xref: /linux/drivers/mtd/nand/raw/nand_base.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46 
47 #include "internals.h"
48 
49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 				       struct mtd_pairing_info *info)
51 {
52 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 	int dist = 3;
54 
55 	if (page == lastpage)
56 		dist = 2;
57 
58 	if (!page || (page & 1)) {
59 		info->group = 0;
60 		info->pair = (page + 1) / 2;
61 	} else {
62 		info->group = 1;
63 		info->pair = (page + 1 - dist) / 2;
64 	}
65 
66 	return 0;
67 }
68 
69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 					const struct mtd_pairing_info *info)
71 {
72 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 	int page = info->pair * 2;
74 	int dist = 3;
75 
76 	if (!info->group && !info->pair)
77 		return 0;
78 
79 	if (info->pair == lastpair && info->group)
80 		dist = 2;
81 
82 	if (!info->group)
83 		page--;
84 	else if (info->pair)
85 		page += dist - 1;
86 
87 	if (page >= mtd->erasesize / mtd->writesize)
88 		return -EINVAL;
89 
90 	return page;
91 }
92 
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 	.ngroups = 2,
95 	.get_info = nand_pairing_dist3_get_info,
96 	.get_wunit = nand_pairing_dist3_get_wunit,
97 };
98 
99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101 	int ret = 0;
102 
103 	/* Start address must align on block boundary */
104 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 		pr_debug("%s: unaligned address\n", __func__);
106 		ret = -EINVAL;
107 	}
108 
109 	/* Length must align on block boundary */
110 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 		pr_debug("%s: length not block aligned\n", __func__);
112 		ret = -EINVAL;
113 	}
114 
115 	return ret;
116 }
117 
118 /**
119  * nand_extract_bits - Copy unaligned bits from one buffer to another one
120  * @dst: destination buffer
121  * @dst_off: bit offset at which the writing starts
122  * @src: source buffer
123  * @src_off: bit offset at which the reading starts
124  * @nbits: number of bits to copy from @src to @dst
125  *
126  * Copy bits from one memory region to another (overlap authorized).
127  */
128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 		       unsigned int src_off, unsigned int nbits)
130 {
131 	unsigned int tmp, n;
132 
133 	dst += dst_off / 8;
134 	dst_off %= 8;
135 	src += src_off / 8;
136 	src_off %= 8;
137 
138 	while (nbits) {
139 		n = min3(8 - dst_off, 8 - src_off, nbits);
140 
141 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 		*dst |= tmp << dst_off;
144 
145 		dst_off += n;
146 		if (dst_off >= 8) {
147 			dst++;
148 			dst_off -= 8;
149 		}
150 
151 		src_off += n;
152 		if (src_off >= 8) {
153 			src++;
154 			src_off -= 8;
155 		}
156 
157 		nbits -= n;
158 	}
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161 
162 /**
163  * nand_select_target() - Select a NAND target (A.K.A. die)
164  * @chip: NAND chip object
165  * @cs: the CS line to select. Note that this CS id is always from the chip
166  *	PoV, not the controller one
167  *
168  * Select a NAND target so that further operations executed on @chip go to the
169  * selected NAND target.
170  */
171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173 	/*
174 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 	 * not the case it's a bug and the caller should be fixed.
176 	 */
177 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 		return;
179 
180 	chip->cur_cs = cs;
181 
182 	if (chip->legacy.select_chip)
183 		chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186 
187 /**
188  * nand_deselect_target() - Deselect the currently selected target
189  * @chip: NAND chip object
190  *
191  * Deselect the currently selected NAND target. The result of operations
192  * executed on @chip after the target has been deselected is undefined.
193  */
194 void nand_deselect_target(struct nand_chip *chip)
195 {
196 	if (chip->legacy.select_chip)
197 		chip->legacy.select_chip(chip, -1);
198 
199 	chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202 
203 /**
204  * nand_release_device - [GENERIC] release chip
205  * @chip: NAND chip object
206  *
207  * Release chip lock and wake up anyone waiting on the device.
208  */
209 static void nand_release_device(struct nand_chip *chip)
210 {
211 	/* Release the controller and the chip */
212 	mutex_unlock(&chip->controller->lock);
213 	mutex_unlock(&chip->lock);
214 }
215 
216 /**
217  * nand_bbm_get_next_page - Get the next page for bad block markers
218  * @chip: NAND chip object
219  * @page: First page to start checking for bad block marker usage
220  *
221  * Returns an integer that corresponds to the page offset within a block, for
222  * a page that is used to store bad block markers. If no more pages are
223  * available, -EINVAL is returned.
224  */
225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227 	struct mtd_info *mtd = nand_to_mtd(chip);
228 	int last_page = ((mtd->erasesize - mtd->writesize) >>
229 			 chip->page_shift) & chip->pagemask;
230 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 		| NAND_BBM_LASTPAGE;
232 
233 	if (page == 0 && !(chip->options & bbm_flags))
234 		return 0;
235 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 		return 0;
237 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 		return 1;
239 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 		return last_page;
241 
242 	return -EINVAL;
243 }
244 
245 /**
246  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247  * @chip: NAND chip object
248  * @ofs: offset from device start
249  *
250  * Check, if the block is bad.
251  */
252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254 	int first_page, page_offset;
255 	int res;
256 	u8 bad;
257 
258 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 	page_offset = nand_bbm_get_next_page(chip, 0);
260 
261 	while (page_offset >= 0) {
262 		res = chip->ecc.read_oob(chip, first_page + page_offset);
263 		if (res < 0)
264 			return res;
265 
266 		bad = chip->oob_poi[chip->badblockpos];
267 
268 		if (likely(chip->badblockbits == 8))
269 			res = bad != 0xFF;
270 		else
271 			res = hweight8(bad) < chip->badblockbits;
272 		if (res)
273 			return res;
274 
275 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276 	}
277 
278 	return 0;
279 }
280 
281 /**
282  * nand_region_is_secured() - Check if the region is secured
283  * @chip: NAND chip object
284  * @offset: Offset of the region to check
285  * @size: Size of the region to check
286  *
287  * Checks if the region is secured by comparing the offset and size with the
288  * list of secure regions obtained from DT. Returns true if the region is
289  * secured else false.
290  */
291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292 {
293 	int i;
294 
295 	/* Skip touching the secure regions if present */
296 	for (i = 0; i < chip->nr_secure_regions; i++) {
297 		const struct nand_secure_region *region = &chip->secure_regions[i];
298 
299 		if (offset + size <= region->offset ||
300 		    offset >= region->offset + region->size)
301 			continue;
302 
303 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304 			 __func__, offset, offset + size);
305 
306 		return true;
307 	}
308 
309 	return false;
310 }
311 
312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313 {
314 	struct mtd_info *mtd = nand_to_mtd(chip);
315 
316 	if (chip->options & NAND_NO_BBM_QUIRK)
317 		return 0;
318 
319 	/* Check if the region is secured */
320 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321 		return -EIO;
322 
323 	if (mtd_check_expert_analysis_mode())
324 		return 0;
325 
326 	if (chip->legacy.block_bad)
327 		return chip->legacy.block_bad(chip, ofs);
328 
329 	return nand_block_bad(chip, ofs);
330 }
331 
332 /**
333  * nand_get_device - [GENERIC] Get chip for selected access
334  * @chip: NAND chip structure
335  *
336  * Lock the device and its controller for exclusive access
337  */
338 static void nand_get_device(struct nand_chip *chip)
339 {
340 	/* Wait until the device is resumed. */
341 	while (1) {
342 		mutex_lock(&chip->lock);
343 		if (!chip->suspended) {
344 			mutex_lock(&chip->controller->lock);
345 			return;
346 		}
347 		mutex_unlock(&chip->lock);
348 
349 		wait_event(chip->resume_wq, !chip->suspended);
350 	}
351 }
352 
353 /**
354  * nand_check_wp - [GENERIC] check if the chip is write protected
355  * @chip: NAND chip object
356  *
357  * Check, if the device is write protected. The function expects, that the
358  * device is already selected.
359  */
360 static int nand_check_wp(struct nand_chip *chip)
361 {
362 	u8 status;
363 	int ret;
364 
365 	/* Broken xD cards report WP despite being writable */
366 	if (chip->options & NAND_BROKEN_XD)
367 		return 0;
368 
369 	/* controller responsible for NAND write protect */
370 	if (chip->controller->controller_wp)
371 		return 0;
372 
373 	/* Check the WP bit */
374 	ret = nand_status_op(chip, &status);
375 	if (ret)
376 		return ret;
377 
378 	return status & NAND_STATUS_WP ? 0 : 1;
379 }
380 
381 /**
382  * nand_fill_oob - [INTERN] Transfer client buffer to oob
383  * @chip: NAND chip object
384  * @oob: oob data buffer
385  * @len: oob data write length
386  * @ops: oob ops structure
387  */
388 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
389 			      struct mtd_oob_ops *ops)
390 {
391 	struct mtd_info *mtd = nand_to_mtd(chip);
392 	int ret;
393 
394 	/*
395 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
396 	 * data from a previous OOB read.
397 	 */
398 	memset(chip->oob_poi, 0xff, mtd->oobsize);
399 
400 	switch (ops->mode) {
401 
402 	case MTD_OPS_PLACE_OOB:
403 	case MTD_OPS_RAW:
404 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
405 		return oob + len;
406 
407 	case MTD_OPS_AUTO_OOB:
408 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
409 						  ops->ooboffs, len);
410 		BUG_ON(ret);
411 		return oob + len;
412 
413 	default:
414 		BUG();
415 	}
416 	return NULL;
417 }
418 
419 /**
420  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
421  * @chip: NAND chip object
422  * @to: offset to write to
423  * @ops: oob operation description structure
424  *
425  * NAND write out-of-band.
426  */
427 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
428 			     struct mtd_oob_ops *ops)
429 {
430 	struct mtd_info *mtd = nand_to_mtd(chip);
431 	int chipnr, page, status, len, ret;
432 
433 	pr_debug("%s: to = 0x%08x, len = %i\n",
434 			 __func__, (unsigned int)to, (int)ops->ooblen);
435 
436 	len = mtd_oobavail(mtd, ops);
437 
438 	/* Do not allow write past end of page */
439 	if ((ops->ooboffs + ops->ooblen) > len) {
440 		pr_debug("%s: attempt to write past end of page\n",
441 				__func__);
442 		return -EINVAL;
443 	}
444 
445 	/* Check if the region is secured */
446 	if (nand_region_is_secured(chip, to, ops->ooblen))
447 		return -EIO;
448 
449 	chipnr = (int)(to >> chip->chip_shift);
450 
451 	/*
452 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
453 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
454 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
455 	 * it in the doc2000 driver in August 1999.  dwmw2.
456 	 */
457 	ret = nand_reset(chip, chipnr);
458 	if (ret)
459 		return ret;
460 
461 	nand_select_target(chip, chipnr);
462 
463 	/* Shift to get page */
464 	page = (int)(to >> chip->page_shift);
465 
466 	/* Check, if it is write protected */
467 	if (nand_check_wp(chip)) {
468 		nand_deselect_target(chip);
469 		return -EROFS;
470 	}
471 
472 	/* Invalidate the page cache, if we write to the cached page */
473 	if (page == chip->pagecache.page)
474 		chip->pagecache.page = -1;
475 
476 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
477 
478 	if (ops->mode == MTD_OPS_RAW)
479 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
480 	else
481 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
482 
483 	nand_deselect_target(chip);
484 
485 	if (status)
486 		return status;
487 
488 	ops->oobretlen = ops->ooblen;
489 
490 	return 0;
491 }
492 
493 /**
494  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
495  * @chip: NAND chip object
496  * @ofs: offset from device start
497  *
498  * This is the default implementation, which can be overridden by a hardware
499  * specific driver. It provides the details for writing a bad block marker to a
500  * block.
501  */
502 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
503 {
504 	struct mtd_info *mtd = nand_to_mtd(chip);
505 	struct mtd_oob_ops ops;
506 	uint8_t buf[2] = { 0, 0 };
507 	int ret = 0, res, page_offset;
508 
509 	memset(&ops, 0, sizeof(ops));
510 	ops.oobbuf = buf;
511 	ops.ooboffs = chip->badblockpos;
512 	if (chip->options & NAND_BUSWIDTH_16) {
513 		ops.ooboffs &= ~0x01;
514 		ops.len = ops.ooblen = 2;
515 	} else {
516 		ops.len = ops.ooblen = 1;
517 	}
518 	ops.mode = MTD_OPS_PLACE_OOB;
519 
520 	page_offset = nand_bbm_get_next_page(chip, 0);
521 
522 	while (page_offset >= 0) {
523 		res = nand_do_write_oob(chip,
524 					ofs + (page_offset * mtd->writesize),
525 					&ops);
526 
527 		if (!ret)
528 			ret = res;
529 
530 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
531 	}
532 
533 	return ret;
534 }
535 
536 /**
537  * nand_markbad_bbm - mark a block by updating the BBM
538  * @chip: NAND chip object
539  * @ofs: offset of the block to mark bad
540  */
541 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
542 {
543 	if (chip->legacy.block_markbad)
544 		return chip->legacy.block_markbad(chip, ofs);
545 
546 	return nand_default_block_markbad(chip, ofs);
547 }
548 
549 /**
550  * nand_block_markbad_lowlevel - mark a block bad
551  * @chip: NAND chip object
552  * @ofs: offset from device start
553  *
554  * This function performs the generic NAND bad block marking steps (i.e., bad
555  * block table(s) and/or marker(s)). We only allow the hardware driver to
556  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
557  *
558  * We try operations in the following order:
559  *
560  *  (1) erase the affected block, to allow OOB marker to be written cleanly
561  *  (2) write bad block marker to OOB area of affected block (unless flag
562  *      NAND_BBT_NO_OOB_BBM is present)
563  *  (3) update the BBT
564  *
565  * Note that we retain the first error encountered in (2) or (3), finish the
566  * procedures, and dump the error in the end.
