_std;
5885 		if (!ecc->read_subpage)
5886 			ecc->read_subpage = nand_read_subpage;
5887 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5888 			ecc->write_subpage = nand_write_subpage_hwecc;
5889 		fallthrough;
5890 
5891 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5892 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5893 		    (!ecc->read_page ||
5894 		     ecc->read_page == nand_read_page_hwecc ||
5895 		     !ecc->write_page ||
5896 		     ecc->write_page == nand_write_page_hwecc)) {
5897 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5898 			return -EINVAL;
5899 		}
5900 		/* Use standard syndrome read/write page function? */
5901 		if (!ecc->read_page)
5902 			ecc->read_page = nand_read_page_syndrome;
5903 		if (!ecc->write_page)
5904 			ecc->write_page = nand_write_page_syndrome;
5905 		if (!ecc->read_page_raw)
5906 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5907 		if (!ecc->write_page_raw)
5908 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5909 		if (!ecc->read_oob)
5910 			ecc->read_oob = nand_read_oob_syndrome;
5911 		if (!ecc->write_oob)
5912 			ecc->write_oob = nand_write_oob_syndrome;
5913 		break;
5914 
5915 	default:
5916 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5917 			ecc->placement);
5918 		return -EINVAL;
5919 	}
5920 
5921 	return 0;
5922 }
5923 
5924 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5925 {
5926 	struct mtd_info *mtd = nand_to_mtd(chip);
5927 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5928 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5929 	int ret;
5930 
5931 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5932 		return -EINVAL;
5933 
5934 	switch (ecc->algo) {
5935 	case NAND_ECC_ALGO_HAMMING:
5936 		ecc->calculate = rawnand_sw_hamming_calculate;
5937 		ecc->correct = rawnand_sw_hamming_correct;
5938 		ecc->read_page = nand_read_page_swecc;
5939 		ecc->read_subpage = nand_read_subpage;
5940 		ecc->write_page = nand_write_page_swecc;
5941 		if (!ecc->read_page_raw)
5942 			ecc->read_page_raw = nand_read_page_raw;
5943 		if (!ecc->write_page_raw)
5944 			ecc->write_page_raw = nand_write_page_raw;
5945 		ecc->read_oob = nand_read_oob_std;
5946 		ecc->write_oob = nand_write_oob_std;
5947 		if (!ecc->size)
5948 			ecc->size = 256;
5949 		ecc->bytes = 3;
5950 		ecc->strength = 1;
5951 
5952 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5953 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5954 
5955 		ret = rawnand_sw_hamming_init(chip);
5956 		if (ret) {
5957 			WARN(1, "Hamming ECC initialization failed!\n");
5958 			return ret;
5959 		}
5960 
5961 		return 0;
5962 	case NAND_ECC_ALGO_BCH:
5963 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5964 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5965 			return -EINVAL;
5966 		}
5967 		ecc->calculate = rawnand_sw_bch_calculate;
5968 		ecc->correct = rawnand_sw_bch_correct;
5969 		ecc->read_page = nand_read_page_swecc;
5970 		ecc->read_subpage = nand_read_subpage;
5971 		ecc->write_page = nand_write_page_swecc;
5972 		if (!ecc->read_page_raw)
5973 			ecc->read_page_raw = nand_read_page_raw;
5974 		if (!ecc->write_page_raw)
5975 			ecc->write_page_raw = nand_write_page_raw;
5976 		ecc->read_oob = nand_read_oob_std;
5977 		ecc->write_oob = nand_write_oob_std;
5978 
5979 		/*
5980 		 * We can only maximize ECC config when the default layout is
5981 		 * used, otherwise we don't know how many bytes can really be
5982 		 * used.
