xref: /linux/drivers/mtd/nand/raw/nand_base.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46 
47 #include "internals.h"
48 
49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 				       struct mtd_pairing_info *info)
51 {
52 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 	int dist = 3;
54 
55 	if (page == lastpage)
56 		dist = 2;
57 
58 	if (!page || (page & 1)) {
59 		info->group = 0;
60 		info->pair = (page + 1) / 2;
61 	} else {
62 		info->group = 1;
63 		info->pair = (page + 1 - dist) / 2;
64 	}
65 
66 	return 0;
67 }
68 
69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 					const struct mtd_pairing_info *info)
71 {
72 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 	int page = info->pair * 2;
74 	int dist = 3;
75 
76 	if (!info->group && !info->pair)
77 		return 0;
78 
79 	if (info->pair == lastpair && info->group)
80 		dist = 2;
81 
82 	if (!info->group)
83 		page--;
84 	else if (info->pair)
85 		page += dist - 1;
86 
87 	if (page >= mtd->erasesize / mtd->writesize)
88 		return -EINVAL;
89 
90 	return page;
91 }
92 
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 	.ngroups = 2,
95 	.get_info = nand_pairing_dist3_get_info,
96 	.get_wunit = nand_pairing_dist3_get_wunit,
97 };
98 
99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101 	int ret = 0;
102 
103 	/* Start address must align on block boundary */
104 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 		pr_debug("%s: unaligned address\n", __func__);
106 		ret = -EINVAL;
107 	}
108 
109 	/* Length must align on block boundary */
110 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 		pr_debug("%s: length not block aligned\n", __func__);
112 		ret = -EINVAL;
113 	}
114 
115 	return ret;
116 }
117 
118 /**
119  * nand_extract_bits - Copy unaligned bits from one buffer to another one
120  * @dst: destination buffer
121  * @dst_off: bit offset at which the writing starts
122  * @src: source buffer
123  * @src_off: bit offset at which the reading starts
124  * @nbits: number of bits to copy from @src to @dst
125  *
126  * Copy bits from one memory region to another (overlap authorized).
127  */
128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 		       unsigned int src_off, unsigned int nbits)
130 {
131 	unsigned int tmp, n;
132 
133 	dst += dst_off / 8;
134 	dst_off %= 8;
135 	src += src_off / 8;
136 	src_off %= 8;
137 
138 	while (nbits) {
139 		n = min3(8 - dst_off, 8 - src_off, nbits);
140 
141 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 		*dst |= tmp << dst_off;
144 
145 		dst_off += n;
146 		if (dst_off >= 8) {
147 			dst++;
148 			dst_off -= 8;
149 		}
150 
151 		src_off += n;
152 		if (src_off >= 8) {
153 			src++;
154 			src_off -= 8;
155 		}
156 
157 		nbits -= n;
158 	}
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161 
162 /**
163  * nand_select_target() - Select a NAND target (A.K.A. die)
164  * @chip: NAND chip object
165  * @cs: the CS line to select. Note that this CS id is always from the chip
166  *	PoV, not the controller one
167  *
168  * Select a NAND target so that further operations executed on @chip go to the
169  * selected NAND target.
170  */
171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173 	/*
174 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 	 * not the case it's a bug and the caller should be fixed.
176 	 */
177 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 		return;
179 
180 	chip->cur_cs = cs;
181 
182 	if (chip->legacy.select_chip)
183 		chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186 
187 /**
188  * nand_deselect_target() - Deselect the currently selected target
189  * @chip: NAND chip object
190  *
191  * Deselect the currently selected NAND target. The result of operations
192  * executed on @chip after the target has been deselected is undefined.
193  */
194 void nand_deselect_target(struct nand_chip *chip)
195 {
196 	if (chip->legacy.select_chip)
197 		chip->legacy.select_chip(chip, -1);
198 
199 	chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202 
203 /**
204  * nand_release_device - [GENERIC] release chip
205  * @chip: NAND chip object
206  *
207  * Release chip lock and wake up anyone waiting on the device.
208  */
209 static void nand_release_device(struct nand_chip *chip)
210 {
211 	/* Release the controller and the chip */
212 	mutex_unlock(&chip->controller->lock);
213 	mutex_unlock(&chip->lock);
214 }
215 
216 /**
217  * nand_bbm_get_next_page - Get the next page for bad block markers
218  * @chip: NAND chip object
219  * @page: First page to start checking for bad block marker usage
220  *
221  * Returns an integer that corresponds to the page offset within a block, for
222  * a page that is used to store bad block markers. If no more pages are
223  * available, -EINVAL is returned.
224  */
225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227 	struct mtd_info *mtd = nand_to_mtd(chip);
228 	int last_page = ((mtd->erasesize - mtd->writesize) >>
229 			 chip->page_shift) & chip->pagemask;
230 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 		| NAND_BBM_LASTPAGE;
232 
233 	if (page == 0 && !(chip->options & bbm_flags))
234 		return 0;
235 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 		return 0;
237 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 		return 1;
239 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 		return last_page;
241 
242 	return -EINVAL;
243 }
244 
245 /**
246  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247  * @chip: NAND chip object
248  * @ofs: offset from device start
249  *
250  * Check, if the block is bad.
251  */
252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254 	int first_page, page_offset;
255 	int res;
256 	u8 bad;
257 
258 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 	page_offset = nand_bbm_get_next_page(chip, 0);
260 
261 	while (page_offset >= 0) {
262 		res = chip->ecc.read_oob(chip, first_page + page_offset);
263 		if (res < 0)
264 			return res;
265 
266 		bad = chip->oob_poi[chip->badblockpos];
267 
268 		if (likely(chip->badblockbits == 8))
269 			res = bad != 0xFF;
270 		else
271 			res = hweight8(bad) < chip->badblockbits;
272 		if (res)
273 			return res;
274 
275 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276 	}
277 
278 	return 0;
279 }
280 
281 /**
282  * nand_region_is_secured() - Check if the region is secured
283  * @chip: NAND chip object
284  * @offset: Offset of the region to check
285  * @size: Size of the region to check
286  *
287  * Checks if the region is secured by comparing the offset and size with the
288  * list of secure regions obtained from DT. Returns true if the region is
289  * secured else false.
290  */
291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292 {
293 	int i;
294 
295 	/* Skip touching the secure regions if present */
296 	for (i = 0; i < chip->nr_secure_regions; i++) {
297 		const struct nand_secure_region *region = &chip->secure_regions[i];
298 
299 		if (offset + size <= region->offset ||
300 		    offset >= region->offset + region->size)
301 			continue;
302 
303 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304 			 __func__, offset, offset + size);
305 
306 		return true;
307 	}
308 
309 	return false;
310 }
311 
312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313 {
314 	struct mtd_info *mtd = nand_to_mtd(chip);
315 
316 	if (chip->options & NAND_NO_BBM_QUIRK)
317 		return 0;
318 
319 	/* Check if the region is secured */
320 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321 		return -EIO;
322 
323 	if (mtd_check_expert_analysis_mode())
324 		return 0;
325 
326 	if (chip->legacy.block_bad)
327 		return chip->legacy.block_bad(chip, ofs);
328 
329 	return nand_block_bad(chip, ofs);
330 }
331 
332 /**
333  * nand_get_device - [GENERIC] Get chip for selected access
334  * @chip: NAND chip structure
335  *
336  * Lock the device and its controller for exclusive access
337  */
338 static void nand_get_device(struct nand_chip *chip)
339 {
340 	/* Wait until the device is resumed. */
341 	while (1) {
342 		mutex_lock(&chip->lock);
343 		if (!chip->suspended) {
344 			mutex_lock(&chip->controller->lock);
345 			return;
346 		}
347 		mutex_unlock(&chip->lock);
348 
349 		wait_event(chip->resume_wq, !chip->suspended);
350 	}
351 }
352 
353 /**
354  * nand_check_wp - [GENERIC] check if the chip is write protected
355  * @chip: NAND chip object
356  *
357  * Check, if the device is write protected. The function expects, that the
358  * device is already selected.
359  */
360 static int nand_check_wp(struct nand_chip *chip)
361 {
362 	u8 status;
363 	int ret;
364 
365 	/* Broken xD cards report WP despite being writable */
366 	if (chip->options & NAND_BROKEN_XD)
367 		return 0;
368 
369 	/* controller responsible for NAND write protect */
370 	if (chip->controller->controller_wp)
371 		return 0;
372 
373 	/* Check the WP bit */
374 	ret = nand_status_op(chip, &status);
375 	if (ret)
376 		return ret;
377 
378 	return status & NAND_STATUS_WP ? 0 : 1;
379 }
380 
381 /**
382  * nand_fill_oob - [INTERN] Transfer client buffer to oob
383  * @chip: NAND chip object
384  * @oob: oob data buffer
385  * @len: oob data write length
386  * @ops: oob ops structure
387  */
388 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
389 			      struct mtd_oob_ops *ops)
390 {
391 	struct mtd_info *mtd = nand_to_mtd(chip);
392 	int ret;
393 
394 	/*
395 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
396 	 * data from a previous OOB read.
397 	 */
398 	memset(chip->oob_poi, 0xff, mtd->oobsize);
399 
400 	switch (ops->mode) {
401 
402 	case MTD_OPS_PLACE_OOB:
403 	case MTD_OPS_RAW:
404 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
405 		return oob + len;
406 
407 	case MTD_OPS_AUTO_OOB:
408 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
409 						  ops->ooboffs, len);
410 		BUG_ON(ret);
411 		return oob + len;
412 
413 	default:
414 		BUG();
415 	}
416 	return NULL;
417 }
418 
419 /**
420  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
421  * @chip: NAND chip object
422  * @to: offset to write to
423  * @ops: oob operation description structure
424  *
425  * NAND write out-of-band.
426  */
427 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
428 			     struct mtd_oob_ops *ops)
429 {
430 	struct mtd_info *mtd = nand_to_mtd(chip);
431 	int chipnr, page, status, len, ret;
432 
433 	pr_debug("%s: to = 0x%08x, len = %i\n",
434 			 __func__, (unsigned int)to, (int)ops->ooblen);
435 
436 	len = mtd_oobavail(mtd, ops);
437 
438 	/* Do not allow write past end of page */
439 	if ((ops->ooboffs + ops->ooblen) > len) {
440 		pr_debug("%s: attempt to write past end of page\n",
441 				__func__);
442 		return -EINVAL;
443 	}
444 
445 	/* Check if the region is secured */
446 	if (nand_region_is_secured(chip, to, ops->ooblen))
447 		return -EIO;
448 
449 	chipnr = (int)(to >> chip->chip_shift);
450 
451 	/*
452 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
453 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
454 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
455 	 * it in the doc2000 driver in August 1999.  dwmw2.
456 	 */
457 	ret = nand_reset(chip, chipnr);
458 	if (ret)
459 		return ret;
460 
461 	nand_select_target(chip, chipnr);
462 
463 	/* Shift to get page */
464 	page = (int)(to >> chip->page_shift);
465 
466 	/* Check, if it is write protected */
467 	if (nand_check_wp(chip)) {
468 		nand_deselect_target(chip);
469 		return -EROFS;
470 	}
471 
472 	/* Invalidate the page cache, if we write to the cached page */
473 	if (page == chip->pagecache.page)
474 		chip->pagecache.page = -1;
475 
476 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
477 
478 	if (ops->mode == MTD_OPS_RAW)
479 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
480 	else
481 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
482 
483 	nand_deselect_target(chip);
484 
485 	if (status)
486 		return status;
487 
488 	ops->oobretlen = ops->ooblen;
489 
490 	return 0;
491 }
492 
493 /**
494  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
495  * @chip: NAND chip object
496  * @ofs: offset from device start
497  *
498  * This is the default implementation, which can be overridden by a hardware
499  * specific driver. It provides the details for writing a bad block marker to a
500  * block.
501  */
502 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
503 {
504 	struct mtd_info *mtd = nand_to_mtd(chip);
505 	struct mtd_oob_ops ops;
506 	uint8_t buf[2] = { 0, 0 };
507 	int ret = 0, res, page_offset;
508 
509 	memset(&ops, 0, sizeof(ops));
510 	ops.oobbuf = buf;
511 	ops.ooboffs = chip->badblockpos;
512 	if (chip->options & NAND_BUSWIDTH_16) {
513 		ops.ooboffs &= ~0x01;
514 		ops.len = ops.ooblen = 2;
515 	} else {
516 		ops.len = ops.ooblen = 1;
517 	}
518 	ops.mode = MTD_OPS_PLACE_OOB;
519 
520 	page_offset = nand_bbm_get_next_page(chip, 0);
521 
522 	while (page_offset >= 0) {
523 		res = nand_do_write_oob(chip,
524 					ofs + (page_offset * mtd->writesize),
525 					&ops);
526 
527 		if (!ret)
528 			ret = res;
529 
530 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
531 	}
532 
533 	return ret;
534 }
535 
536 /**
537  * nand_markbad_bbm - mark a block by updating the BBM
538  * @chip: NAND chip object
539  * @ofs: offset of the block to mark bad
540  */
541 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
542 {
543 	if (chip->legacy.block_markbad)
544 		return chip->legacy.block_markbad(chip, ofs);
545 
546 	return nand_default_block_markbad(chip, ofs);
547 }
548 
549 /**
550  * nand_block_markbad_lowlevel - mark a block bad
551  * @chip: NAND chip object
552  * @ofs: offset from device start
553  *
554  * This function performs the generic NAND bad block marking steps (i.e., bad
555  * block table(s) and/or marker(s)). We only allow the hardware driver to
556  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
557  *
558  * We try operations in the following order:
559  *
560  *  (1) erase the affected block, to allow OOB marker to be written cleanly
561  *  (2) write bad block marker to OOB area of affected block (unless flag
562  *      NAND_BBT_NO_OOB_BBM is present)
563  *  (3) update the BBT
564  *
565  * Note that we retain the first error encountered in (2) or (3), finish the
566  * procedures, and dump the error in the end.
567 */
568 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
569 {
570 	struct mtd_info *mtd = nand_to_mtd(chip);
571 	int res, ret = 0;
572 
573 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
574 		struct erase_info einfo;
575 
576 		/* Attempt erase before marking OOB */
577 		memset(&einfo, 0, sizeof(einfo));
578 		einfo.addr = ofs;
579 		einfo.len = 1ULL << chip->phys_erase_shift;
580 		nand_erase_nand(chip, &einfo, 0);
581 
582 		/* Write bad block marker to OOB */
583 		nand_get_device(chip);
584 
585 		ret = nand_markbad_bbm(chip, ofs);
586 		nand_release_device(chip);
587 	}
588 
589 	/* Mark block bad in BBT */
590 	if (chip->bbt) {
591 		res = nand_markbad_bbt(chip, ofs);
592 		if (!ret)
593 			ret = res;
594 	}
595 
596 	if (!ret)
597 		mtd->ecc_stats.badblocks++;
598 
599 	return ret;
600 }
601 
602 /**
603  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
604  * @mtd: MTD device structure
605  * @ofs: offset from device start
606  *
607  * Check if the block is marked as reserved.
608  */
609 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
610 {
611 	struct nand_chip *chip = mtd_to_nand(mtd);
612 
613 	if (!chip->bbt)
614 		return 0;
615 	/* Return info from the table */
616 	return nand_isreserved_bbt(chip, ofs);
617 }
618 
619 /**
620  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
621  * @chip: NAND chip object
622  * @ofs: offset from device start
623  * @allowbbt: 1, if its allowed to access the bbt area
624  *
625  * Check, if the block is bad. Either by reading the bad block table or
626  * calling of the scan function.
627  */
628 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
629 {
630 	/* Return info from the table */
631 	if (chip->bbt)
632 		return nand_isbad_bbt(chip, ofs, allowbbt);
633 
634 	return nand_isbad_bbm(chip, ofs);
635 }
636 
637 /**
638  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
639  * @chip: NAND chip structure
640  * @timeout_ms: Timeout in ms
641  *
642  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
643  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
644  * returned.
645  *
646  * This helper is intended to be used when the controller does not have access
647  * to the NAND R/B pin.
648  *
649  * Be aware that calling this helper from an ->exec_op() implementation means
650  * ->exec_op() must be re-entrant.
651  *
652  * Return 0 if the NAND chip is ready, a negative error otherwise.
653  */
654 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
655 {
656 	const struct nand_interface_config *conf;
657 	u8 status = 0;
658 	int ret;
659 
660 	if (!nand_has_exec_op(chip))
661 		return -ENOTSUPP;
662 
663 	/* Wait tWB before polling the STATUS reg. */
664 	conf = nand_get_interface_config(chip);
665 	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
666 
667 	ret = nand_status_op(chip, NULL);
668 	if (ret)
669 		return ret;
670 
671 	/*
672 	 * +1 below is necessary because if we are now in the last fraction
673 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
674 	 * small jiffy fraction - possibly leading to false timeout
675 	 */
676 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
677 	do {
678 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
679 					false);
680 		if (ret)
681 			break;
682 
683 		if (status & NAND_STATUS_READY)
684 			break;
685 
686 		/*
687 		 * Typical lowest execution time for a tR on most NANDs is 10us,
688 		 * use this as polling delay before doing something smarter (ie.
689 		 * deriving a delay from the timeout value, timeout_ms/ratio).
690 		 */
691 		udelay(10);
692 	} while	(time_before(jiffies, timeout_ms));
693 
694 	/*
695 	 * We have to exit READ_STATUS mode in order to read real data on the
696 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
697 	 * instruction.
698 	 */
699 	nand_exit_status_op(chip);
700 
701 	if (ret)
702 		return ret;
703 
704 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
705 };
706 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
707 
708 /**
709  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
710  * @chip: NAND chip structure
711  * @gpiod: GPIO descriptor of R/B pin
712  * @timeout_ms: Timeout in ms
713  *
714  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
715  * whitin the specified timeout, -ETIMEDOUT is returned.
716  *
717  * This helper is intended to be used when the controller has access to the
718  * NAND R/B pin over GPIO.
719  *
720  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
721  */
722 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
723 		      unsigned long timeout_ms)
724 {
725 
726 	/*
727 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
728 	 * +1 below is necessary because if we are now in the last fraction
729 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
730 	 * small jiffy fraction - possibly leading to false timeout.
731 	 */
732 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
733 	do {
734 		if (gpiod_get_value_cansleep(gpiod))
735 			return 0;
736 
737 		cond_resched();
738 	} while	(time_before(jiffies, timeout_ms));
739 
740 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
741 };
742 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
743 
744 /**
745  * panic_nand_wait - [GENERIC] wait until the command is done
746  * @chip: NAND chip structure
747  * @timeo: timeout
748  *
749  * Wait for command done. This is a helper function for nand_wait used when
750  * we are in interrupt context. May happen when in panic and trying to write
751  * an oops through mtdoops.
752  */
753 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
754 {
755 	int i;
756 	for (i = 0; i < timeo; i++) {
757 		if (chip->legacy.dev_ready) {
758 			if (chip->legacy.dev_ready(chip))
759 				break;
760 		} else {
761 			int ret;
762 			u8 status;
763 
764 			ret = nand_read_data_op(chip, &status, sizeof(status),
765 						true, false);
766 			if (ret)
767 				return;
768 
769 			if (status & NAND_STATUS_READY)
770 				break;
771 		}
772 		mdelay(1);
773 	}
774 }
775 
776 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
777 {
778 	return (chip->parameters.supports_set_get_features &&
779 		test_bit(addr, chip->parameters.get_feature_list));
780 }
781 
782 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
783 {
784 	return (chip->parameters.supports_set_get_features &&
785 		test_bit(addr, chip->parameters.set_feature_list));
786 }
787 
788 /**
789  * nand_reset_interface - Reset data interface and timings
790  * @chip: The NAND chip
791  * @chipnr: Internal die id
792  *
793  * Reset the Data interface and timings to ONFI mode 0.
794  *
795  * Returns 0 for success or negative error code otherwise.
796  */
797 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
798 {
799 	const struct nand_controller_ops *ops = chip->controller->ops;
800 	int ret;
801 
802 	if (!nand_controller_can_setup_interface(chip))
803 		return 0;
804 
805 	/*
806 	 * The ONFI specification says:
807 	 * "
808 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
809 	 * interface, the host shall use the Reset (FFh) command
810 	 * using SDR timing mode 0. A device in any timing mode is
811 	 * required to recognize Reset (FFh) command issued in SDR
812 	 * timing mode 0.
813 	 * "
814 	 *
815 	 * Configure the data interface in SDR mode and set the
816 	 * timings to timing mode 0.
817 	 */
818 
819 	chip->current_interface_config = nand_get_reset_interface_config();
820 	ret = ops->setup_interface(chip, chipnr,
821 				   chip->current_interface_config);
822 	if (ret)
823 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
824 
825 	return ret;
826 }
827 
828 /**
829  * nand_setup_interface - Setup the best data interface and timings
830  * @chip: The NAND chip
831  * @chipnr: Internal die id
832  *
833  * Configure what has been reported to be the best data interface and NAND
834  * timings supported by the chip and the driver.
835  *
836  * Returns 0 for success or negative error code otherwise.
837  */
838 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
839 {
840 	const struct nand_controller_ops *ops = chip->controller->ops;
841 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
842 	int ret;
843 
844 	if (!nand_controller_can_setup_interface(chip))
845 		return 0;
846 
847 	/*
848 	 * A nand_reset_interface() put both the NAND chip and the NAND
849 	 * controller in timings mode 0. If the default mode for this chip is
850 	 * also 0, no need to proceed to the change again. Plus, at probe time,
851 	 * nand_setup_interface() uses ->set/get_features() which would
852 	 * fail anyway as the parameter page is not available yet.
853 	 */
854 	if (!chip->best_interface_config)
855 		return 0;
856 
857 	request = chip->best_interface_config->timings.mode;
858 	if (nand_interface_is_sdr(chip->best_interface_config))
859 		request |= ONFI_DATA_INTERFACE_SDR;
860 	else
861 		request |= ONFI_DATA_INTERFACE_NVDDR;
862 	tmode_param[0] = request;
863 
864 	/* Change the mode on the chip side (if supported by the NAND chip) */
865 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
866 		nand_select_target(chip, chipnr);
867 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
868 					tmode_param);
869 		nand_deselect_target(chip);
870 		if (ret)
871 			return ret;
872 	}
873 
874 	/* Change the mode on the controller side */
875 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
876 	if (ret)
877 		return ret;
878 
879 	/* Check the mode has been accepted by the chip, if supported */
880 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
881 		goto update_interface_config;
882 
883 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
884 	nand_select_target(chip, chipnr);
885 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
886 				tmode_param);
887 	nand_deselect_target(chip);
888 	if (ret)
889 		goto err_reset_chip;
890 
891 	if (request != tmode_param[0]) {
892 		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
893 			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
894 			chip->best_interface_config->timings.mode);
895 		pr_debug("NAND chip would work in %s timing mode %d\n",
896 			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
897 			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
898 		goto err_reset_chip;
899 	}
900 
901 update_interface_config:
902 	chip->current_interface_config = chip->best_interface_config;
903 
904 	return 0;
905 
906 err_reset_chip:
907 	/*
908 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
909 	 * timing mode.
910 	 */
911 	nand_reset_interface(chip, chipnr);
912 	nand_select_target(chip, chipnr);
913 	nand_reset_op(chip);
914 	nand_deselect_target(chip);
915 
916 	return ret;
917 }
918 
919 /**
920  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
921  *                                NAND controller and the NAND chip support
922  * @chip: the NAND chip
923  * @iface: the interface configuration (can eventually be updated)
924  * @spec_timings: specific timings, when not fitting the ONFI specification
925  *
926  * If specific timings are provided, use them. Otherwise, retrieve supported
927  * timing modes from ONFI information.
928  */
929 int nand_choose_best_sdr_timings(struct nand_chip *chip,
930 				 struct nand_interface_config *iface,
931 				 struct nand_sdr_timings *spec_timings)
932 {
933 	const struct nand_controller_ops *ops = chip->controller->ops;
934 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
935 
936 	iface->type = NAND_SDR_IFACE;
937 
938 	if (spec_timings) {
939 		iface->timings.sdr = *spec_timings;
940 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
941 
942 		/* Verify the controller supports the requested interface */
943 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
944 					   iface);
945 		if (!ret) {
946 			chip->best_interface_config = iface;
947 			return ret;
948 		}
949 
950 		/* Fallback to slower modes */
951 		best_mode = iface->timings.mode;
952 	} else if (chip->parameters.onfi) {
953 		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
954 	}
955 
956 	for (mode = best_mode; mode >= 0; mode--) {
957 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
958 
959 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
960 					   iface);
961 		if (!ret) {
962 			chip->best_interface_config = iface;
963 			break;
964 		}
965 	}
966 
967 	return ret;
968 }
969 
970 /**
971  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
972  *                                  NAND controller and the NAND chip support
973  * @chip: the NAND chip
974  * @iface: the interface configuration (can eventually be updated)
975  * @spec_timings: specific timings, when not fitting the ONFI specification
976  *
977  * If specific timings are provided, use them. Otherwise, retrieve supported
978  * timing modes from ONFI information.