567 */
568 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
569 {
570 	struct mtd_info *mtd = nand_to_mtd(chip);
571 	int res, ret = 0;
572 
573 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
574 		struct erase_info einfo;
575 
576 		/* Attempt erase before marking OOB */
577 		memset(&einfo, 0, sizeof(einfo));
578 		einfo.addr = ofs;
579 		einfo.len = 1ULL << chip->phys_erase_shift;
580 		nand_erase_nand(chip, &einfo, 0);
581 
582 		/* Write bad block marker to OOB */
583 		nand_get_device(chip);
584 
585 		ret = nand_markbad_bbm(chip, ofs);
586 		nand_release_device(chip);
587 	}
588 
589 	/* Mark block bad in BBT */
590 	if (chip->bbt) {
591 		res = nand_markbad_bbt(chip, ofs);
592 		if (!ret)
593 			ret = res;
594 	}
595 
596 	if (!ret)
597 		mtd->ecc_stats.badblocks++;
598 
599 	return ret;
600 }
601 
602 /**
603  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
604  * @mtd: MTD device structure
605  * @ofs: offset from device start
606  *
607  * Check if the block is marked as reserved.
608  */
609 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
610 {
611 	struct nand_chip *chip = mtd_to_nand(mtd);
612 
613 	if (!chip->bbt)
614 		return 0;
615 	/* Return info from the table */
616 	return nand_isreserved_bbt(chip, ofs);
617 }
618 
619 /**
620  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
621  * @chip: NAND chip object
622  * @ofs: offset from device start
623  * @allowbbt: 1, if its allowed to access the bbt area
624  *
625  * Check, if the block is bad. Either by reading the bad block table or
626  * calling of the scan function.
627  */
628 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
629 {
630 	/* Return info from the table */
631 	if (chip->bbt)
632 		return nand_isbad_bbt(chip, ofs, allowbbt);
633 
634 	return nand_isbad_bbm(chip, ofs);
635 }
636 
637 /**
638  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
639  * @chip: NAND chip structure
640  * @timeout_ms: Timeout in ms
641  *
642  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
643  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
644  * returned.
645  *
646  * This helper is intended to be used when the controller does not have access
647  * to the NAND R/B pin.
648  *
649  * Be aware that calling this helper from an ->exec_op() implementation means
650  * ->exec_op() must be re-entrant.
651  *
652  * Return 0 if the NAND chip is ready, a negative error otherwise.
653  */
654 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
655 {
656 	const struct nand_interface_config *conf;
657 	u8 status = 0;
658 	int ret;
659 
660 	if (!nand_has_exec_op(chip))
661 		return -ENOTSUPP;
662 
663 	/* Wait tWB before polling the STATUS reg. */
664 	conf = nand_get_interface_config(chip);
665 	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
666 
667 	ret = nand_status_op(chip, NULL);
668 	if (ret)
669 		return ret;
670 
671 	/*
672 	 * +1 below is necessary because if we are now in the last fraction
673 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
674 	 * small jiffy fraction - possibly leading to false timeout
675 	 */
676 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
677 	do {
678 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
679 					false);
680 		if (ret)
681 			break;
682 
683 		if (status & NAND_STATUS_READY)
684 			break;
685 
686 		/*
687 		 * Typical lowest execution time for a tR on most NANDs is 10us,
688 		 * use this as polling delay before doing something smarter (ie.
689 		 * deriving a delay from the timeout value, timeout_ms/ratio).
690 		 */
691 		udelay(10);
692 	} while	(time_before(jiffies, timeout_ms));
693 
694 	/*
695 	 * We have to exit READ_STATUS mode in order to read real data on the
696 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
697 	 * instruction.
698 	 */
699 	nand_exit_status_op(chip);
700 
701 	if (ret)
702 		return ret;
703 
704 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
705 };
706 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
707 
708 /**
709  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
710  * @chip: NAND chip structure
711  * @gpiod: GPIO descriptor of R/B pin
712  * @timeout_ms: Timeout in ms
713  *
714  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
715  * whitin the specified timeout, -ETIMEDOUT is returned.
716  *
717  * This helper is intended to be used when the controller has access to the
718  * NAND R/B pin over GPIO.
719  *
720  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
721  */
722 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
723 		      unsigned long timeout_ms)
724 {
725 
726 	/*
727 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
728 	 * +1 below is necessary because if we are now in the last fraction
729 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
730 	 * small jiffy fraction - possibly leading to false timeout.
731 	 */
732 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
733 	do {
734 		if (gpiod_get_value_cansleep(gpiod))
735 			return 0;
736 
737 		cond_resched();
738 	} while	(time_before(jiffies, timeout_ms));
739 
740 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
741 };
742 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
743 
744 /**
745  * panic_nand_wait - [GENERIC] wait until the command is done
746  * @chip: NAND chip structure
747  * @timeo: timeout
748  *
749  * Wait for command done. This is a helper function for nand_wait used when
750  * we are in interrupt context. May happen when in panic and trying to write
751  * an oops through mtdoops.
752  */
753 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
754 {
755 	int i;
756 	for (i = 0; i < timeo; i++) {
757 		if (chip->legacy.dev_ready) {
758 			if (chip->legacy.dev_ready(chip))
759 				break;
760 		} else {
761 			int ret;
762 			u8 status;
763 
764 			ret = nand_read_data_op(chip, &status, sizeof(status),
765 						true, false);
766 			if (ret)
767 				return;
768 
769 			if (status & NAND_STATUS_READY)
770 				break;
771 		}
772 		mdelay(1);
773 	}
774 }
775 
776 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
777 {
778 	return (chip->parameters.supports_set_get_features &&
779 		test_bit(addr, chip->parameters.get_feature_list));
780 }
781 
782 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
783 {
784 	return (chip->parameters.supports_set_get_features &&
785 		test_bit(addr, chip->parameters.set_feature_list));
786 }
787 
788 /**
789  * nand_reset_interface - Reset data interface and timings
790  * @chip: The NAND chip
791  * @chipnr: Internal die id
792  *
793  * Reset the Data interface and timings to ONFI mode 0.
794  *
795  * Returns 0 for success or negative error code otherwise.
796  */
797 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
798 {
799 	const struct nand_controller_ops *ops = chip->controller->ops;
800 	int ret;
801 
802 	if (!nand_controller_can_setup_interface(chip))
803 		return 0;
804 
805 	/*
806 	 * The ONFI specification says:
807 	 * "
808 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
809 	 * interface, the host shall use the Reset (FFh) command
810 	 * using SDR timing mode 0. A device in any timing mode is
811 	 * required to recognize Reset (FFh) command issued in SDR
812 	 * timing mode 0.
813 	 * "
814 	 *
815 	 * Configure the data interface in SDR mode and set the
816 	 * timings to timing mode 0.
817 	 */
818 
819 	chip->current_interface_config = nand_get_reset_interface_config();
820 	ret = ops->setup_interface(chip, chipnr,
821 				   chip->current_interface_config);
822 	if (ret)
823 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
824 
825 	return ret;
826 }
827 
828 /**
829  * nand_setup_interface - Setup the best data interface and timings
830  * @chip: The NAND chip
831  * @chipnr: Internal die id
832  *
833  * Configure what has been reported to be the best data interface and NAND
834  * timings supported by the chip and the driver.
835  *
836  * Returns 0 for success or negative error code otherwise.
837  */
838 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
839 {
840 	const struct nand_controller_ops *ops = chip->controller->ops;
841 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
842 	int ret;
843 
844 	if (!nand_controller_can_setup_interface(chip))
845 		return 0;
846 
847 	/*
848 	 * A nand_reset_interface() put both the NAND chip and the NAND
849 	 * controller in timings mode 0. If the default mode for this chip is
850 	 * also 0, no need to proceed to the change again. Plus, at probe time,
851 	 * nand_setup_interface() uses ->set/get_features() which would
852 	 * fail anyway as the parameter page is not available yet.
853 	 */
854 	if (!chip->best_interface_config)
855 		return 0;
856 
857 	request = chip->best_interface_config->timings.mode;
858 	if (nand_interface_is_sdr(chip->best_interface_config))
859 		request |= ONFI_DATA_INTERFACE_SDR;
860 	else
861 		request |= ONFI_DATA_INTERFACE_NVDDR;
862 	tmode_param[0] = request;
863 
864 	/* Change the mode on the chip side (if supported by the NAND chip) */
865 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
866 		nand_select_target(chip, chipnr);
867 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
868 					tmode_param);
869 		nand_deselect_target(chip);
870 		if (ret)
871 			return ret;
872 	}
873 
874 	/* Change the mode on the controller side */
875 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
876 	if (ret)
877 		return ret;
878 
879 	/* Check the mode has been accepted by the chip, if supported */
880 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
881 		goto update_interface_config;
882 
883 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
884 	nand_select_target(chip, chipnr);
885 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
886 				tmode_param);
887 	nand_deselect_target(chip);
888 	if (ret)
889 		goto err_reset_chip;
890 
891 	if (request != tmode_param[0]) {
892 		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
893 			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
894 			chip->best_interface_config->timings.mode);
895 		pr_debug("NAND chip would work in %s timing mode %d\n",
896 			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
897 			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
898 		goto err_reset_chip;
899 	}
900 
901 update_interface_config:
902 	chip->current_interface_config = chip->best_interface_config;
903 
904 	return 0;
905 
906 err_reset_chip:
907 	/*
908 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
909 	 * timing mode.
910 	 */
911 	nand_reset_interface(chip, chipnr);
912 	nand_select_target(chip, chipnr);
913 	nand_reset_op(chip);
914 	nand_deselect_target(chip);
915 
916 	return ret;
917 }
918 
919 /**
920  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
921  *                                NAND controller and the NAND chip support
922  * @chip: the NAND chip
923  * @iface: the interface configuration (can eventually be updated)
924  * @spec_timings: specific timings, when not fitting the ONFI specification
925  *
926  * If specific timings are provided, use them. Otherwise, retrieve supported
927  * timing modes from ONFI information.
928  */
929 int nand_choose_best_sdr_timings(struct nand_chip *chip,
930 				 struct nand_interface_config *iface,
931 				 struct nand_sdr_timings *spec_timings)
932 {
933 	const struct nand_controller_ops *ops = chip->controller->ops;
934 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
935 
936 	iface->type = NAND_SDR_IFACE;
937 
938 	if (spec_timings) {
939 		iface->timings.sdr = *spec_timings;
940 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
941 
942 		/* Verify the controller supports the requested interface */
943 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
944 					   iface);
945 		if (!ret) {
946 			chip->best_interface_config = iface;
947 			return ret;
948 		}
949 
950 		/* Fallback to slower modes */
951 		best_mode = iface->timings.mode;
952 	} else if (chip->parameters.onfi) {
953 		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
954 	}
955 
956 	for (mode = best_mode; mode >= 0; mode--) {
957 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
958 
959 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
960 					   iface);
961 		if (!ret) {
962 			chip->best_interface_config = iface;
963 			break;
964 		}
965 	}
966 
967 	return ret;
968 }
969 
970 /**
971  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
972  *                                  NAND controller and the NAND chip support
973  * @chip: the NAND chip
974  * @iface: the interface configuration (can eventually be updated)
975  * @spec_timings: specific timings, when not fitting the ONFI specification
976  *
977  * If specific timings are provided, use them. Otherwise, retrieve supported
978  * timing modes from ONFI information.
979  */
980 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
981 				   struct nand_interface_config *iface,
982 				   struct nand_nvddr_timings *spec_timings)
983 {
984 	const struct nand_controller_ops *ops = chip->controller->ops;
985 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
986 
987 	iface->type = NAND_NVDDR_IFACE;
988 
989 	if (spec_timings) {
990 		iface->timings.nvddr = *spec_timings;
991 		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
992 
993 		/* Verify the controller supports the requested interface */
994 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
995 					   iface);
996 		if (!ret) {
997 			chip->best_interface_config = iface;
998 			return ret;
999 		}
1000 
1001 		/* Fallback to slower modes */
1002 		best_mode = iface->timings.mode;
1003 	} else if (chip->parameters.onfi) {
1004 		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1005 	}
1006 
1007 	for (mode = best_mode; mode >= 0; mode--) {
1008 		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1009 
1010 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1011 					   iface);
1012 		if (!ret) {
1013 			chip->best_interface_config = iface;
1014 			break;
1015 		}
1016 	}
1017 
1018 	return ret;
1019 }
1020 
1021 /**
1022  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1023  *                            NAND controller and the NAND chip support
1024  * @chip: the NAND chip
1025  * @iface: the interface configuration (can eventually be updated)
1026  *
1027  * If specific timings are provided, use them. Otherwise, retrieve supported
1028  * timing modes from ONFI information.
1029  */
1030 static int nand_choose_best_timings(struct nand_chip *chip,
1031 				    struct nand_interface_config *iface)
1032 {
1033 	int ret;
1034 
1035 	/* Try the fastest timings: NV-DDR */
1036 	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1037 	if (!ret)
1038 		return 0;
1039 
1040 	/* Fallback to SDR timings otherwise */
1041 	return nand_choose_best_sdr_timings(chip, iface, NULL);
1042 }
1043 
1044 /**
1045  * nand_choose_interface_config - find the best data interface and timings
1046  * @chip: The NAND chip
1047  *
1048  * Find the best data interface and NAND timings supported by the chip
1049  * and the driver. Eventually let the NAND manufacturer driver propose his own
1050  * set of timings.
1051  *
1052  * After this function nand_chip->interface_config is initialized with the best
1053  * timing mode available.
1054  *
1055  * Returns 0 for success or negative error code otherwise.
1056  */
1057 static int nand_choose_interface_config(struct nand_chip *chip)
1058 {
1059 	struct nand_interface_config *iface;
1060 	int ret;
1061 
1062 	if (!nand_controller_can_setup_interface(chip))
1063 		return 0;
1064 
1065 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1066 	if (!iface)
1067 		return -ENOMEM;
1068 
1069 	if (chip->ops.choose_interface_config)
1070 		ret = chip->ops.choose_interface_config(chip, iface);
1071 	else
1072 		ret = nand_choose_best_timings(chip, iface);
1073 
1074 	if (ret)
1075 		kfree(iface);
1076 
1077 	return ret;
1078 }
1079 
1080 /**
1081  * nand_fill_column_cycles - fill the column cycles of an address
1082  * @chip: The NAND chip
1083  * @addrs: Array of address cycles to fill
1084  * @offset_in_page: The offset in the page
1085  *
1086  * Fills the first or the first two bytes of the @addrs field depending
1087  * on the NAND bus width and the page size.