5983 		 */
5984 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5985 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5986 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5987 
5988 		ret = rawnand_sw_bch_init(chip);
5989 		if (ret) {
5990 			WARN(1, "BCH ECC initialization failed!\n");
5991 			return ret;
5992 		}
5993 
5994 		return 0;
5995 	default:
5996 		WARN(1, "Unsupported ECC algorithm!\n");
5997 		return -EINVAL;
5998 	}
5999 }
6000 
6001 /**
6002  * nand_check_ecc_caps - check the sanity of preset ECC settings
6003  * @chip: nand chip info structure
6004  * @caps: ECC caps info structure
6005  * @oobavail: OOB size that the ECC engine can use
6006  *
6007  * When ECC step size and strength are already set, check if they are supported
6008  * by the controller and the calculated ECC bytes fit within the chip's OOB.
6009  * On success, the calculated ECC bytes is set.
6010  */
6011 static int
6012 nand_check_ecc_caps(struct nand_chip *chip,
6013 		    const struct nand_ecc_caps *caps, int oobavail)
6014 {
6015 	struct mtd_info *mtd = nand_to_mtd(chip);
6016 	const struct nand_ecc_step_info *stepinfo;
6017 	int preset_step = chip->ecc.size;
6018 	int preset_strength = chip->ecc.strength;
6019 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
6020 	int i, j;
6021 
6022 	for (i = 0; i < caps->nstepinfos; i++) {
6023 		stepinfo = &caps->stepinfos[i];
6024 
6025 		if (stepinfo->stepsize != preset_step)
6026 			continue;
6027 
6028 		for (j = 0; j < stepinfo->nstrengths; j++) {
6029 			if (stepinfo->strengths[j] != preset_strength)
6030 				continue;
6031 
6032 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6033 							 preset_strength);
6034 			if (WARN_ON_ONCE(ecc_bytes < 0))
6035 				return ecc_bytes;
6036 
6037 			if (ecc_bytes * nsteps > oobavail) {
6038 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6039 				       preset_step, preset_strength);
6040 				return -ENOSPC;
6041 			}
6042 
6043 			chip->ecc.bytes = ecc_bytes;
6044 
6045 			return 0;
6046 		}
6047 	}
6048 
6049 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6050 	       preset_step, preset_strength);
6051 
6052 	return -ENOTSUPP;
6053 }
6054 
6055 /**
6056  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6057  * @chip: nand chip info structure
6058  * @caps: ECC engine caps info structure
6059  * @oobavail: OOB size that the ECC engine can use
6060  *
6061  * If a chip's ECC requirement is provided, try to meet it with the least
6062  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6063  * On success, the chosen ECC settings are set.
6064  */
6065 static int
6066 nand_match_ecc_req(struct nand_chip *chip,
6067 		   const struct nand_ecc_caps *caps, int oobavail)
6068 {
6069 	const struct nand_ecc_props *requirements =
6070 		nanddev_get_ecc_requirements(&chip->base);
6071 	struct mtd_info *mtd = nand_to_mtd(chip);
6072 	const struct nand_ecc_step_info *stepinfo;
6073 	int req_step = requirements->step_size;
6074 	int req_strength = requirements->strength;
6075 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6076 	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6077 	int best_ecc_bytes_total = INT_MAX;
6078 	int i, j;
6079 
6080 	/* No information provided by the NAND chip */
6081 	if (!req_step || !req_strength)
6082 		return -ENOTSUPP;
6083 
6084 	/* number of correctable bits the chip requires in a page */
6085 	req_corr = mtd->writesize / req_step * req_strength;
6086 
6087 	for (i = 0; i < caps->nstepinfos; i++) {
6088 		stepinfo = &caps->stepinfos[i];
6089 		step_size = stepinfo->stepsize;
6090 
6091 		for (j = 0; j < stepinfo->nstrengths; j++) {
6092 			strength = stepinfo->strengths[j];
6093 
6094 			/*
6095 			 * If both step size and strength are smaller than the
6096 			 * chip's requirement, it is not easy to compare the
6097 			 * resulted reliability.