979  */
980 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
981 				   struct nand_interface_config *iface,
982 				   struct nand_nvddr_timings *spec_timings)
983 {
984 	const struct nand_controller_ops *ops = chip->controller->ops;
985 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
986 
987 	iface->type = NAND_NVDDR_IFACE;
988 
989 	if (spec_timings) {
990 		iface->timings.nvddr = *spec_timings;
991 		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
992 
993 		/* Verify the controller supports the requested interface */
994 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
995 					   iface);
996 		if (!ret) {
997 			chip->best_interface_config = iface;
998 			return ret;
999 		}
1000 
1001 		/* Fallback to slower modes */
1002 		best_mode = iface->timings.mode;
1003 	} else if (chip->parameters.onfi) {
1004 		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1005 	}
1006 
1007 	for (mode = best_mode; mode >= 0; mode--) {
1008 		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1009 
1010 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1011 					   iface);
1012 		if (!ret) {
1013 			chip->best_interface_config = iface;
1014 			break;
1015 		}
1016 	}
1017 
1018 	return ret;
1019 }
1020 
1021 /**
1022  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1023  *                            NAND controller and the NAND chip support
1024  * @chip: the NAND chip
1025  * @iface: the interface configuration (can eventually be updated)
1026  *
1027  * If specific timings are provided, use them. Otherwise, retrieve supported
1028  * timing modes from ONFI information.
1029  */
1030 static int nand_choose_best_timings(struct nand_chip *chip,
1031 				    struct nand_interface_config *iface)
1032 {
1033 	int ret;
1034 
1035 	/* Try the fastest timings: NV-DDR */
1036 	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1037 	if (!ret)
1038 		return 0;
1039 
1040 	/* Fallback to SDR timings otherwise */
1041 	return nand_choose_best_sdr_timings(chip, iface, NULL);
1042 }
1043 
1044 /**
1045  * nand_choose_interface_config - find the best data interface and timings
1046  * @chip: The NAND chip
1047  *
1048  * Find the best data interface and NAND timings supported by the chip
1049  * and the driver. Eventually let the NAND manufacturer driver propose his own
1050  * set of timings.
1051  *
1052  * After this function nand_chip->interface_config is initialized with the best
1053  * timing mode available.
1054  *
1055  * Returns 0 for success or negative error code otherwise.
1056  */
1057 static int nand_choose_interface_config(struct nand_chip *chip)
1058 {
1059 	struct nand_interface_config *iface;
1060 	int ret;
1061 
1062 	if (!nand_controller_can_setup_interface(chip))
1063 		return 0;
1064 
1065 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1066 	if (!iface)
1067 		return -ENOMEM;
1068 
1069 	if (chip->ops.choose_interface_config)
1070 		ret = chip->ops.choose_interface_config(chip, iface);
1071 	else
1072 		ret = nand_choose_best_timings(chip, iface);
1073 
1074 	if (ret)
1075 		kfree(iface);
1076 
1077 	return ret;
1078 }
1079 
1080 /**
1081  * nand_fill_column_cycles - fill the column cycles of an address
1082  * @chip: The NAND chip
1083  * @addrs: Array of address cycles to fill
1084  * @offset_in_page: The offset in the page
1085  *
1086  * Fills the first or the first two bytes of the @addrs field depending
1087  * on the NAND bus width and the page size.
1088  *
1089  * Returns the number of cycles needed to encode the column, or a negative
1090  * error code in case one of the arguments is invalid.
1091  */
1092 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1093 				   unsigned int offset_in_page)
1094 {
1095 	struct mtd_info *mtd = nand_to_mtd(chip);
1096 	bool ident_stage = !mtd->writesize;
1097 
1098 	/* Bypass all checks during NAND identification */
1099 	if (likely(!ident_stage)) {
1100 		/* Make sure the offset is less than the actual page size. */
1101 		if (offset_in_page > mtd->writesize + mtd->oobsize)
1102 			return -EINVAL;
1103 
1104 		/*
1105 		 * On small page NANDs, there's a dedicated command to access the OOB
1106 		 * area, and the column address is relative to the start of the OOB
1107 		 * area, not the start of the page. Asjust the address accordingly.
1108 		 */
1109 		if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1110 			offset_in_page -= mtd->writesize;
1111 
1112 		/*
1113 		 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1114 		 * wide, then it must be divided by 2.
1115 		 */
1116 		if (chip->options & NAND_BUSWIDTH_16) {
1117 			if (WARN_ON(offset_in_page % 2))
1118 				return -EINVAL;
1119 
1120 			offset_in_page /= 2;
1121 		}
1122 	}
1123 
1124 	addrs[0] = offset_in_page;
1125 
1126 	/*
1127 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1128 	 * need 2
1129 	 */
1130 	if (!ident_stage && mtd->writesize <= 512)
1131 		return 1;
1132 
1133 	addrs[1] = offset_in_page >> 8;
1134 
1135 	return 2;
1136 }
1137 
1138 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1139 				     unsigned int offset_in_page, void *buf,
1140 				     unsigned int len)
1141 {
1142 	const struct nand_interface_config *conf =
1143 		nand_get_interface_config(chip);
1144 	struct mtd_info *mtd = nand_to_mtd(chip);
1145 	u8 addrs[4];
1146 	struct nand_op_instr instrs[] = {
1147 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1148 		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1149 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1150 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1151 		NAND_OP_DATA_IN(len, buf, 0),
1152 	};
1153 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1154 	int ret;
1155 
1156 	/* Drop the DATA_IN instruction if len is set to 0. */
1157 	if (!len)
1158 		op.ninstrs--;
1159 
1160 	if (offset_in_page >= mtd->writesize)
1161 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1162 	else if (offset_in_page >= 256 &&
1163 		 !(chip->options & NAND_BUSWIDTH_16))
1164 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1165 
1166 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1167 	if (ret < 0)
1168 		return ret;
1169 
1170 	addrs[1] = page;
1171 	addrs[2] = page >> 8;
1172 
1173 	if (chip->options & NAND_ROW_ADDR_3) {
1174 		addrs[3] = page >> 16;
1175 		instrs[1].ctx.addr.naddrs++;
1176 	}
1177 
1178 	return nand_exec_op(chip, &op);
1179 }
1180 
1181 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1182 				     unsigned int offset_in_page, void *buf,
1183 				     unsigned int len)
1184 {
1185 	const struct nand_interface_config *conf =
1186 		nand_get_interface_config(chip);
1187 	u8 addrs[5];
1188 	struct nand_op_instr instrs[] = {
1189 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1190 		NAND_OP_ADDR(4, addrs, 0),
1191 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1192 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1193 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1194 		NAND_OP_DATA_IN(len, buf, 0),
1195 	};
1196 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1197 	int ret;
1198 
1199 	/* Drop the DATA_IN instruction if len is set to 0. */
1200 	if (!len)
1201 		op.ninstrs--;
1202 
1203 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	addrs[2] = page;
1208 	addrs[3] = page >> 8;
1209 
1210 	if (chip->options & NAND_ROW_ADDR_3) {
1211 		addrs[4] = page >> 16;
1212 		instrs[1].ctx.addr.naddrs++;
1213 	}
1214 
1215 	return nand_exec_op(chip, &op);
1216 }
1217 
1218 static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
1219 {
1220 	/* lun is expected to be very small */
1221 	return (lun * pages_per_lun) + pages_per_lun - 1;
1222 }
1223 
1224 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1225 {
1226 	struct nand_memory_organization *memorg;
1227 	unsigned int ppl, first_lun, last_lun;
1228 
1229 	memorg = nanddev_get_memorg(&chip->base);
1230 	ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1231 	first_lun = chip->cont_read.first_page / ppl;
1232 	last_lun = chip->cont_read.last_page / ppl;
1233 
1234 	/* Prevent sequential cache reads across LUN boundaries */
1235 	if (first_lun != last_lun)
1236 		chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun);
1237 	else
1238 		chip->cont_read.pause_page = chip->cont_read.last_page;
1239 
1240 	if (chip->cont_read.first_page == chip->cont_read.pause_page) {
1241 		chip->cont_read.first_page++;
1242 		chip->cont_read.pause_page = min(chip->cont_read.last_page,
1243 						 rawnand_last_page_of_lun(ppl, first_lun + 1));
1244 	}
1245 
1246 	if (chip->cont_read.first_page >= chip->cont_read.last_page)
1247 		chip->cont_read.ongoing = false;
1248 }
1249 
1250 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1251 					  unsigned int offset_in_page, void *buf,
1252 					  unsigned int len, bool check_only)
1253 {
1254 	const struct nand_interface_config *conf =
1255 		nand_get_interface_config(chip);
1256 	u8 addrs[5];
1257 	struct nand_op_instr start_instrs[] = {
1258 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1259 		NAND_OP_ADDR(4, addrs, 0),
1260 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1261 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1262 		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1263 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1264 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1265 		NAND_OP_DATA_IN(len, buf, 0),
1266 	};
1267 	struct nand_op_instr cont_instrs[] = {
1268 		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1269 			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1270 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1271 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1272 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1273 		NAND_OP_DATA_IN(len, buf, 0),
1274 	};
1275 	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1276 	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1277 	int ret;
1278 
1279 	if (!len) {
1280 		start_op.ninstrs--;
1281 		cont_op.ninstrs--;
1282 	}
1283 
1284 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1285 	if (ret < 0)
1286 		return ret;
1287 
1288 	addrs[2] = page;
1289 	addrs[3] = page >> 8;
1290 
1291 	if (chip->options & NAND_ROW_ADDR_3) {
1292 		addrs[4] = page >> 16;
1293 		start_instrs[1].ctx.addr.naddrs++;
1294 	}
1295 
1296 	/* Check if cache reads are supported */
1297 	if (check_only) {
1298 		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1299 			return -EOPNOTSUPP;
1300 
1301 		return 0;
1302 	}
1303 
1304 	if (page == chip->cont_read.first_page)
1305 		ret = nand_exec_op(chip, &start_op);
1306 	else
1307 		ret = nand_exec_op(chip, &cont_op);
1308 	if (ret)
1309 		return ret;
1310 
1311 	if (!chip->cont_read.ongoing)
1312 		return 0;
1313 
1314 	if (page == chip->cont_read.last_page) {
1315 		chip->cont_read.ongoing = false;
1316 	} else if (page == chip->cont_read.pause_page) {
1317 		chip->cont_read.first_page++;
1318 		rawnand_cap_cont_reads(chip);
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1325 {
1326 	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1327 }
1328 
1329 /**
1330  * nand_read_page_op - Do a READ PAGE operation
1331  * @chip: The NAND chip
1332  * @page: page to read
1333  * @offset_in_page: offset within the page
1334  * @buf: buffer used to store the data
1335  * @len: length of the buffer
1336  *
1337  * This function issues a READ PAGE operation.
1338  * This function does not select/unselect the CS line.
1339  *
1340  * Returns 0 on success, a negative error code otherwise.
1341  */
1342 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1343 		      unsigned int offset_in_page, void *buf, unsigned int len)
1344 {
1345 	struct mtd_info *mtd = nand_to_mtd(chip);
1346 
1347 	if (len && !buf)
1348 		return -EINVAL;
1349 
1350 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1351 		return -EINVAL;
1352 
1353 	if (nand_has_exec_op(chip)) {
1354 		if (mtd->writesize > 512) {
1355 			if (rawnand_cont_read_ongoing(chip, page))
1356 				return nand_lp_exec_cont_read_page_op(chip, page,
1357 								      offset_in_page,
1358 								      buf, len, false);
1359 			else
1360 				return nand_lp_exec_read_page_op(chip, page,
1361 								 offset_in_page, buf,
1362 								 len);
1363 		}
1364 
1365 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1366 						 buf, len);
1367 	}
1368 
1369 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1370 	if (len)
1371 		chip->legacy.read_buf(chip, buf, len);
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(nand_read_page_op);
1376 
1377 /**
1378  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1379  * @chip: The NAND chip
1380  * @page: parameter page to read
1381  * @buf: buffer used to store the data
1382  * @len: length of the buffer
1383  *
1384  * This function issues a READ PARAMETER PAGE operation.
1385  * This function does not select/unselect the CS line.
1386  *
1387  * Returns 0 on success, a negative error code otherwise.
1388  */
1389 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1390 			    unsigned int len)
1391 {
1392 	unsigned int i;
1393 	u8 *p = buf;
1394 
1395 	if (len && !buf)
1396 		return -EINVAL;
1397 
1398 	if (nand_has_exec_op(chip)) {
1399 		const struct nand_interface_config *conf =
1400 			nand_get_interface_config(chip);
1401 		struct nand_op_instr instrs[] = {
1402 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1403 			NAND_OP_ADDR(1, &page,
1404 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1405 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1406 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1407 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1408 		};
1409 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1410 
1411 		/* Drop the DATA_IN instruction if len is set to 0. */
1412 		if (!len)
1413 			op.ninstrs--;
1414 
1415 		return nand_exec_op(chip, &op);
1416 	}
1417 
1418 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1419 	for (i = 0; i < len; i++)
1420 		p[i] = chip->legacy.read_byte(chip);
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1427  * @chip: The NAND chip
1428  * @offset_in_page: offset within the page
1429  * @buf: buffer used to store the data
1430  * @len: length of the buffer
1431  * @force_8bit: force 8-bit bus access
1432  *
1433  * This function issues a CHANGE READ COLUMN operation.
1434  * This function does not select/unselect the CS line.
1435  *
1436  * Returns 0 on success, a negative error code otherwise.
1437  */
1438 int nand_change_read_column_op(struct nand_chip *chip,
1439 			       unsigned int offset_in_page, void *buf,
1440 			       unsigned int len, bool force_8bit)
1441 {
1442 	struct mtd_info *mtd = nand_to_mtd(chip);
1443 	bool ident_stage = !mtd->writesize;
1444 
1445 	if (len && !buf)
1446 		return -EINVAL;
1447 
1448 	if (!ident_stage) {
1449 		if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1450 			return -EINVAL;
1451 
1452 		/* Small page NANDs do not support column change. */
1453 		if (mtd->writesize <= 512)
1454 			return -ENOTSUPP;
1455 	}
1456 
1457 	if (nand_has_exec_op(chip)) {
1458 		const struct nand_interface_config *conf =
1459 			nand_get_interface_config(chip);
1460 		u8 addrs[2] = {};
1461 		struct nand_op_instr instrs[] = {
1462 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1463 			NAND_OP_ADDR(2, addrs, 0),
1464 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1465 				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1466 			NAND_OP_DATA_IN(len, buf, 0),
1467 		};
1468 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1469 		int ret;
1470 
1471 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1472 		if (ret < 0)
1473 			return ret;
1474 
1475 		/* Drop the DATA_IN instruction if len is set to 0. */
1476 		if (!len)
1477 			op.ninstrs--;
1478 
1479 		instrs[3].ctx.data.force_8bit = force_8bit;
1480 
1481 		return nand_exec_op(chip, &op);
1482 	}
1483 
1484 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1485 	if (len)
1486 		chip->legacy.read_buf(chip, buf, len);
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1491 
1492 /**
1493  * nand_read_oob_op - Do a READ OOB operation
1494  * @chip: The NAND chip
1495  * @page: page to read
1496  * @offset_in_oob: offset within the OOB area
1497  * @buf: buffer used to store the data
1498  * @len: length of the buffer
1499  *
1500  * This function issues a READ OOB operation.
1501  * This function does not select/unselect the CS line.
1502  *
1503  * Returns 0 on success, a negative error code otherwise.
1504  */
1505 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1506 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1507 {
1508 	struct mtd_info *mtd = nand_to_mtd(chip);
1509 
1510 	if (len && !buf)
1511 		return -EINVAL;
1512 
1513 	if (offset_in_oob + len > mtd->oobsize)
1514 		return -EINVAL;
1515 
1516 	if (nand_has_exec_op(chip))
1517 		return nand_read_page_op(chip, page,
1518 					 mtd->writesize + offset_in_oob,
1519 					 buf, len);
1520 
1521 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1522 	if (len)
1523 		chip->legacy.read_buf(chip, buf, len);
1524 
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1528 
1529 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1530 				  unsigned int offset_in_page, const void *buf,
1531 				  unsigned int len, bool prog)
1532 {
1533 	const struct nand_interface_config *conf =
1534 		nand_get_interface_config(chip);
1535 	struct mtd_info *mtd = nand_to_mtd(chip);
1536 	u8 addrs[5] = {};
1537 	struct nand_op_instr instrs[] = {
1538 		/*
1539 		 * The first instruction will be dropped if we're dealing
1540 		 * with a large page NAND and adjusted if we're dealing
1541 		 * with a small page NAND and the page offset is > 255.
1542 		 */
1543 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1544 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1545 		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1546 		NAND_OP_DATA_OUT(len, buf, 0),
1547 		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1548 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1549 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1550 	};
1551 	struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1552 							      instrs);
1553 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1554 
1555 	if (naddrs < 0)
1556 		return naddrs;
1557 
1558 	addrs[naddrs++] = page;
1559 	addrs[naddrs++] = page >> 8;
1560 	if (chip->options & NAND_ROW_ADDR_3)
1561 		addrs[naddrs++] = page >> 16;
1562 
1563 	instrs[2].ctx.addr.naddrs = naddrs;
1564 
1565 	/* Drop the last two instructions if we're not programming the page. */
1566 	if (!prog) {
1567 		op.ninstrs -= 2;
1568 		/* Also drop the DATA_OUT instruction if empty. */
1569 		if (!len)
1570 			op.ninstrs--;
1571 	}
1572 
1573 	if (mtd->writesize <= 512) {
1574 		/*
1575 		 * Small pages need some more tweaking: we have to adjust the
1576 		 * first instruction depending on the page offset we're trying
1577 		 * to access.
1578 		 */
1579 		if (offset_in_page >= mtd->writesize)
1580 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1581 		else if (offset_in_page >= 256 &&
1582 			 !(chip->options & NAND_BUSWIDTH_16))
1583 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1584 	} else {
1585 		/*
1586 		 * Drop the first command if we're dealing with a large page
1587 		 * NAND.
1588 		 */
1589 		op.instrs++;
1590 		op.ninstrs--;
1591 	}
1592 
1593 	return nand_exec_op(chip, &op);
1594 }
1595 
1596 /**
1597  * nand_prog_page_begin_op - starts a PROG PAGE operation
1598  * @chip: The NAND chip
1599  * @page: page to write
1600  * @offset_in_page: offset within the page
1601  * @buf: buffer containing the data to write to the page
1602  * @len: length of the buffer
1603  *
1604  * This function issues the first half of a PROG PAGE operation.
1605  * This function does not select/unselect the CS line.
1606  *
1607  * Returns 0 on success, a negative error code otherwise.
1608  */
1609 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1610 			    unsigned int offset_in_page, const void *buf,
1611 			    unsigned int len)
1612 {
1613 	struct mtd_info *mtd = nand_to_mtd(chip);
1614 
1615 	if (len && !buf)
1616 		return -EINVAL;
1617 
1618 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1619 		return -EINVAL;
1620 
1621 	if (nand_has_exec_op(chip))
1622 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1623 					      len, false);
1624 
1625 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1626 
1627 	if (buf)
1628 		chip->legacy.write_buf(chip, buf, len);
1629 
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1633 
1634 /**
1635  * nand_prog_page_end_op - ends a PROG PAGE operation
1636  * @chip: The NAND chip
1637  *
1638  * This function issues the second half of a PROG PAGE operation.
1639  * This function does not select/unselect the CS line.
1640  *
1641  * Returns 0 on success, a negative error code otherwise.
1642  */
1643 int nand_prog_page_end_op(struct nand_chip *chip)
1644 {
1645 	int ret;
1646 	u8 status;
1647 
1648 	if (nand_has_exec_op(chip)) {
1649 		const struct nand_interface_config *conf =
1650 			nand_get_interface_config(chip);
1651 		struct nand_op_instr instrs[] = {
1652 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1653 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1654 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1655 					 0),
1656 		};
1657 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1658 
1659 		ret = nand_exec_op(chip, &op);
1660 		if (ret)
1661 			return ret;
1662 
1663 		ret = nand_status_op(chip, &status);
1664 		if (ret)
1665 			return ret;
1666 	} else {
1667 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1668 		ret = chip->legacy.waitfunc(chip);
1669 		if (ret < 0)
1670 			return ret;
1671 
1672 		status = ret;
1673 	}
1674 
1675 	if (status & NAND_STATUS_FAIL)
1676 		return -EIO;
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1681 
1682 /**
1683  * nand_prog_page_op - Do a full PROG PAGE operation
1684  * @chip: The NAND chip
1685  * @page: page to write
1686  * @offset_in_page: offset within the page
1687  * @buf: buffer containing the data to write to the page
1688  * @len: length of the buffer
1689  *
1690  * This function issues a full PROG PAGE operation.
1691  * This function does not select/unselect the CS line.
1692  *
1693  * Returns 0 on success, a negative error code otherwise.
1694  */
1695 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1696 		      unsigned int offset_in_page, const void *buf,
1697 		      unsigned int len)
1698 {
1699 	struct mtd_info *mtd = nand_to_mtd(chip);
1700 	u8 status;
1701 	int ret;
1702 
1703 	if (!len || !buf)
1704 		return -EINVAL;
1705 
1706 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1707 		return -EINVAL;
1708 
1709 	if (nand_has_exec_op(chip)) {
1710 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1711 						len, true);
1712 		if (ret)
1713 			return ret;
1714 
1715 		ret = nand_status_op(chip, &status);
1716 		if (ret)
1717 			return ret;
1718 	} else {
1719 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1720 				     page);
1721 		chip->legacy.write_buf(chip, buf, len);
1722 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1723 		ret = chip->legacy.waitfunc(chip);
1724 		if (ret < 0)
1725 			return ret;
1726 
1727 		status = ret;
1728 	}
1729 
1730 	if (status & NAND_STATUS_FAIL)
1731 		return -EIO;
1732 
1733 	return 0;
1734 }
1735 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1736 
1737 /**
1738  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1739  * @chip: The NAND chip
1740  * @offset_in_page: offset within the page
1741  * @buf: buffer containing the data to send to the NAND
1742  * @len: length of the buffer
1743  * @force_8bit: force 8-bit bus access
1744  *
1745  * This function issues a CHANGE WRITE COLUMN operation.
1746  * This function does not select/unselect the CS line.
1747  *
1748  * Returns 0 on success, a negative error code otherwise.
1749  */
1750 int nand_change_write_column_op(struct nand_chip *chip,
1751 				unsigned int offset_in_page,
1752 				const void *buf, unsigned int len,
1753 				bool force_8bit)
1754 {
1755 	struct mtd_info *mtd = nand_to_mtd(chip);
1756 
1757 	if (len && !buf)
1758 		return -EINVAL;
1759 
1760 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1761 		return -EINVAL;
1762 
1763 	/* Small page NANDs do not support column change. */
1764 	if (mtd->writesize <= 512)
1765 		return -ENOTSUPP;
1766 
1767 	if (nand_has_exec_op(chip)) {
1768 		const struct nand_interface_config *conf =
1769 			nand_get_interface_config(chip);
1770 		u8 addrs[2];
1771 		struct nand_op_instr instrs[] = {
1772 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1773 			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1774 			NAND_OP_DATA_OUT(len, buf, 0),
1775 		};
1776 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1777 		int ret;
1778 
1779 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1780 		if (ret < 0)
1781 			return ret;
1782 
1783 		instrs[2].ctx.data.force_8bit = force_8bit;
1784 
1785 		/* Drop the DATA_OUT instruction if len is set to 0. */
1786 		if (!len)
1787 			op.ninstrs--;
1788 
1789 		return nand_exec_op(chip, &op);
1790 	}
1791 
1792 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1793 	if (len)
1794 		chip->legacy.write_buf(chip, buf, len);
1795 
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1799 
1800 /**
1801  * nand_readid_op - Do a READID operation
1802  * @chip: The NAND chip
1803  * @addr: address cycle to pass after the READID command
1804  * @buf: buffer used to store the ID
1805  * @len: length of the buffer
1806  *
1807  * This function sends a READID command and reads back the ID returned by the
1808  * NAND.
1809  * This function does not select/unselect the CS line.
1810  *
1811  * Returns 0 on success, a negative error code otherwise.