1088  *
1089  * Returns the number of cycles needed to encode the column, or a negative
1090  * error code in case one of the arguments is invalid.
1091  */
1092 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1093 				   unsigned int offset_in_page)
1094 {
1095 	struct mtd_info *mtd = nand_to_mtd(chip);
1096 
1097 	/* Make sure the offset is less than the actual page size. */
1098 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1099 		return -EINVAL;
1100 
1101 	/*
1102 	 * On small page NANDs, there's a dedicated command to access the OOB
1103 	 * area, and the column address is relative to the start of the OOB
1104 	 * area, not the start of the page. Asjust the address accordingly.
1105 	 */
1106 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1107 		offset_in_page -= mtd->writesize;
1108 
1109 	/*
1110 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1111 	 * wide, then it must be divided by 2.
1112 	 */
1113 	if (chip->options & NAND_BUSWIDTH_16) {
1114 		if (WARN_ON(offset_in_page % 2))
1115 			return -EINVAL;
1116 
1117 		offset_in_page /= 2;
1118 	}
1119 
1120 	addrs[0] = offset_in_page;
1121 
1122 	/*
1123 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1124 	 * need 2
1125 	 */
1126 	if (mtd->writesize <= 512)
1127 		return 1;
1128 
1129 	addrs[1] = offset_in_page >> 8;
1130 
1131 	return 2;
1132 }
1133 
1134 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1135 				     unsigned int offset_in_page, void *buf,
1136 				     unsigned int len)
1137 {
1138 	const struct nand_interface_config *conf =
1139 		nand_get_interface_config(chip);
1140 	struct mtd_info *mtd = nand_to_mtd(chip);
1141 	u8 addrs[4];
1142 	struct nand_op_instr instrs[] = {
1143 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1144 		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1145 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1146 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1147 		NAND_OP_DATA_IN(len, buf, 0),
1148 	};
1149 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1150 	int ret;
1151 
1152 	/* Drop the DATA_IN instruction if len is set to 0. */
1153 	if (!len)
1154 		op.ninstrs--;
1155 
1156 	if (offset_in_page >= mtd->writesize)
1157 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1158 	else if (offset_in_page >= 256 &&
1159 		 !(chip->options & NAND_BUSWIDTH_16))
1160 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1161 
1162 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1163 	if (ret < 0)
1164 		return ret;
1165 
1166 	addrs[1] = page;
1167 	addrs[2] = page >> 8;
1168 
1169 	if (chip->options & NAND_ROW_ADDR_3) {
1170 		addrs[3] = page >> 16;
1171 		instrs[1].ctx.addr.naddrs++;
1172 	}
1173 
1174 	return nand_exec_op(chip, &op);
1175 }
1176 
1177 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1178 				     unsigned int offset_in_page, void *buf,
1179 				     unsigned int len)
1180 {
1181 	const struct nand_interface_config *conf =
1182 		nand_get_interface_config(chip);
1183 	u8 addrs[5];
1184 	struct nand_op_instr instrs[] = {
1185 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1186 		NAND_OP_ADDR(4, addrs, 0),
1187 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1188 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1189 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1190 		NAND_OP_DATA_IN(len, buf, 0),
1191 	};
1192 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1193 	int ret;
1194 
1195 	/* Drop the DATA_IN instruction if len is set to 0. */
1196 	if (!len)
1197 		op.ninstrs--;
1198 
1199 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1200 	if (ret < 0)
1201 		return ret;
1202 
1203 	addrs[2] = page;
1204 	addrs[3] = page >> 8;
1205 
1206 	if (chip->options & NAND_ROW_ADDR_3) {
1207 		addrs[4] = page >> 16;
1208 		instrs[1].ctx.addr.naddrs++;
1209 	}
1210 
1211 	return nand_exec_op(chip, &op);
1212 }
1213 
1214 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1215 {
1216 	struct nand_memory_organization *memorg;
1217 	unsigned int pages_per_lun, first_lun, last_lun;
1218 
1219 	memorg = nanddev_get_memorg(&chip->base);
1220 	pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1221 	first_lun = chip->cont_read.first_page / pages_per_lun;
1222 	last_lun = chip->cont_read.last_page / pages_per_lun;
1223 
1224 	/* Prevent sequential cache reads across LUN boundaries */
1225 	if (first_lun != last_lun)
1226 		chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1;
1227 	else
1228 		chip->cont_read.pause_page = chip->cont_read.last_page;
1229 }
1230 
1231 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1232 					  unsigned int offset_in_page, void *buf,
1233 					  unsigned int len, bool check_only)
1234 {
1235 	const struct nand_interface_config *conf =
1236 		nand_get_interface_config(chip);
1237 	u8 addrs[5];
1238 	struct nand_op_instr start_instrs[] = {
1239 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1240 		NAND_OP_ADDR(4, addrs, 0),
1241 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1242 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1243 		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1244 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1245 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1246 		NAND_OP_DATA_IN(len, buf, 0),
1247 	};
1248 	struct nand_op_instr cont_instrs[] = {
1249 		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1250 			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1251 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1252 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1253 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1254 		NAND_OP_DATA_IN(len, buf, 0),
1255 	};
1256 	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1257 	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1258 	int ret;
1259 
1260 	if (!len) {
1261 		start_op.ninstrs--;
1262 		cont_op.ninstrs--;
1263 	}
1264 
1265 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1266 	if (ret < 0)
1267 		return ret;
1268 
1269 	addrs[2] = page;
1270 	addrs[3] = page >> 8;
1271 
1272 	if (chip->options & NAND_ROW_ADDR_3) {
1273 		addrs[4] = page >> 16;
1274 		start_instrs[1].ctx.addr.naddrs++;
1275 	}
1276 
1277 	/* Check if cache reads are supported */
1278 	if (check_only) {
1279 		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1280 			return -EOPNOTSUPP;
1281 
1282 		return 0;
1283 	}
1284 
1285 	if (page == chip->cont_read.first_page)
1286 		ret = nand_exec_op(chip, &start_op);
1287 	else
1288 		ret = nand_exec_op(chip, &cont_op);
1289 	if (ret)
1290 		return ret;
1291 
1292 	if (!chip->cont_read.ongoing)
1293 		return 0;
1294 
1295 	if (page == chip->cont_read.pause_page &&
1296 	    page != chip->cont_read.last_page) {
1297 		chip->cont_read.first_page = chip->cont_read.pause_page + 1;
1298 		rawnand_cap_cont_reads(chip);
1299 	} else if (page == chip->cont_read.last_page) {
1300 		chip->cont_read.ongoing = false;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1307 {
1308 	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1309 }
1310 
1311 /**
1312  * nand_read_page_op - Do a READ PAGE operation
1313  * @chip: The NAND chip
1314  * @page: page to read
1315  * @offset_in_page: offset within the page
1316  * @buf: buffer used to store the data
1317  * @len: length of the buffer
1318  *
1319  * This function issues a READ PAGE operation.
1320  * This function does not select/unselect the CS line.
1321  *
1322  * Returns 0 on success, a negative error code otherwise.
1323  */
1324 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1325 		      unsigned int offset_in_page, void *buf, unsigned int len)
1326 {
1327 	struct mtd_info *mtd = nand_to_mtd(chip);
1328 
1329 	if (len && !buf)
1330 		return -EINVAL;
1331 
1332 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1333 		return -EINVAL;
1334 
1335 	if (nand_has_exec_op(chip)) {
1336 		if (mtd->writesize > 512) {
1337 			if (rawnand_cont_read_ongoing(chip, page))
1338 				return nand_lp_exec_cont_read_page_op(chip, page,
1339 								      offset_in_page,
1340 								      buf, len, false);
1341 			else
1342 				return nand_lp_exec_read_page_op(chip, page,
1343 								 offset_in_page, buf,
1344 								 len);
1345 		}
1346 
1347 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1348 						 buf, len);
1349 	}
1350 
1351 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1352 	if (len)
1353 		chip->legacy.read_buf(chip, buf, len);
1354 
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(nand_read_page_op);
1358 
1359 /**
1360  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1361  * @chip: The NAND chip
1362  * @page: parameter page to read
1363  * @buf: buffer used to store the data
1364  * @len: length of the buffer
1365  *
1366  * This function issues a READ PARAMETER PAGE operation.
1367  * This function does not select/unselect the CS line.
1368  *
1369  * Returns 0 on success, a negative error code otherwise.
1370  */
1371 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1372 			    unsigned int len)
1373 {
1374 	unsigned int i;
1375 	u8 *p = buf;
1376 
1377 	if (len && !buf)
1378 		return -EINVAL;
1379 
1380 	if (nand_has_exec_op(chip)) {
1381 		const struct nand_interface_config *conf =
1382 			nand_get_interface_config(chip);
1383 		struct nand_op_instr instrs[] = {
1384 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1385 			NAND_OP_ADDR(1, &page,
1386 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1387 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1388 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1389 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1390 		};
1391 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1392 
1393 		/* Drop the DATA_IN instruction if len is set to 0. */
1394 		if (!len)
1395 			op.ninstrs--;
1396 
1397 		return nand_exec_op(chip, &op);
1398 	}
1399 
1400 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1401 	for (i = 0; i < len; i++)
1402 		p[i] = chip->legacy.read_byte(chip);
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1409  * @chip: The NAND chip
1410  * @offset_in_page: offset within the page
1411  * @buf: buffer used to store the data
1412  * @len: length of the buffer
1413  * @force_8bit: force 8-bit bus access
1414  *
1415  * This function issues a CHANGE READ COLUMN operation.
1416  * This function does not select/unselect the CS line.
1417  *
1418  * Returns 0 on success, a negative error code otherwise.
1419  */
1420 int nand_change_read_column_op(struct nand_chip *chip,
1421 			       unsigned int offset_in_page, void *buf,
1422 			       unsigned int len, bool force_8bit)
1423 {
1424 	struct mtd_info *mtd = nand_to_mtd(chip);
1425 
1426 	if (len && !buf)
1427 		return -EINVAL;
1428 
1429 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1430 		return -EINVAL;
1431 
1432 	/* Small page NANDs do not support column change. */
1433 	if (mtd->writesize <= 512)
1434 		return -ENOTSUPP;
1435 
1436 	if (nand_has_exec_op(chip)) {
1437 		const struct nand_interface_config *conf =
1438 			nand_get_interface_config(chip);
1439 		u8 addrs[2] = {};
1440 		struct nand_op_instr instrs[] = {
1441 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1442 			NAND_OP_ADDR(2, addrs, 0),
1443 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1444 				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1445 			NAND_OP_DATA_IN(len, buf, 0),
1446 		};
1447 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1448 		int ret;
1449 
1450 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1451 		if (ret < 0)
1452 			return ret;
1453 
1454 		/* Drop the DATA_IN instruction if len is set to 0. */
1455 		if (!len)
1456 			op.ninstrs--;
1457 
1458 		instrs[3].ctx.data.force_8bit = force_8bit;
1459 
1460 		return nand_exec_op(chip, &op);
1461 	}
1462 
1463 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1464 	if (len)
1465 		chip->legacy.read_buf(chip, buf, len);
1466 
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1470 
1471 /**
1472  * nand_read_oob_op - Do a READ OOB operation
1473  * @chip: The NAND chip
1474  * @page: page to read
1475  * @offset_in_oob: offset within the OOB area
1476  * @buf: buffer used to store the data
1477  * @len: length of the buffer
1478  *
1479  * This function issues a READ OOB operation.
1480  * This function does not select/unselect the CS line.
1481  *
1482  * Returns 0 on success, a negative error code otherwise.
1483  */
1484 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1485 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1486 {
1487 	struct mtd_info *mtd = nand_to_mtd(chip);
1488 
1489 	if (len && !buf)
1490 		return -EINVAL;
1491 
1492 	if (offset_in_oob + len > mtd->oobsize)
1493 		return -EINVAL;
1494 
1495 	if (nand_has_exec_op(chip))
1496 		return nand_read_page_op(chip, page,
1497 					 mtd->writesize + offset_in_oob,
1498 					 buf, len);
1499 
1500 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1501 	if (len)
1502 		chip->legacy.read_buf(chip, buf, len);
1503 
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1507 
1508 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1509 				  unsigned int offset_in_page, const void *buf,
1510 				  unsigned int len, bool prog)
1511 {
1512 	const struct nand_interface_config *conf =
1513 		nand_get_interface_config(chip);
1514 	struct mtd_info *mtd = nand_to_mtd(chip);
1515 	u8 addrs[5] = {};
1516 	struct nand_op_instr instrs[] = {
1517 		/*
1518 		 * The first instruction will be dropped if we're dealing
1519 		 * with a large page NAND and adjusted if we're dealing
1520 		 * with a small page NAND and the page offset is > 255.
1521 		 */
1522 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1523 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1524 		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1525 		NAND_OP_DATA_OUT(len, buf, 0),
1526 		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1527 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1528 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1529 	};
1530 	struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1531 							      instrs);
1532 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1533 
1534 	if (naddrs < 0)
1535 		return naddrs;
1536 
1537 	addrs[naddrs++] = page;
1538 	addrs[naddrs++] = page >> 8;
1539 	if (chip->options & NAND_ROW_ADDR_3)
1540 		addrs[naddrs++] = page >> 16;
1541 
1542 	instrs[2].ctx.addr.naddrs = naddrs;
1543 
1544 	/* Drop the last two instructions if we're not programming the page. */
1545 	if (!prog) {
1546 		op.ninstrs -= 2;
1547 		/* Also drop the DATA_OUT instruction if empty. */
1548 		if (!len)
1549 			op.ninstrs--;
1550 	}
1551 
1552 	if (mtd->writesize <= 512) {
1553 		/*
1554 		 * Small pages need some more tweaking: we have to adjust the
1555 		 * first instruction depending on the page offset we're trying
1556 		 * to access.