6098 			 */
6099 			if (step_size < req_step && strength < req_strength)
6100 				continue;
6101 
6102 			if (mtd->writesize % step_size)
6103 				continue;
6104 
6105 			nsteps = mtd->writesize / step_size;
6106 
6107 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6108 			if (WARN_ON_ONCE(ecc_bytes < 0))
6109 				continue;
6110 			ecc_bytes_total = ecc_bytes * nsteps;
6111 
6112 			if (ecc_bytes_total > oobavail ||
6113 			    strength * nsteps < req_corr)
6114 				continue;
6115 
6116 			/*
6117 			 * We assume the best is to meet the chip's requrement
6118 			 * with the least number of ECC bytes.
6119 			 */
6120 			if (ecc_bytes_total < best_ecc_bytes_total) {
6121 				best_ecc_bytes_total = ecc_bytes_total;
6122 				best_step = step_size;
6123 				best_strength = strength;
6124 				best_ecc_bytes = ecc_bytes;
6125 			}
6126 		}
6127 	}
6128 
6129 	if (best_ecc_bytes_total == INT_MAX)
6130 		return -ENOTSUPP;
6131 
6132 	chip->ecc.size = best_step;
6133 	chip->ecc.strength = best_strength;
6134 	chip->ecc.bytes = best_ecc_bytes;
6135 
6136 	return 0;
6137 }
6138 
6139 /**
6140  * nand_maximize_ecc - choose the max ECC strength available
6141  * @chip: nand chip info structure
6142  * @caps: ECC engine caps info structure
6143  * @oobavail: OOB size that the ECC engine can use
6144  *
6145  * Choose the max ECC strength that is supported on the controller, and can fit
6146  * within the chip's OOB.  On success, the chosen ECC settings are set.
6147  */
6148 static int
6149 nand_maximize_ecc(struct nand_chip *chip,
6150 		  const struct nand_ecc_caps *caps, int oobavail)
6151 {
6152 	struct mtd_info *mtd = nand_to_mtd(chip);
6153 	const struct nand_ecc_step_info *stepinfo;
6154 	int step_size, strength, nsteps, ecc_bytes, corr;
6155 	int best_corr = 0;
6156 	int best_step = 0;
6157 	int best_strength = 0, best_ecc_bytes = 0;
6158 	int i, j;
6159 
6160 	for (i = 0; i < caps->nstepinfos; i++) {
6161 		stepinfo = &caps->stepinfos[i];
6162 		step_size = stepinfo->stepsize;
6163 
6164 		/* If chip->ecc.size is already set, respect it */
6165 		if (chip->ecc.size && step_size != chip->ecc.size)
6166 			continue;
6167 
6168 		for (j = 0; j < stepinfo->nstrengths; j++) {
6169 			strength = stepinfo->strengths[j];
6170 
6171 			if (mtd->writesize % step_size)
6172 				continue;
6173 
6174 			nsteps = mtd->writesize / step_size;
6175 
6176 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6177 			if (WARN_ON_ONCE(ecc_bytes < 0))
6178 				continue;
6179 
6180 			if (ecc_bytes * nsteps > oobavail)
6181 				continue;
6182 
6183 			corr = strength * nsteps;
6184 
6185 			/*
6186 			 * If the number of correctable bits is the same,
6187 			 * bigger step_size has more reliability.
6188 			 */
6189 			if (corr > best_corr ||
6190 			    (corr == best_corr && step_size > best_step)) {
6191 				best_corr = corr;
6192 				best_step = step_size;
6193 				best_strength = strength;
6194 				best_ecc_bytes = ecc_bytes;
6195 			}
6196 		}
6197 	}
6198 
6199 	if (!best_corr)
6200 		return -ENOTSUPP;
6201 
6202 	chip->ecc.size = best_step;
6203 	chip->ecc.strength = best_strength;
6204 	chip->ecc.bytes = best_ecc_bytes;
6205 
6206 	return 0;
6207 }
6208 
6209 /**
6210  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6211  * @chip: nand chip info structure
6212  * @caps: ECC engine caps info structure
6213  * @oobavail: OOB size that the ECC engine can use
6214  *
6215  * Choose the ECC configuration according to following logic.
6216  *
6217  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6218  *    then check if it is supported by this controller.
6219  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6220  *    ECC strength.