1812  */
1813 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1814 		   unsigned int len)
1815 {
1816 	unsigned int i;
1817 	u8 *id = buf, *ddrbuf = NULL;
1818 
1819 	if (len && !buf)
1820 		return -EINVAL;
1821 
1822 	if (nand_has_exec_op(chip)) {
1823 		const struct nand_interface_config *conf =
1824 			nand_get_interface_config(chip);
1825 		struct nand_op_instr instrs[] = {
1826 			NAND_OP_CMD(NAND_CMD_READID, 0),
1827 			NAND_OP_ADDR(1, &addr,
1828 				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1829 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1830 		};
1831 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1832 		int ret;
1833 
1834 		/* READ_ID data bytes are received twice in NV-DDR mode */
1835 		if (len && nand_interface_is_nvddr(conf)) {
1836 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1837 			if (!ddrbuf)
1838 				return -ENOMEM;
1839 
1840 			instrs[2].ctx.data.len *= 2;
1841 			instrs[2].ctx.data.buf.in = ddrbuf;
1842 		}
1843 
1844 		/* Drop the DATA_IN instruction if len is set to 0. */
1845 		if (!len)
1846 			op.ninstrs--;
1847 
1848 		ret = nand_exec_op(chip, &op);
1849 		if (!ret && len && nand_interface_is_nvddr(conf)) {
1850 			for (i = 0; i < len; i++)
1851 				id[i] = ddrbuf[i * 2];
1852 		}
1853 
1854 		kfree(ddrbuf);
1855 
1856 		return ret;
1857 	}
1858 
1859 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1860 
1861 	for (i = 0; i < len; i++)
1862 		id[i] = chip->legacy.read_byte(chip);
1863 
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(nand_readid_op);
1867 
1868 /**
1869  * nand_status_op - Do a STATUS operation
1870  * @chip: The NAND chip
1871  * @status: out variable to store the NAND status
1872  *
1873  * This function sends a STATUS command and reads back the status returned by
1874  * the NAND.
1875  * This function does not select/unselect the CS line.
1876  *
1877  * Returns 0 on success, a negative error code otherwise.
1878  */
1879 int nand_status_op(struct nand_chip *chip, u8 *status)
1880 {
1881 	if (nand_has_exec_op(chip)) {
1882 		const struct nand_interface_config *conf =
1883 			nand_get_interface_config(chip);
1884 		u8 ddrstatus[2];
1885 		struct nand_op_instr instrs[] = {
1886 			NAND_OP_CMD(NAND_CMD_STATUS,
1887 				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1888 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1889 		};
1890 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1891 		int ret;
1892 
1893 		/* The status data byte will be received twice in NV-DDR mode */
1894 		if (status && nand_interface_is_nvddr(conf)) {
1895 			instrs[1].ctx.data.len *= 2;
1896 			instrs[1].ctx.data.buf.in = ddrstatus;
1897 		}
1898 
1899 		if (!status)
1900 			op.ninstrs--;
1901 
1902 		ret = nand_exec_op(chip, &op);
1903 		if (!ret && status && nand_interface_is_nvddr(conf))
1904 			*status = ddrstatus[0];
1905 
1906 		return ret;
1907 	}
1908 
1909 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1910 	if (status)
1911 		*status = chip->legacy.read_byte(chip);
1912 
1913 	return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(nand_status_op);
1916 
1917 /**
1918  * nand_exit_status_op - Exit a STATUS operation
1919  * @chip: The NAND chip
1920  *
1921  * This function sends a READ0 command to cancel the effect of the STATUS
1922  * command to avoid reading only the status until a new read command is sent.
1923  *
1924  * This function does not select/unselect the CS line.
1925  *
1926  * Returns 0 on success, a negative error code otherwise.
1927  */
1928 int nand_exit_status_op(struct nand_chip *chip)
1929 {
1930 	if (nand_has_exec_op(chip)) {
1931 		struct nand_op_instr instrs[] = {
1932 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1933 		};
1934 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1935 
1936 		return nand_exec_op(chip, &op);
1937 	}
1938 
1939 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1940 
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1944 
1945 /**
1946  * nand_erase_op - Do an erase operation
1947  * @chip: The NAND chip
1948  * @eraseblock: block to erase
1949  *
1950  * This function sends an ERASE command and waits for the NAND to be ready
1951  * before returning.
1952  * This function does not select/unselect the CS line.
1953  *
1954  * Returns 0 on success, a negative error code otherwise.
1955  */
1956 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1957 {
1958 	unsigned int page = eraseblock <<
1959 			    (chip->phys_erase_shift - chip->page_shift);
1960 	int ret;
1961 	u8 status;
1962 
1963 	if (nand_has_exec_op(chip)) {
1964 		const struct nand_interface_config *conf =
1965 			nand_get_interface_config(chip);
1966 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1967 		struct nand_op_instr instrs[] = {
1968 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1969 			NAND_OP_ADDR(2, addrs, 0),
1970 			NAND_OP_CMD(NAND_CMD_ERASE2,
1971 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1972 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1973 					 0),
1974 		};
1975 		struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1976 								      instrs);
1977 
1978 		if (chip->options & NAND_ROW_ADDR_3)
1979 			instrs[1].ctx.addr.naddrs++;
1980 
1981 		ret = nand_exec_op(chip, &op);
1982 		if (ret)
1983 			return ret;
1984 
1985 		ret = nand_status_op(chip, &status);
1986 		if (ret)
1987 			return ret;
1988 	} else {
1989 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1990 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1991 
1992 		ret = chip->legacy.waitfunc(chip);
1993 		if (ret < 0)
1994 			return ret;
1995 
1996 		status = ret;
1997 	}
1998 
1999 	if (status & NAND_STATUS_FAIL)
2000 		return -EIO;
2001 
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(nand_erase_op);
2005 
2006 /**
2007  * nand_set_features_op - Do a SET FEATURES operation
2008  * @chip: The NAND chip
2009  * @feature: feature id
2010  * @data: 4 bytes of data
2011  *
2012  * This function sends a SET FEATURES command and waits for the NAND to be
2013  * ready before returning.
2014  * This function does not select/unselect the CS line.
2015  *
2016  * Returns 0 on success, a negative error code otherwise.
2017  */
2018 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2019 				const void *data)
2020 {
2021 	const u8 *params = data;
2022 	int i, ret;
2023 
2024 	if (nand_has_exec_op(chip)) {
2025 		const struct nand_interface_config *conf =
2026 			nand_get_interface_config(chip);
2027 		struct nand_op_instr instrs[] = {
2028 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2029 			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2030 									tADL_min)),
2031 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2032 					      NAND_COMMON_TIMING_NS(conf,
2033 								    tWB_max)),
2034 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2035 					 0),
2036 		};
2037 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2038 
2039 		return nand_exec_op(chip, &op);
2040 	}
2041 
2042 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2043 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2044 		chip->legacy.write_byte(chip, params[i]);
2045 
2046 	ret = chip->legacy.waitfunc(chip);
2047 	if (ret < 0)
2048 		return ret;
2049 
2050 	if (ret & NAND_STATUS_FAIL)
2051 		return -EIO;
2052 
2053 	return 0;
2054 }
2055 
2056 /**
2057  * nand_get_features_op - Do a GET FEATURES operation
2058  * @chip: The NAND chip
2059  * @feature: feature id
2060  * @data: 4 bytes of data
2061  *
2062  * This function sends a GET FEATURES command and waits for the NAND to be
2063  * ready before returning.
2064  * This function does not select/unselect the CS line.
2065  *
2066  * Returns 0 on success, a negative error code otherwise.
2067  */
2068 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2069 				void *data)
2070 {
2071 	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2072 	int i;
2073 
2074 	if (nand_has_exec_op(chip)) {
2075 		const struct nand_interface_config *conf =
2076 			nand_get_interface_config(chip);
2077 		struct nand_op_instr instrs[] = {
2078 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2079 			NAND_OP_ADDR(1, &feature,
2080 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2081 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2082 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2083 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2084 					     data, 0),
2085 		};
2086 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2087 		int ret;
2088 
2089 		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2090 		if (nand_interface_is_nvddr(conf)) {
2091 			instrs[3].ctx.data.len *= 2;
2092 			instrs[3].ctx.data.buf.in = ddrbuf;
2093 		}
2094 
2095 		ret = nand_exec_op(chip, &op);
2096 		if (nand_interface_is_nvddr(conf)) {
2097 			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2098 				params[i] = ddrbuf[i * 2];
2099 		}
2100 
2101 		return ret;
2102 	}
2103 
2104 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2105 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2106 		params[i] = chip->legacy.read_byte(chip);
2107 
2108 	return 0;
2109 }
2110 
2111 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2112 			    unsigned int delay_ns)
2113 {
2114 	if (nand_has_exec_op(chip)) {
2115 		struct nand_op_instr instrs[] = {
2116 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2117 					 PSEC_TO_NSEC(delay_ns)),
2118 		};
2119 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2120 
2121 		return nand_exec_op(chip, &op);
2122 	}
2123 
2124 	/* Apply delay or wait for ready/busy pin */
2125 	if (!chip->legacy.dev_ready)
2126 		udelay(chip->legacy.chip_delay);
2127 	else
2128 		nand_wait_ready(chip);
2129 
2130 	return 0;
2131 }
2132 
2133 /**
2134  * nand_reset_op - Do a reset operation
2135  * @chip: The NAND chip
2136  *
2137  * This function sends a RESET command and waits for the NAND to be ready
2138  * before returning.
2139  * This function does not select/unselect the CS line.
2140  *
2141  * Returns 0 on success, a negative error code otherwise.
2142  */
2143 int nand_reset_op(struct nand_chip *chip)
2144 {
2145 	if (nand_has_exec_op(chip)) {
2146 		const struct nand_interface_config *conf =
2147 			nand_get_interface_config(chip);
2148 		struct nand_op_instr instrs[] = {
2149 			NAND_OP_CMD(NAND_CMD_RESET,
2150 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2151 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2152 					 0),
2153 		};
2154 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2155 
2156 		return nand_exec_op(chip, &op);
2157 	}
2158 
2159 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2160 
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(nand_reset_op);
2164 
2165 /**
2166  * nand_read_data_op - Read data from the NAND
2167  * @chip: The NAND chip
2168  * @buf: buffer used to store the data
2169  * @len: length of the buffer
2170  * @force_8bit: force 8-bit bus access
2171  * @check_only: do not actually run the command, only checks if the
2172  *              controller driver supports it
2173  *
2174  * This function does a raw data read on the bus. Usually used after launching
2175  * another NAND operation like nand_read_page_op().
2176  * This function does not select/unselect the CS line.
2177  *
2178  * Returns 0 on success, a negative error code otherwise.
2179  */
2180 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2181 		      bool force_8bit, bool check_only)
2182 {
2183 	if (!len || (!check_only && !buf))
2184 		return -EINVAL;
2185 
2186 	if (nand_has_exec_op(chip)) {
2187 		const struct nand_interface_config *conf =
2188 			nand_get_interface_config(chip);
2189 		struct nand_op_instr instrs[] = {
2190 			NAND_OP_DATA_IN(len, buf, 0),
2191 		};
2192 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2193 		u8 *ddrbuf = NULL;
2194 		int ret, i;
2195 
2196 		instrs[0].ctx.data.force_8bit = force_8bit;
2197 
2198 		/*
2199 		 * Parameter payloads (ID, status, features, etc) do not go
2200 		 * through the same pipeline as regular data, hence the
2201 		 * force_8bit flag must be set and this also indicates that in
2202 		 * case NV-DDR timings are being used the data will be received
2203 		 * twice.
2204 		 */
2205 		if (force_8bit && nand_interface_is_nvddr(conf)) {
2206 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2207 			if (!ddrbuf)
2208 				return -ENOMEM;
2209 
2210 			instrs[0].ctx.data.len *= 2;
2211 			instrs[0].ctx.data.buf.in = ddrbuf;
2212 		}
2213 
2214 		if (check_only) {
2215 			ret = nand_check_op(chip, &op);
2216 			kfree(ddrbuf);
2217 			return ret;
2218 		}
2219 
2220 		ret = nand_exec_op(chip, &op);
2221 		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2222 			u8 *dst = buf;
2223 
2224 			for (i = 0; i < len; i++)
2225 				dst[i] = ddrbuf[i * 2];
2226 		}
2227 
2228 		kfree(ddrbuf);
2229 
2230 		return ret;
2231 	}
2232 
2233 	if (check_only)
2234 		return 0;
2235 
2236 	if (force_8bit) {
2237 		u8 *p = buf;
2238 		unsigned int i;
2239 
2240 		for (i = 0; i < len; i++)
2241 			p[i] = chip->legacy.read_byte(chip);
2242 	} else {
2243 		chip->legacy.read_buf(chip, buf, len);
2244 	}
2245 
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL_GPL(nand_read_data_op);
2249 
2250 /**
2251  * nand_write_data_op - Write data from the NAND
2252  * @chip: The NAND chip
2253  * @buf: buffer containing the data to send on the bus
2254  * @len: length of the buffer
2255  * @force_8bit: force 8-bit bus access
2256  *
2257  * This function does a raw data write on the bus. Usually used after launching
2258  * another NAND operation like nand_write_page_begin_op().
2259  * This function does not select/unselect the CS line.
2260  *
2261  * Returns 0 on success, a negative error code otherwise.
2262  */
2263 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2264 		       unsigned int len, bool force_8bit)
2265 {
2266 	if (!len || !buf)
2267 		return -EINVAL;
2268 
2269 	if (nand_has_exec_op(chip)) {
2270 		struct nand_op_instr instrs[] = {
2271 			NAND_OP_DATA_OUT(len, buf, 0),
2272 		};
2273 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2274 
2275 		instrs[0].ctx.data.force_8bit = force_8bit;
2276 
2277 		return nand_exec_op(chip, &op);
2278 	}
2279 
2280 	if (force_8bit) {
2281 		const u8 *p = buf;
2282 		unsigned int i;
2283 
2284 		for (i = 0; i < len; i++)
2285 			chip->legacy.write_byte(chip, p[i]);
2286 	} else {
2287 		chip->legacy.write_buf(chip, buf, len);
2288 	}
2289 
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL_GPL(nand_write_data_op);
2293 
2294 /**
2295  * struct nand_op_parser_ctx - Context used by the parser
2296  * @instrs: array of all the instructions that must be addressed
2297  * @ninstrs: length of the @instrs array
2298  * @subop: Sub-operation to be passed to the NAND controller
2299  *
2300  * This structure is used by the core to split NAND operations into
2301  * sub-operations that can be handled by the NAND controller.
2302  */
2303 struct nand_op_parser_ctx {
2304 	const struct nand_op_instr *instrs;
2305 	unsigned int ninstrs;
2306 	struct nand_subop subop;
2307 };
2308 
2309 /**
2310  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2311  * @pat: the parser pattern element that matches @instr
2312  * @instr: pointer to the instruction to check
2313  * @start_offset: this is an in/out parameter. If @instr has already been
2314  *		  split, then @start_offset is the offset from which to start
2315  *		  (either an address cycle or an offset in the data buffer).
2316  *		  Conversely, if the function returns true (ie. instr must be
2317  *		  split), this parameter is updated to point to the first
2318  *		  data/address cycle that has not been taken care of.
2319  *
2320  * Some NAND controllers are limited and cannot send X address cycles with a
2321  * unique operation, or cannot read/write more than Y bytes at the same time.
2322  * In this case, split the instruction that does not fit in a single
2323  * controller-operation into two or more chunks.
2324  *
2325  * Returns true if the instruction must be split, false otherwise.
2326  * The @start_offset parameter is also updated to the offset at which the next
2327  * bundle of instruction must start (if an address or a data instruction).
2328  */
2329 static bool
2330 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2331 				const struct nand_op_instr *instr,
2332 				unsigned int *start_offset)
2333 {
2334 	switch (pat->type) {
2335 	case NAND_OP_ADDR_INSTR:
2336 		if (!pat->ctx.addr.maxcycles)
2337 			break;
2338 
2339 		if (instr->ctx.addr.naddrs - *start_offset >
2340 		    pat->ctx.addr.maxcycles) {
2341 			*start_offset += pat->ctx.addr.maxcycles;
2342 			return true;
2343 		}
2344 		break;
2345 
2346 	case NAND_OP_DATA_IN_INSTR:
2347 	case NAND_OP_DATA_OUT_INSTR:
2348 		if (!pat->ctx.data.maxlen)
2349 			break;
2350 
2351 		if (instr->ctx.data.len - *start_offset >
2352 		    pat->ctx.data.maxlen) {
2353 			*start_offset += pat->ctx.data.maxlen;
2354 			return true;
2355 		}
2356 		break;
2357 
2358 	default:
2359 		break;
2360 	}
2361 
2362 	return false;
2363 }
2364 
2365 /**
2366  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2367  *			      remaining in the parser context
2368  * @pat: the pattern to test
2369  * @ctx: the parser context structure to match with the pattern @pat
2370  *
2371  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2372  * Returns true if this is the case, false ortherwise. When true is returned,
2373  * @ctx->subop is updated with the set of instructions to be passed to the
2374  * controller driver.
2375  */
2376 static bool
2377 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2378 			 struct nand_op_parser_ctx *ctx)
2379 {
2380 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2381 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2382 	const struct nand_op_instr *instr = ctx->subop.instrs;
2383 	unsigned int i, ninstrs;
2384 
2385 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2386 		/*
2387 		 * The pattern instruction does not match the operation
2388 		 * instruction. If the instruction is marked optional in the
2389 		 * pattern definition, we skip the pattern element and continue
2390 		 * to the next one. If the element is mandatory, there's no
2391 		 * match and we can return false directly.
2392 		 */
2393 		if (instr->type != pat->elems[i].type) {
2394 			if (!pat->elems[i].optional)
2395 				return false;
2396 
2397 			continue;
2398 		}
2399 
2400 		/*
2401 		 * Now check the pattern element constraints. If the pattern is
2402 		 * not able to handle the whole instruction in a single step,
2403 		 * we have to split it.
2404 		 * The last_instr_end_off value comes back updated to point to
2405 		 * the position where we have to split the instruction (the
2406 		 * start of the next subop chunk).
2407 		 */
2408 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2409 						    &instr_offset)) {
2410 			ninstrs++;
2411 			i++;
2412 			break;
2413 		}
2414 
2415 		instr++;
2416 		ninstrs++;
2417 		instr_offset = 0;
2418 	}
2419 
2420 	/*
2421 	 * This can happen if all instructions of a pattern are optional.
2422 	 * Still, if there's not at least one instruction handled by this
2423 	 * pattern, this is not a match, and we should try the next one (if
2424 	 * any).
2425 	 */
2426 	if (!ninstrs)
2427 		return false;
2428 
2429 	/*
2430 	 * We had a match on the pattern head, but the pattern may be longer
2431 	 * than the instructions we're asked to execute. We need to make sure
2432 	 * there's no mandatory elements in the pattern tail.
2433 	 */
2434 	for (; i < pat->nelems; i++) {
2435 		if (!pat->elems[i].optional)
2436 			return false;
2437 	}
2438 
2439 	/*
2440 	 * We have a match: update the subop structure accordingly and return
2441 	 * true.
2442 	 */
2443 	ctx->subop.ninstrs = ninstrs;
2444 	ctx->subop.last_instr_end_off = instr_offset;
2445 
2446 	return true;
2447 }
2448 
2449 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2450 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2451 {
2452 	const struct nand_op_instr *instr;
2453 	char *prefix = "      ";
2454 	unsigned int i;
2455 
2456 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2457 
2458 	for (i = 0; i < ctx->ninstrs; i++) {
2459 		instr = &ctx->instrs[i];
2460 
2461 		if (instr == &ctx->subop.instrs[0])
2462 			prefix = "    ->";
2463 
2464 		nand_op_trace(prefix, instr);
2465 
2466 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2467 			prefix = "      ";
2468 	}
2469 }
2470 #else
2471 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2472 {
2473 	/* NOP */
2474 }
2475 #endif
2476 
2477 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2478 				  const struct nand_op_parser_ctx *b)
2479 {
2480 	if (a->subop.ninstrs < b->subop.ninstrs)
2481 		return -1;
2482 	else if (a->subop.ninstrs > b->subop.ninstrs)
2483 		return 1;
2484 
2485 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2486 		return -1;
2487 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2488 		return 1;
2489 
2490 	return 0;
2491 }
2492 
2493 /**
2494  * nand_op_parser_exec_op - exec_op parser
2495  * @chip: the NAND chip
2496  * @parser: patterns description provided by the controller driver
2497  * @op: the NAND operation to address
2498  * @check_only: when true, the function only checks if @op can be handled but
2499  *		does not execute the operation
2500  *
2501  * Helper function designed to ease integration of NAND controller drivers that
2502  * only support a limited set of instruction sequences. The supported sequences
2503  * are described in @parser, and the framework takes care of splitting @op into
2504  * multiple sub-operations (if required) and pass them back to the ->exec()
2505  * callback of the matching pattern if @check_only is set to false.
2506  *
2507  * NAND controller drivers should call this function from their own ->exec_op()
2508  * implementation.
2509  *
2510  * Returns 0 on success, a negative error code otherwise. A failure can be
2511  * caused by an unsupported operation (none of the supported patterns is able
2512  * to handle the requested operation), or an error returned by one of the
2513  * matching pattern->exec() hook.
2514  */
2515 int nand_op_parser_exec_op(struct nand_chip *chip,
2516 			   const struct nand_op_parser *parser,
2517 			   const struct nand_operation *op, bool check_only)
2518 {
2519 	struct nand_op_parser_ctx ctx = {
2520 		.subop.cs = op->cs,
2521 		.subop.instrs = op->instrs,
2522 		.instrs = op->instrs,
2523 		.ninstrs = op->ninstrs,
2524 	};
2525 	unsigned int i;
2526 
2527 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2528 		const struct nand_op_parser_pattern *pattern;
2529 		struct nand_op_parser_ctx best_ctx;
2530 		int ret, best_pattern = -1;
2531 
2532 		for (i = 0; i < parser->npatterns; i++) {
2533 			struct nand_op_parser_ctx test_ctx = ctx;
2534 
2535 			pattern = &parser->patterns[i];
2536 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2537 				continue;
2538 
2539 			if (best_pattern >= 0 &&
2540 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2541 				continue;
2542 
2543 			best_pattern = i;
2544 			best_ctx = test_ctx;
2545 		}
2546 
2547 		if (best_pattern < 0) {
2548 			pr_debug("->exec_op() parser: pattern not found!\n");
2549 			return -ENOTSUPP;
2550 		}
2551 
2552 		ctx = best_ctx;
2553 		nand_op_parser_trace(&ctx);
2554 
2555 		if (!check_only) {
2556 			pattern = &parser->patterns[best_pattern];
2557 			ret = pattern->exec(chip, &ctx.subop);
2558 			if (ret)
2559 				return ret;
2560 		}
2561 
2562 		/*
2563 		 * Update the context structure by pointing to the start of the
2564 		 * next subop.
2565 		 */
2566 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2567 		if (ctx.subop.last_instr_end_off)
2568 			ctx.subop.instrs -= 1;
2569 
2570 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2571 	}
2572 
2573 	return 0;
2574 }
2575 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2576 
2577 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2578 {
2579 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2580 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2581 }
2582 
2583 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2584 				      unsigned int instr_idx)
2585 {
2586 	return subop && instr_idx < subop->ninstrs;
2587 }
2588 
2589 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2590 					     unsigned int instr_idx)
2591 {
2592 	if (instr_idx)
2593 		return 0;
2594 
2595 	return subop->first_instr_start_off;
2596 }
2597 
2598 /**
2599  * nand_subop_get_addr_start_off - Get the start offset in an address array
2600  * @subop: The entire sub-operation
2601  * @instr_idx: Index of the instruction inside the sub-operation
2602  *
2603  * During driver development, one could be tempted to directly use the
2604  * ->addr.addrs field of address instructions. This is wrong as address
2605  * instructions might be split.
2606  *
2607  * Given an address instruction, returns the offset of the first cycle to issue.
2608  */
2609 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2610 					   unsigned int instr_idx)
2611 {
2612 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2613 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2614 		return 0;
2615 
2616 	return nand_subop_get_start_off(subop, instr_idx);
2617 }
2618 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2619 
2620 /**
2621  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2622  * @subop: The entire sub-operation
2623  * @instr_idx: Index of the instruction inside the sub-operation
2624  *
2625  * During driver development, one could be tempted to directly use the
2626  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2627  * might be split.
2628  *
2629  * Given an address instruction, returns the number of address cycle to issue.
2630  */
2631 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2632 					 unsigned int instr_idx)
2633 {
2634 	int start_off, end_off;
2635 
2636 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2637 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2638 		return 0;
2639 
2640 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2641 
2642 	if (instr_idx == subop->ninstrs - 1 &&
2643 	    subop->last_instr_end_off)
2644 		end_off = subop->last_instr_end_off;
2645 	else
2646 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2647 
2648 	return end_off - start_off;
2649 }
2650 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2651 
2652 /**
2653  * nand_subop_get_data_start_off - Get the start offset in a data array
2654  * @subop: The entire sub-operation
2655  * @instr_idx: Index of the instruction inside the sub-operation
2656  *
2657  * During driver development, one could be tempted to directly use the
2658  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2659  * instructions might be split.
2660  *
2661  * Given a data instruction, returns the offset to start from.