1557 		 */
1558 		if (offset_in_page >= mtd->writesize)
1559 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1560 		else if (offset_in_page >= 256 &&
1561 			 !(chip->options & NAND_BUSWIDTH_16))
1562 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1563 	} else {
1564 		/*
1565 		 * Drop the first command if we're dealing with a large page
1566 		 * NAND.
1567 		 */
1568 		op.instrs++;
1569 		op.ninstrs--;
1570 	}
1571 
1572 	return nand_exec_op(chip, &op);
1573 }
1574 
1575 /**
1576  * nand_prog_page_begin_op - starts a PROG PAGE operation
1577  * @chip: The NAND chip
1578  * @page: page to write
1579  * @offset_in_page: offset within the page
1580  * @buf: buffer containing the data to write to the page
1581  * @len: length of the buffer
1582  *
1583  * This function issues the first half of a PROG PAGE operation.
1584  * This function does not select/unselect the CS line.
1585  *
1586  * Returns 0 on success, a negative error code otherwise.
1587  */
1588 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1589 			    unsigned int offset_in_page, const void *buf,
1590 			    unsigned int len)
1591 {
1592 	struct mtd_info *mtd = nand_to_mtd(chip);
1593 
1594 	if (len && !buf)
1595 		return -EINVAL;
1596 
1597 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1598 		return -EINVAL;
1599 
1600 	if (nand_has_exec_op(chip))
1601 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1602 					      len, false);
1603 
1604 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1605 
1606 	if (buf)
1607 		chip->legacy.write_buf(chip, buf, len);
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1612 
1613 /**
1614  * nand_prog_page_end_op - ends a PROG PAGE operation
1615  * @chip: The NAND chip
1616  *
1617  * This function issues the second half of a PROG PAGE operation.
1618  * This function does not select/unselect the CS line.
1619  *
1620  * Returns 0 on success, a negative error code otherwise.
1621  */
1622 int nand_prog_page_end_op(struct nand_chip *chip)
1623 {
1624 	int ret;
1625 	u8 status;
1626 
1627 	if (nand_has_exec_op(chip)) {
1628 		const struct nand_interface_config *conf =
1629 			nand_get_interface_config(chip);
1630 		struct nand_op_instr instrs[] = {
1631 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1632 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1633 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1634 					 0),
1635 		};
1636 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1637 
1638 		ret = nand_exec_op(chip, &op);
1639 		if (ret)
1640 			return ret;
1641 
1642 		ret = nand_status_op(chip, &status);
1643 		if (ret)
1644 			return ret;
1645 	} else {
1646 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1647 		ret = chip->legacy.waitfunc(chip);
1648 		if (ret < 0)
1649 			return ret;
1650 
1651 		status = ret;
1652 	}
1653 
1654 	if (status & NAND_STATUS_FAIL)
1655 		return -EIO;
1656 
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1660 
1661 /**
1662  * nand_prog_page_op - Do a full PROG PAGE operation
1663  * @chip: The NAND chip
1664  * @page: page to write
1665  * @offset_in_page: offset within the page
1666  * @buf: buffer containing the data to write to the page
1667  * @len: length of the buffer
1668  *
1669  * This function issues a full PROG PAGE operation.
1670  * This function does not select/unselect the CS line.
1671  *
1672  * Returns 0 on success, a negative error code otherwise.
1673  */
1674 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1675 		      unsigned int offset_in_page, const void *buf,
1676 		      unsigned int len)
1677 {
1678 	struct mtd_info *mtd = nand_to_mtd(chip);
1679 	u8 status;
1680 	int ret;
1681 
1682 	if (!len || !buf)
1683 		return -EINVAL;
1684 
1685 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1686 		return -EINVAL;
1687 
1688 	if (nand_has_exec_op(chip)) {
1689 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1690 						len, true);
1691 		if (ret)
1692 			return ret;
1693 
1694 		ret = nand_status_op(chip, &status);
1695 		if (ret)
1696 			return ret;
1697 	} else {
1698 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1699 				     page);
1700 		chip->legacy.write_buf(chip, buf, len);
1701 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1702 		ret = chip->legacy.waitfunc(chip);
1703 		if (ret < 0)
1704 			return ret;
1705 
1706 		status = ret;
1707 	}
1708 
1709 	if (status & NAND_STATUS_FAIL)
1710 		return -EIO;
1711 
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1715 
1716 /**
1717  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1718  * @chip: The NAND chip
1719  * @offset_in_page: offset within the page
1720  * @buf: buffer containing the data to send to the NAND
1721  * @len: length of the buffer
1722  * @force_8bit: force 8-bit bus access
1723  *
1724  * This function issues a CHANGE WRITE COLUMN operation.
1725  * This function does not select/unselect the CS line.
1726  *
1727  * Returns 0 on success, a negative error code otherwise.
1728  */
1729 int nand_change_write_column_op(struct nand_chip *chip,
1730 				unsigned int offset_in_page,
1731 				const void *buf, unsigned int len,
1732 				bool force_8bit)
1733 {
1734 	struct mtd_info *mtd = nand_to_mtd(chip);
1735 
1736 	if (len && !buf)
1737 		return -EINVAL;
1738 
1739 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1740 		return -EINVAL;
1741 
1742 	/* Small page NANDs do not support column change. */
1743 	if (mtd->writesize <= 512)
1744 		return -ENOTSUPP;
1745 
1746 	if (nand_has_exec_op(chip)) {
1747 		const struct nand_interface_config *conf =
1748 			nand_get_interface_config(chip);
1749 		u8 addrs[2];
1750 		struct nand_op_instr instrs[] = {
1751 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1752 			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1753 			NAND_OP_DATA_OUT(len, buf, 0),
1754 		};
1755 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1756 		int ret;
1757 
1758 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1759 		if (ret < 0)
1760 			return ret;
1761 
1762 		instrs[2].ctx.data.force_8bit = force_8bit;
1763 
1764 		/* Drop the DATA_OUT instruction if len is set to 0. */
1765 		if (!len)
1766 			op.ninstrs--;
1767 
1768 		return nand_exec_op(chip, &op);
1769 	}
1770 
1771 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1772 	if (len)
1773 		chip->legacy.write_buf(chip, buf, len);
1774 
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1778 
1779 /**
1780  * nand_readid_op - Do a READID operation
1781  * @chip: The NAND chip
1782  * @addr: address cycle to pass after the READID command
1783  * @buf: buffer used to store the ID
1784  * @len: length of the buffer
1785  *
1786  * This function sends a READID command and reads back the ID returned by the
1787  * NAND.
1788  * This function does not select/unselect the CS line.
1789  *
1790  * Returns 0 on success, a negative error code otherwise.
1791  */
1792 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1793 		   unsigned int len)
1794 {
1795 	unsigned int i;
1796 	u8 *id = buf, *ddrbuf = NULL;
1797 
1798 	if (len && !buf)
1799 		return -EINVAL;
1800 
1801 	if (nand_has_exec_op(chip)) {
1802 		const struct nand_interface_config *conf =
1803 			nand_get_interface_config(chip);
1804 		struct nand_op_instr instrs[] = {
1805 			NAND_OP_CMD(NAND_CMD_READID, 0),
1806 			NAND_OP_ADDR(1, &addr,
1807 				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1808 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1809 		};
1810 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1811 		int ret;
1812 
1813 		/* READ_ID data bytes are received twice in NV-DDR mode */
1814 		if (len && nand_interface_is_nvddr(conf)) {
1815 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1816 			if (!ddrbuf)
1817 				return -ENOMEM;
1818 
1819 			instrs[2].ctx.data.len *= 2;
1820 			instrs[2].ctx.data.buf.in = ddrbuf;
1821 		}
1822 
1823 		/* Drop the DATA_IN instruction if len is set to 0. */
1824 		if (!len)
1825 			op.ninstrs--;
1826 
1827 		ret = nand_exec_op(chip, &op);
1828 		if (!ret && len && nand_interface_is_nvddr(conf)) {
1829 			for (i = 0; i < len; i++)
1830 				id[i] = ddrbuf[i * 2];
1831 		}
1832 
1833 		kfree(ddrbuf);
1834 
1835 		return ret;
1836 	}
1837 
1838 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1839 
1840 	for (i = 0; i < len; i++)
1841 		id[i] = chip->legacy.read_byte(chip);
1842 
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(nand_readid_op);
1846 
1847 /**
1848  * nand_status_op - Do a STATUS operation
1849  * @chip: The NAND chip
1850  * @status: out variable to store the NAND status
1851  *
1852  * This function sends a STATUS command and reads back the status returned by
1853  * the NAND.
1854  * This function does not select/unselect the CS line.
1855  *
1856  * Returns 0 on success, a negative error code otherwise.
1857  */
1858 int nand_status_op(struct nand_chip *chip, u8 *status)
1859 {
1860 	if (nand_has_exec_op(chip)) {
1861 		const struct nand_interface_config *conf =
1862 			nand_get_interface_config(chip);
1863 		u8 ddrstatus[2];
1864 		struct nand_op_instr instrs[] = {
1865 			NAND_OP_CMD(NAND_CMD_STATUS,
1866 				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1867 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1868 		};
1869 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1870 		int ret;
1871 
1872 		/* The status data byte will be received twice in NV-DDR mode */
1873 		if (status && nand_interface_is_nvddr(conf)) {
1874 			instrs[1].ctx.data.len *= 2;
1875 			instrs[1].ctx.data.buf.in = ddrstatus;
1876 		}
1877 
1878 		if (!status)
1879 			op.ninstrs--;
1880 
1881 		ret = nand_exec_op(chip, &op);
1882 		if (!ret && status && nand_interface_is_nvddr(conf))
1883 			*status = ddrstatus[0];
1884 
1885 		return ret;
1886 	}
1887 
1888 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1889 	if (status)
1890 		*status = chip->legacy.read_byte(chip);
1891 
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(nand_status_op);
1895 
1896 /**
1897  * nand_exit_status_op - Exit a STATUS operation
1898  * @chip: The NAND chip
1899  *
1900  * This function sends a READ0 command to cancel the effect of the STATUS
1901  * command to avoid reading only the status until a new read command is sent.
1902  *
1903  * This function does not select/unselect the CS line.
1904  *
1905  * Returns 0 on success, a negative error code otherwise.
1906  */
1907 int nand_exit_status_op(struct nand_chip *chip)
1908 {
1909 	if (nand_has_exec_op(chip)) {
1910 		struct nand_op_instr instrs[] = {
1911 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1912 		};
1913 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1914 
1915 		return nand_exec_op(chip, &op);
1916 	}
1917 
1918 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1919 
1920 	return 0;
1921 }
1922 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1923 
1924 /**
1925  * nand_erase_op - Do an erase operation
1926  * @chip: The NAND chip
1927  * @eraseblock: block to erase
1928  *
1929  * This function sends an ERASE command and waits for the NAND to be ready
1930  * before returning.
1931  * This function does not select/unselect the CS line.
1932  *
1933  * Returns 0 on success, a negative error code otherwise.
1934  */
1935 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1936 {
1937 	unsigned int page = eraseblock <<
1938 			    (chip->phys_erase_shift - chip->page_shift);
1939 	int ret;
1940 	u8 status;
1941 
1942 	if (nand_has_exec_op(chip)) {
1943 		const struct nand_interface_config *conf =
1944 			nand_get_interface_config(chip);
1945 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1946 		struct nand_op_instr instrs[] = {
1947 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1948 			NAND_OP_ADDR(2, addrs, 0),
1949 			NAND_OP_CMD(NAND_CMD_ERASE2,
1950 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1951 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1952 					 0),
1953 		};
1954 		struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1955 								      instrs);
1956 
1957 		if (chip->options & NAND_ROW_ADDR_3)
1958 			instrs[1].ctx.addr.naddrs++;
1959 
1960 		ret = nand_exec_op(chip, &op);
1961 		if (ret)
1962 			return ret;
1963 
1964 		ret = nand_status_op(chip, &status);
1965 		if (ret)
1966 			return ret;
1967 	} else {
1968 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1969 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1970 
1971 		ret = chip->legacy.waitfunc(chip);
1972 		if (ret < 0)
1973 			return ret;
1974 
1975 		status = ret;
1976 	}
1977 
1978 	if (status & NAND_STATUS_FAIL)
1979 		return -EIO;
1980 
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(nand_erase_op);
1984 
1985 /**
1986  * nand_set_features_op - Do a SET FEATURES operation
1987  * @chip: The NAND chip
1988  * @feature: feature id
1989  * @data: 4 bytes of data
1990  *
1991  * This function sends a SET FEATURES command and waits for the NAND to be
1992  * ready before returning.
1993  * This function does not select/unselect the CS line.
1994  *
1995  * Returns 0 on success, a negative error code otherwise.
1996  */
1997 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1998 				const void *data)
1999 {
2000 	const u8 *params = data;
2001 	int i, ret;
2002 
2003 	if (nand_has_exec_op(chip)) {
2004 		const struct nand_interface_config *conf =
2005 			nand_get_interface_config(chip);
2006 		struct nand_op_instr instrs[] = {
2007 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2008 			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2009 									tADL_min)),
2010 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2011 					      NAND_COMMON_TIMING_NS(conf,
2012 								    tWB_max)),
2013 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2014 					 0),
2015 		};
2016 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2017 
2018 		return nand_exec_op(chip, &op);
2019 	}
2020 
2021 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2022 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2023 		chip->legacy.write_byte(chip, params[i]);
2024 
2025 	ret = chip->legacy.waitfunc(chip);
2026 	if (ret < 0)
2027 		return ret;
2028 
2029 	if (ret & NAND_STATUS_FAIL)
2030 		return -EIO;
2031 
2032 	return 0;
2033 }
2034 
2035 /**
2036  * nand_get_features_op - Do a GET FEATURES operation
2037  * @chip: The NAND chip
2038  * @feature: feature id
2039  * @data: 4 bytes of data
2040  *
2041  * This function sends a GET FEATURES command and waits for the NAND to be
2042  * ready before returning.
2043  * This function does not select/unselect the CS line.
2044  *
2045  * Returns 0 on success, a negative error code otherwise.