6221  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6222  *    to the chip's requirement. If available OOB size can't fit the chip
6223  *    requirement then fallback to the maximum ECC step size and ECC strength.
6224  *
6225  * On success, the chosen ECC settings are set.
6226  */
6227 int nand_ecc_choose_conf(struct nand_chip *chip,
6228 			 const struct nand_ecc_caps *caps, int oobavail)
6229 {
6230 	struct mtd_info *mtd = nand_to_mtd(chip);
6231 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6232 
6233 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6234 		return -EINVAL;
6235 
6236 	if (chip->ecc.size && chip->ecc.strength)
6237 		return nand_check_ecc_caps(chip, caps, oobavail);
6238 
6239 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6240 		return nand_maximize_ecc(chip, caps, oobavail);
6241 
6242 	if (!nand_match_ecc_req(chip, caps, oobavail))
6243 		return 0;
6244 
6245 	return nand_maximize_ecc(chip, caps, oobavail);
6246 }
6247 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6248 
6249 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6250 {
6251 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6252 					      base);
6253 	unsigned int eb = nanddev_pos_to_row(nand, pos);
6254 	int ret;
6255 
6256 	eb >>= nand->rowconv.eraseblock_addr_shift;
6257 
6258 	nand_select_target(chip, pos->target);
6259 	ret = nand_erase_op(chip, eb);
6260 	nand_deselect_target(chip);
6261 
6262 	return ret;
6263 }
6264 
6265 static int rawnand_markbad(struct nand_device *nand,
6266 			   const struct nand_pos *pos)
6267 {
6268 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6269 					      base);
6270 
6271 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6272 }
6273 
6274 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6275 {
6276 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6277 					      base);
6278 	int ret;
6279 
6280 	nand_select_target(chip, pos->target);
6281 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6282 	nand_deselect_target(chip);
6283 
6284 	return ret;
6285 }
6286 
6287 static const struct nand_ops rawnand_ops = {
6288 	.erase = rawnand_erase,
6289 	.markbad = rawnand_markbad,
6290 	.isbad = rawnand_isbad,
6291 };
6292 
6293 /**
6294  * nand_scan_tail - Scan for the NAND device
6295  * @chip: NAND chip object
6296  *
6297  * This is the second phase of the normal nand_scan() function. It fills out
6298  * all the uninitialized function pointers with the defaults and scans for a
6299  * bad block table if appropriate.
6300  */
6301 static int nand_scan_tail(struct nand_chip *chip)
6302 {
6303 	struct mtd_info *mtd = nand_to_mtd(chip);
6304 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6305 	int ret, i;
6306 
6307 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6308 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6309 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6310 		return -EINVAL;
6311 	}
6312 
6313 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6314 	if (!chip->data_buf)
6315 		return -ENOMEM;
6316 
6317 	/*
6318 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6319 	 * selected when manufacturer->init() is called. They should be fixed
6320 	 * to explictly select the relevant die when interacting with the NAND
6321 	 * chip.
6322 	 */
6323 	nand_select_target(chip, 0);
6324 	ret = nand_manufacturer_init(chip);
6325 	nand_deselect_target(chip);
6326 	if (ret)
6327 		goto err_free_buf;
6328 
6329 	/* Set the internal oob buffer location, just after the page data */
6330 	chip->oob_poi = chip->data_buf + mtd->writesize;
6331 
6332 	/*
6333 	 * If no default placement scheme is given, select an appropriate one.
6334 	 */
6335 	if (!mtd->ooblayout &&
6336 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6337 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6338 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6339 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6340 		switch (mtd->oobsize) {
6341 		case 8:
6342 		case 16:
6343 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6344 			break;
6345 		case 64:
6346 		case 128:
6347 			mtd_set_ooblayout(mtd,
6348 					  nand_get_large_page_hamming_ooblayout());
6349 			break;
6350 		default:
6351 			/*
6352 			 * Expose the whole OOB area to users if ECC_NONE
6353 			 * is passed. We could do that for all kind of
6354 			 * ->oobsize, but we must keep the old large/small
6355 			 * page with ECC layout when ->oobsize <= 128 for
6356 			 * compatibility reasons.