2662  */
2663 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2664 					   unsigned int instr_idx)
2665 {
2666 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2667 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2668 		return 0;
2669 
2670 	return nand_subop_get_start_off(subop, instr_idx);
2671 }
2672 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2673 
2674 /**
2675  * nand_subop_get_data_len - Get the number of bytes to retrieve
2676  * @subop: The entire sub-operation
2677  * @instr_idx: Index of the instruction inside the sub-operation
2678  *
2679  * During driver development, one could be tempted to directly use the
2680  * ->data->len field of a data instruction. This is wrong as data instructions
2681  * might be split.
2682  *
2683  * Returns the length of the chunk of data to send/receive.
2684  */
2685 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2686 				     unsigned int instr_idx)
2687 {
2688 	int start_off = 0, end_off;
2689 
2690 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2691 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2692 		return 0;
2693 
2694 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2695 
2696 	if (instr_idx == subop->ninstrs - 1 &&
2697 	    subop->last_instr_end_off)
2698 		end_off = subop->last_instr_end_off;
2699 	else
2700 		end_off = subop->instrs[instr_idx].ctx.data.len;
2701 
2702 	return end_off - start_off;
2703 }
2704 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2705 
2706 /**
2707  * nand_reset - Reset and initialize a NAND device
2708  * @chip: The NAND chip
2709  * @chipnr: Internal die id
2710  *
2711  * Save the timings data structure, then apply SDR timings mode 0 (see
2712  * nand_reset_interface for details), do the reset operation, and apply
2713  * back the previous timings.
2714  *
2715  * Returns 0 on success, a negative error code otherwise.
2716  */
2717 int nand_reset(struct nand_chip *chip, int chipnr)
2718 {
2719 	int ret;
2720 
2721 	ret = nand_reset_interface(chip, chipnr);
2722 	if (ret)
2723 		return ret;
2724 
2725 	/*
2726 	 * The CS line has to be released before we can apply the new NAND
2727 	 * interface settings, hence this weird nand_select_target()
2728 	 * nand_deselect_target() dance.
2729 	 */
2730 	nand_select_target(chip, chipnr);
2731 	ret = nand_reset_op(chip);
2732 	nand_deselect_target(chip);
2733 	if (ret)
2734 		return ret;
2735 
2736 	ret = nand_setup_interface(chip, chipnr);
2737 	if (ret)
2738 		return ret;
2739 
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(nand_reset);
2743 
2744 /**
2745  * nand_get_features - wrapper to perform a GET_FEATURE
2746  * @chip: NAND chip info structure
2747  * @addr: feature address
2748  * @subfeature_param: the subfeature parameters, a four bytes array
2749  *
2750  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2751  * operation cannot be handled.
2752  */
2753 int nand_get_features(struct nand_chip *chip, int addr,
2754 		      u8 *subfeature_param)
2755 {
2756 	if (!nand_supports_get_features(chip, addr))
2757 		return -ENOTSUPP;
2758 
2759 	if (chip->legacy.get_features)
2760 		return chip->legacy.get_features(chip, addr, subfeature_param);
2761 
2762 	return nand_get_features_op(chip, addr, subfeature_param);
2763 }
2764 
2765 /**
2766  * nand_set_features - wrapper to perform a SET_FEATURE
2767  * @chip: NAND chip info structure
2768  * @addr: feature address
2769  * @subfeature_param: the subfeature parameters, a four bytes array
2770  *
2771  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2772  * operation cannot be handled.
2773  */
2774 int nand_set_features(struct nand_chip *chip, int addr,
2775 		      u8 *subfeature_param)
2776 {
2777 	if (!nand_supports_set_features(chip, addr))
2778 		return -ENOTSUPP;
2779 
2780 	if (chip->legacy.set_features)
2781 		return chip->legacy.set_features(chip, addr, subfeature_param);
2782 
2783 	return nand_set_features_op(chip, addr, subfeature_param);
2784 }
2785 
2786 /**
2787  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2788  * @buf: buffer to test
2789  * @len: buffer length
2790  * @bitflips_threshold: maximum number of bitflips
2791  *
2792  * Check if a buffer contains only 0xff, which means the underlying region
2793  * has been erased and is ready to be programmed.
2794  * The bitflips_threshold specify the maximum number of bitflips before
2795  * considering the region is not erased.
2796  * Note: The logic of this function has been extracted from the memweight
2797  * implementation, except that nand_check_erased_buf function exit before
2798  * testing the whole buffer if the number of bitflips exceed the
2799  * bitflips_threshold value.
2800  *
2801  * Returns a positive number of bitflips less than or equal to
2802  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2803  * threshold.
2804  */
2805 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2806 {
2807 	const unsigned char *bitmap = buf;
2808 	int bitflips = 0;
2809 	int weight;
2810 
2811 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2812 	     len--, bitmap++) {
2813 		weight = hweight8(*bitmap);
2814 		bitflips += BITS_PER_BYTE - weight;
2815 		if (unlikely(bitflips > bitflips_threshold))
2816 			return -EBADMSG;
2817 	}
2818 
2819 	for (; len >= sizeof(long);
2820 	     len -= sizeof(long), bitmap += sizeof(long)) {
2821 		unsigned long d = *((unsigned long *)bitmap);
2822 		if (d == ~0UL)
2823 			continue;
2824 		weight = hweight_long(d);
2825 		bitflips += BITS_PER_LONG - weight;
2826 		if (unlikely(bitflips > bitflips_threshold))
2827 			return -EBADMSG;
2828 	}
2829 
2830 	for (; len > 0; len--, bitmap++) {
2831 		weight = hweight8(*bitmap);
2832 		bitflips += BITS_PER_BYTE - weight;
2833 		if (unlikely(bitflips > bitflips_threshold))
2834 			return -EBADMSG;
2835 	}
2836 
2837 	return bitflips;
2838 }
2839 
2840 /**
2841  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2842  *				 0xff data
2843  * @data: data buffer to test
2844  * @datalen: data length
2845  * @ecc: ECC buffer
2846  * @ecclen: ECC length
2847  * @extraoob: extra OOB buffer
2848  * @extraooblen: extra OOB length
2849  * @bitflips_threshold: maximum number of bitflips
2850  *
2851  * Check if a data buffer and its associated ECC and OOB data contains only
2852  * 0xff pattern, which means the underlying region has been erased and is
2853  * ready to be programmed.
2854  * The bitflips_threshold specify the maximum number of bitflips before
2855  * considering the region as not erased.
2856  *
2857  * Note:
2858  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2859  *    different from the NAND page size. When fixing bitflips, ECC engines will
2860  *    report the number of errors per chunk, and the NAND core infrastructure
2861  *    expect you to return the maximum number of bitflips for the whole page.
2862  *    This is why you should always use this function on a single chunk and
2863  *    not on the whole page. After checking each chunk you should update your
2864  *    max_bitflips value accordingly.
2865  * 2/ When checking for bitflips in erased pages you should not only check
2866  *    the payload data but also their associated ECC data, because a user might
2867  *    have programmed almost all bits to 1 but a few. In this case, we
2868  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2869  *    this case.
2870  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2871  *    data are protected by the ECC engine.
2872  *    It could also be used if you support subpages and want to attach some
2873  *    extra OOB data to an ECC chunk.
2874  *
2875  * Returns a positive number of bitflips less than or equal to
2876  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2877  * threshold. In case of success, the passed buffers are filled with 0xff.
2878  */
2879 int nand_check_erased_ecc_chunk(void *data, int datalen,
2880 				void *ecc, int ecclen,
2881 				void *extraoob, int extraooblen,
2882 				int bitflips_threshold)
2883 {
2884 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2885 
2886 	data_bitflips = nand_check_erased_buf(data, datalen,
2887 					      bitflips_threshold);
2888 	if (data_bitflips < 0)
2889 		return data_bitflips;
2890 
2891 	bitflips_threshold -= data_bitflips;
2892 
2893 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2894 	if (ecc_bitflips < 0)
2895 		return ecc_bitflips;
2896 
2897 	bitflips_threshold -= ecc_bitflips;
2898 
2899 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2900 						  bitflips_threshold);
2901 	if (extraoob_bitflips < 0)
2902 		return extraoob_bitflips;
2903 
2904 	if (data_bitflips)
2905 		memset(data, 0xff, datalen);
2906 
2907 	if (ecc_bitflips)
2908 		memset(ecc, 0xff, ecclen);
2909 
2910 	if (extraoob_bitflips)
2911 		memset(extraoob, 0xff, extraooblen);
2912 
2913 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2914 }
2915 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2916 
2917 /**
2918  * nand_read_page_raw_notsupp - dummy read raw page function
2919  * @chip: nand chip info structure
2920  * @buf: buffer to store read data
2921  * @oob_required: caller requires OOB data read to chip->oob_poi
2922  * @page: page number to read
2923  *
2924  * Returns -ENOTSUPP unconditionally.
2925  */
2926 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2927 			       int oob_required, int page)
2928 {
2929 	return -ENOTSUPP;
2930 }
2931 
2932 /**
2933  * nand_read_page_raw - [INTERN] read raw page data without ecc
2934  * @chip: nand chip info structure
2935  * @buf: buffer to store read data
2936  * @oob_required: caller requires OOB data read to chip->oob_poi
2937  * @page: page number to read
2938  *
2939  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2940  */
2941 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2942 		       int page)
2943 {
2944 	struct mtd_info *mtd = nand_to_mtd(chip);
2945 	int ret;
2946 
2947 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2948 	if (ret)
2949 		return ret;
2950 
2951 	if (oob_required) {
2952 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2953 					false, false);
2954 		if (ret)
2955 			return ret;
2956 	}
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(nand_read_page_raw);
2961 
2962 /**
2963  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2964  * @chip: NAND chip info structure
2965  * @buf: buffer to store read data
2966  * @oob_required: caller requires OOB data read to chip->oob_poi
2967  * @page: page number to read
2968  *
2969  * This is a raw page read, ie. without any error detection/correction.
2970  * Monolithic means we are requesting all the relevant data (main plus
2971  * eventually OOB) to be loaded in the NAND cache and sent over the
2972  * bus (from the NAND chip to the NAND controller) in a single
2973  * operation. This is an alternative to nand_read_page_raw(), which
2974  * first reads the main data, and if the OOB data is requested too,
2975  * then reads more data on the bus.
2976  */
2977 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2978 				  int oob_required, int page)
2979 {
2980 	struct mtd_info *mtd = nand_to_mtd(chip);
2981 	unsigned int size = mtd->writesize;
2982 	u8 *read_buf = buf;
2983 	int ret;
2984 
2985 	if (oob_required) {
2986 		size += mtd->oobsize;
2987 
2988 		if (buf != chip->data_buf)
2989 			read_buf = nand_get_data_buf(chip);
2990 	}
2991 
2992 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2993 	if (ret)
2994 		return ret;
2995 
2996 	if (buf != chip->data_buf)
2997 		memcpy(buf, read_buf, mtd->writesize);
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
3002 
3003 /**
3004  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
3005  * @chip: nand chip info structure
3006  * @buf: buffer to store read data
3007  * @oob_required: caller requires OOB data read to chip->oob_poi
3008  * @page: page number to read
3009  *
3010  * We need a special oob layout and handling even when OOB isn't used.
3011  */
3012 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
3013 				       int oob_required, int page)
3014 {
3015 	struct mtd_info *mtd = nand_to_mtd(chip);
3016 	int eccsize = chip->ecc.size;
3017 	int eccbytes = chip->ecc.bytes;
3018 	uint8_t *oob = chip->oob_poi;
3019 	int steps, size, ret;
3020 
3021 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3022 	if (ret)
3023 		return ret;
3024 
3025 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3026 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3027 		if (ret)
3028 			return ret;
3029 
3030 		buf += eccsize;
3031 
3032 		if (chip->ecc.prepad) {
3033 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3034 						false, false);
3035 			if (ret)
3036 				return ret;
3037 
3038 			oob += chip->ecc.prepad;
3039 		}
3040 
3041 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3042 		if (ret)
3043 			return ret;
3044 
3045 		oob += eccbytes;
3046 
3047 		if (chip->ecc.postpad) {
3048 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3049 						false, false);
3050 			if (ret)
3051 				return ret;
3052 
3053 			oob += chip->ecc.postpad;
3054 		}
3055 	}
3056 
3057 	size = mtd->oobsize - (oob - chip->oob_poi);
3058 	if (size) {
3059 		ret = nand_read_data_op(chip, oob, size, false, false);
3060 		if (ret)
3061 			return ret;
3062 	}
3063 
3064 	return 0;
3065 }
3066 
3067 /**
3068  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3069  * @chip: nand chip info structure
3070  * @buf: buffer to store read data
3071  * @oob_required: caller requires OOB data read to chip->oob_poi
3072  * @page: page number to read
3073  */
3074 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3075 				int oob_required, int page)
3076 {
3077 	struct mtd_info *mtd = nand_to_mtd(chip);
3078 	int i, eccsize = chip->ecc.size, ret;
3079 	int eccbytes = chip->ecc.bytes;
3080 	int eccsteps = chip->ecc.steps;
3081 	uint8_t *p = buf;
3082 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3083 	uint8_t *ecc_code = chip->ecc.code_buf;
3084 	unsigned int max_bitflips = 0;
3085 
3086 	chip->ecc.read_page_raw(chip, buf, 1, page);
3087 
3088 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3089 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3090 
3091 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3092 					 chip->ecc.total);
3093 	if (ret)
3094 		return ret;
3095 
3096 	eccsteps = chip->ecc.steps;
3097 	p = buf;
3098 
3099 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3100 		int stat;
3101 
3102 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3103 		if (stat < 0) {
3104 			mtd->ecc_stats.failed++;
3105 		} else {
3106 			mtd->ecc_stats.corrected += stat;
3107 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3108 		}
3109 	}
3110 	return max_bitflips;
3111 }
3112 
3113 /**
3114  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3115  * @chip: nand chip info structure
3116  * @data_offs: offset of requested data within the page
3117  * @readlen: data length
3118  * @bufpoi: buffer to store read data
3119  * @page: page number to read
3120  */
3121 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3122 			     uint32_t readlen, uint8_t *bufpoi, int page)
3123 {
3124 	struct mtd_info *mtd = nand_to_mtd(chip);
3125 	int start_step, end_step, num_steps, ret;
3126 	uint8_t *p;
3127 	int data_col_addr, i, gaps = 0;
3128 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3129 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3130 	int index, section = 0;
3131 	unsigned int max_bitflips = 0;
3132 	struct mtd_oob_region oobregion = { };
3133 
3134 	/* Column address within the page aligned to ECC size (256bytes) */
3135 	start_step = data_offs / chip->ecc.size;
3136 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3137 	num_steps = end_step - start_step + 1;
3138 	index = start_step * chip->ecc.bytes;
3139 
3140 	/* Data size aligned to ECC ecc.size */
3141 	datafrag_len = num_steps * chip->ecc.size;
3142 	eccfrag_len = num_steps * chip->ecc.bytes;
3143 
3144 	data_col_addr = start_step * chip->ecc.size;
3145 	/* If we read not a page aligned data */
3146 	p = bufpoi + data_col_addr;
3147 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3148 	if (ret)
3149 		return ret;
3150 
3151 	/* Calculate ECC */
3152 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3153 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3154 
3155 	/*
3156 	 * The performance is faster if we position offsets according to
3157 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3158 	 */
3159 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3160 	if (ret)
3161 		return ret;
3162 
3163 	if (oobregion.length < eccfrag_len)
3164 		gaps = 1;
3165 
3166 	if (gaps) {
3167 		ret = nand_change_read_column_op(chip, mtd->writesize,
3168 						 chip->oob_poi, mtd->oobsize,
3169 						 false);
3170 		if (ret)
3171 			return ret;
3172 	} else {
3173 		/*
3174 		 * Send the command to read the particular ECC bytes take care
3175 		 * about buswidth alignment in read_buf.
3176 		 */
3177 		aligned_pos = oobregion.offset & ~(busw - 1);
3178 		aligned_len = eccfrag_len;
3179 		if (oobregion.offset & (busw - 1))
3180 			aligned_len++;
3181 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3182 		    (busw - 1))
3183 			aligned_len++;
3184 
3185 		ret = nand_change_read_column_op(chip,
3186 						 mtd->writesize + aligned_pos,
3187 						 &chip->oob_poi[aligned_pos],
3188 						 aligned_len, false);
3189 		if (ret)
3190 			return ret;
3191 	}
3192 
3193 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3194 					 chip->oob_poi, index, eccfrag_len);
3195 	if (ret)
3196 		return ret;
3197 
3198 	p = bufpoi + data_col_addr;
3199 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3200 		int stat;
3201 
3202 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3203 					 &chip->ecc.calc_buf[i]);
3204 		if (stat == -EBADMSG &&
3205 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3206 			/* check for empty pages with bitflips */
3207 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3208 						&chip->ecc.code_buf[i],
3209 						chip->ecc.bytes,
3210 						NULL, 0,
3211 						chip->ecc.strength);
3212 		}
3213 
3214 		if (stat < 0) {
3215 			mtd->ecc_stats.failed++;
3216 		} else {
3217 			mtd->ecc_stats.corrected += stat;
3218 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3219 		}
3220 	}
3221 	return max_bitflips;
3222 }
3223 
3224 /**
3225  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3226  * @chip: nand chip info structure
3227  * @buf: buffer to store read data
3228  * @oob_required: caller requires OOB data read to chip->oob_poi
3229  * @page: page number to read
3230  *
3231  * Not for syndrome calculating ECC controllers which need a special oob layout.
3232  */
3233 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3234 				int oob_required, int page)
3235 {
3236 	struct mtd_info *mtd = nand_to_mtd(chip);
3237 	int i, eccsize = chip->ecc.size, ret;
3238 	int eccbytes = chip->ecc.bytes;
3239 	int eccsteps = chip->ecc.steps;
3240 	uint8_t *p = buf;
3241 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3242 	uint8_t *ecc_code = chip->ecc.code_buf;
3243 	unsigned int max_bitflips = 0;
3244 
3245 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3246 	if (ret)
3247 		return ret;
3248 
3249 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3250 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3251 
3252 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3253 		if (ret)
3254 			return ret;
3255 
3256 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3257 	}
3258 
3259 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3260 				false);
3261 	if (ret)
3262 		return ret;
3263 
3264 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3265 					 chip->ecc.total);
3266 	if (ret)
3267 		return ret;
3268 
3269 	eccsteps = chip->ecc.steps;
3270 	p = buf;
3271 
3272 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3273 		int stat;
3274 
3275 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3276 		if (stat == -EBADMSG &&
3277 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3278 			/* check for empty pages with bitflips */
3279 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3280 						&ecc_code[i], eccbytes,
3281 						NULL, 0,
3282 						chip->ecc.strength);
3283 		}
3284 
3285 		if (stat < 0) {
3286 			mtd->ecc_stats.failed++;
3287 		} else {
3288 			mtd->ecc_stats.corrected += stat;
3289 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3290 		}
3291 	}
3292 	return max_bitflips;
3293 }
3294 
3295 /**
3296  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3297  *                                  data read from OOB area
3298  * @chip: nand chip info structure
3299  * @buf: buffer to store read data
3300  * @oob_required: caller requires OOB data read to chip->oob_poi
3301  * @page: page number to read
3302  *
3303  * Hardware ECC for large page chips, which requires the ECC data to be
3304  * extracted from the OOB before the actual data is read.
3305  */
3306 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3307 				   int oob_required, int page)
3308 {
3309 	struct mtd_info *mtd = nand_to_mtd(chip);
3310 	int i, eccsize = chip->ecc.size, ret;
3311 	int eccbytes = chip->ecc.bytes;
3312 	int eccsteps = chip->ecc.steps;
3313 	uint8_t *p = buf;
3314 	uint8_t *ecc_code = chip->ecc.code_buf;
3315 	unsigned int max_bitflips = 0;
3316 
3317 	/* Read the OOB area first */
3318 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3319 	if (ret)
3320 		return ret;
3321 
3322 	/* Move read cursor to start of page */
3323 	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3324 	if (ret)
3325 		return ret;
3326 
3327 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3328 					 chip->ecc.total);
3329 	if (ret)
3330 		return ret;
3331 
3332 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3333 		int stat;
3334 
3335 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3336 
3337 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3338 		if (ret)
3339 			return ret;
3340 
3341 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3342 		if (stat == -EBADMSG &&
3343 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3344 			/* check for empty pages with bitflips */
3345 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3346 							   &ecc_code[i],
3347 							   eccbytes, NULL, 0,
3348 							   chip->ecc.strength);
3349 		}
3350 
3351 		if (stat < 0) {
3352 			mtd->ecc_stats.failed++;
3353 		} else {
3354 			mtd->ecc_stats.corrected += stat;
3355 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3356 		}
3357 	}
3358 	return max_bitflips;
3359 }
3360 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3361 
3362 /**
3363  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3364  * @chip: nand chip info structure
3365  * @buf: buffer to store read data
3366  * @oob_required: caller requires OOB data read to chip->oob_poi
3367  * @page: page number to read
3368  *
3369  * The hw generator calculates the error syndrome automatically. Therefore we
3370  * need a special oob layout and handling.
3371  */
3372 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3373 				   int oob_required, int page)
3374 {
3375 	struct mtd_info *mtd = nand_to_mtd(chip);
3376 	int ret, i, eccsize = chip->ecc.size;
3377 	int eccbytes = chip->ecc.bytes;
3378 	int eccsteps = chip->ecc.steps;
3379 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3380 	uint8_t *p = buf;
3381 	uint8_t *oob = chip->oob_poi;
3382 	unsigned int max_bitflips = 0;
3383 
3384 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3385 	if (ret)
3386 		return ret;
3387 
3388 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3389 		int stat;
3390 
3391 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3392 
3393 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3394 		if (ret)
3395 			return ret;
3396 
3397 		if (chip->ecc.prepad) {
3398 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3399 						false, false);
3400 			if (ret)
3401 				return ret;
3402 
3403 			oob += chip->ecc.prepad;
3404 		}
3405 
3406 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3407 
3408 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3409 		if (ret)
3410 			return ret;
3411 
3412 		stat = chip->ecc.correct(chip, p, oob, NULL);
3413 
3414 		oob += eccbytes;
3415 
3416 		if (chip->ecc.postpad) {
3417 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3418 						false, false);
3419 			if (ret)
3420 				return ret;
3421 
3422 			oob += chip->ecc.postpad;
3423 		}
3424 
3425 		if (stat == -EBADMSG &&
3426 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3427 			/* check for empty pages with bitflips */
3428 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3429 							   oob - eccpadbytes,
3430 							   eccpadbytes,
3431 							   NULL, 0,
3432 							   chip->ecc.strength);
3433 		}
3434 
3435 		if (stat < 0) {
3436 			mtd->ecc_stats.failed++;
3437 		} else {
3438 			mtd->ecc_stats.corrected += stat;
3439 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3440 		}
3441 	}
3442 
3443 	/* Calculate remaining oob bytes */
3444 	i = mtd->oobsize - (oob - chip->oob_poi);
3445 	if (i) {
3446 		ret = nand_read_data_op(chip, oob, i, false, false);
3447 		if (ret)
3448 			return ret;
3449 	}
3450 
3451 	return max_bitflips;
3452 }
3453 
3454 /**
3455  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3456  * @chip: NAND chip object
3457  * @oob: oob destination address
3458  * @ops: oob ops structure
3459  * @len: size of oob to transfer
3460  */
3461 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3462 				  struct mtd_oob_ops *ops, size_t len)
3463 {
3464 	struct mtd_info *mtd = nand_to_mtd(chip);
3465 	int ret;
3466 
3467 	switch (ops->mode) {
3468 
3469 	case MTD_OPS_PLACE_OOB:
3470 	case MTD_OPS_RAW:
3471 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3472 		return oob + len;
3473 
3474 	case MTD_OPS_AUTO_OOB:
3475 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3476 						  ops->ooboffs, len);
3477 		BUG_ON(ret);
3478 		return oob + len;
3479 
3480 	default:
3481 		BUG();
3482 	}
3483 	return NULL;
3484 }
3485 
3486 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3487 				      u32 readlen, int col)
3488 {
3489 	struct mtd_info *mtd = nand_to_mtd(chip);
3490 	unsigned int first_page, last_page;
3491 
3492 	chip->cont_read.ongoing = false;
3493 
3494 	if (!chip->controller->supported_op.cont_read)
3495 		return;
3496 
3497 	/*
3498 	 * Don't bother making any calculations if the length is too small.
3499 	 * Side effect: avoids possible integer underflows below.