2046  */
2047 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2048 				void *data)
2049 {
2050 	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2051 	int i;
2052 
2053 	if (nand_has_exec_op(chip)) {
2054 		const struct nand_interface_config *conf =
2055 			nand_get_interface_config(chip);
2056 		struct nand_op_instr instrs[] = {
2057 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2058 			NAND_OP_ADDR(1, &feature,
2059 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2060 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2061 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2062 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2063 					     data, 0),
2064 		};
2065 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2066 		int ret;
2067 
2068 		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2069 		if (nand_interface_is_nvddr(conf)) {
2070 			instrs[3].ctx.data.len *= 2;
2071 			instrs[3].ctx.data.buf.in = ddrbuf;
2072 		}
2073 
2074 		ret = nand_exec_op(chip, &op);
2075 		if (nand_interface_is_nvddr(conf)) {
2076 			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2077 				params[i] = ddrbuf[i * 2];
2078 		}
2079 
2080 		return ret;
2081 	}
2082 
2083 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2084 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2085 		params[i] = chip->legacy.read_byte(chip);
2086 
2087 	return 0;
2088 }
2089 
2090 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2091 			    unsigned int delay_ns)
2092 {
2093 	if (nand_has_exec_op(chip)) {
2094 		struct nand_op_instr instrs[] = {
2095 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2096 					 PSEC_TO_NSEC(delay_ns)),
2097 		};
2098 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2099 
2100 		return nand_exec_op(chip, &op);
2101 	}
2102 
2103 	/* Apply delay or wait for ready/busy pin */
2104 	if (!chip->legacy.dev_ready)
2105 		udelay(chip->legacy.chip_delay);
2106 	else
2107 		nand_wait_ready(chip);
2108 
2109 	return 0;
2110 }
2111 
2112 /**
2113  * nand_reset_op - Do a reset operation
2114  * @chip: The NAND chip
2115  *
2116  * This function sends a RESET command and waits for the NAND to be ready
2117  * before returning.
2118  * This function does not select/unselect the CS line.
2119  *
2120  * Returns 0 on success, a negative error code otherwise.
2121  */
2122 int nand_reset_op(struct nand_chip *chip)
2123 {
2124 	if (nand_has_exec_op(chip)) {
2125 		const struct nand_interface_config *conf =
2126 			nand_get_interface_config(chip);
2127 		struct nand_op_instr instrs[] = {
2128 			NAND_OP_CMD(NAND_CMD_RESET,
2129 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2130 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2131 					 0),
2132 		};
2133 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2134 
2135 		return nand_exec_op(chip, &op);
2136 	}
2137 
2138 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2139 
2140 	return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(nand_reset_op);
2143 
2144 /**
2145  * nand_read_data_op - Read data from the NAND
2146  * @chip: The NAND chip
2147  * @buf: buffer used to store the data
2148  * @len: length of the buffer
2149  * @force_8bit: force 8-bit bus access
2150  * @check_only: do not actually run the command, only checks if the
2151  *              controller driver supports it
2152  *
2153  * This function does a raw data read on the bus. Usually used after launching
2154  * another NAND operation like nand_read_page_op().
2155  * This function does not select/unselect the CS line.
2156  *
2157  * Returns 0 on success, a negative error code otherwise.
2158  */
2159 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2160 		      bool force_8bit, bool check_only)
2161 {
2162 	if (!len || !buf)
2163 		return -EINVAL;
2164 
2165 	if (nand_has_exec_op(chip)) {
2166 		const struct nand_interface_config *conf =
2167 			nand_get_interface_config(chip);
2168 		struct nand_op_instr instrs[] = {
2169 			NAND_OP_DATA_IN(len, buf, 0),
2170 		};
2171 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2172 		u8 *ddrbuf = NULL;
2173 		int ret, i;
2174 
2175 		instrs[0].ctx.data.force_8bit = force_8bit;
2176 
2177 		/*
2178 		 * Parameter payloads (ID, status, features, etc) do not go
2179 		 * through the same pipeline as regular data, hence the
2180 		 * force_8bit flag must be set and this also indicates that in
2181 		 * case NV-DDR timings are being used the data will be received
2182 		 * twice.
2183 		 */
2184 		if (force_8bit && nand_interface_is_nvddr(conf)) {
2185 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2186 			if (!ddrbuf)
2187 				return -ENOMEM;
2188 
2189 			instrs[0].ctx.data.len *= 2;
2190 			instrs[0].ctx.data.buf.in = ddrbuf;
2191 		}
2192 
2193 		if (check_only) {
2194 			ret = nand_check_op(chip, &op);
2195 			kfree(ddrbuf);
2196 			return ret;
2197 		}
2198 
2199 		ret = nand_exec_op(chip, &op);
2200 		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2201 			u8 *dst = buf;
2202 
2203 			for (i = 0; i < len; i++)
2204 				dst[i] = ddrbuf[i * 2];
2205 		}
2206 
2207 		kfree(ddrbuf);
2208 
2209 		return ret;
2210 	}
2211 
2212 	if (check_only)
2213 		return 0;
2214 
2215 	if (force_8bit) {
2216 		u8 *p = buf;
2217 		unsigned int i;
2218 
2219 		for (i = 0; i < len; i++)
2220 			p[i] = chip->legacy.read_byte(chip);
2221 	} else {
2222 		chip->legacy.read_buf(chip, buf, len);
2223 	}
2224 
2225 	return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(nand_read_data_op);
2228 
2229 /**
2230  * nand_write_data_op - Write data from the NAND
2231  * @chip: The NAND chip
2232  * @buf: buffer containing the data to send on the bus
2233  * @len: length of the buffer
2234  * @force_8bit: force 8-bit bus access
2235  *
2236  * This function does a raw data write on the bus. Usually used after launching
2237  * another NAND operation like nand_write_page_begin_op().
2238  * This function does not select/unselect the CS line.
2239  *
2240  * Returns 0 on success, a negative error code otherwise.
2241  */
2242 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2243 		       unsigned int len, bool force_8bit)
2244 {
2245 	if (!len || !buf)
2246 		return -EINVAL;
2247 
2248 	if (nand_has_exec_op(chip)) {
2249 		struct nand_op_instr instrs[] = {
2250 			NAND_OP_DATA_OUT(len, buf, 0),
2251 		};
2252 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2253 
2254 		instrs[0].ctx.data.force_8bit = force_8bit;
2255 
2256 		return nand_exec_op(chip, &op);
2257 	}
2258 
2259 	if (force_8bit) {
2260 		const u8 *p = buf;
2261 		unsigned int i;
2262 
2263 		for (i = 0; i < len; i++)
2264 			chip->legacy.write_byte(chip, p[i]);
2265 	} else {
2266 		chip->legacy.write_buf(chip, buf, len);
2267 	}
2268 
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(nand_write_data_op);
2272 
2273 /**
2274  * struct nand_op_parser_ctx - Context used by the parser
2275  * @instrs: array of all the instructions that must be addressed
2276  * @ninstrs: length of the @instrs array
2277  * @subop: Sub-operation to be passed to the NAND controller
2278  *
2279  * This structure is used by the core to split NAND operations into
2280  * sub-operations that can be handled by the NAND controller.
2281  */
2282 struct nand_op_parser_ctx {
2283 	const struct nand_op_instr *instrs;
2284 	unsigned int ninstrs;
2285 	struct nand_subop subop;
2286 };
2287 
2288 /**
2289  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2290  * @pat: the parser pattern element that matches @instr
2291  * @instr: pointer to the instruction to check
2292  * @start_offset: this is an in/out parameter. If @instr has already been
2293  *		  split, then @start_offset is the offset from which to start
2294  *		  (either an address cycle or an offset in the data buffer).
2295  *		  Conversely, if the function returns true (ie. instr must be
2296  *		  split), this parameter is updated to point to the first
2297  *		  data/address cycle that has not been taken care of.
2298  *
2299  * Some NAND controllers are limited and cannot send X address cycles with a
2300  * unique operation, or cannot read/write more than Y bytes at the same time.
2301  * In this case, split the instruction that does not fit in a single
2302  * controller-operation into two or more chunks.
2303  *
2304  * Returns true if the instruction must be split, false otherwise.
2305  * The @start_offset parameter is also updated to the offset at which the next
2306  * bundle of instruction must start (if an address or a data instruction).
2307  */
2308 static bool
2309 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2310 				const struct nand_op_instr *instr,
2311 				unsigned int *start_offset)
2312 {
2313 	switch (pat->type) {
2314 	case NAND_OP_ADDR_INSTR:
2315 		if (!pat->ctx.addr.maxcycles)
2316 			break;
2317 
2318 		if (instr->ctx.addr.naddrs - *start_offset >
2319 		    pat->ctx.addr.maxcycles) {
2320 			*start_offset += pat->ctx.addr.maxcycles;
2321 			return true;
2322 		}
2323 		break;
2324 
2325 	case NAND_OP_DATA_IN_INSTR:
2326 	case NAND_OP_DATA_OUT_INSTR:
2327 		if (!pat->ctx.data.maxlen)
2328 			break;
2329 
2330 		if (instr->ctx.data.len - *start_offset >
2331 		    pat->ctx.data.maxlen) {
2332 			*start_offset += pat->ctx.data.maxlen;
2333 			return true;
2334 		}
2335 		break;
2336 
2337 	default:
2338 		break;
2339 	}
2340 
2341 	return false;
2342 }
2343 
2344 /**
2345  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2346  *			      remaining in the parser context
2347  * @pat: the pattern to test
2348  * @ctx: the parser context structure to match with the pattern @pat
2349  *
2350  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2351  * Returns true if this is the case, false ortherwise. When true is returned,
2352  * @ctx->subop is updated with the set of instructions to be passed to the
2353  * controller driver.
2354  */
2355 static bool
2356 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2357 			 struct nand_op_parser_ctx *ctx)
2358 {
2359 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2360 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2361 	const struct nand_op_instr *instr = ctx->subop.instrs;
2362 	unsigned int i, ninstrs;
2363 
2364 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2365 		/*
2366 		 * The pattern instruction does not match the operation
2367 		 * instruction. If the instruction is marked optional in the
2368 		 * pattern definition, we skip the pattern element and continue
2369 		 * to the next one. If the element is mandatory, there's no
2370 		 * match and we can return false directly.
2371 		 */
2372 		if (instr->type != pat->elems[i].type) {
2373 			if (!pat->elems[i].optional)
2374 				return false;
2375 
2376 			continue;
2377 		}
2378 
2379 		/*
2380 		 * Now check the pattern element constraints. If the pattern is
2381 		 * not able to handle the whole instruction in a single step,
2382 		 * we have to split it.
2383 		 * The last_instr_end_off value comes back updated to point to
2384 		 * the position where we have to split the instruction (the
2385 		 * start of the next subop chunk).
2386 		 */
2387 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2388 						    &instr_offset)) {
2389 			ninstrs++;
2390 			i++;
2391 			break;
2392 		}
2393 
2394 		instr++;
2395 		ninstrs++;
2396 		instr_offset = 0;
2397 	}
2398 
2399 	/*
2400 	 * This can happen if all instructions of a pattern are optional.
2401 	 * Still, if there's not at least one instruction handled by this
2402 	 * pattern, this is not a match, and we should try the next one (if
2403 	 * any).
2404 	 */
2405 	if (!ninstrs)
2406 		return false;
2407 
2408 	/*
2409 	 * We had a match on the pattern head, but the pattern may be longer
2410 	 * than the instructions we're asked to execute. We need to make sure
2411 	 * there's no mandatory elements in the pattern tail.
2412 	 */
2413 	for (; i < pat->nelems; i++) {
2414 		if (!pat->elems[i].optional)
2415 			return false;
2416 	}
2417 
2418 	/*
2419 	 * We have a match: update the subop structure accordingly and return
2420 	 * true.
2421 	 */
2422 	ctx->subop.ninstrs = ninstrs;
2423 	ctx->subop.last_instr_end_off = instr_offset;
2424 
2425 	return true;
2426 }
2427 
2428 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2429 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2430 {
2431 	const struct nand_op_instr *instr;
2432 	char *prefix = "      ";
2433 	unsigned int i;
2434 
2435 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2436 
2437 	for (i = 0; i < ctx->ninstrs; i++) {
2438 		instr = &ctx->instrs[i];
2439 
2440 		if (instr == &ctx->subop.instrs[0])
2441 			prefix = "    ->";
2442 
2443 		nand_op_trace(prefix, instr);
2444 
2445 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2446 			prefix = "      ";
2447 	}
2448 }
2449 #else
2450 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2451 {
2452 	/* NOP */
2453 }
2454 #endif
2455 
2456 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2457 				  const struct nand_op_parser_ctx *b)
2458 {
2459 	if (a->subop.ninstrs < b->subop.ninstrs)
2460 		return -1;
2461 	else if (a->subop.ninstrs > b->subop.ninstrs)
2462 		return 1;
2463 
2464 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2465 		return -1;
2466 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2467 		return 1;
2468 
2469 	return 0;
2470 }
2471 
2472 /**
2473  * nand_op_parser_exec_op - exec_op parser
2474  * @chip: the NAND chip
2475  * @parser: patterns description provided by the controller driver
2476  * @op: the NAND operation to address
2477  * @check_only: when true, the function only checks if @op can be handled but
2478  *		does not execute the operation
2479  *
2480  * Helper function designed to ease integration of NAND controller drivers that
2481  * only support a limited set of instruction sequences. The supported sequences
2482  * are described in @parser, and the framework takes care of splitting @op into
2483  * multiple sub-operations (if required) and pass them back to the ->exec()
2484  * callback of the matching pattern if @check_only is set to false.
2485  *
2486  * NAND controller drivers should call this function from their own ->exec_op()
2487  * implementation.
2488  *
2489  * Returns 0 on success, a negative error code otherwise. A failure can be
2490  * caused by an unsupported operation (none of the supported patterns is able
2491  * to handle the requested operation), or an error returned by one of the
2492  * matching pattern->exec() hook.