6357 			 */
6358 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6359 				mtd_set_ooblayout(mtd,
6360 						  nand_get_large_page_ooblayout());
6361 				break;
6362 			}
6363 
6364 			WARN(1, "No oob scheme defined for oobsize %d\n",
6365 				mtd->oobsize);
6366 			ret = -EINVAL;
6367 			goto err_nand_manuf_cleanup;
6368 		}
6369 	}
6370 
6371 	/*
6372 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6373 	 * selected and we have 256 byte pagesize fallback to software ECC
6374 	 */
6375 
6376 	switch (ecc->engine_type) {
6377 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6378 		ret = nand_set_ecc_on_host_ops(chip);
6379 		if (ret)
6380 			goto err_nand_manuf_cleanup;
6381 
6382 		if (mtd->writesize >= ecc->size) {
6383 			if (!ecc->strength) {
6384 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6385 				ret = -EINVAL;
6386 				goto err_nand_manuf_cleanup;
6387 			}
6388 			break;
6389 		}
6390 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6391 			ecc->size, mtd->writesize);
6392 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6393 		ecc->algo = NAND_ECC_ALGO_HAMMING;
6394 		fallthrough;
6395 
6396 	case NAND_ECC_ENGINE_TYPE_SOFT:
6397 		ret = nand_set_ecc_soft_ops(chip);
6398 		if (ret)
6399 			goto err_nand_manuf_cleanup;
6400 		break;
6401 
6402 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6403 		if (!ecc->read_page || !ecc->write_page) {
6404 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6405 			ret = -EINVAL;
6406 			goto err_nand_manuf_cleanup;
6407 		}
6408 		if (!ecc->read_oob)
6409 			ecc->read_oob = nand_read_oob_std;
6410 		if (!ecc->write_oob)
6411 			ecc->write_oob = nand_write_oob_std;
6412 		break;
6413 
6414 	case NAND_ECC_ENGINE_TYPE_NONE:
6415 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6416 		ecc->read_page = nand_read_page_raw;
6417 		ecc->write_page = nand_write_page_raw;
6418 		ecc->read_oob = nand_read_oob_std;
6419 		ecc->read_page_raw = nand_read_page_raw;
6420 		ecc->write_page_raw = nand_write_page_raw;
6421 		ecc->write_oob = nand_write_oob_std;
6422 		ecc->size = mtd->writesize;
6423 		ecc->bytes = 0;
6424 		ecc->strength = 0;
6425 		break;
6426 
6427 	default:
6428 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6429 		ret = -EINVAL;
6430 		goto err_nand_manuf_cleanup;
6431 	}
6432 
6433 	if (ecc->correct || ecc->calculate) {
6434 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6435 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6436 		if (!ecc->calc_buf || !ecc->code_buf) {
6437 			ret = -ENOMEM;
6438 			goto err_nand_manuf_cleanup;
6439 		}
6440 	}
6441 
6442 	/* For many systems, the standard OOB write also works for raw */
6443 	if (!ecc->read_oob_raw)
6444 		ecc->read_oob_raw = ecc->read_oob;
6445 	if (!ecc->write_oob_raw)
6446 		ecc->write_oob_raw = ecc->write_oob;
6447 
6448 	/* propagate ecc info to mtd_info */
6449 	mtd->ecc_strength = ecc->strength;
6450 	mtd->ecc_step_size = ecc->size;
6451 
6452 	/*
6453 	 * Set the number of read / write steps for one page depending on ECC
6454 	 * mode.
6455 	 */
6456 	if (!ecc->steps)
6457 		ecc->steps = mtd->writesize / ecc->size;
6458 	if (ecc->steps * ecc->size != mtd->writesize) {
6459 		WARN(1, "Invalid ECC parameters\n");
6460 		ret = -EINVAL;
6461 		goto err_nand_manuf_cleanup;
6462 	}
6463 
6464 	if (!ecc->total) {
6465 		ecc->total = ecc->steps * ecc->bytes;
6466 		chip->base.ecc.ctx.total = ecc->total;
6467 	}
6468 
6469 	if (ecc->total > mtd->oobsize) {
6470 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6471 		ret = -EINVAL;
6472 		goto err_nand_manuf_cleanup;
6473 	}
6474 
6475 	/*
6476 	 * The number of bytes available for a client to place data into
6477 	 * the out of band area.