3500 	 */
3501 	if (readlen < (2 * mtd->writesize))
3502 		return;
3503 
3504 	/* Derive the page where continuous read should start (the first full page read) */
3505 	first_page = page;
3506 	if (col)
3507 		first_page++;
3508 
3509 	/* Derive the page where continuous read should stop (the last full page read) */
3510 	last_page = page + ((col + readlen) / mtd->writesize) - 1;
3511 
3512 	/* Configure and enable continuous read when suitable */
3513 	if (first_page < last_page) {
3514 		chip->cont_read.first_page = first_page;
3515 		chip->cont_read.last_page = last_page;
3516 		chip->cont_read.ongoing = true;
3517 		/* May reset the ongoing flag */
3518 		rawnand_cap_cont_reads(chip);
3519 	}
3520 }
3521 
3522 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3523 {
3524 	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3525 		return;
3526 
3527 	chip->cont_read.first_page++;
3528 	rawnand_cap_cont_reads(chip);
3529 }
3530 
3531 /**
3532  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3533  * @chip: NAND chip object
3534  * @retry_mode: the retry mode to use
3535  *
3536  * Some vendors supply a special command to shift the Vt threshold, to be used
3537  * when there are too many bitflips in a page (i.e., ECC error). After setting
3538  * a new threshold, the host should retry reading the page.
3539  */
3540 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3541 {
3542 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3543 
3544 	if (retry_mode >= chip->read_retries)
3545 		return -EINVAL;
3546 
3547 	if (!chip->ops.setup_read_retry)
3548 		return -EOPNOTSUPP;
3549 
3550 	return chip->ops.setup_read_retry(chip, retry_mode);
3551 }
3552 
3553 static void nand_wait_readrdy(struct nand_chip *chip)
3554 {
3555 	const struct nand_interface_config *conf;
3556 
3557 	if (!(chip->options & NAND_NEED_READRDY))
3558 		return;
3559 
3560 	conf = nand_get_interface_config(chip);
3561 	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3562 }
3563 
3564 /**
3565  * nand_do_read_ops - [INTERN] Read data with ECC
3566  * @chip: NAND chip object
3567  * @from: offset to read from
3568  * @ops: oob ops structure
3569  *
3570  * Internal function. Called with chip held.
3571  */
3572 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3573 			    struct mtd_oob_ops *ops)
3574 {
3575 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3576 	struct mtd_info *mtd = nand_to_mtd(chip);
3577 	int ret = 0;
3578 	uint32_t readlen = ops->len;
3579 	uint32_t oobreadlen = ops->ooblen;
3580 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3581 
3582 	uint8_t *bufpoi, *oob, *buf;
3583 	int use_bounce_buf;
3584 	unsigned int max_bitflips = 0;
3585 	int retry_mode = 0;
3586 	bool ecc_fail = false;
3587 
3588 	/* Check if the region is secured */
3589 	if (nand_region_is_secured(chip, from, readlen))
3590 		return -EIO;
3591 
3592 	chipnr = (int)(from >> chip->chip_shift);
3593 	nand_select_target(chip, chipnr);
3594 
3595 	realpage = (int)(from >> chip->page_shift);
3596 	page = realpage & chip->pagemask;
3597 
3598 	col = (int)(from & (mtd->writesize - 1));
3599 
3600 	buf = ops->datbuf;
3601 	oob = ops->oobbuf;
3602 	oob_required = oob ? 1 : 0;
3603 
3604 	if (likely(ops->mode != MTD_OPS_RAW))
3605 		rawnand_enable_cont_reads(chip, page, readlen, col);
3606 
3607 	while (1) {
3608 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3609 
3610 		bytes = min(mtd->writesize - col, readlen);
3611 		aligned = (bytes == mtd->writesize);
3612 
3613 		if (!aligned)
3614 			use_bounce_buf = 1;
3615 		else if (chip->options & NAND_USES_DMA)
3616 			use_bounce_buf = !virt_addr_valid(buf) ||
3617 					 !IS_ALIGNED((unsigned long)buf,
3618 						     chip->buf_align);
3619 		else
3620 			use_bounce_buf = 0;
3621 
3622 		/* Is the current page in the buffer? */
3623 		if (realpage != chip->pagecache.page || oob) {
3624 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3625 
3626 			if (use_bounce_buf && aligned)
3627 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3628 						 __func__, buf);
3629 
3630 read_retry:
3631 			/*
3632 			 * Now read the page into the buffer.  Absent an error,
3633 			 * the read methods return max bitflips per ecc step.
3634 			 */
3635 			if (unlikely(ops->mode == MTD_OPS_RAW))
3636 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3637 							      oob_required,
3638 							      page);
3639 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3640 				 !oob)
3641 				ret = chip->ecc.read_subpage(chip, col, bytes,
3642 							     bufpoi, page);
3643 			else
3644 				ret = chip->ecc.read_page(chip, bufpoi,
3645 							  oob_required, page);
3646 			if (ret < 0) {
3647 				if (use_bounce_buf)
3648 					/* Invalidate page cache */
3649 					chip->pagecache.page = -1;
3650 				break;
3651 			}
3652 
3653 			/*
3654 			 * Copy back the data in the initial buffer when reading
3655 			 * partial pages or when a bounce buffer is required.
3656 			 */
3657 			if (use_bounce_buf) {
3658 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3659 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3660 				    (ops->mode != MTD_OPS_RAW)) {
3661 					chip->pagecache.page = realpage;
3662 					chip->pagecache.bitflips = ret;
3663 				} else {
3664 					/* Invalidate page cache */
3665 					chip->pagecache.page = -1;
3666 				}
3667 				memcpy(buf, bufpoi + col, bytes);
3668 			}
3669 
3670 			if (unlikely(oob)) {
3671 				int toread = min(oobreadlen, max_oobsize);
3672 
3673 				if (toread) {
3674 					oob = nand_transfer_oob(chip, oob, ops,
3675 								toread);
3676 					oobreadlen -= toread;
3677 				}
3678 			}
3679 
3680 			nand_wait_readrdy(chip);
3681 
3682 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3683 				if (retry_mode + 1 < chip->read_retries) {
3684 					retry_mode++;
3685 					ret = nand_setup_read_retry(chip,
3686 							retry_mode);
3687 					if (ret < 0)
3688 						break;
3689 
3690 					/* Reset ecc_stats; retry */
3691 					mtd->ecc_stats = ecc_stats;
3692 					goto read_retry;
3693 				} else {
3694 					/* No more retry modes; real failure */
3695 					ecc_fail = true;
3696 				}
3697 			}
3698 
3699 			buf += bytes;
3700 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3701 		} else {
3702 			memcpy(buf, chip->data_buf + col, bytes);
3703 			buf += bytes;
3704 			max_bitflips = max_t(unsigned int, max_bitflips,
3705 					     chip->pagecache.bitflips);
3706 
3707 			rawnand_cont_read_skip_first_page(chip, page);
3708 		}
3709 
3710 		readlen -= bytes;
3711 
3712 		/* Reset to retry mode 0 */
3713 		if (retry_mode) {
3714 			ret = nand_setup_read_retry(chip, 0);
3715 			if (ret < 0)
3716 				break;
3717 			retry_mode = 0;
3718 		}
3719 
3720 		if (!readlen)
3721 			break;
3722 
3723 		/* For subsequent reads align to page boundary */
3724 		col = 0;
3725 		/* Increment page address */
3726 		realpage++;
3727 
3728 		page = realpage & chip->pagemask;
3729 		/* Check, if we cross a chip boundary */
3730 		if (!page) {
3731 			chipnr++;
3732 			nand_deselect_target(chip);
3733 			nand_select_target(chip, chipnr);
3734 		}
3735 	}
3736 	nand_deselect_target(chip);
3737 
3738 	if (WARN_ON_ONCE(chip->cont_read.ongoing))
3739 		chip->cont_read.ongoing = false;
3740 
3741 	ops->retlen = ops->len - (size_t) readlen;
3742 	if (oob)
3743 		ops->oobretlen = ops->ooblen - oobreadlen;
3744 
3745 	if (ret < 0)
3746 		return ret;
3747 
3748 	if (ecc_fail)
3749 		return -EBADMSG;
3750 
3751 	return max_bitflips;
3752 }
3753 
3754 /**
3755  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3756  * @chip: nand chip info structure
3757  * @page: page number to read
3758  */
3759 int nand_read_oob_std(struct nand_chip *chip, int page)
3760 {
3761 	struct mtd_info *mtd = nand_to_mtd(chip);
3762 
3763 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3764 }
3765 EXPORT_SYMBOL(nand_read_oob_std);
3766 
3767 /**
3768  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3769  *			    with syndromes
3770  * @chip: nand chip info structure
3771  * @page: page number to read
3772  */
3773 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3774 {
3775 	struct mtd_info *mtd = nand_to_mtd(chip);
3776 	int length = mtd->oobsize;
3777 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3778 	int eccsize = chip->ecc.size;
3779 	uint8_t *bufpoi = chip->oob_poi;
3780 	int i, toread, sndrnd = 0, pos, ret;
3781 
3782 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3783 	if (ret)
3784 		return ret;
3785 
3786 	for (i = 0; i < chip->ecc.steps; i++) {
3787 		if (sndrnd) {
3788 			int ret;
3789 
3790 			pos = eccsize + i * (eccsize + chunk);
3791 			if (mtd->writesize > 512)
3792 				ret = nand_change_read_column_op(chip, pos,
3793 								 NULL, 0,
3794 								 false);
3795 			else
3796 				ret = nand_read_page_op(chip, page, pos, NULL,
3797 							0);
3798 
3799 			if (ret)
3800 				return ret;
3801 		} else
3802 			sndrnd = 1;
3803 		toread = min_t(int, length, chunk);
3804 
3805 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3806 		if (ret)
3807 			return ret;
3808 
3809 		bufpoi += toread;
3810 		length -= toread;
3811 	}
3812 	if (length > 0) {
3813 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3814 		if (ret)
3815 			return ret;
3816 	}
3817 
3818 	return 0;
3819 }
3820 
3821 /**
3822  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3823  * @chip: nand chip info structure
3824  * @page: page number to write
3825  */
3826 int nand_write_oob_std(struct nand_chip *chip, int page)
3827 {
3828 	struct mtd_info *mtd = nand_to_mtd(chip);
3829 
3830 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3831 				 mtd->oobsize);
3832 }
3833 EXPORT_SYMBOL(nand_write_oob_std);
3834 
3835 /**
3836  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3837  *			     with syndrome - only for large page flash
3838  * @chip: nand chip info structure
3839  * @page: page number to write
3840  */
3841 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3842 {
3843 	struct mtd_info *mtd = nand_to_mtd(chip);
3844 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3845 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3846 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3847 	const uint8_t *bufpoi = chip->oob_poi;
3848 
3849 	/*
3850 	 * data-ecc-data-ecc ... ecc-oob
3851 	 * or
3852 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3853 	 */
3854 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3855 		pos = steps * (eccsize + chunk);
3856 		steps = 0;
3857 	} else
3858 		pos = eccsize;
3859 
3860 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3861 	if (ret)
3862 		return ret;
3863 
3864 	for (i = 0; i < steps; i++) {
3865 		if (sndcmd) {
3866 			if (mtd->writesize <= 512) {
3867 				uint32_t fill = 0xFFFFFFFF;
3868 
3869 				len = eccsize;
3870 				while (len > 0) {
3871 					int num = min_t(int, len, 4);
3872 
3873 					ret = nand_write_data_op(chip, &fill,
3874 								 num, false);
3875 					if (ret)
3876 						return ret;
3877 
3878 					len -= num;
3879 				}
3880 			} else {
3881 				pos = eccsize + i * (eccsize + chunk);
3882 				ret = nand_change_write_column_op(chip, pos,
3883 								  NULL, 0,
3884 								  false);
3885 				if (ret)
3886 					return ret;
3887 			}
3888 		} else
3889 			sndcmd = 1;
3890 		len = min_t(int, length, chunk);
3891 
3892 		ret = nand_write_data_op(chip, bufpoi, len, false);
3893 		if (ret)
3894 			return ret;
3895 
3896 		bufpoi += len;
3897 		length -= len;
3898 	}
3899 	if (length > 0) {
3900 		ret = nand_write_data_op(chip, bufpoi, length, false);
3901 		if (ret)
3902 			return ret;
3903 	}
3904 
3905 	return nand_prog_page_end_op(chip);
3906 }
3907 
3908 /**
3909  * nand_do_read_oob - [INTERN] NAND read out-of-band
3910  * @chip: NAND chip object
3911  * @from: offset to read from
3912  * @ops: oob operations description structure
3913  *
3914  * NAND read out-of-band data from the spare area.
3915  */
3916 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3917 			    struct mtd_oob_ops *ops)
3918 {
3919 	struct mtd_info *mtd = nand_to_mtd(chip);
3920 	unsigned int max_bitflips = 0;
3921 	int page, realpage, chipnr;
3922 	struct mtd_ecc_stats stats;
3923 	int readlen = ops->ooblen;
3924 	int len;
3925 	uint8_t *buf = ops->oobbuf;
3926 	int ret = 0;
3927 
3928 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3929 			__func__, (unsigned long long)from, readlen);
3930 
3931 	/* Check if the region is secured */
3932 	if (nand_region_is_secured(chip, from, readlen))
3933 		return -EIO;
3934 
3935 	stats = mtd->ecc_stats;
3936 
3937 	len = mtd_oobavail(mtd, ops);
3938 
3939 	chipnr = (int)(from >> chip->chip_shift);
3940 	nand_select_target(chip, chipnr);
3941 
3942 	/* Shift to get page */
3943 	realpage = (int)(from >> chip->page_shift);
3944 	page = realpage & chip->pagemask;
3945 
3946 	while (1) {
3947 		if (ops->mode == MTD_OPS_RAW)
3948 			ret = chip->ecc.read_oob_raw(chip, page);
3949 		else
3950 			ret = chip->ecc.read_oob(chip, page);
3951 
3952 		if (ret < 0)
3953 			break;
3954 
3955 		len = min(len, readlen);
3956 		buf = nand_transfer_oob(chip, buf, ops, len);
3957 
3958 		nand_wait_readrdy(chip);
3959 
3960 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3961 
3962 		readlen -= len;
3963 		if (!readlen)
3964 			break;
3965 
3966 		/* Increment page address */
3967 		realpage++;
3968 
3969 		page = realpage & chip->pagemask;
3970 		/* Check, if we cross a chip boundary */
3971 		if (!page) {
3972 			chipnr++;
3973 			nand_deselect_target(chip);
3974 			nand_select_target(chip, chipnr);
3975 		}
3976 	}
3977 	nand_deselect_target(chip);
3978 
3979 	ops->oobretlen = ops->ooblen - readlen;
3980 
3981 	if (ret < 0)
3982 		return ret;
3983 
3984 	if (mtd->ecc_stats.failed - stats.failed)
3985 		return -EBADMSG;
3986 
3987 	return max_bitflips;
3988 }
3989 
3990 /**
3991  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3992  * @mtd: MTD device structure
3993  * @from: offset to read from
3994  * @ops: oob operation description structure
3995  *
3996  * NAND read data and/or out-of-band data.
3997  */
3998 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3999 			 struct mtd_oob_ops *ops)
4000 {
4001 	struct nand_chip *chip = mtd_to_nand(mtd);
4002 	struct mtd_ecc_stats old_stats;
4003 	int ret;
4004 
4005 	ops->retlen = 0;
4006 
4007 	if (ops->mode != MTD_OPS_PLACE_OOB &&
4008 	    ops->mode != MTD_OPS_AUTO_OOB &&
4009 	    ops->mode != MTD_OPS_RAW)
4010 		return -ENOTSUPP;
4011 
4012 	nand_get_device(chip);
4013 
4014 	old_stats = mtd->ecc_stats;
4015 
4016 	if (!ops->datbuf)
4017 		ret = nand_do_read_oob(chip, from, ops);
4018 	else
4019 		ret = nand_do_read_ops(chip, from, ops);
4020 
4021 	if (ops->stats) {
4022 		ops->stats->uncorrectable_errors +=
4023 			mtd->ecc_stats.failed - old_stats.failed;
4024 		ops->stats->corrected_bitflips +=
4025 			mtd->ecc_stats.corrected - old_stats.corrected;
4026 	}
4027 
4028 	nand_release_device(chip);
4029 	return ret;
4030 }
4031 
4032 /**
4033  * nand_write_page_raw_notsupp - dummy raw page write function
4034  * @chip: nand chip info structure
4035  * @buf: data buffer
4036  * @oob_required: must write chip->oob_poi to OOB
4037  * @page: page number to write
4038  *
4039  * Returns -ENOTSUPP unconditionally.
4040  */
4041 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4042 				int oob_required, int page)
4043 {
4044 	return -ENOTSUPP;
4045 }
4046 
4047 /**
4048  * nand_write_page_raw - [INTERN] raw page write function
4049  * @chip: nand chip info structure
4050  * @buf: data buffer
4051  * @oob_required: must write chip->oob_poi to OOB
4052  * @page: page number to write
4053  *
4054  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4055  */
4056 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4057 			int oob_required, int page)
4058 {
4059 	struct mtd_info *mtd = nand_to_mtd(chip);
4060 	int ret;
4061 
4062 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4063 	if (ret)
4064 		return ret;
4065 
4066 	if (oob_required) {
4067 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4068 					 false);
4069 		if (ret)
4070 			return ret;
4071 	}
4072 
4073 	return nand_prog_page_end_op(chip);
4074 }
4075 EXPORT_SYMBOL(nand_write_page_raw);
4076 
4077 /**
4078  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4079  * @chip: NAND chip info structure
4080  * @buf: data buffer to write
4081  * @oob_required: must write chip->oob_poi to OOB
4082  * @page: page number to write
4083  *
4084  * This is a raw page write, ie. without any error detection/correction.
4085  * Monolithic means we are requesting all the relevant data (main plus
4086  * eventually OOB) to be sent over the bus and effectively programmed
4087  * into the NAND chip arrays in a single operation. This is an
4088  * alternative to nand_write_page_raw(), which first sends the main
4089  * data, then eventually send the OOB data by latching more data
4090  * cycles on the NAND bus, and finally sends the program command to
4091  * synchronyze the NAND chip cache.
4092  */
4093 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4094 				   int oob_required, int page)
4095 {
4096 	struct mtd_info *mtd = nand_to_mtd(chip);
4097 	unsigned int size = mtd->writesize;
4098 	u8 *write_buf = (u8 *)buf;
4099 
4100 	if (oob_required) {
4101 		size += mtd->oobsize;
4102 
4103 		if (buf != chip->data_buf) {
4104 			write_buf = nand_get_data_buf(chip);
4105 			memcpy(write_buf, buf, mtd->writesize);
4106 		}
4107 	}
4108 
4109 	return nand_prog_page_op(chip, page, 0, write_buf, size);
4110 }
4111 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4112 
4113 /**
4114  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4115  * @chip: nand chip info structure
4116  * @buf: data buffer
4117  * @oob_required: must write chip->oob_poi to OOB
4118  * @page: page number to write
4119  *
4120  * We need a special oob layout and handling even when ECC isn't checked.
4121  */
4122 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4123 					const uint8_t *buf, int oob_required,
4124 					int page)
4125 {
4126 	struct mtd_info *mtd = nand_to_mtd(chip);
4127 	int eccsize = chip->ecc.size;
4128 	int eccbytes = chip->ecc.bytes;
4129 	uint8_t *oob = chip->oob_poi;
4130 	int steps, size, ret;
4131 
4132 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4133 	if (ret)
4134 		return ret;
4135 
4136 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4137 		ret = nand_write_data_op(chip, buf, eccsize, false);
4138 		if (ret)
4139 			return ret;
4140 
4141 		buf += eccsize;
4142 
4143 		if (chip->ecc.prepad) {
4144 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4145 						 false);
4146 			if (ret)
4147 				return ret;
4148 
4149 			oob += chip->ecc.prepad;
4150 		}
4151 
4152 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4153 		if (ret)
4154 			return ret;
4155 
4156 		oob += eccbytes;
4157 
4158 		if (chip->ecc.postpad) {
4159 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4160 						 false);
4161 			if (ret)
4162 				return ret;
4163 
4164 			oob += chip->ecc.postpad;
4165 		}
4166 	}
4167 
4168 	size = mtd->oobsize - (oob - chip->oob_poi);
4169 	if (size) {
4170 		ret = nand_write_data_op(chip, oob, size, false);
4171 		if (ret)
4172 			return ret;
4173 	}
4174 
4175 	return nand_prog_page_end_op(chip);
4176 }
4177 /**
4178  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4179  * @chip: nand chip info structure
4180  * @buf: data buffer
4181  * @oob_required: must write chip->oob_poi to OOB
4182  * @page: page number to write
4183  */
4184 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4185 				 int oob_required, int page)
4186 {
4187 	struct mtd_info *mtd = nand_to_mtd(chip);
4188 	int i, eccsize = chip->ecc.size, ret;
4189 	int eccbytes = chip->ecc.bytes;
4190 	int eccsteps = chip->ecc.steps;
4191 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4192 	const uint8_t *p = buf;
4193 
4194 	/* Software ECC calculation */
4195 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4196 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4197 
4198 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4199 					 chip->ecc.total);
4200 	if (ret)
4201 		return ret;
4202 
4203 	return chip->ecc.write_page_raw(chip, buf, 1, page);
4204 }
4205 
4206 /**
4207  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4208  * @chip: nand chip info structure
4209  * @buf: data buffer
4210  * @oob_required: must write chip->oob_poi to OOB
4211  * @page: page number to write
4212  */
4213 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4214 				 int oob_required, int page)
4215 {
4216 	struct mtd_info *mtd = nand_to_mtd(chip);
4217 	int i, eccsize = chip->ecc.size, ret;
4218 	int eccbytes = chip->ecc.bytes;
4219 	int eccsteps = chip->ecc.steps;
4220 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4221 	const uint8_t *p = buf;
4222 
4223 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4224 	if (ret)
4225 		return ret;
4226 
4227 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4228 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4229 
4230 		ret = nand_write_data_op(chip, p, eccsize, false);
4231 		if (ret)
4232 			return ret;
4233 
4234 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4235 	}
4236 
4237 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4238 					 chip->ecc.total);
4239 	if (ret)
4240 		return ret;
4241 
4242 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4243 	if (ret)
4244 		return ret;
4245 
4246 	return nand_prog_page_end_op(chip);
4247 }
4248 
4249 
4250 /**
4251  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4252  * @chip:	nand chip info structure
4253  * @offset:	column address of subpage within the page
4254  * @data_len:	data length
4255  * @buf:	data buffer
4256  * @oob_required: must write chip->oob_poi to OOB
4257  * @page: page number to write
4258  */
4259 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4260 				    uint32_t data_len, const uint8_t *buf,
4261 				    int oob_required, int page)
4262 {
4263 	struct mtd_info *mtd = nand_to_mtd(chip);
4264 	uint8_t *oob_buf  = chip->oob_poi;
4265 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4266 	int ecc_size      = chip->ecc.size;
4267 	int ecc_bytes     = chip->ecc.bytes;
4268 	int ecc_steps     = chip->ecc.steps;
4269 	uint32_t start_step = offset / ecc_size;
4270 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4271 	int oob_bytes       = mtd->oobsize / ecc_steps;
4272 	int step, ret;
4273 
4274 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4275 	if (ret)
4276 		return ret;
4277 
4278 	for (step = 0; step < ecc_steps; step++) {
4279 		/* configure controller for WRITE access */
4280 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4281 
4282 		/* write data (untouched subpages already masked by 0xFF) */
4283 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4284 		if (ret)
4285 			return ret;
4286 
4287 		/* mask ECC of un-touched subpages by padding 0xFF */
4288 		if ((step < start_step) || (step > end_step))
4289 			memset(ecc_calc, 0xff, ecc_bytes);
4290 		else
4291 			chip->ecc.calculate(chip, buf, ecc_calc);
4292 
4293 		/* mask OOB of un-touched subpages by padding 0xFF */
4294 		/* if oob_required, preserve OOB metadata of written subpage */
4295 		if (!oob_required || (step < start_step) || (step > end_step))
4296 			memset(oob_buf, 0xff, oob_bytes);
4297 
4298 		buf += ecc_size;
4299 		ecc_calc += ecc_bytes;
4300 		oob_buf  += oob_bytes;
4301 	}
4302 
4303 	/* copy calculated ECC for whole page to chip->buffer->oob */
4304 	/* this include masked-value(0xFF) for unwritten subpages */
4305 	ecc_calc = chip->ecc.calc_buf;
4306 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4307 					 chip->ecc.total);
4308 	if (ret)
4309 		return ret;
4310 
4311 	/* write OOB buffer to NAND device */
4312 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4313 	if (ret)
4314 		return ret;
4315 
4316 	return nand_prog_page_end_op(chip);
4317 }
4318 
4319 
4320 /**
4321  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4322  * @chip: nand chip info structure
4323  * @buf: data buffer
4324  * @oob_required: must write chip->oob_poi to OOB
4325  * @page: page number to write
4326  *
4327  * The hw generator calculates the error syndrome automatically. Therefore we
4328  * need a special oob layout and handling.