2493  */
2494 int nand_op_parser_exec_op(struct nand_chip *chip,
2495 			   const struct nand_op_parser *parser,
2496 			   const struct nand_operation *op, bool check_only)
2497 {
2498 	struct nand_op_parser_ctx ctx = {
2499 		.subop.cs = op->cs,
2500 		.subop.instrs = op->instrs,
2501 		.instrs = op->instrs,
2502 		.ninstrs = op->ninstrs,
2503 	};
2504 	unsigned int i;
2505 
2506 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2507 		const struct nand_op_parser_pattern *pattern;
2508 		struct nand_op_parser_ctx best_ctx;
2509 		int ret, best_pattern = -1;
2510 
2511 		for (i = 0; i < parser->npatterns; i++) {
2512 			struct nand_op_parser_ctx test_ctx = ctx;
2513 
2514 			pattern = &parser->patterns[i];
2515 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2516 				continue;
2517 
2518 			if (best_pattern >= 0 &&
2519 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2520 				continue;
2521 
2522 			best_pattern = i;
2523 			best_ctx = test_ctx;
2524 		}
2525 
2526 		if (best_pattern < 0) {
2527 			pr_debug("->exec_op() parser: pattern not found!\n");
2528 			return -ENOTSUPP;
2529 		}
2530 
2531 		ctx = best_ctx;
2532 		nand_op_parser_trace(&ctx);
2533 
2534 		if (!check_only) {
2535 			pattern = &parser->patterns[best_pattern];
2536 			ret = pattern->exec(chip, &ctx.subop);
2537 			if (ret)
2538 				return ret;
2539 		}
2540 
2541 		/*
2542 		 * Update the context structure by pointing to the start of the
2543 		 * next subop.
2544 		 */
2545 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2546 		if (ctx.subop.last_instr_end_off)
2547 			ctx.subop.instrs -= 1;
2548 
2549 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2550 	}
2551 
2552 	return 0;
2553 }
2554 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2555 
2556 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2557 {
2558 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2559 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2560 }
2561 
2562 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2563 				      unsigned int instr_idx)
2564 {
2565 	return subop && instr_idx < subop->ninstrs;
2566 }
2567 
2568 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2569 					     unsigned int instr_idx)
2570 {
2571 	if (instr_idx)
2572 		return 0;
2573 
2574 	return subop->first_instr_start_off;
2575 }
2576 
2577 /**
2578  * nand_subop_get_addr_start_off - Get the start offset in an address array
2579  * @subop: The entire sub-operation
2580  * @instr_idx: Index of the instruction inside the sub-operation
2581  *
2582  * During driver development, one could be tempted to directly use the
2583  * ->addr.addrs field of address instructions. This is wrong as address
2584  * instructions might be split.
2585  *
2586  * Given an address instruction, returns the offset of the first cycle to issue.
2587  */
2588 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2589 					   unsigned int instr_idx)
2590 {
2591 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2592 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2593 		return 0;
2594 
2595 	return nand_subop_get_start_off(subop, instr_idx);
2596 }
2597 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2598 
2599 /**
2600  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2601  * @subop: The entire sub-operation
2602  * @instr_idx: Index of the instruction inside the sub-operation
2603  *
2604  * During driver development, one could be tempted to directly use the
2605  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2606  * might be split.
2607  *
2608  * Given an address instruction, returns the number of address cycle to issue.
2609  */
2610 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2611 					 unsigned int instr_idx)
2612 {
2613 	int start_off, end_off;
2614 
2615 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2616 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2617 		return 0;
2618 
2619 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2620 
2621 	if (instr_idx == subop->ninstrs - 1 &&
2622 	    subop->last_instr_end_off)
2623 		end_off = subop->last_instr_end_off;
2624 	else
2625 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2626 
2627 	return end_off - start_off;
2628 }
2629 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2630 
2631 /**
2632  * nand_subop_get_data_start_off - Get the start offset in a data array
2633  * @subop: The entire sub-operation
2634  * @instr_idx: Index of the instruction inside the sub-operation
2635  *
2636  * During driver development, one could be tempted to directly use the
2637  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2638  * instructions might be split.
2639  *
2640  * Given a data instruction, returns the offset to start from.
2641  */
2642 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2643 					   unsigned int instr_idx)
2644 {
2645 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2646 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2647 		return 0;
2648 
2649 	return nand_subop_get_start_off(subop, instr_idx);
2650 }
2651 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2652 
2653 /**
2654  * nand_subop_get_data_len - Get the number of bytes to retrieve
2655  * @subop: The entire sub-operation
2656  * @instr_idx: Index of the instruction inside the sub-operation
2657  *
2658  * During driver development, one could be tempted to directly use the
2659  * ->data->len field of a data instruction. This is wrong as data instructions
2660  * might be split.
2661  *
2662  * Returns the length of the chunk of data to send/receive.
2663  */
2664 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2665 				     unsigned int instr_idx)
2666 {
2667 	int start_off = 0, end_off;
2668 
2669 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2670 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2671 		return 0;
2672 
2673 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2674 
2675 	if (instr_idx == subop->ninstrs - 1 &&
2676 	    subop->last_instr_end_off)
2677 		end_off = subop->last_instr_end_off;
2678 	else
2679 		end_off = subop->instrs[instr_idx].ctx.data.len;
2680 
2681 	return end_off - start_off;
2682 }
2683 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2684 
2685 /**
2686  * nand_reset - Reset and initialize a NAND device
2687  * @chip: The NAND chip
2688  * @chipnr: Internal die id
2689  *
2690  * Save the timings data structure, then apply SDR timings mode 0 (see
2691  * nand_reset_interface for details), do the reset operation, and apply
2692  * back the previous timings.
2693  *
2694  * Returns 0 on success, a negative error code otherwise.
2695  */
2696 int nand_reset(struct nand_chip *chip, int chipnr)
2697 {
2698 	int ret;
2699 
2700 	ret = nand_reset_interface(chip, chipnr);
2701 	if (ret)
2702 		return ret;
2703 
2704 	/*
2705 	 * The CS line has to be released before we can apply the new NAND
2706 	 * interface settings, hence this weird nand_select_target()
2707 	 * nand_deselect_target() dance.
2708 	 */
2709 	nand_select_target(chip, chipnr);
2710 	ret = nand_reset_op(chip);
2711 	nand_deselect_target(chip);
2712 	if (ret)
2713 		return ret;
2714 
2715 	ret = nand_setup_interface(chip, chipnr);
2716 	if (ret)
2717 		return ret;
2718 
2719 	return 0;
2720 }
2721 EXPORT_SYMBOL_GPL(nand_reset);
2722 
2723 /**
2724  * nand_get_features - wrapper to perform a GET_FEATURE
2725  * @chip: NAND chip info structure
2726  * @addr: feature address
2727  * @subfeature_param: the subfeature parameters, a four bytes array
2728  *
2729  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2730  * operation cannot be handled.
2731  */
2732 int nand_get_features(struct nand_chip *chip, int addr,
2733 		      u8 *subfeature_param)
2734 {
2735 	if (!nand_supports_get_features(chip, addr))
2736 		return -ENOTSUPP;
2737 
2738 	if (chip->legacy.get_features)
2739 		return chip->legacy.get_features(chip, addr, subfeature_param);
2740 
2741 	return nand_get_features_op(chip, addr, subfeature_param);
2742 }
2743 
2744 /**
2745  * nand_set_features - wrapper to perform a SET_FEATURE
2746  * @chip: NAND chip info structure
2747  * @addr: feature address
2748  * @subfeature_param: the subfeature parameters, a four bytes array
2749  *
2750  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2751  * operation cannot be handled.
2752  */
2753 int nand_set_features(struct nand_chip *chip, int addr,
2754 		      u8 *subfeature_param)
2755 {
2756 	if (!nand_supports_set_features(chip, addr))
2757 		return -ENOTSUPP;
2758 
2759 	if (chip->legacy.set_features)
2760 		return chip->legacy.set_features(chip, addr, subfeature_param);
2761 
2762 	return nand_set_features_op(chip, addr, subfeature_param);
2763 }
2764 
2765 /**
2766  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2767  * @buf: buffer to test
2768  * @len: buffer length
2769  * @bitflips_threshold: maximum number of bitflips
2770  *
2771  * Check if a buffer contains only 0xff, which means the underlying region
2772  * has been erased and is ready to be programmed.
2773  * The bitflips_threshold specify the maximum number of bitflips before
2774  * considering the region is not erased.
2775  * Note: The logic of this function has been extracted from the memweight
2776  * implementation, except that nand_check_erased_buf function exit before
2777  * testing the whole buffer if the number of bitflips exceed the
2778  * bitflips_threshold value.
2779  *
2780  * Returns a positive number of bitflips less than or equal to
2781  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2782  * threshold.
2783  */
2784 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2785 {
2786 	const unsigned char *bitmap = buf;
2787 	int bitflips = 0;
2788 	int weight;
2789 
2790 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2791 	     len--, bitmap++) {
2792 		weight = hweight8(*bitmap);
2793 		bitflips += BITS_PER_BYTE - weight;
2794 		if (unlikely(bitflips > bitflips_threshold))
2795 			return -EBADMSG;
2796 	}
2797 
2798 	for (; len >= sizeof(long);
2799 	     len -= sizeof(long), bitmap += sizeof(long)) {
2800 		unsigned long d = *((unsigned long *)bitmap);
2801 		if (d == ~0UL)
2802 			continue;
2803 		weight = hweight_long(d);
2804 		bitflips += BITS_PER_LONG - weight;
2805 		if (unlikely(bitflips > bitflips_threshold))
2806 			return -EBADMSG;
2807 	}
2808 
2809 	for (; len > 0; len--, bitmap++) {
2810 		weight = hweight8(*bitmap);
2811 		bitflips += BITS_PER_BYTE - weight;
2812 		if (unlikely(bitflips > bitflips_threshold))
2813 			return -EBADMSG;
2814 	}
2815 
2816 	return bitflips;
2817 }
2818 
2819 /**
2820  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2821  *				 0xff data
2822  * @data: data buffer to test
2823  * @datalen: data length
2824  * @ecc: ECC buffer
2825  * @ecclen: ECC length
2826  * @extraoob: extra OOB buffer
2827  * @extraooblen: extra OOB length
2828  * @bitflips_threshold: maximum number of bitflips
2829  *
2830  * Check if a data buffer and its associated ECC and OOB data contains only
2831  * 0xff pattern, which means the underlying region has been erased and is
2832  * ready to be programmed.
2833  * The bitflips_threshold specify the maximum number of bitflips before
2834  * considering the region as not erased.
2835  *
2836  * Note:
2837  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2838  *    different from the NAND page size. When fixing bitflips, ECC engines will
2839  *    report the number of errors per chunk, and the NAND core infrastructure
2840  *    expect you to return the maximum number of bitflips for the whole page.
2841  *    This is why you should always use this function on a single chunk and
2842  *    not on the whole page. After checking each chunk you should update your
2843  *    max_bitflips value accordingly.
2844  * 2/ When checking for bitflips in erased pages you should not only check
2845  *    the payload data but also their associated ECC data, because a user might
2846  *    have programmed almost all bits to 1 but a few. In this case, we
2847  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2848  *    this case.
2849  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2850  *    data are protected by the ECC engine.
2851  *    It could also be used if you support subpages and want to attach some
2852  *    extra OOB data to an ECC chunk.
2853  *
2854  * Returns a positive number of bitflips less than or equal to
2855  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2856  * threshold. In case of success, the passed buffers are filled with 0xff.
2857  */
2858 int nand_check_erased_ecc_chunk(void *data, int datalen,
2859 				void *ecc, int ecclen,
2860 				void *extraoob, int extraooblen,
2861 				int bitflips_threshold)
2862 {
2863 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2864 
2865 	data_bitflips = nand_check_erased_buf(data, datalen,
2866 					      bitflips_threshold);
2867 	if (data_bitflips < 0)
2868 		return data_bitflips;
2869 
2870 	bitflips_threshold -= data_bitflips;
2871 
2872 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2873 	if (ecc_bitflips < 0)
2874 		return ecc_bitflips;
2875 
2876 	bitflips_threshold -= ecc_bitflips;
2877 
2878 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2879 						  bitflips_threshold);
2880 	if (extraoob_bitflips < 0)
2881 		return extraoob_bitflips;
2882 
2883 	if (data_bitflips)
2884 		memset(data, 0xff, datalen);
2885 
2886 	if (ecc_bitflips)
2887 		memset(ecc, 0xff, ecclen);
2888 
2889 	if (extraoob_bitflips)
2890 		memset(extraoob, 0xff, extraooblen);
2891 
2892 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2893 }
2894 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2895 
2896 /**
2897  * nand_read_page_raw_notsupp - dummy read raw page function
2898  * @chip: nand chip info structure
2899  * @buf: buffer to store read data
2900  * @oob_required: caller requires OOB data read to chip->oob_poi
2901  * @page: page number to read
2902  *
2903  * Returns -ENOTSUPP unconditionally.
2904  */
2905 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2906 			       int oob_required, int page)
2907 {
2908 	return -ENOTSUPP;
2909 }
2910 
2911 /**
2912  * nand_read_page_raw - [INTERN] read raw page data without ecc
2913  * @chip: nand chip info structure
2914  * @buf: buffer to store read data
2915  * @oob_required: caller requires OOB data read to chip->oob_poi
2916  * @page: page number to read
2917  *
2918  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2919  */
2920 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2921 		       int page)
2922 {
2923 	struct mtd_info *mtd = nand_to_mtd(chip);
2924 	int ret;
2925 
2926 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2927 	if (ret)
2928 		return ret;
2929 
2930 	if (oob_required) {
2931 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2932 					false, false);
2933 		if (ret)
2934 			return ret;
2935 	}
2936 
2937 	return 0;
2938 }
2939 EXPORT_SYMBOL(nand_read_page_raw);
2940 
2941 /**
2942  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2943  * @chip: NAND chip info structure
2944  * @buf: buffer to store read data
2945  * @oob_required: caller requires OOB data read to chip->oob_poi
2946  * @page: page number to read
2947  *
2948  * This is a raw page read, ie. without any error detection/correction.
2949  * Monolithic means we are requesting all the relevant data (main plus
2950  * eventually OOB) to be loaded in the NAND cache and sent over the
2951  * bus (from the NAND chip to the NAND controller) in a single
2952  * operation. This is an alternative to nand_read_page_raw(), which
2953  * first reads the main data, and if the OOB data is requested too,
2954  * then reads more data on the bus.