6478 	 */
6479 	ret = mtd_ooblayout_count_freebytes(mtd);
6480 	if (ret < 0)
6481 		ret = 0;
6482 
6483 	mtd->oobavail = ret;
6484 
6485 	/* ECC sanity check: warn if it's too weak */
6486 	if (!nand_ecc_is_strong_enough(&chip->base))
6487 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6488 			mtd->name, chip->ecc.strength, chip->ecc.size,
6489 			nanddev_get_ecc_requirements(&chip->base)->strength,
6490 			nanddev_get_ecc_requirements(&chip->base)->step_size);
6491 
6492 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6493 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6494 		switch (ecc->steps) {
6495 		case 2:
6496 			mtd->subpage_sft = 1;
6497 			break;
6498 		case 4:
6499 		case 8:
6500 		case 16:
6501 			mtd->subpage_sft = 2;
6502 			break;
6503 		}
6504 	}
6505 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6506 
6507 	/* Invalidate the pagebuffer reference */
6508 	chip->pagecache.page = -1;
6509 
6510 	/* Large page NAND with SOFT_ECC should support subpage reads */
6511 	switch (ecc->engine_type) {
6512 	case NAND_ECC_ENGINE_TYPE_SOFT:
6513 		if (chip->page_shift > 9)
6514 			chip->options |= NAND_SUBPAGE_READ;
6515 		break;
6516 
6517 	default:
6518 		break;
6519 	}
6520 
6521 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6522 	if (ret)
6523 		goto err_nand_manuf_cleanup;
6524 
6525 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6526 	if (chip->options & NAND_ROM)
6527 		mtd->flags = MTD_CAP_ROM;
6528 
6529 	/* Fill in remaining MTD driver data */
6530 	mtd->_erase = nand_erase;
6531 	mtd->_point = NULL;
6532 	mtd->_unpoint = NULL;
6533 	mtd->_panic_write = panic_nand_write;
6534 	mtd->_read_oob = nand_read_oob;
6535 	mtd->_write_oob = nand_write_oob;
6536 	mtd->_sync = nand_sync;
6537 	mtd->_lock = nand_lock;
6538 	mtd->_unlock = nand_unlock;
6539 	mtd->_suspend = nand_suspend;
6540 	mtd->_resume = nand_resume;
6541 	mtd->_reboot = nand_shutdown;
6542 	mtd->_block_isreserved = nand_block_isreserved;
6543 	mtd->_block_isbad = nand_block_isbad;
6544 	mtd->_block_markbad = nand_block_markbad;
6545 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6546 
6547 	/*
6548 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6549 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6550 	 * properly set.
6551 	 */
6552 	if (!mtd->bitflip_threshold)
6553 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6554 
6555 	/* Find the fastest data interface for this chip */
6556 	ret = nand_choose_interface_config(chip);
6557 	if (ret)
6558 		goto err_nanddev_cleanup;
6559 
6560 	/* Enter fastest possible mode on all dies. */
6561 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6562 		ret = nand_setup_interface(chip, i);
6563 		if (ret)
6564 			goto err_free_interface_config;
6565 	}
6566 
6567 	rawnand_late_check_supported_ops(chip);
6568 
6569 	/*
6570 	 * Look for secure regions in the NAND chip. These regions are supposed
6571 	 * to be protected by a secure element like Trustzone. So the read/write
6572 	 * accesses to these regions will be blocked in the runtime by this
6573 	 * driver.