4329  */
4330 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4331 				    int oob_required, int page)
4332 {
4333 	struct mtd_info *mtd = nand_to_mtd(chip);
4334 	int i, eccsize = chip->ecc.size;
4335 	int eccbytes = chip->ecc.bytes;
4336 	int eccsteps = chip->ecc.steps;
4337 	const uint8_t *p = buf;
4338 	uint8_t *oob = chip->oob_poi;
4339 	int ret;
4340 
4341 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4342 	if (ret)
4343 		return ret;
4344 
4345 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4346 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4347 
4348 		ret = nand_write_data_op(chip, p, eccsize, false);
4349 		if (ret)
4350 			return ret;
4351 
4352 		if (chip->ecc.prepad) {
4353 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4354 						 false);
4355 			if (ret)
4356 				return ret;
4357 
4358 			oob += chip->ecc.prepad;
4359 		}
4360 
4361 		chip->ecc.calculate(chip, p, oob);
4362 
4363 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4364 		if (ret)
4365 			return ret;
4366 
4367 		oob += eccbytes;
4368 
4369 		if (chip->ecc.postpad) {
4370 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4371 						 false);
4372 			if (ret)
4373 				return ret;
4374 
4375 			oob += chip->ecc.postpad;
4376 		}
4377 	}
4378 
4379 	/* Calculate remaining oob bytes */
4380 	i = mtd->oobsize - (oob - chip->oob_poi);
4381 	if (i) {
4382 		ret = nand_write_data_op(chip, oob, i, false);
4383 		if (ret)
4384 			return ret;
4385 	}
4386 
4387 	return nand_prog_page_end_op(chip);
4388 }
4389 
4390 /**
4391  * nand_write_page - write one page
4392  * @chip: NAND chip descriptor
4393  * @offset: address offset within the page
4394  * @data_len: length of actual data to be written
4395  * @buf: the data to write
4396  * @oob_required: must write chip->oob_poi to OOB
4397  * @page: page number to write
4398  * @raw: use _raw version of write_page
4399  */
4400 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4401 			   int data_len, const uint8_t *buf, int oob_required,
4402 			   int page, int raw)
4403 {
4404 	struct mtd_info *mtd = nand_to_mtd(chip);
4405 	int status, subpage;
4406 
4407 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4408 		chip->ecc.write_subpage)
4409 		subpage = offset || (data_len < mtd->writesize);
4410 	else
4411 		subpage = 0;
4412 
4413 	if (unlikely(raw))
4414 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4415 						  page);
4416 	else if (subpage)
4417 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4418 						 oob_required, page);
4419 	else
4420 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4421 
4422 	if (status < 0)
4423 		return status;
4424 
4425 	return 0;
4426 }
4427 
4428 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4429 
4430 /**
4431  * nand_do_write_ops - [INTERN] NAND write with ECC
4432  * @chip: NAND chip object
4433  * @to: offset to write to
4434  * @ops: oob operations description structure
4435  *
4436  * NAND write with ECC.
4437  */
4438 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4439 			     struct mtd_oob_ops *ops)
4440 {
4441 	struct mtd_info *mtd = nand_to_mtd(chip);
4442 	int chipnr, realpage, page, column;
4443 	uint32_t writelen = ops->len;
4444 
4445 	uint32_t oobwritelen = ops->ooblen;
4446 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4447 
4448 	uint8_t *oob = ops->oobbuf;
4449 	uint8_t *buf = ops->datbuf;
4450 	int ret;
4451 	int oob_required = oob ? 1 : 0;
4452 
4453 	ops->retlen = 0;
4454 	if (!writelen)
4455 		return 0;
4456 
4457 	/* Reject writes, which are not page aligned */
4458 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4459 		pr_notice("%s: attempt to write non page aligned data\n",
4460 			   __func__);
4461 		return -EINVAL;
4462 	}
4463 
4464 	/* Check if the region is secured */
4465 	if (nand_region_is_secured(chip, to, writelen))
4466 		return -EIO;
4467 
4468 	column = to & (mtd->writesize - 1);
4469 
4470 	chipnr = (int)(to >> chip->chip_shift);
4471 	nand_select_target(chip, chipnr);
4472 
4473 	/* Check, if it is write protected */
4474 	if (nand_check_wp(chip)) {
4475 		ret = -EIO;
4476 		goto err_out;
4477 	}
4478 
4479 	realpage = (int)(to >> chip->page_shift);
4480 	page = realpage & chip->pagemask;
4481 
4482 	/* Invalidate the page cache, when we write to the cached page */
4483 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4484 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4485 		chip->pagecache.page = -1;
4486 
4487 	/* Don't allow multipage oob writes with offset */
4488 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4489 		ret = -EINVAL;
4490 		goto err_out;
4491 	}
4492 
4493 	while (1) {
4494 		int bytes = mtd->writesize;
4495 		uint8_t *wbuf = buf;
4496 		int use_bounce_buf;
4497 		int part_pagewr = (column || writelen < mtd->writesize);
4498 
4499 		if (part_pagewr)
4500 			use_bounce_buf = 1;
4501 		else if (chip->options & NAND_USES_DMA)
4502 			use_bounce_buf = !virt_addr_valid(buf) ||
4503 					 !IS_ALIGNED((unsigned long)buf,
4504 						     chip->buf_align);
4505 		else
4506 			use_bounce_buf = 0;
4507 
4508 		/*
4509 		 * Copy the data from the initial buffer when doing partial page
4510 		 * writes or when a bounce buffer is required.
4511 		 */
4512 		if (use_bounce_buf) {
4513 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4514 					 __func__, buf);
4515 			if (part_pagewr)
4516 				bytes = min_t(int, bytes - column, writelen);
4517 			wbuf = nand_get_data_buf(chip);
4518 			memset(wbuf, 0xff, mtd->writesize);
4519 			memcpy(&wbuf[column], buf, bytes);
4520 		}
4521 
4522 		if (unlikely(oob)) {
4523 			size_t len = min(oobwritelen, oobmaxlen);
4524 			oob = nand_fill_oob(chip, oob, len, ops);
4525 			oobwritelen -= len;
4526 		} else {
4527 			/* We still need to erase leftover OOB data */
4528 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4529 		}
4530 
4531 		ret = nand_write_page(chip, column, bytes, wbuf,
4532 				      oob_required, page,
4533 				      (ops->mode == MTD_OPS_RAW));
4534 		if (ret)
4535 			break;
4536 
4537 		writelen -= bytes;
4538 		if (!writelen)
4539 			break;
4540 
4541 		column = 0;
4542 		buf += bytes;
4543 		realpage++;
4544 
4545 		page = realpage & chip->pagemask;
4546 		/* Check, if we cross a chip boundary */
4547 		if (!page) {
4548 			chipnr++;
4549 			nand_deselect_target(chip);
4550 			nand_select_target(chip, chipnr);
4551 		}
4552 	}
4553 
4554 	ops->retlen = ops->len - writelen;
4555 	if (unlikely(oob))
4556 		ops->oobretlen = ops->ooblen;
4557 
4558 err_out:
4559 	nand_deselect_target(chip);
4560 	return ret;
4561 }
4562 
4563 /**
4564  * panic_nand_write - [MTD Interface] NAND write with ECC
4565  * @mtd: MTD device structure
4566  * @to: offset to write to
4567  * @len: number of bytes to write
4568  * @retlen: pointer to variable to store the number of written bytes
4569  * @buf: the data to write
4570  *
4571  * NAND write with ECC. Used when performing writes in interrupt context, this
4572  * may for example be called by mtdoops when writing an oops while in panic.
4573  */
4574 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4575 			    size_t *retlen, const uint8_t *buf)
4576 {
4577 	struct nand_chip *chip = mtd_to_nand(mtd);
4578 	int chipnr = (int)(to >> chip->chip_shift);
4579 	struct mtd_oob_ops ops;
4580 	int ret;
4581 
4582 	nand_select_target(chip, chipnr);
4583 
4584 	/* Wait for the device to get ready */
4585 	panic_nand_wait(chip, 400);
4586 
4587 	memset(&ops, 0, sizeof(ops));
4588 	ops.len = len;
4589 	ops.datbuf = (uint8_t *)buf;
4590 	ops.mode = MTD_OPS_PLACE_OOB;
4591 
4592 	ret = nand_do_write_ops(chip, to, &ops);
4593 
4594 	*retlen = ops.retlen;
4595 	return ret;
4596 }
4597 
4598 /**
4599  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4600  * @mtd: MTD device structure
4601  * @to: offset to write to
4602  * @ops: oob operation description structure
4603  */
4604 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4605 			  struct mtd_oob_ops *ops)
4606 {
4607 	struct nand_chip *chip = mtd_to_nand(mtd);
4608 	int ret = 0;
4609 
4610 	ops->retlen = 0;
4611 
4612 	nand_get_device(chip);
4613 
4614 	switch (ops->mode) {
4615 	case MTD_OPS_PLACE_OOB:
4616 	case MTD_OPS_AUTO_OOB:
4617 	case MTD_OPS_RAW:
4618 		break;
4619 
4620 	default:
4621 		goto out;
4622 	}
4623 
4624 	if (!ops->datbuf)
4625 		ret = nand_do_write_oob(chip, to, ops);
4626 	else
4627 		ret = nand_do_write_ops(chip, to, ops);
4628 
4629 out:
4630 	nand_release_device(chip);
4631 	return ret;
4632 }
4633 
4634 /**
4635  * nand_erase - [MTD Interface] erase block(s)
4636  * @mtd: MTD device structure
4637  * @instr: erase instruction
4638  *
4639  * Erase one ore more blocks.
4640  */
4641 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4642 {
4643 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4644 }
4645 
4646 /**
4647  * nand_erase_nand - [INTERN] erase block(s)
4648  * @chip: NAND chip object
4649  * @instr: erase instruction
4650  * @allowbbt: allow erasing the bbt area
4651  *
4652  * Erase one ore more blocks.
4653  */
4654 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4655 		    int allowbbt)
4656 {
4657 	int page, pages_per_block, ret, chipnr;
4658 	loff_t len;
4659 
4660 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4661 			__func__, (unsigned long long)instr->addr,
4662 			(unsigned long long)instr->len);
4663 
4664 	if (check_offs_len(chip, instr->addr, instr->len))
4665 		return -EINVAL;
4666 
4667 	/* Check if the region is secured */
4668 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4669 		return -EIO;
4670 
4671 	/* Grab the lock and see if the device is available */
4672 	nand_get_device(chip);
4673 
4674 	/* Shift to get first page */
4675 	page = (int)(instr->addr >> chip->page_shift);
4676 	chipnr = (int)(instr->addr >> chip->chip_shift);
4677 
4678 	/* Calculate pages in each block */
4679 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4680 
4681 	/* Select the NAND device */
4682 	nand_select_target(chip, chipnr);
4683 
4684 	/* Check, if it is write protected */
4685 	if (nand_check_wp(chip)) {
4686 		pr_debug("%s: device is write protected!\n",
4687 				__func__);
4688 		ret = -EIO;
4689 		goto erase_exit;
4690 	}
4691 
4692 	/* Loop through the pages */
4693 	len = instr->len;
4694 
4695 	while (len) {
4696 		loff_t ofs = (loff_t)page << chip->page_shift;
4697 
4698 		/* Check if we have a bad block, we do not erase bad blocks! */
4699 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4700 					chip->page_shift, allowbbt)) {
4701 			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4702 				    __func__, (unsigned long long)ofs);
4703 			ret = -EIO;
4704 			goto erase_exit;
4705 		}
4706 
4707 		/*
4708 		 * Invalidate the page cache, if we erase the block which
4709 		 * contains the current cached page.
4710 		 */
4711 		if (page <= chip->pagecache.page && chip->pagecache.page <
4712 		    (page + pages_per_block))
4713 			chip->pagecache.page = -1;
4714 
4715 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4716 				    (chip->phys_erase_shift - chip->page_shift));
4717 		if (ret) {
4718 			pr_debug("%s: failed erase, page 0x%08x\n",
4719 					__func__, page);
4720 			instr->fail_addr = ofs;
4721 			goto erase_exit;
4722 		}
4723 
4724 		/* Increment page address and decrement length */
4725 		len -= (1ULL << chip->phys_erase_shift);
4726 		page += pages_per_block;
4727 
4728 		/* Check, if we cross a chip boundary */
4729 		if (len && !(page & chip->pagemask)) {
4730 			chipnr++;
4731 			nand_deselect_target(chip);
4732 			nand_select_target(chip, chipnr);
4733 		}
4734 	}
4735 
4736 	ret = 0;
4737 erase_exit:
4738 
4739 	/* Deselect and wake up anyone waiting on the device */
4740 	nand_deselect_target(chip);
4741 	nand_release_device(chip);
4742 
4743 	/* Return more or less happy */
4744 	return ret;
4745 }
4746 
4747 /**
4748  * nand_sync - [MTD Interface] sync
4749  * @mtd: MTD device structure
4750  *
4751  * Sync is actually a wait for chip ready function.
4752  */
4753 static void nand_sync(struct mtd_info *mtd)
4754 {
4755 	struct nand_chip *chip = mtd_to_nand(mtd);
4756 
4757 	pr_debug("%s: called\n", __func__);
4758 
4759 	/* Grab the lock and see if the device is available */
4760 	nand_get_device(chip);
4761 	/* Release it and go back */
4762 	nand_release_device(chip);
4763 }
4764 
4765 /**
4766  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4767  * @mtd: MTD device structure
4768  * @offs: offset relative to mtd start
4769  */
4770 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4771 {
4772 	struct nand_chip *chip = mtd_to_nand(mtd);
4773 	int chipnr = (int)(offs >> chip->chip_shift);
4774 	int ret;
4775 
4776 	/* Select the NAND device */
4777 	nand_get_device(chip);
4778 
4779 	nand_select_target(chip, chipnr);
4780 
4781 	ret = nand_block_checkbad(chip, offs, 0);
4782 
4783 	nand_deselect_target(chip);
4784 	nand_release_device(chip);
4785 
4786 	return ret;
4787 }
4788 
4789 /**
4790  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4791  * @mtd: MTD device structure
4792  * @ofs: offset relative to mtd start
4793  */
4794 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4795 {
4796 	int ret;
4797 
4798 	ret = nand_block_isbad(mtd, ofs);
4799 	if (ret) {
4800 		/* If it was bad already, return success and do nothing */
4801 		if (ret > 0)
4802 			return 0;
4803 		return ret;
4804 	}
4805 
4806 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4807 }
4808 
4809 /**
4810  * nand_suspend - [MTD Interface] Suspend the NAND flash
4811  * @mtd: MTD device structure
4812  *
4813  * Returns 0 for success or negative error code otherwise.
4814  */
4815 static int nand_suspend(struct mtd_info *mtd)
4816 {
4817 	struct nand_chip *chip = mtd_to_nand(mtd);
4818 	int ret = 0;
4819 
4820 	mutex_lock(&chip->lock);
4821 	if (chip->ops.suspend)
4822 		ret = chip->ops.suspend(chip);
4823 	if (!ret)
4824 		chip->suspended = 1;
4825 	mutex_unlock(&chip->lock);
4826 
4827 	return ret;
4828 }
4829 
4830 /**
4831  * nand_resume - [MTD Interface] Resume the NAND flash
4832  * @mtd: MTD device structure
4833  */
4834 static void nand_resume(struct mtd_info *mtd)
4835 {
4836 	struct nand_chip *chip = mtd_to_nand(mtd);
4837 
4838 	mutex_lock(&chip->lock);
4839 	if (chip->suspended) {
4840 		if (chip->ops.resume)
4841 			chip->ops.resume(chip);
4842 		chip->suspended = 0;
4843 	} else {
4844 		pr_err("%s called for a chip which is not in suspended state\n",
4845 			__func__);
4846 	}
4847 	mutex_unlock(&chip->lock);
4848 
4849 	wake_up_all(&chip->resume_wq);
4850 }
4851 
4852 /**
4853  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4854  *                 prevent further operations
4855  * @mtd: MTD device structure
4856  */
4857 static void nand_shutdown(struct mtd_info *mtd)
4858 {
4859 	nand_suspend(mtd);
4860 }
4861 
4862 /**
4863  * nand_lock - [MTD Interface] Lock the NAND flash
4864  * @mtd: MTD device structure
4865  * @ofs: offset byte address
4866  * @len: number of bytes to lock (must be a multiple of block/page size)
4867  */
4868 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4869 {
4870 	struct nand_chip *chip = mtd_to_nand(mtd);
4871 
4872 	if (!chip->ops.lock_area)
4873 		return -ENOTSUPP;
4874 
4875 	return chip->ops.lock_area(chip, ofs, len);
4876 }
4877 
4878 /**
4879  * nand_unlock - [MTD Interface] Unlock the NAND flash
4880  * @mtd: MTD device structure
4881  * @ofs: offset byte address
4882  * @len: number of bytes to unlock (must be a multiple of block/page size)
4883  */
4884 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4885 {
4886 	struct nand_chip *chip = mtd_to_nand(mtd);
4887 
4888 	if (!chip->ops.unlock_area)
4889 		return -ENOTSUPP;
4890 
4891 	return chip->ops.unlock_area(chip, ofs, len);
4892 }
4893 
4894 /* Set default functions */
4895 static void nand_set_defaults(struct nand_chip *chip)
4896 {
4897 	/* If no controller is provided, use the dummy, legacy one. */
4898 	if (!chip->controller) {
4899 		chip->controller = &chip->legacy.dummy_controller;
4900 		nand_controller_init(chip->controller);
4901 	}
4902 
4903 	nand_legacy_set_defaults(chip);
4904 
4905 	if (!chip->buf_align)
4906 		chip->buf_align = 1;
4907 }
4908 
4909 /* Sanitize ONFI strings so we can safely print them */
4910 void sanitize_string(uint8_t *s, size_t len)
4911 {
4912 	ssize_t i;
4913 
4914 	/* Null terminate */
4915 	s[len - 1] = 0;
4916 
4917 	/* Remove non printable chars */
4918 	for (i = 0; i < len - 1; i++) {
4919 		if (s[i] < ' ' || s[i] > 127)
4920 			s[i] = '?';
4921 	}
4922 
4923 	/* Remove trailing spaces */
4924 	strim(s);
4925 }
4926 
4927 /*
4928  * nand_id_has_period - Check if an ID string has a given wraparound period
4929  * @id_data: the ID string
4930  * @arrlen: the length of the @id_data array
4931  * @period: the period of repitition
4932  *
4933  * Check if an ID string is repeated within a given sequence of bytes at
4934  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4935  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4936  * if the repetition has a period of @period; otherwise, returns zero.
4937  */
4938 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4939 {
4940 	int i, j;
4941 	for (i = 0; i < period; i++)
4942 		for (j = i + period; j < arrlen; j += period)
4943 			if (id_data[i] != id_data[j])
4944 				return 0;
4945 	return 1;
4946 }
4947 
4948 /*
4949  * nand_id_len - Get the length of an ID string returned by CMD_READID
4950  * @id_data: the ID string
4951  * @arrlen: the length of the @id_data array
4952 
4953  * Returns the length of the ID string, according to known wraparound/trailing
4954  * zero patterns. If no pattern exists, returns the length of the array.
4955  */
4956 static int nand_id_len(u8 *id_data, int arrlen)
4957 {
4958 	int last_nonzero, period;
4959 
4960 	/* Find last non-zero byte */
4961 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4962 		if (id_data[last_nonzero])
4963 			break;
4964 
4965 	/* All zeros */
4966 	if (last_nonzero < 0)
4967 		return 0;
4968 
4969 	/* Calculate wraparound period */
4970 	for (period = 1; period < arrlen; period++)
4971 		if (nand_id_has_period(id_data, arrlen, period))
4972 			break;
4973 
4974 	/* There's a repeated pattern */
4975 	if (period < arrlen)
4976 		return period;
4977 
4978 	/* There are trailing zeros */
4979 	if (last_nonzero < arrlen - 1)
4980 		return last_nonzero + 1;
4981 
4982 	/* No pattern detected */
4983 	return arrlen;
4984 }
4985 
4986 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4987 static int nand_get_bits_per_cell(u8 cellinfo)
4988 {
4989 	int bits;
4990 
4991 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4992 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4993 	return bits + 1;
4994 }
4995 
4996 /*
4997  * Many new NAND share similar device ID codes, which represent the size of the
4998  * chip. The rest of the parameters must be decoded according to generic or
4999  * manufacturer-specific "extended ID" decoding patterns.
5000  */
5001 void nand_decode_ext_id(struct nand_chip *chip)
5002 {
5003 	struct nand_memory_organization *memorg;
5004 	struct mtd_info *mtd = nand_to_mtd(chip);
5005 	int extid;
5006 	u8 *id_data = chip->id.data;
5007 
5008 	memorg = nanddev_get_memorg(&chip->base);
5009 
5010 	/* The 3rd id byte holds MLC / multichip data */
5011 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5012 	/* The 4th id byte is the important one */
5013 	extid = id_data[3];
5014 
5015 	/* Calc pagesize */
5016 	memorg->pagesize = 1024 << (extid & 0x03);
5017 	mtd->writesize = memorg->pagesize;
5018 	extid >>= 2;
5019 	/* Calc oobsize */
5020 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5021 	mtd->oobsize = memorg->oobsize;
5022 	extid >>= 2;
5023 	/* Calc blocksize. Blocksize is multiples of 64KiB */
5024 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
5025 				       memorg->pagesize;
5026 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
5027 	extid >>= 2;
5028 	/* Get buswidth information */
5029 	if (extid & 0x1)
5030 		chip->options |= NAND_BUSWIDTH_16;
5031 }
5032 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5033 
5034 /*
5035  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5036  * decodes a matching ID table entry and assigns the MTD size parameters for
5037  * the chip.
5038  */
5039 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5040 {
5041 	struct mtd_info *mtd = nand_to_mtd(chip);
5042 	struct nand_memory_organization *memorg;
5043 
5044 	memorg = nanddev_get_memorg(&chip->base);
5045 
5046 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5047 	mtd->erasesize = type->erasesize;
5048 	memorg->pagesize = type->pagesize;
5049 	mtd->writesize = memorg->pagesize;
5050 	memorg->oobsize = memorg->pagesize / 32;
5051 	mtd->oobsize = memorg->oobsize;
5052 
5053 	/* All legacy ID NAND are small-page, SLC */
5054 	memorg->bits_per_cell = 1;
5055 }
5056 
5057 /*
5058  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5059  * heuristic patterns using various detected parameters (e.g., manufacturer,
5060  * page size, cell-type information).
5061  */
5062 static void nand_decode_bbm_options(struct nand_chip *chip)
5063 {
5064 	struct mtd_info *mtd = nand_to_mtd(chip);
5065 
5066 	/* Set the bad block position */
5067 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5068 		chip->badblockpos = NAND_BBM_POS_LARGE;
5069 	else
5070 		chip->badblockpos = NAND_BBM_POS_SMALL;
5071 }
5072 
5073 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5074 {
5075 	return type->id_len;
5076 }
5077 
5078 static bool find_full_id_nand(struct nand_chip *chip,
5079 			      struct nand_flash_dev *type)
5080 {
5081 	struct nand_device *base = &chip->base;
5082 	struct nand_ecc_props requirements;
5083 	struct mtd_info *mtd = nand_to_mtd(chip);
5084 	struct nand_memory_organization *memorg;
5085 	u8 *id_data = chip->id.data;
5086 
5087 	memorg = nanddev_get_memorg(&chip->base);
5088 
5089 	if (!strncmp(type->id, id_data, type->id_len)) {
5090 		memorg->pagesize = type->pagesize;
5091 		mtd->writesize = memorg->pagesize;
5092 		memorg->pages_per_eraseblock = type->erasesize /
5093 					       type->pagesize;
5094 		mtd->erasesize = type->erasesize;
5095 		memorg->oobsize = type->oobsize;
5096 		mtd->oobsize = memorg->oobsize;
5097 
5098 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5099 		memorg->eraseblocks_per_lun =
5100 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5101 					   memorg->pagesize *
5102 					   memorg->pages_per_eraseblock);
5103 		chip->options |= type->options;
5104 		requirements.strength = NAND_ECC_STRENGTH(type);
5105 		requirements.step_size = NAND_ECC_STEP(type);
5106 		nanddev_set_ecc_requirements(base, &requirements);
5107 
5108 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5109 		if (!chip->parameters.model)
5110 			return false;
5111 
5112 		return true;
5113 	}
5114 	return false;
5115 }
5116 
5117 /*
5118  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5119  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5120  * table.
5121  */
5122 static void nand_manufacturer_detect(struct nand_chip *chip)
5123 {
5124 	/*
5125 	 * Try manufacturer detection if available and use
5126 	 * nand_decode_ext_id() otherwise.
5127 	 */
5128 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5129 	    chip->manufacturer.desc->ops->detect) {
5130 		struct nand_memory_organization *memorg;
5131 
5132 		memorg = nanddev_get_memorg(&chip->base);
5133 
5134 		/* The 3rd id byte holds MLC / multichip data */
5135 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5136 		chip->manufacturer.desc->ops->detect(chip);
5137 	} else {
5138 		nand_decode_ext_id(chip);
5139 	}
5140 }
5141 
5142 /*
5143  * Manufacturer initialization. This function is called for all NANDs including
5144  * ONFI and JEDEC compliant ones.