2955  */
2956 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2957 				  int oob_required, int page)
2958 {
2959 	struct mtd_info *mtd = nand_to_mtd(chip);
2960 	unsigned int size = mtd->writesize;
2961 	u8 *read_buf = buf;
2962 	int ret;
2963 
2964 	if (oob_required) {
2965 		size += mtd->oobsize;
2966 
2967 		if (buf != chip->data_buf)
2968 			read_buf = nand_get_data_buf(chip);
2969 	}
2970 
2971 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2972 	if (ret)
2973 		return ret;
2974 
2975 	if (buf != chip->data_buf)
2976 		memcpy(buf, read_buf, mtd->writesize);
2977 
2978 	return 0;
2979 }
2980 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2981 
2982 /**
2983  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2984  * @chip: nand chip info structure
2985  * @buf: buffer to store read data
2986  * @oob_required: caller requires OOB data read to chip->oob_poi
2987  * @page: page number to read
2988  *
2989  * We need a special oob layout and handling even when OOB isn't used.
2990  */
2991 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2992 				       int oob_required, int page)
2993 {
2994 	struct mtd_info *mtd = nand_to_mtd(chip);
2995 	int eccsize = chip->ecc.size;
2996 	int eccbytes = chip->ecc.bytes;
2997 	uint8_t *oob = chip->oob_poi;
2998 	int steps, size, ret;
2999 
3000 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3001 	if (ret)
3002 		return ret;
3003 
3004 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3005 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3006 		if (ret)
3007 			return ret;
3008 
3009 		buf += eccsize;
3010 
3011 		if (chip->ecc.prepad) {
3012 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3013 						false, false);
3014 			if (ret)
3015 				return ret;
3016 
3017 			oob += chip->ecc.prepad;
3018 		}
3019 
3020 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3021 		if (ret)
3022 			return ret;
3023 
3024 		oob += eccbytes;
3025 
3026 		if (chip->ecc.postpad) {
3027 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3028 						false, false);
3029 			if (ret)
3030 				return ret;
3031 
3032 			oob += chip->ecc.postpad;
3033 		}
3034 	}
3035 
3036 	size = mtd->oobsize - (oob - chip->oob_poi);
3037 	if (size) {
3038 		ret = nand_read_data_op(chip, oob, size, false, false);
3039 		if (ret)
3040 			return ret;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3048  * @chip: nand chip info structure
3049  * @buf: buffer to store read data
3050  * @oob_required: caller requires OOB data read to chip->oob_poi
3051  * @page: page number to read
3052  */
3053 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3054 				int oob_required, int page)
3055 {
3056 	struct mtd_info *mtd = nand_to_mtd(chip);
3057 	int i, eccsize = chip->ecc.size, ret;
3058 	int eccbytes = chip->ecc.bytes;
3059 	int eccsteps = chip->ecc.steps;
3060 	uint8_t *p = buf;
3061 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3062 	uint8_t *ecc_code = chip->ecc.code_buf;
3063 	unsigned int max_bitflips = 0;
3064 
3065 	chip->ecc.read_page_raw(chip, buf, 1, page);
3066 
3067 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3068 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3069 
3070 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3071 					 chip->ecc.total);
3072 	if (ret)
3073 		return ret;
3074 
3075 	eccsteps = chip->ecc.steps;
3076 	p = buf;
3077 
3078 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3079 		int stat;
3080 
3081 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3082 		if (stat < 0) {
3083 			mtd->ecc_stats.failed++;
3084 		} else {
3085 			mtd->ecc_stats.corrected += stat;
3086 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3087 		}
3088 	}
3089 	return max_bitflips;
3090 }
3091 
3092 /**
3093  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3094  * @chip: nand chip info structure
3095  * @data_offs: offset of requested data within the page
3096  * @readlen: data length
3097  * @bufpoi: buffer to store read data
3098  * @page: page number to read
3099  */
3100 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3101 			     uint32_t readlen, uint8_t *bufpoi, int page)
3102 {
3103 	struct mtd_info *mtd = nand_to_mtd(chip);
3104 	int start_step, end_step, num_steps, ret;
3105 	uint8_t *p;
3106 	int data_col_addr, i, gaps = 0;
3107 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3108 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3109 	int index, section = 0;
3110 	unsigned int max_bitflips = 0;
3111 	struct mtd_oob_region oobregion = { };
3112 
3113 	/* Column address within the page aligned to ECC size (256bytes) */
3114 	start_step = data_offs / chip->ecc.size;
3115 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3116 	num_steps = end_step - start_step + 1;
3117 	index = start_step * chip->ecc.bytes;
3118 
3119 	/* Data size aligned to ECC ecc.size */
3120 	datafrag_len = num_steps * chip->ecc.size;
3121 	eccfrag_len = num_steps * chip->ecc.bytes;
3122 
3123 	data_col_addr = start_step * chip->ecc.size;
3124 	/* If we read not a page aligned data */
3125 	p = bufpoi + data_col_addr;
3126 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3127 	if (ret)
3128 		return ret;
3129 
3130 	/* Calculate ECC */
3131 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3132 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3133 
3134 	/*
3135 	 * The performance is faster if we position offsets according to
3136 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3137 	 */
3138 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3139 	if (ret)
3140 		return ret;
3141 
3142 	if (oobregion.length < eccfrag_len)
3143 		gaps = 1;
3144 
3145 	if (gaps) {
3146 		ret = nand_change_read_column_op(chip, mtd->writesize,
3147 						 chip->oob_poi, mtd->oobsize,
3148 						 false);
3149 		if (ret)
3150 			return ret;
3151 	} else {
3152 		/*
3153 		 * Send the command to read the particular ECC bytes take care
3154 		 * about buswidth alignment in read_buf.
3155 		 */
3156 		aligned_pos = oobregion.offset & ~(busw - 1);
3157 		aligned_len = eccfrag_len;
3158 		if (oobregion.offset & (busw - 1))
3159 			aligned_len++;
3160 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3161 		    (busw - 1))
3162 			aligned_len++;
3163 
3164 		ret = nand_change_read_column_op(chip,
3165 						 mtd->writesize + aligned_pos,
3166 						 &chip->oob_poi[aligned_pos],
3167 						 aligned_len, false);
3168 		if (ret)
3169 			return ret;
3170 	}
3171 
3172 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3173 					 chip->oob_poi, index, eccfrag_len);
3174 	if (ret)
3175 		return ret;
3176 
3177 	p = bufpoi + data_col_addr;
3178 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3179 		int stat;
3180 
3181 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3182 					 &chip->ecc.calc_buf[i]);
3183 		if (stat == -EBADMSG &&
3184 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3185 			/* check for empty pages with bitflips */
3186 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3187 						&chip->ecc.code_buf[i],
3188 						chip->ecc.bytes,
3189 						NULL, 0,
3190 						chip->ecc.strength);
3191 		}
3192 
3193 		if (stat < 0) {
3194 			mtd->ecc_stats.failed++;
3195 		} else {
3196 			mtd->ecc_stats.corrected += stat;
3197 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3198 		}
3199 	}
3200 	return max_bitflips;
3201 }
3202 
3203 /**
3204  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3205  * @chip: nand chip info structure
3206  * @buf: buffer to store read data
3207  * @oob_required: caller requires OOB data read to chip->oob_poi
3208  * @page: page number to read
3209  *
3210  * Not for syndrome calculating ECC controllers which need a special oob layout.
3211  */
3212 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3213 				int oob_required, int page)
3214 {
3215 	struct mtd_info *mtd = nand_to_mtd(chip);
3216 	int i, eccsize = chip->ecc.size, ret;
3217 	int eccbytes = chip->ecc.bytes;
3218 	int eccsteps = chip->ecc.steps;
3219 	uint8_t *p = buf;
3220 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3221 	uint8_t *ecc_code = chip->ecc.code_buf;
3222 	unsigned int max_bitflips = 0;
3223 
3224 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3225 	if (ret)
3226 		return ret;
3227 
3228 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3229 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3230 
3231 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3232 		if (ret)
3233 			return ret;
3234 
3235 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3236 	}
3237 
3238 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3239 				false);
3240 	if (ret)
3241 		return ret;
3242 
3243 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3244 					 chip->ecc.total);
3245 	if (ret)
3246 		return ret;
3247 
3248 	eccsteps = chip->ecc.steps;
3249 	p = buf;
3250 
3251 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3252 		int stat;
3253 
3254 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3255 		if (stat == -EBADMSG &&
3256 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3257 			/* check for empty pages with bitflips */
3258 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3259 						&ecc_code[i], eccbytes,
3260 						NULL, 0,
3261 						chip->ecc.strength);
3262 		}
3263 
3264 		if (stat < 0) {
3265 			mtd->ecc_stats.failed++;
3266 		} else {
3267 			mtd->ecc_stats.corrected += stat;
3268 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3269 		}
3270 	}
3271 	return max_bitflips;
3272 }
3273 
3274 /**
3275  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3276  *                                  data read from OOB area
3277  * @chip: nand chip info structure
3278  * @buf: buffer to store read data
3279  * @oob_required: caller requires OOB data read to chip->oob_poi
3280  * @page: page number to read
3281  *
3282  * Hardware ECC for large page chips, which requires the ECC data to be
3283  * extracted from the OOB before the actual data is read.
3284  */
3285 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3286 				   int oob_required, int page)
3287 {
3288 	struct mtd_info *mtd = nand_to_mtd(chip);
3289 	int i, eccsize = chip->ecc.size, ret;
3290 	int eccbytes = chip->ecc.bytes;
3291 	int eccsteps = chip->ecc.steps;
3292 	uint8_t *p = buf;
3293 	uint8_t *ecc_code = chip->ecc.code_buf;
3294 	unsigned int max_bitflips = 0;
3295 
3296 	/* Read the OOB area first */
3297 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3298 	if (ret)
3299 		return ret;
3300 
3301 	/* Move read cursor to start of page */
3302 	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3303 	if (ret)
3304 		return ret;
3305 
3306 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3307 					 chip->ecc.total);
3308 	if (ret)
3309 		return ret;
3310 
3311 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3312 		int stat;
3313 
3314 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3315 
3316 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3317 		if (ret)
3318 			return ret;
3319 
3320 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3321 		if (stat == -EBADMSG &&
3322 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3323 			/* check for empty pages with bitflips */
3324 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3325 							   &ecc_code[i],
3326 							   eccbytes, NULL, 0,
3327 							   chip->ecc.strength);
3328 		}
3329 
3330 		if (stat < 0) {
3331 			mtd->ecc_stats.failed++;
3332 		} else {
3333 			mtd->ecc_stats.corrected += stat;
3334 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3335 		}
3336 	}
3337 	return max_bitflips;
3338 }
3339 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3340 
3341 /**
3342  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3343  * @chip: nand chip info structure
3344  * @buf: buffer to store read data
3345  * @oob_required: caller requires OOB data read to chip->oob_poi
3346  * @page: page number to read
3347  *
3348  * The hw generator calculates the error syndrome automatically. Therefore we
3349  * need a special oob layout and handling.
3350  */
3351 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3352 				   int oob_required, int page)
3353 {
3354 	struct mtd_info *mtd = nand_to_mtd(chip);
3355 	int ret, i, eccsize = chip->ecc.size;
3356 	int eccbytes = chip->ecc.bytes;
3357 	int eccsteps = chip->ecc.steps;
3358 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3359 	uint8_t *p = buf;
3360 	uint8_t *oob = chip->oob_poi;
3361 	unsigned int max_bitflips = 0;
3362 
3363 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3364 	if (ret)
3365 		return ret;
3366 
3367 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3368 		int stat;
3369 
3370 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3371 
3372 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3373 		if (ret)
3374 			return ret;
3375 
3376 		if (chip->ecc.prepad) {
3377 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3378 						false, false);
3379 			if (ret)
3380 				return ret;
3381 
3382 			oob += chip->ecc.prepad;
3383 		}
3384 
3385 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3386 
3387 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3388 		if (ret)
3389 			return ret;
3390 
3391 		stat = chip->ecc.correct(chip, p, oob, NULL);
3392 
3393 		oob += eccbytes;
3394 
3395 		if (chip->ecc.postpad) {
3396 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3397 						false, false);
3398 			if (ret)
3399 				return ret;
3400 
3401 			oob += chip->ecc.postpad;
3402 		}
3403 
3404 		if (stat == -EBADMSG &&
3405 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3406 			/* check for empty pages with bitflips */
3407 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3408 							   oob - eccpadbytes,
3409 							   eccpadbytes,
3410 							   NULL, 0,
3411 							   chip->ecc.strength);
3412 		}
3413 
3414 		if (stat < 0) {
3415 			mtd->ecc_stats.failed++;
3416 		} else {
3417 			mtd->ecc_stats.corrected += stat;
3418 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3419 		}
3420 	}
3421 
3422 	/* Calculate remaining oob bytes */
3423 	i = mtd->oobsize - (oob - chip->oob_poi);
3424 	if (i) {
3425 		ret = nand_read_data_op(chip, oob, i, false, false);
3426 		if (ret)
3427 			return ret;
3428 	}
3429 
3430 	return max_bitflips;
3431 }
3432 
3433 /**
3434  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3435  * @chip: NAND chip object
3436  * @oob: oob destination address
3437  * @ops: oob ops structure
3438  * @len: size of oob to transfer
3439  */
3440 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3441 				  struct mtd_oob_ops *ops, size_t len)
3442 {
3443 	struct mtd_info *mtd = nand_to_mtd(chip);
3444 	int ret;
3445 
3446 	switch (ops->mode) {
3447 
3448 	case MTD_OPS_PLACE_OOB:
3449 	case MTD_OPS_RAW:
3450 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3451 		return oob + len;
3452 
3453 	case MTD_OPS_AUTO_OOB:
3454 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3455 						  ops->ooboffs, len);
3456 		BUG_ON(ret);
3457 		return oob + len;
3458 
3459 	default:
3460 		BUG();
3461 	}
3462 	return NULL;
3463 }
3464 
3465 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3466 				      u32 readlen, int col)
3467 {
3468 	struct mtd_info *mtd = nand_to_mtd(chip);
3469 	unsigned int end_page, end_col;
3470 
3471 	chip->cont_read.ongoing = false;
3472 
3473 	if (!chip->controller->supported_op.cont_read)
3474 		return;
3475 
3476 	end_page = DIV_ROUND_UP(col + readlen, mtd->writesize);
3477 	end_col = (col + readlen) % mtd->writesize;
3478 
3479 	if (col)
3480 		page++;
3481 
3482 	if (end_col && end_page)
3483 		end_page--;
3484 
3485 	if (page + 1 > end_page)
3486 		return;
3487 
3488 	chip->cont_read.first_page = page;
3489 	chip->cont_read.last_page = end_page;
3490 	chip->cont_read.ongoing = true;
3491 
3492 	rawnand_cap_cont_reads(chip);
3493 }
3494 
3495 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3496 {
3497 	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3498 		return;
3499 
3500 	chip->cont_read.first_page++;
3501 	if (chip->cont_read.first_page == chip->cont_read.pause_page)
3502 		chip->cont_read.first_page++;
3503 	if (chip->cont_read.first_page >= chip->cont_read.last_page)
3504 		chip->cont_read.ongoing = false;
3505 }
3506 
3507 /**
3508  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3509  * @chip: NAND chip object
3510  * @retry_mode: the retry mode to use
3511  *
3512  * Some vendors supply a special command to shift the Vt threshold, to be used
3513  * when there are too many bitflips in a page (i.e., ECC error). After setting
3514  * a new threshold, the host should retry reading the page.