6574 	 */
6575 	ret = of_get_nand_secure_regions(chip);
6576 	if (ret)
6577 		goto err_free_interface_config;
6578 
6579 	/* Check, if we should skip the bad block table scan */
6580 	if (chip->options & NAND_SKIP_BBTSCAN)
6581 		return 0;
6582 
6583 	/* Build bad block table */
6584 	ret = nand_create_bbt(chip);
6585 	if (ret)
6586 		goto err_free_secure_regions;
6587 
6588 	return 0;
6589 
6590 err_free_secure_regions:
6591 	kfree(chip->secure_regions);
6592 
6593 err_free_interface_config:
6594 	kfree(chip->best_interface_config);
6595 
6596 err_nanddev_cleanup:
6597 	nanddev_cleanup(&chip->base);
6598 
6599 err_nand_manuf_cleanup:
6600 	nand_manufacturer_cleanup(chip);
6601 
6602 err_free_buf:
6603 	kfree(chip->data_buf);
6604 	kfree(ecc->code_buf);
6605 	kfree(ecc->calc_buf);
6606 
6607 	return ret;
6608 }
6609 
6610 static int nand_attach(struct nand_chip *chip)
6611 {
6612 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6613 		return chip->controller->ops->attach_chip(chip);
6614 
6615 	return 0;
6616 }
6617 
6618 static void nand_detach(struct nand_chip *chip)
6619 {
6620 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6621 		chip->controller->ops->detach_chip(chip);
6622 }
6623 
6624 /**
6625  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6626  * @chip: NAND chip object
6627  * @maxchips: number of chips to scan for.
6628  * @ids: optional flash IDs table
6629  *
6630  * This fills out all the uninitialized function pointers with the defaults.
6631  * The flash ID is read and the mtd/chip structures are filled with the
6632  * appropriate values.
6633  */
6634 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6635 		       struct nand_flash_dev *ids)
6636 {
6637 	int ret;
6638 
6639 	if (!maxchips)
6640 		return -EINVAL;
6641 
6642 	ret = nand_scan_ident(chip, maxchips, ids);
6643 	if (ret)
6644 		return ret;
6645 
6646 	ret = nand_attach(chip);
6647 	if (ret)
6648 		goto cleanup_ident;
6649 
6650 	ret = nand_scan_tail(chip);
6651 	if (ret)
6652 		goto detach_chip;
6653 
6654 	return 0;
6655 
6656 detach_chip:
6657 	nand_detach(chip);
6658 cleanup_ident:
6659 	nand_scan_ident_cleanup(chip);
6660 
6661 	return ret;
6662 }
6663 EXPORT_SYMBOL(nand_scan_with_ids);
6664 
6665 /**
6666  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6667  * @chip: NAND chip object
6668  */
6669 void nand_cleanup(struct nand_chip *chip)
6670 {
6671 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6672 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6673 			rawnand_sw_hamming_cleanup(chip);
6674 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6675 			rawnand_sw_bch_cleanup(chip);
6676 	}
6677 
6678 	nanddev_cleanup(&chip->base);
6679 
6680 	/* Free secure regions data */
6681 	kfree(chip->secure_regions);
6682 
6683 	/* Free bad block table memory */
6684 	kfree(chip->bbt);
6685 	kfree(chip->data_buf);
6686 	kfree(chip->ecc.code_buf);
6687 	kfree(chip->ecc.calc_buf);
6688 
6689 	/* Free bad block descriptor memory */
6690 	if (chip->badblock_pattern && chip->badblock_pattern->options
6691 			& NAND_BBT_DYNAMICSTRUCT)
6692 		kfree(chip->badblock_pattern);
6693 
6694 	/* Free the data interface */
6695 	kfree(chip->best_interface_config);
6696 
6697 	/* Free manufacturer priv data. */
6698 	nand_manufacturer_cleanup(chip);
6699 
6700 	/* Free controller specific allocations after chip identification */
6701 	nand_detach(chip);
6702 
6703 	/* Free identification phase allocations */
6704 	nand_scan_ident_cleanup(chip);
6705 }
6706 
6707 EXPORT_SYMBOL_GPL(nand_cleanup);
6708 
6709 MODULE_LICENSE("GPL");
6710 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6711 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6712 MODULE_DESCRIPTION("Generic NAND flash driver code");
6713