5145  * Manufacturer drivers should put all their specific initialization code in
5146  * their ->init() hook.
5147  */
5148 static int nand_manufacturer_init(struct nand_chip *chip)
5149 {
5150 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5151 	    !chip->manufacturer.desc->ops->init)
5152 		return 0;
5153 
5154 	return chip->manufacturer.desc->ops->init(chip);
5155 }
5156 
5157 /*
5158  * Manufacturer cleanup. This function is called for all NANDs including
5159  * ONFI and JEDEC compliant ones.
5160  * Manufacturer drivers should put all their specific cleanup code in their
5161  * ->cleanup() hook.
5162  */
5163 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5164 {
5165 	/* Release manufacturer private data */
5166 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5167 	    chip->manufacturer.desc->ops->cleanup)
5168 		chip->manufacturer.desc->ops->cleanup(chip);
5169 }
5170 
5171 static const char *
5172 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5173 {
5174 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5175 }
5176 
5177 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5178 {
5179 	/* Use an arbitrary size for the check */
5180 	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5181 		chip->controller->supported_op.data_only_read = 1;
5182 }
5183 
5184 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5185 {
5186 	/* The supported_op fields should not be set by individual drivers */
5187 	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5188 
5189 	if (!nand_has_exec_op(chip))
5190 		return;
5191 
5192 	rawnand_check_data_only_read_support(chip);
5193 }
5194 
5195 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5196 {
5197 	struct mtd_info *mtd = nand_to_mtd(chip);
5198 
5199 	if (!chip->parameters.supports_read_cache)
5200 		return;
5201 
5202 	if (chip->read_retries)
5203 		return;
5204 
5205 	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5206 					    mtd->writesize, true))
5207 		chip->controller->supported_op.cont_read = 1;
5208 }
5209 
5210 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5211 {
5212 	/* The supported_op fields should not be set by individual drivers */
5213 	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5214 
5215 	/*
5216 	 * Too many devices do not support sequential cached reads with on-die
5217 	 * ECC correction enabled, so in this case refuse to perform the
5218 	 * automation.
5219 	 */
5220 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5221 		return;
5222 
5223 	if (!nand_has_exec_op(chip))
5224 		return;
5225 
5226 	/*
5227 	 * For now, continuous reads can only be used with the core page helpers.
5228 	 * This can be extended later.
5229 	 */
5230 	if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5231 	      chip->ecc.read_page == nand_read_page_syndrome ||
5232 	      chip->ecc.read_page == nand_read_page_swecc))
5233 		return;
5234 
5235 	rawnand_check_cont_read_support(chip);
5236 }
5237 
5238 /*
5239  * Get the flash and manufacturer id and lookup if the type is supported.
5240  */
5241 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5242 {
5243 	const struct nand_manufacturer_desc *manufacturer_desc;
5244 	struct mtd_info *mtd = nand_to_mtd(chip);
5245 	struct nand_memory_organization *memorg;
5246 	int busw, ret;
5247 	u8 *id_data = chip->id.data;
5248 	u8 maf_id, dev_id;
5249 	u64 targetsize;
5250 
5251 	/*
5252 	 * Let's start by initializing memorg fields that might be left
5253 	 * unassigned by the ID-based detection logic.
5254 	 */
5255 	memorg = nanddev_get_memorg(&chip->base);
5256 	memorg->planes_per_lun = 1;
5257 	memorg->luns_per_target = 1;
5258 
5259 	/*
5260 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5261 	 * after power-up.
5262 	 */
5263 	ret = nand_reset(chip, 0);
5264 	if (ret)
5265 		return ret;
5266 
5267 	/* Select the device */
5268 	nand_select_target(chip, 0);
5269 
5270 	rawnand_early_check_supported_ops(chip);
5271 
5272 	/* Send the command for reading device ID */
5273 	ret = nand_readid_op(chip, 0, id_data, 2);
5274 	if (ret)
5275 		return ret;
5276 
5277 	/* Read manufacturer and device IDs */
5278 	maf_id = id_data[0];
5279 	dev_id = id_data[1];
5280 
5281 	/*
5282 	 * Try again to make sure, as some systems the bus-hold or other
5283 	 * interface concerns can cause random data which looks like a
5284 	 * possibly credible NAND flash to appear. If the two results do
5285 	 * not match, ignore the device completely.
5286 	 */
5287 
5288 	/* Read entire ID string */
5289 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5290 	if (ret)
5291 		return ret;
5292 
5293 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5294 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5295 			maf_id, dev_id, id_data[0], id_data[1]);
5296 		return -ENODEV;
5297 	}
5298 
5299 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5300 
5301 	/* Try to identify manufacturer */
5302 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5303 	chip->manufacturer.desc = manufacturer_desc;
5304 
5305 	if (!type)
5306 		type = nand_flash_ids;
5307 
5308 	/*
5309 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5310 	 * override it.
5311 	 * This is required to make sure initial NAND bus width set by the
5312 	 * NAND controller driver is coherent with the real NAND bus width
5313 	 * (extracted by auto-detection code).
5314 	 */
5315 	busw = chip->options & NAND_BUSWIDTH_16;
5316 
5317 	/*
5318 	 * The flag is only set (never cleared), reset it to its default value
5319 	 * before starting auto-detection.
5320 	 */
5321 	chip->options &= ~NAND_BUSWIDTH_16;
5322 
5323 	for (; type->name != NULL; type++) {
5324 		if (is_full_id_nand(type)) {
5325 			if (find_full_id_nand(chip, type))
5326 				goto ident_done;
5327 		} else if (dev_id == type->dev_id) {
5328 			break;
5329 		}
5330 	}
5331 
5332 	if (!type->name || !type->pagesize) {
5333 		/* Check if the chip is ONFI compliant */
5334 		ret = nand_onfi_detect(chip);
5335 		if (ret < 0)
5336 			return ret;
5337 		else if (ret)
5338 			goto ident_done;
5339 
5340 		/* Check if the chip is JEDEC compliant */
5341 		ret = nand_jedec_detect(chip);
5342 		if (ret < 0)
5343 			return ret;
5344 		else if (ret)
5345 			goto ident_done;
5346 	}
5347 
5348 	if (!type->name)
5349 		return -ENODEV;
5350 
5351 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5352 	if (!chip->parameters.model)
5353 		return -ENOMEM;
5354 
5355 	if (!type->pagesize)
5356 		nand_manufacturer_detect(chip);
5357 	else
5358 		nand_decode_id(chip, type);
5359 
5360 	/* Get chip options */
5361 	chip->options |= type->options;
5362 
5363 	memorg->eraseblocks_per_lun =
5364 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5365 					   memorg->pagesize *
5366 					   memorg->pages_per_eraseblock);
5367 
5368 ident_done:
5369 	if (!mtd->name)
5370 		mtd->name = chip->parameters.model;
5371 
5372 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5373 		WARN_ON(busw & NAND_BUSWIDTH_16);
5374 		nand_set_defaults(chip);
5375 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5376 		/*
5377 		 * Check, if buswidth is correct. Hardware drivers should set
5378 		 * chip correct!
5379 		 */
5380 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5381 			maf_id, dev_id);
5382 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5383 			mtd->name);
5384 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5385 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5386 		ret = -EINVAL;
5387 
5388 		goto free_detect_allocation;
5389 	}
5390 
5391 	nand_decode_bbm_options(chip);
5392 
5393 	/* Calculate the address shift from the page size */
5394 	chip->page_shift = ffs(mtd->writesize) - 1;
5395 	/* Convert chipsize to number of pages per chip -1 */
5396 	targetsize = nanddev_target_size(&chip->base);
5397 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5398 
5399 	chip->bbt_erase_shift = chip->phys_erase_shift =
5400 		ffs(mtd->erasesize) - 1;
5401 	if (targetsize & 0xffffffff)
5402 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5403 	else {
5404 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5405 		chip->chip_shift += 32 - 1;
5406 	}
5407 
5408 	if (chip->chip_shift - chip->page_shift > 16)
5409 		chip->options |= NAND_ROW_ADDR_3;
5410 
5411 	chip->badblockbits = 8;
5412 
5413 	nand_legacy_adjust_cmdfunc(chip);
5414 
5415 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5416 		maf_id, dev_id);
5417 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5418 		chip->parameters.model);
5419 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5420 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5421 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5422 	return 0;
5423 
5424 free_detect_allocation:
5425 	kfree(chip->parameters.model);
5426 
5427 	return ret;
5428 }
5429 
5430 static enum nand_ecc_engine_type
5431 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5432 {
5433 	enum nand_ecc_legacy_mode {
5434 		NAND_ECC_INVALID,
5435 		NAND_ECC_NONE,
5436 		NAND_ECC_SOFT,
5437 		NAND_ECC_SOFT_BCH,
5438 		NAND_ECC_HW,
5439 		NAND_ECC_HW_SYNDROME,
5440 		NAND_ECC_ON_DIE,
5441 	};
5442 	const char * const nand_ecc_legacy_modes[] = {
5443 		[NAND_ECC_NONE]		= "none",
5444 		[NAND_ECC_SOFT]		= "soft",
5445 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5446 		[NAND_ECC_HW]		= "hw",
5447 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5448 		[NAND_ECC_ON_DIE]	= "on-die",
5449 	};
5450 	enum nand_ecc_legacy_mode eng_type;
5451 	const char *pm;
5452 	int err;
5453 
5454 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5455 	if (err)
5456 		return NAND_ECC_ENGINE_TYPE_INVALID;
5457 
5458 	for (eng_type = NAND_ECC_NONE;
5459 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5460 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5461 			switch (eng_type) {
5462 			case NAND_ECC_NONE:
5463 				return NAND_ECC_ENGINE_TYPE_NONE;
5464 			case NAND_ECC_SOFT:
5465 			case NAND_ECC_SOFT_BCH:
5466 				return NAND_ECC_ENGINE_TYPE_SOFT;
5467 			case NAND_ECC_HW:
5468 			case NAND_ECC_HW_SYNDROME:
5469 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5470 			case NAND_ECC_ON_DIE:
5471 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5472 			default:
5473 				break;
5474 			}
5475 		}
5476 	}
5477 
5478 	return NAND_ECC_ENGINE_TYPE_INVALID;
5479 }
5480 
5481 static enum nand_ecc_placement
5482 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5483 {
5484 	const char *pm;
5485 	int err;
5486 
5487 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5488 	if (!err) {
5489 		if (!strcasecmp(pm, "hw_syndrome"))
5490 			return NAND_ECC_PLACEMENT_INTERLEAVED;
5491 	}
5492 
5493 	return NAND_ECC_PLACEMENT_UNKNOWN;
5494 }
5495 
5496 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5497 {
5498 	const char *pm;
5499 	int err;
5500 
5501 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5502 	if (!err) {
5503 		if (!strcasecmp(pm, "soft"))
5504 			return NAND_ECC_ALGO_HAMMING;
5505 		else if (!strcasecmp(pm, "soft_bch"))
5506 			return NAND_ECC_ALGO_BCH;
5507 	}
5508 
5509 	return NAND_ECC_ALGO_UNKNOWN;
5510 }
5511 
5512 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5513 {
5514 	struct device_node *dn = nand_get_flash_node(chip);
5515 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5516 
5517 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5518 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5519 
5520 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5521 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5522 
5523 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5524 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5525 }
5526 
5527 static int of_get_nand_bus_width(struct nand_chip *chip)
5528 {
5529 	struct device_node *dn = nand_get_flash_node(chip);
5530 	u32 val;
5531 	int ret;
5532 
5533 	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5534 	if (ret == -EINVAL)
5535 		/* Buswidth defaults to 8 if the property does not exist .*/
5536 		return 0;
5537 	else if (ret)
5538 		return ret;
5539 
5540 	if (val == 16)
5541 		chip->options |= NAND_BUSWIDTH_16;
5542 	else if (val != 8)
5543 		return -EINVAL;
5544 	return 0;
5545 }
5546 
5547 static int of_get_nand_secure_regions(struct nand_chip *chip)
5548 {
5549 	struct device_node *dn = nand_get_flash_node(chip);
5550 	struct property *prop;
5551 	int nr_elem, i, j;
5552 
5553 	/* Only proceed if the "secure-regions" property is present in DT */
5554 	prop = of_find_property(dn, "secure-regions", NULL);
5555 	if (!prop)
5556 		return 0;
5557 
5558 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5559 	if (nr_elem <= 0)
5560 		return nr_elem;
5561 
5562 	chip->nr_secure_regions = nr_elem / 2;
5563 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5564 				       GFP_KERNEL);
5565 	if (!chip->secure_regions)
5566 		return -ENOMEM;
5567 
5568 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5569 		of_property_read_u64_index(dn, "secure-regions", j,
5570 					   &chip->secure_regions[i].offset);
5571 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5572 					   &chip->secure_regions[i].size);
5573 	}
5574 
5575 	return 0;
5576 }
5577 
5578 /**
5579  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5580  * @dev: Device that will be parsed. Also used for managed allocations.
5581  * @cs_array: Array of GPIO desc pointers allocated on success
5582  * @ncs_array: Number of entries in @cs_array updated on success.
5583  * @return 0 on success, an error otherwise.
5584  */
5585 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5586 			     unsigned int *ncs_array)
5587 {
5588 	struct gpio_desc **descs;
5589 	int ndescs, i;
5590 
5591 	ndescs = gpiod_count(dev, "cs");
5592 	if (ndescs < 0) {
5593 		dev_dbg(dev, "No valid cs-gpios property\n");
5594 		return 0;
5595 	}
5596 
5597 	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5598 	if (!descs)
5599 		return -ENOMEM;
5600 
5601 	for (i = 0; i < ndescs; i++) {
5602 		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5603 						    GPIOD_OUT_HIGH);
5604 		if (IS_ERR(descs[i]))
5605 			return PTR_ERR(descs[i]);
5606 	}
5607 
5608 	*ncs_array = ndescs;
5609 	*cs_array = descs;
5610 
5611 	return 0;
5612 }
5613 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5614 
5615 static int rawnand_dt_init(struct nand_chip *chip)
5616 {
5617 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5618 	struct device_node *dn = nand_get_flash_node(chip);
5619 	int ret;
5620 
5621 	if (!dn)
5622 		return 0;
5623 
5624 	ret = of_get_nand_bus_width(chip);
5625 	if (ret)
5626 		return ret;
5627 
5628 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5629 		chip->options |= NAND_IS_BOOT_MEDIUM;
5630 
5631 	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5632 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5633 
5634 	of_get_nand_ecc_user_config(nand);
5635 	of_get_nand_ecc_legacy_user_config(chip);
5636 
5637 	/*
5638 	 * If neither the user nor the NAND controller have requested a specific
5639 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5640 	 */
5641 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5642 
5643 	/*
5644 	 * Use the user requested engine type, unless there is none, in this
5645 	 * case default to the NAND controller choice, otherwise fallback to
5646 	 * the raw NAND default one.
5647 	 */
5648 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5649 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5650 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5651 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5652 
5653 	chip->ecc.placement = nand->ecc.user_conf.placement;
5654 	chip->ecc.algo = nand->ecc.user_conf.algo;
5655 	chip->ecc.strength = nand->ecc.user_conf.strength;
5656 	chip->ecc.size = nand->ecc.user_conf.step_size;
5657 
5658 	return 0;
5659 }
5660 
5661 /**
5662  * nand_scan_ident - Scan for the NAND device
5663  * @chip: NAND chip object
5664  * @maxchips: number of chips to scan for
5665  * @table: alternative NAND ID table
5666  *
5667  * This is the first phase of the normal nand_scan() function. It reads the
5668  * flash ID and sets up MTD fields accordingly.
5669  *
5670  * This helper used to be called directly from controller drivers that needed
5671  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5672  * prevented dynamic allocations during this phase which was unconvenient and
5673  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5674  */
5675 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5676 			   struct nand_flash_dev *table)
5677 {
5678 	struct mtd_info *mtd = nand_to_mtd(chip);
5679 	struct nand_memory_organization *memorg;
5680 	int nand_maf_id, nand_dev_id;
5681 	unsigned int i;
5682 	int ret;
5683 
5684 	memorg = nanddev_get_memorg(&chip->base);
5685 
5686 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5687 	chip->cur_cs = -1;
5688 
5689 	mutex_init(&chip->lock);
5690 	init_waitqueue_head(&chip->resume_wq);
5691 
5692 	/* Enforce the right timings for reset/detection */
5693 	chip->current_interface_config = nand_get_reset_interface_config();
5694 
5695 	ret = rawnand_dt_init(chip);
5696 	if (ret)
5697 		return ret;
5698 
5699 	if (!mtd->name && mtd->dev.parent)
5700 		mtd->name = dev_name(mtd->dev.parent);
5701 
5702 	/* Set the default functions */
5703 	nand_set_defaults(chip);
5704 
5705 	ret = nand_legacy_check_hooks(chip);
5706 	if (ret)
5707 		return ret;
5708 
5709 	memorg->ntargets = maxchips;
5710 
5711 	/* Read the flash type */
5712 	ret = nand_detect(chip, table);
5713 	if (ret) {
5714 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5715 			pr_warn("No NAND device found\n");
5716 		nand_deselect_target(chip);
5717 		return ret;
5718 	}
5719 
5720 	nand_maf_id = chip->id.data[0];
5721 	nand_dev_id = chip->id.data[1];
5722 
5723 	nand_deselect_target(chip);
5724 
5725 	/* Check for a chip array */
5726 	for (i = 1; i < maxchips; i++) {
5727 		u8 id[2];
5728 
5729 		/* See comment in nand_get_flash_type for reset */
5730 		ret = nand_reset(chip, i);
5731 		if (ret)
5732 			break;
5733 
5734 		nand_select_target(chip, i);
5735 		/* Send the command for reading device ID */
5736 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5737 		if (ret)
5738 			break;
5739 		/* Read manufacturer and device IDs */
5740 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5741 			nand_deselect_target(chip);
5742 			break;
5743 		}
5744 		nand_deselect_target(chip);
5745 	}
5746 	if (i > 1)
5747 		pr_info("%d chips detected\n", i);
5748 
5749 	/* Store the number of chips and calc total size for mtd */
5750 	memorg->ntargets = i;
5751 	mtd->size = i * nanddev_target_size(&chip->base);
5752 
5753 	return 0;
5754 }
5755 
5756 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5757 {
5758 	kfree(chip->parameters.model);
5759 	kfree(chip->parameters.onfi);
5760 }
5761 
5762 int rawnand_sw_hamming_init(struct nand_chip *chip)
5763 {
5764 	struct nand_ecc_sw_hamming_conf *engine_conf;
5765 	struct nand_device *base = &chip->base;
5766 	int ret;
5767 
5768 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5769 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5770 	base->ecc.user_conf.strength = chip->ecc.strength;
5771 	base->ecc.user_conf.step_size = chip->ecc.size;
5772 
5773 	ret = nand_ecc_sw_hamming_init_ctx(base);
5774 	if (ret)
5775 		return ret;
5776 
5777 	engine_conf = base->ecc.ctx.priv;
5778 
5779 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5780 		engine_conf->sm_order = true;
5781 
5782 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5783 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5784 	chip->ecc.total = base->ecc.ctx.total;
5785 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5786 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5787 
5788 	return 0;
5789 }
5790 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5791 
5792 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5793 				 const unsigned char *buf,
5794 				 unsigned char *code)
5795 {
5796 	struct nand_device *base = &chip->base;
5797 
5798 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5799 }
5800 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5801 
5802 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5803 			       unsigned char *buf,
5804 			       unsigned char *read_ecc,
5805 			       unsigned char *calc_ecc)
5806 {
5807 	struct nand_device *base = &chip->base;
5808 
5809 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5810 }
5811 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5812 
5813 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5814 {
5815 	struct nand_device *base = &chip->base;
5816 
5817 	nand_ecc_sw_hamming_cleanup_ctx(base);
5818 }
5819 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5820 
5821 int rawnand_sw_bch_init(struct nand_chip *chip)
5822 {
5823 	struct nand_device *base = &chip->base;
5824 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5825 	int ret;
5826 
5827 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5828 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5829 	base->ecc.user_conf.step_size = chip->ecc.size;
5830 	base->ecc.user_conf.strength = chip->ecc.strength;
5831 
5832 	ret = nand_ecc_sw_bch_init_ctx(base);
5833 	if (ret)
5834 		return ret;
5835 
5836 	chip->ecc.size = ecc_conf->step_size;
5837 	chip->ecc.strength = ecc_conf->strength;
5838 	chip->ecc.total = base->ecc.ctx.total;
5839 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5840 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5841 
5842 	return 0;
5843 }
5844 EXPORT_SYMBOL(rawnand_sw_bch_init);
5845 
5846 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5847 				    const unsigned char *buf,
5848 				    unsigned char *code)
5849 {
5850 	struct nand_device *base = &chip->base;
5851 
5852 	return nand_ecc_sw_bch_calculate(base, buf, code);
5853 }
5854 
5855 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5856 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5857 {
5858 	struct nand_device *base = &chip->base;
5859 
5860 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5861 }
5862 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5863 
5864 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5865 {
5866 	struct nand_device *base = &chip->base;
5867 
5868 	nand_ecc_sw_bch_cleanup_ctx(base);
5869 }
5870 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5871 
5872 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5873 {
5874 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5875 
5876 	switch (ecc->placement) {
5877 	case NAND_ECC_PLACEMENT_UNKNOWN:
5878 	case NAND_ECC_PLACEMENT_OOB:
5879 		/* Use standard hwecc read page function? */
5880 		if (!ecc->read_page)
5881 			ecc->read_page = nand_read_page_hwecc;
5882 		if (!ecc->write_page)
5883 			ecc->write_page = nand_write_page_hwecc;
5884 		if (!ecc->read_page_raw)
5885 			ecc->read_page_raw = nand_read_page_raw;
5886 		if (!ecc->write_page_raw)
5887 			ecc->write_page_raw = nand_write_page_raw;
5888 		if (!ecc->read_oob)
5889 			ecc->read_oob = nand_read_oob_std;
5890 		if (!ecc->write_oob)
5891 			ecc->write_oob = nand_write_oob_std;
5892 		if (!ecc->read_subpage)
5893 			ecc->read_subpage = nand_read_subpage;
5894 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5895 			ecc->write_subpage = nand_write_subpage_hwecc;
5896 		fallthrough;
5897 
5898 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5899 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5900 		    (!ecc->read_page ||
5901 		     ecc->read_page == nand_read_page_hwecc ||
5902 		     !ecc->write_page ||
5903 		     ecc->write_page == nand_write_page_hwecc)) {
5904 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5905 			return -EINVAL;
5906 		}
5907 		/* Use standard syndrome read/write page function? */
5908 		if (!ecc->read_page)
5909 			ecc->read_page = nand_read_page_syndrome;
5910 		if (!ecc->write_page)
5911 			ecc->write_page = nand_write_page_syndrome;
5912 		if (!ecc->read_page_raw)
5913 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5914 		if (!ecc->write_page_raw)
5915 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5916 		if (!ecc->read_oob)
5917 			ecc->read_oob = nand_read_oob_syndrome;
5918 		if (!ecc->write_oob)
5919 			ecc->write_oob = nand_write_oob_syndrome;
5920 		break;
5921 
5922 	default:
5923 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5924 			ecc->placement);
5925 		return -EINVAL;
5926 	}
5927 
5928 	return 0;
5929 }
5930 
5931 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5932 {
5933 	struct mtd_info *mtd = nand_to_mtd(chip);
5934 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5935 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5936 	int ret;
5937 
5938 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5939 		return -EINVAL;
5940 
5941 	switch (ecc->algo) {
5942 	case NAND_ECC_ALGO_HAMMING:
5943 		ecc->calculate = rawnand_sw_hamming_calculate;
5944 		ecc->correct = rawnand_sw_hamming_correct;
5945 		ecc->read_page = nand_read_page_swecc;
5946 		ecc->read_subpage = nand_read_subpage;
5947 		ecc->write_page = nand_write_page_swecc;
5948 		if (!ecc->read_page_raw)
5949 			ecc->read_page_raw = nand_read_page_raw;
5950 		if (!ecc->write_page_raw)
5951 			ecc->write_page_raw = nand_write_page_raw;
5952 		ecc->read_oob = nand_read_oob_std;
5953 		ecc->write_oob = nand_write_oob_std;
5954 		if (!ecc->size)
5955 			ecc->size = 256;
5956 		ecc->bytes = 3;
5957 		ecc->strength = 1;
5958 
5959 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5960 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5961 
5962 		ret = rawnand_sw_hamming_init(chip);
5963 		if (ret) {
5964 			WARN(1, "Hamming ECC initialization failed!\n");
5965 			return ret;
5966 		}
5967 
5968 		return 0;
5969 	case NAND_ECC_ALGO_BCH:
5970 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5971 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5972 			return -EINVAL;
5973 		}
5974 		ecc->calculate = rawnand_sw_bch_calculate;
5975 		ecc->correct = rawnand_sw_bch_correct;
5976 		ecc->read_page = nand_read_page_swecc;
5977 		ecc->read_subpage = nand_read_subpage;
5978 		ecc->write_page = nand_write_page_swecc;
5979 		if (!ecc->read_page_raw)
5980 			ecc->read_page_raw = nand_read_page_raw;
5981 		if (!ecc->write_page_raw)
5982 			ecc->write_page_raw = nand_write_page_raw;
5983 		ecc->read_oob = nand_read_oob_std;
5984 		ecc->write_oob = nand_write_oob_std;
5985 
5986 		/*
5987 		 * We can only maximize ECC config when the default layout is
5988 		 * used, otherwise we don't know how many bytes can really be
5989 		 * used.
5990 		 */
5991 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5992 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5993 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5994 
5995 		ret = rawnand_sw_bch_init(chip);
5996 		if (ret) {
5997 			WARN(1, "BCH ECC initialization failed!\n");
5998 			return ret;
5999 		}
6000 
6001 		return 0;
6002 	default:
6003 		WARN(1, "Unsupported ECC algorithm!\n");
6004 		return -EINVAL;
6005 	}
6006 }
6007 
6008 /**
6009  * nand_check_ecc_caps - check the sanity of preset ECC settings
6010  * @chip: nand chip info structure
6011  * @caps: ECC caps info structure
6012  * @oobavail: OOB size that the ECC engine can use
6013  *
6014  * When ECC step size and strength are already set, check if they are supported
6015  * by the controller and the calculated ECC bytes fit within the chip's OOB.
6016  * On success, the calculated ECC bytes is set.
6017  */
6018 static int
6019 nand_check_ecc_caps(struct nand_chip *chip,
6020 		    const struct nand_ecc_caps *caps, int oobavail)
6021 {
6022 	struct mtd_info *mtd = nand_to_mtd(chip);
6023 	const struct nand_ecc_step_info *stepinfo;
6024 	int preset_step = chip->ecc.size;
6025 	int preset_strength = chip->ecc.strength;
6026 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
6027 	int i, j;
6028 
6029 	for (i = 0; i < caps->nstepinfos; i++) {
6030 		stepinfo = &caps->stepinfos[i];
6031 
6032 		if (stepinfo->stepsize != preset_step)
6033 			continue;
6034 
6035 		for (j = 0; j < stepinfo->nstrengths; j++) {
6036 			if (stepinfo->strengths[j] != preset_strength)
6037 				continue;
6038 
6039 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6040 							 preset_strength);
6041 			if (WARN_ON_ONCE(ecc_bytes < 0))
6042 				return ecc_bytes;
6043 
6044 			if (ecc_bytes * nsteps > oobavail) {
6045 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6046 				       preset_step, preset_strength);
6047 				return -ENOSPC;
6048 			}
6049 
6050 			chip->ecc.bytes = ecc_bytes;
6051 
6052 			return 0;
6053 		}
6054 	}
6055 
6056 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6057 	       preset_step, preset_strength);
6058 
6059 	return -ENOTSUPP;
6060 }
6061 
6062 /**
6063  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6064  * @chip: nand chip info structure
6065  * @caps: ECC engine caps info structure
6066  * @oobavail: OOB size that the ECC engine can use
6067  *
6068  * If a chip's ECC requirement is provided, try to meet it with the least
6069  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6070  * On success, the chosen ECC settings are set.
6071  */
6072 static int
6073 nand_match_ecc_req(struct nand_chip *chip,
6074 		   const struct nand_ecc_caps *caps, int oobavail)
6075 {
6076 	const struct nand_ecc_props *requirements =
6077 		nanddev_get_ecc_requirements(&chip->base);
6078 	struct mtd_info *mtd = nand_to_mtd(chip);
6079 	const struct nand_ecc_step_info *stepinfo;
6080 	int req_step = requirements->step_size;
6081 	int req_strength = requirements->strength;
6082 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6083 	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6084 	int best_ecc_bytes_total = INT_MAX;
6085 	int i, j;
6086 
6087 	/* No information provided by the NAND chip */
6088 	if (!req_step || !req_strength)
6089 		return -ENOTSUPP;
6090 
6091 	/* number of correctable bits the chip requires in a page */
6092 	req_corr = mtd->writesize / req_step * req_strength;
6093 
6094 	for (i = 0; i < caps->nstepinfos; i++) {
6095 		stepinfo = &caps->stepinfos[i];
6096 		step_size = stepinfo->stepsize;
6097 
6098 		for (j = 0; j < stepinfo->nstrengths; j++) {
6099 			strength = stepinfo->strengths[j];
6100 
6101 			/*
6102 			 * If both step size and strength are smaller than the
6103 			 * chip's requirement, it is not easy to compare the
6104 			 * resulted reliability.
6105 			 */
6106 			if (step_size < req_step && strength < req_strength)
6107 				continue;
6108 
6109 			if (mtd->writesize % step_size)
6110 				continue;
6111 
6112 			nsteps = mtd->writesize / step_size;
6113 
6114 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6115 			if (WARN_ON_ONCE(ecc_bytes < 0))
6116 				continue;
6117 			ecc_bytes_total = ecc_bytes * nsteps;
6118 
6119 			if (ecc_bytes_total > oobavail ||
6120 			    strength * nsteps < req_corr)
6121 				continue;
6122 
6123 			/*
6124 			 * We assume the best is to meet the chip's requrement
6125 			 * with the least number of ECC bytes.
6126 			 */
6127 			if (ecc_bytes_total < best_ecc_bytes_total) {
6128 				best_ecc_bytes_total = ecc_bytes_total;
6129 				best_step = step_size;
6130 				best_strength = strength;
6131 				best_ecc_bytes = ecc_bytes;
6132 			}
6133 		}
6134 	}
6135 
6136 	if (best_ecc_bytes_total == INT_MAX)
6137 		return -ENOTSUPP;
6138 
6139 	chip->ecc.size = best_step;
6140 	chip->ecc.strength = best_strength;
6141 	chip->ecc.bytes = best_ecc_bytes;
6142 
6143 	return 0;
6144 }
6145 
6146 /**
6147  * nand_maximize_ecc - choose the max ECC strength available
6148  * @chip: nand chip info structure
6149  * @caps: ECC engine caps info structure
6150  * @oobavail: OOB size that the ECC engine can use
6151  *
6152  * Choose the max ECC strength that is supported on the controller, and can fit
6153  * within the chip's OOB.  On success, the chosen ECC settings are set.
6154  */
6155 static int
6156 nand_maximize_ecc(struct nand_chip *chip,
6157 		  const struct nand_ecc_caps *caps, int oobavail)
6158 {
6159 	struct mtd_info *mtd = nand_to_mtd(chip);
6160 	const struct nand_ecc_step_info *stepinfo;
6161 	int step_size, strength, nsteps, ecc_bytes, corr;
6162 	int best_corr = 0;
6163 	int best_step = 0;
6164 	int best_strength = 0, best_ecc_bytes = 0;
6165 	int i, j;
6166 
6167 	for (i = 0; i < caps->nstepinfos; i++) {
6168 		stepinfo = &caps->stepinfos[i];
6169 		step_size = stepinfo->stepsize;
6170 
6171 		/* If chip->ecc.size is already set, respect it */
6172 		if (chip->ecc.size && step_size != chip->ecc.size)
6173 			continue;
6174 
6175 		for (j = 0; j < stepinfo->nstrengths; j++) {
6176 			strength = stepinfo->strengths[j];
6177 
6178 			if (mtd->writesize % step_size)
6179 				continue;
6180 
6181 			nsteps = mtd->writesize / step_size;
6182 
6183 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6184 			if (WARN_ON_ONCE(ecc_bytes < 0))
6185 				continue;
6186 
6187 			if (ecc_bytes * nsteps > oobavail)
6188 				continue;
6189 
6190 			corr = strength * nsteps;
6191 
6192 			/*
6193 			 * If the number of correctable bits is the same,
6194 			 * bigger step_size has more reliability.
6195 			 */
6196 			if (corr > best_corr ||
6197 			    (corr == best_corr && step_size > best_step)) {
6198 				best_corr = corr;
6199 				best_step = step_size;
6200 				best_strength = strength;
6201 				best_ecc_bytes = ecc_bytes;
6202 			}
6203 		}
6204 	}
6205 
6206 	if (!best_corr)
6207 		return -ENOTSUPP;
6208 
6209 	chip->ecc.size = best_step;
6210 	chip->ecc.strength = best_strength;
6211 	chip->ecc.bytes = best_ecc_bytes;
6212 
6213 	return 0;
6214 }
6215 
6216 /**
6217  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6218  * @chip: nand chip info structure
6219  * @caps: ECC engine caps info structure
6220  * @oobavail: OOB size that the ECC engine can use
6221  *
6222  * Choose the ECC configuration according to following logic.
6223  *
6224  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6225  *    then check if it is supported by this controller.
6226  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6227  *    ECC strength.
6228  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6229  *    to the chip's requirement. If available OOB size can't fit the chip
6230  *    requirement then fallback to the maximum ECC step size and ECC strength.
6231  *
6232  * On success, the chosen ECC settings are set.
6233  */
6234 int nand_ecc_choose_conf(struct nand_chip *chip,
6235 			 const struct nand_ecc_caps *caps, int oobavail)
6236 {
6237 	struct mtd_info *mtd = nand_to_mtd(chip);
6238 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6239 
6240 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6241 		return -EINVAL;
6242 
6243 	if (chip->ecc.size && chip->ecc.strength)
6244 		return nand_check_ecc_caps(chip, caps, oobavail);
6245 
6246 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6247 		return nand_maximize_ecc(chip, caps, oobavail);
6248 
6249 	if (!nand_match_ecc_req(chip, caps, oobavail))
6250 		return 0;
6251 
6252 	return nand_maximize_ecc(chip, caps, oobavail);
6253 }
6254 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6255 
6256 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6257 {
6258 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6259 					      base);
6260 	unsigned int eb = nanddev_pos_to_row(nand, pos);
6261 	int ret;
6262 
6263 	eb >>= nand->rowconv.eraseblock_addr_shift;
6264 
6265 	nand_select_target(chip, pos->target);
6266 	ret = nand_erase_op(chip, eb);
6267 	nand_deselect_target(chip);
6268 
6269 	return ret;
6270 }
6271 
6272 static int rawnand_markbad(struct nand_device *nand,
6273 			   const struct nand_pos *pos)
6274 {
6275 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6276 					      base);
6277 
6278 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6279 }
6280 
6281 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6282 {
6283 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6284 					      base);
6285 	int ret;
6286 
6287 	nand_select_target(chip, pos->target);
6288 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6289 	nand_deselect_target(chip);
6290 
6291 	return ret;
6292 }
6293 
6294 static const struct nand_ops rawnand_ops = {
6295 	.erase = rawnand_erase,
6296 	.markbad = rawnand_markbad,
6297 	.isbad = rawnand_isbad,
6298 };
6299 
6300 /**
6301  * nand_scan_tail - Scan for the NAND device
6302  * @chip: NAND chip object
6303  *
6304  * This is the second phase of the normal nand_scan() function. It fills out
6305  * all the uninitialized function pointers with the defaults and scans for a
6306  * bad block table if appropriate.
6307  */
6308 static int nand_scan_tail(struct nand_chip *chip)
6309 {
6310 	struct mtd_info *mtd = nand_to_mtd(chip);
6311 	struct nand_device *base = &chip->base;
6312 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6313 	int ret, i;
6314 
6315 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6316 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6317 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6318 		return -EINVAL;
6319 	}
6320 
6321 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6322 	if (!chip->data_buf)
6323 		return -ENOMEM;
6324 
6325 	/*
6326 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6327 	 * selected when manufacturer->init() is called. They should be fixed
6328 	 * to explictly select the relevant die when interacting with the NAND
6329 	 * chip.
6330 	 */
6331 	nand_select_target(chip, 0);
6332 	ret = nand_manufacturer_init(chip);
6333 	nand_deselect_target(chip);
6334 	if (ret)
6335 		goto err_free_buf;
6336 
6337 	/* Set the internal oob buffer location, just after the page data */
6338 	chip->oob_poi = chip->data_buf + mtd->writesize;
6339 
6340 	/*
6341 	 * If no default placement scheme is given, select an appropriate one.
6342 	 */
6343 	if (!mtd->ooblayout &&
6344 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6345 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6346 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6347 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6348 		switch (mtd->oobsize) {
6349 		case 8:
6350 		case 16:
6351 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6352 			break;
6353 		case 64:
6354 		case 128:
6355 			mtd_set_ooblayout(mtd,
6356 					  nand_get_large_page_hamming_ooblayout());
6357 			break;
6358 		default:
6359 			/*
6360 			 * Expose the whole OOB area to users if ECC_NONE
6361 			 * is passed. We could do that for all kind of
6362 			 * ->oobsize, but we must keep the old large/small
6363 			 * page with ECC layout when ->oobsize <= 128 for
6364 			 * compatibility reasons.
6365 			 */
6366 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6367 				mtd_set_ooblayout(mtd,
6368 						  nand_get_large_page_ooblayout());
6369 				break;
6370 			}
6371 
6372 			WARN(1, "No oob scheme defined for oobsize %d\n",
6373 				mtd->oobsize);
6374 			ret = -EINVAL;
6375 			goto err_nand_manuf_cleanup;
6376 		}
6377 	}
6378 
6379 	/*
6380 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6381 	 * selected and we have 256 byte pagesize fallback to software ECC
6382 	 */
6383 
6384 	switch (ecc->engine_type) {
6385 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6386 		ret = nand_set_ecc_on_host_ops(chip);
6387 		if (ret)
6388 			goto err_nand_manuf_cleanup;
6389 
6390 		if (mtd->writesize >= ecc->size) {
6391 			if (!ecc->strength) {
6392 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6393 				ret = -EINVAL;
6394 				goto err_nand_manuf_cleanup;
6395 			}
6396 			break;
6397 		}
6398 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6399 			ecc->size, mtd->writesize);
6400 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6401 		ecc->algo = NAND_ECC_ALGO_HAMMING;
6402 		fallthrough;
6403 
6404 	case NAND_ECC_ENGINE_TYPE_SOFT:
6405 		ret = nand_set_ecc_soft_ops(chip);
6406 		if (ret)
6407 			goto err_nand_manuf_cleanup;
6408 		break;
6409 
6410 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6411 		if (!ecc->read_page || !ecc->write_page) {
6412 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6413 			ret = -EINVAL;
6414 			goto err_nand_manuf_cleanup;
6415 		}
6416 		if (!ecc->read_oob)
6417 			ecc->read_oob = nand_read_oob_std;
6418 		if (!ecc->write_oob)
6419 			ecc->write_oob = nand_write_oob_std;
6420 		break;
6421 
6422 	case NAND_ECC_ENGINE_TYPE_NONE:
6423 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6424 		ecc->read_page = nand_read_page_raw;
6425 		ecc->write_page = nand_write_page_raw;
6426 		ecc->read_oob = nand_read_oob_std;
6427 		ecc->read_page_raw = nand_read_page_raw;
6428 		ecc->write_page_raw = nand_write_page_raw;
6429 		ecc->write_oob = nand_write_oob_std;
6430 		ecc->size = mtd->writesize;
6431 		ecc->bytes = 0;
6432 		ecc->strength = 0;
6433 		break;
6434 
6435 	default:
6436 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6437 		ret = -EINVAL;
6438 		goto err_nand_manuf_cleanup;
6439 	}
6440 
6441 	if (ecc->correct || ecc->calculate) {
6442 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6443 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6444 		if (!ecc->calc_buf || !ecc->code_buf) {
6445 			ret = -ENOMEM;
6446 			goto err_nand_manuf_cleanup;
6447 		}
6448 	}
6449 
6450 	/* For many systems, the standard OOB write also works for raw */
6451 	if (!ecc->read_oob_raw)
6452 		ecc->read_oob_raw = ecc->read_oob;
6453 	if (!ecc->write_oob_raw)
6454 		ecc->write_oob_raw = ecc->write_oob;
6455 
6456 	/* Propagate ECC info to the generic NAND and MTD layers */
6457 	mtd->ecc_strength = ecc->strength;
6458 	if (!base->ecc.ctx.conf.strength)
6459 		base->ecc.ctx.conf.strength = ecc->strength;
6460 	mtd->ecc_step_size = ecc->size;
6461 	if (!base->ecc.ctx.conf.step_size)
6462 		base->ecc.ctx.conf.step_size = ecc->size;
6463 
6464 	/*
6465 	 * Set the number of read / write steps for one page depending on ECC
6466 	 * mode.
6467 	 */
6468 	if (!ecc->steps)
6469 		ecc->steps = mtd->writesize / ecc->size;
6470 	if (!base->ecc.ctx.nsteps)
6471 		base->ecc.ctx.nsteps = ecc->steps;
6472 	if (ecc->steps * ecc->size != mtd->writesize) {
6473 		WARN(1, "Invalid ECC parameters\n");
6474 		ret = -EINVAL;
6475 		goto err_nand_manuf_cleanup;
6476 	}
6477 
6478 	if (!ecc->total) {
6479 		ecc->total = ecc->steps * ecc->bytes;
6480 		chip->base.ecc.ctx.total = ecc->total;
6481 	}
6482 
6483 	if (ecc->total > mtd->oobsize) {
6484 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6485 		ret = -EINVAL;
6486 		goto err_nand_manuf_cleanup;
6487 	}
6488 
6489 	/*
6490 	 * The number of bytes available for a client to place data into
6491 	 * the out of band area.
6492 	 */
6493 	ret = mtd_ooblayout_count_freebytes(mtd);
6494 	if (ret < 0)
6495 		ret = 0;
6496 
6497 	mtd->oobavail = ret;
6498 
6499 	/* ECC sanity check: warn if it's too weak */
6500 	if (!nand_ecc_is_strong_enough(&chip->base))
6501 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6502 			mtd->name, chip->ecc.strength, chip->ecc.size,
6503 			nanddev_get_ecc_requirements(&chip->base)->strength,
6504 			nanddev_get_ecc_requirements(&chip->base)->step_size);
6505 
6506 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6507 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6508 		switch (ecc->steps) {
6509 		case 2:
6510 			mtd->subpage_sft = 1;
6511 			break;
6512 		case 4:
6513 		case 8:
6514 		case 16:
6515 			mtd->subpage_sft = 2;
6516 			break;
6517 		}
6518 	}
6519 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6520 
6521 	/* Invalidate the pagebuffer reference */
6522 	chip->pagecache.page = -1;
6523 
6524 	/* Large page NAND with SOFT_ECC should support subpage reads */
6525 	switch (ecc->engine_type) {
6526 	case NAND_ECC_ENGINE_TYPE_SOFT:
6527 		if (chip->page_shift > 9)
6528 			chip->options |= NAND_SUBPAGE_READ;
6529 		break;
6530 
6531 	default:
6532 		break;
6533 	}
6534 
6535 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6536 	if (ret)
6537 		goto err_nand_manuf_cleanup;
6538 
6539 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6540 	if (chip->options & NAND_ROM)
6541 		mtd->flags = MTD_CAP_ROM;
6542 
6543 	/* Fill in remaining MTD driver data */
6544 	mtd->_erase = nand_erase;
6545 	mtd->_point = NULL;
6546 	mtd->_unpoint = NULL;
6547 	mtd->_panic_write = panic_nand_write;
6548 	mtd->_read_oob = nand_read_oob;
6549 	mtd->_write_oob = nand_write_oob;
6550 	mtd->_sync = nand_sync;
6551 	mtd->_lock = nand_lock;
6552 	mtd->_unlock = nand_unlock;
6553 	mtd->_suspend = nand_suspend;
6554 	mtd->_resume = nand_resume;
6555 	mtd->_reboot = nand_shutdown;
6556 	mtd->_block_isreserved = nand_block_isreserved;
6557 	mtd->_block_isbad = nand_block_isbad;
6558 	mtd->_block_markbad = nand_block_markbad;
6559 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6560 
6561 	/*
6562 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6563 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6564 	 * properly set.
6565 	 */
6566 	if (!mtd->bitflip_threshold)
6567 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6568 
6569 	/* Find the fastest data interface for this chip */
6570 	ret = nand_choose_interface_config(chip);
6571 	if (ret)
6572 		goto err_nanddev_cleanup;
6573 
6574 	/* Enter fastest possible mode on all dies. */
6575 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6576 		ret = nand_setup_interface(chip, i);
6577 		if (ret)
6578 			goto err_free_interface_config;
6579 	}
6580 
6581 	rawnand_late_check_supported_ops(chip);
6582 
6583 	/*
6584 	 * Look for secure regions in the NAND chip. These regions are supposed
6585 	 * to be protected by a secure element like Trustzone. So the read/write
6586 	 * accesses to these regions will be blocked in the runtime by this
6587 	 * driver.
6588 	 */
6589 	ret = of_get_nand_secure_regions(chip);
6590 	if (ret)
6591 		goto err_free_interface_config;
6592 
6593 	/* Check, if we should skip the bad block table scan */
6594 	if (chip->options & NAND_SKIP_BBTSCAN)
6595 		return 0;
6596 
6597 	/* Build bad block table */
6598 	ret = nand_create_bbt(chip);
6599 	if (ret)
6600 		goto err_free_secure_regions;
6601 
6602 	return 0;
6603 
6604 err_free_secure_regions:
6605 	kfree(chip->secure_regions);
6606 
6607 err_free_interface_config:
6608 	kfree(chip->best_interface_config);
6609 
6610 err_nanddev_cleanup:
6611 	nanddev_cleanup(&chip->base);
6612 
6613 err_nand_manuf_cleanup:
6614 	nand_manufacturer_cleanup(chip);
6615 
6616 err_free_buf:
6617 	kfree(chip->data_buf);
6618 	kfree(ecc->code_buf);
6619 	kfree(ecc->calc_buf);
6620 
6621 	return ret;
6622 }
6623 
6624 static int nand_attach(struct nand_chip *chip)
6625 {
6626 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6627 		return chip->controller->ops->attach_chip(chip);
6628 
6629 	return 0;
6630 }
6631 
6632 static void nand_detach(struct nand_chip *chip)
6633 {
6634 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6635 		chip->controller->ops->detach_chip(chip);
6636 }
6637 
6638 /**
6639  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6640  * @chip: NAND chip object
6641  * @maxchips: number of chips to scan for.
6642  * @ids: optional flash IDs table
6643  *
6644  * This fills out all the uninitialized function pointers with the defaults.
6645  * The flash ID is read and the mtd/chip structures are filled with the
6646  * appropriate values.
6647  */
6648 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6649 		       struct nand_flash_dev *ids)
6650 {
6651 	int ret;
6652 
6653 	if (!maxchips)
6654 		return -EINVAL;
6655 
6656 	ret = nand_scan_ident(chip, maxchips, ids);
6657 	if (ret)
6658 		return ret;
6659 
6660 	ret = nand_attach(chip);
6661 	if (ret)
6662 		goto cleanup_ident;
6663 
6664 	ret = nand_scan_tail(chip);
6665 	if (ret)
6666 		goto detach_chip;
6667 
6668 	return 0;
6669 
6670 detach_chip:
6671 	nand_detach(chip);
6672 cleanup_ident:
6673 	nand_scan_ident_cleanup(chip);
6674 
6675 	return ret;
6676 }
6677 EXPORT_SYMBOL(nand_scan_with_ids);
6678 
6679 /**
6680  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6681  * @chip: NAND chip object
6682  */
6683 void nand_cleanup(struct nand_chip *chip)
6684 {
6685 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6686 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6687 			rawnand_sw_hamming_cleanup(chip);
6688 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6689 			rawnand_sw_bch_cleanup(chip);
6690 	}
6691 
6692 	nanddev_cleanup(&chip->base);
6693 
6694 	/* Free secure regions data */
6695 	kfree(chip->secure_regions);
6696 
6697 	/* Free bad block table memory */
6698 	kfree(chip->bbt);
6699 	kfree(chip->data_buf);
6700 	kfree(chip->ecc.code_buf);
6701 	kfree(chip->ecc.calc_buf);
6702 
6703 	/* Free bad block descriptor memory */
6704 	if (chip->badblock_pattern && chip->badblock_pattern->options
6705 			& NAND_BBT_DYNAMICSTRUCT)
6706 		kfree(chip->badblock_pattern);
6707 
6708 	/* Free the data interface */
6709 	kfree(chip->best_interface_config);
6710 
6711 	/* Free manufacturer priv data. */
6712 	nand_manufacturer_cleanup(chip);
6713 
6714 	/* Free controller specific allocations after chip identification */
6715 	nand_detach(chip);
6716 
6717 	/* Free identification phase allocations */
6718 	nand_scan_ident_cleanup(chip);
6719 }
6720 
6721 EXPORT_SYMBOL_GPL(nand_cleanup);
6722 
6723 MODULE_LICENSE("GPL");
6724 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6725 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6726 MODULE_DESCRIPTION("Generic NAND flash driver code");
6727