3515  */
3516 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3517 {
3518 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3519 
3520 	if (retry_mode >= chip->read_retries)
3521 		return -EINVAL;
3522 
3523 	if (!chip->ops.setup_read_retry)
3524 		return -EOPNOTSUPP;
3525 
3526 	return chip->ops.setup_read_retry(chip, retry_mode);
3527 }
3528 
3529 static void nand_wait_readrdy(struct nand_chip *chip)
3530 {
3531 	const struct nand_interface_config *conf;
3532 
3533 	if (!(chip->options & NAND_NEED_READRDY))
3534 		return;
3535 
3536 	conf = nand_get_interface_config(chip);
3537 	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3538 }
3539 
3540 /**
3541  * nand_do_read_ops - [INTERN] Read data with ECC
3542  * @chip: NAND chip object
3543  * @from: offset to read from
3544  * @ops: oob ops structure
3545  *
3546  * Internal function. Called with chip held.
3547  */
3548 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3549 			    struct mtd_oob_ops *ops)
3550 {
3551 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3552 	struct mtd_info *mtd = nand_to_mtd(chip);
3553 	int ret = 0;
3554 	uint32_t readlen = ops->len;
3555 	uint32_t oobreadlen = ops->ooblen;
3556 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3557 
3558 	uint8_t *bufpoi, *oob, *buf;
3559 	int use_bounce_buf;
3560 	unsigned int max_bitflips = 0;
3561 	int retry_mode = 0;
3562 	bool ecc_fail = false;
3563 
3564 	/* Check if the region is secured */
3565 	if (nand_region_is_secured(chip, from, readlen))
3566 		return -EIO;
3567 
3568 	chipnr = (int)(from >> chip->chip_shift);
3569 	nand_select_target(chip, chipnr);
3570 
3571 	realpage = (int)(from >> chip->page_shift);
3572 	page = realpage & chip->pagemask;
3573 
3574 	col = (int)(from & (mtd->writesize - 1));
3575 
3576 	buf = ops->datbuf;
3577 	oob = ops->oobbuf;
3578 	oob_required = oob ? 1 : 0;
3579 
3580 	rawnand_enable_cont_reads(chip, page, readlen, col);
3581 
3582 	while (1) {
3583 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3584 
3585 		bytes = min(mtd->writesize - col, readlen);
3586 		aligned = (bytes == mtd->writesize);
3587 
3588 		if (!aligned)
3589 			use_bounce_buf = 1;
3590 		else if (chip->options & NAND_USES_DMA)
3591 			use_bounce_buf = !virt_addr_valid(buf) ||
3592 					 !IS_ALIGNED((unsigned long)buf,
3593 						     chip->buf_align);
3594 		else
3595 			use_bounce_buf = 0;
3596 
3597 		/* Is the current page in the buffer? */
3598 		if (realpage != chip->pagecache.page || oob) {
3599 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3600 
3601 			if (use_bounce_buf && aligned)
3602 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3603 						 __func__, buf);
3604 
3605 read_retry:
3606 			/*
3607 			 * Now read the page into the buffer.  Absent an error,
3608 			 * the read methods return max bitflips per ecc step.
3609 			 */
3610 			if (unlikely(ops->mode == MTD_OPS_RAW))
3611 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3612 							      oob_required,
3613 							      page);
3614 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3615 				 !oob)
3616 				ret = chip->ecc.read_subpage(chip, col, bytes,
3617 							     bufpoi, page);
3618 			else
3619 				ret = chip->ecc.read_page(chip, bufpoi,
3620 							  oob_required, page);
3621 			if (ret < 0) {
3622 				if (use_bounce_buf)
3623 					/* Invalidate page cache */
3624 					chip->pagecache.page = -1;
3625 				break;
3626 			}
3627 
3628 			/*
3629 			 * Copy back the data in the initial buffer when reading
3630 			 * partial pages or when a bounce buffer is required.
3631 			 */
3632 			if (use_bounce_buf) {
3633 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3634 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3635 				    (ops->mode != MTD_OPS_RAW)) {
3636 					chip->pagecache.page = realpage;
3637 					chip->pagecache.bitflips = ret;
3638 				} else {
3639 					/* Invalidate page cache */
3640 					chip->pagecache.page = -1;
3641 				}
3642 				memcpy(buf, bufpoi + col, bytes);
3643 			}
3644 
3645 			if (unlikely(oob)) {
3646 				int toread = min(oobreadlen, max_oobsize);
3647 
3648 				if (toread) {
3649 					oob = nand_transfer_oob(chip, oob, ops,
3650 								toread);
3651 					oobreadlen -= toread;
3652 				}
3653 			}
3654 
3655 			nand_wait_readrdy(chip);
3656 
3657 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3658 				if (retry_mode + 1 < chip->read_retries) {
3659 					retry_mode++;
3660 					ret = nand_setup_read_retry(chip,
3661 							retry_mode);
3662 					if (ret < 0)
3663 						break;
3664 
3665 					/* Reset ecc_stats; retry */
3666 					mtd->ecc_stats = ecc_stats;
3667 					goto read_retry;
3668 				} else {
3669 					/* No more retry modes; real failure */
3670 					ecc_fail = true;
3671 				}
3672 			}
3673 
3674 			buf += bytes;
3675 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3676 		} else {
3677 			memcpy(buf, chip->data_buf + col, bytes);
3678 			buf += bytes;
3679 			max_bitflips = max_t(unsigned int, max_bitflips,
3680 					     chip->pagecache.bitflips);
3681 
3682 			rawnand_cont_read_skip_first_page(chip, page);
3683 		}
3684 
3685 		readlen -= bytes;
3686 
3687 		/* Reset to retry mode 0 */
3688 		if (retry_mode) {
3689 			ret = nand_setup_read_retry(chip, 0);
3690 			if (ret < 0)
3691 				break;
3692 			retry_mode = 0;
3693 		}
3694 
3695 		if (!readlen)
3696 			break;
3697 
3698 		/* For subsequent reads align to page boundary */
3699 		col = 0;
3700 		/* Increment page address */
3701 		realpage++;
3702 
3703 		page = realpage & chip->pagemask;
3704 		/* Check, if we cross a chip boundary */
3705 		if (!page) {
3706 			chipnr++;
3707 			nand_deselect_target(chip);
3708 			nand_select_target(chip, chipnr);
3709 		}
3710 	}
3711 	nand_deselect_target(chip);
3712 
3713 	ops->retlen = ops->len - (size_t) readlen;
3714 	if (oob)
3715 		ops->oobretlen = ops->ooblen - oobreadlen;
3716 
3717 	if (ret < 0)
3718 		return ret;
3719 
3720 	if (ecc_fail)
3721 		return -EBADMSG;
3722 
3723 	return max_bitflips;
3724 }
3725 
3726 /**
3727  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3728  * @chip: nand chip info structure
3729  * @page: page number to read
3730  */
3731 int nand_read_oob_std(struct nand_chip *chip, int page)
3732 {
3733 	struct mtd_info *mtd = nand_to_mtd(chip);
3734 
3735 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3736 }
3737 EXPORT_SYMBOL(nand_read_oob_std);
3738 
3739 /**
3740  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3741  *			    with syndromes
3742  * @chip: nand chip info structure
3743  * @page: page number to read
3744  */
3745 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3746 {
3747 	struct mtd_info *mtd = nand_to_mtd(chip);
3748 	int length = mtd->oobsize;
3749 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3750 	int eccsize = chip->ecc.size;
3751 	uint8_t *bufpoi = chip->oob_poi;
3752 	int i, toread, sndrnd = 0, pos, ret;
3753 
3754 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3755 	if (ret)
3756 		return ret;
3757 
3758 	for (i = 0; i < chip->ecc.steps; i++) {
3759 		if (sndrnd) {
3760 			int ret;
3761 
3762 			pos = eccsize + i * (eccsize + chunk);
3763 			if (mtd->writesize > 512)
3764 				ret = nand_change_read_column_op(chip, pos,
3765 								 NULL, 0,
3766 								 false);
3767 			else
3768 				ret = nand_read_page_op(chip, page, pos, NULL,
3769 							0);
3770 
3771 			if (ret)
3772 				return ret;
3773 		} else
3774 			sndrnd = 1;
3775 		toread = min_t(int, length, chunk);
3776 
3777 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3778 		if (ret)
3779 			return ret;
3780 
3781 		bufpoi += toread;
3782 		length -= toread;
3783 	}
3784 	if (length > 0) {
3785 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3786 		if (ret)
3787 			return ret;
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 /**
3794  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3795  * @chip: nand chip info structure
3796  * @page: page number to write
3797  */
3798 int nand_write_oob_std(struct nand_chip *chip, int page)
3799 {
3800 	struct mtd_info *mtd = nand_to_mtd(chip);
3801 
3802 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3803 				 mtd->oobsize);
3804 }
3805 EXPORT_SYMBOL(nand_write_oob_std);
3806 
3807 /**
3808  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3809  *			     with syndrome - only for large page flash
3810  * @chip: nand chip info structure
3811  * @page: page number to write
3812  */
3813 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3814 {
3815 	struct mtd_info *mtd = nand_to_mtd(chip);
3816 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3817 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3818 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3819 	const uint8_t *bufpoi = chip->oob_poi;
3820 
3821 	/*
3822 	 * data-ecc-data-ecc ... ecc-oob
3823 	 * or
3824 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3825 	 */
3826 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3827 		pos = steps * (eccsize + chunk);
3828 		steps = 0;
3829 	} else
3830 		pos = eccsize;
3831 
3832 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3833 	if (ret)
3834 		return ret;
3835 
3836 	for (i = 0; i < steps; i++) {
3837 		if (sndcmd) {
3838 			if (mtd->writesize <= 512) {
3839 				uint32_t fill = 0xFFFFFFFF;
3840 
3841 				len = eccsize;
3842 				while (len > 0) {
3843 					int num = min_t(int, len, 4);
3844 
3845 					ret = nand_write_data_op(chip, &fill,
3846 								 num, false);
3847 					if (ret)
3848 						return ret;
3849 
3850 					len -= num;
3851 				}
3852 			} else {
3853 				pos = eccsize + i * (eccsize + chunk);
3854 				ret = nand_change_write_column_op(chip, pos,
3855 								  NULL, 0,
3856 								  false);
3857 				if (ret)
3858 					return ret;
3859 			}
3860 		} else
3861 			sndcmd = 1;
3862 		len = min_t(int, length, chunk);
3863 
3864 		ret = nand_write_data_op(chip, bufpoi, len, false);
3865 		if (ret)
3866 			return ret;
3867 
3868 		bufpoi += len;
3869 		length -= len;
3870 	}
3871 	if (length > 0) {
3872 		ret = nand_write_data_op(chip, bufpoi, length, false);
3873 		if (ret)
3874 			return ret;
3875 	}
3876 
3877 	return nand_prog_page_end_op(chip);
3878 }
3879 
3880 /**
3881  * nand_do_read_oob - [INTERN] NAND read out-of-band
3882  * @chip: NAND chip object
3883  * @from: offset to read from
3884  * @ops: oob operations description structure
3885  *
3886  * NAND read out-of-band data from the spare area.
3887  */
3888 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3889 			    struct mtd_oob_ops *ops)
3890 {
3891 	struct mtd_info *mtd = nand_to_mtd(chip);
3892 	unsigned int max_bitflips = 0;
3893 	int page, realpage, chipnr;
3894 	struct mtd_ecc_stats stats;
3895 	int readlen = ops->ooblen;
3896 	int len;
3897 	uint8_t *buf = ops->oobbuf;
3898 	int ret = 0;
3899 
3900 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3901 			__func__, (unsigned long long)from, readlen);
3902 
3903 	/* Check if the region is secured */
3904 	if (nand_region_is_secured(chip, from, readlen))
3905 		return -EIO;
3906 
3907 	stats = mtd->ecc_stats;
3908 
3909 	len = mtd_oobavail(mtd, ops);
3910 
3911 	chipnr = (int)(from >> chip->chip_shift);
3912 	nand_select_target(chip, chipnr);
3913 
3914 	/* Shift to get page */
3915 	realpage = (int)(from >> chip->page_shift);
3916 	page = realpage & chip->pagemask;
3917 
3918 	while (1) {
3919 		if (ops->mode == MTD_OPS_RAW)
3920 			ret = chip->ecc.read_oob_raw(chip, page);
3921 		else
3922 			ret = chip->ecc.read_oob(chip, page);
3923 
3924 		if (ret < 0)
3925 			break;
3926 
3927 		len = min(len, readlen);
3928 		buf = nand_transfer_oob(chip, buf, ops, len);
3929 
3930 		nand_wait_readrdy(chip);
3931 
3932 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3933 
3934 		readlen -= len;
3935 		if (!readlen)
3936 			break;
3937 
3938 		/* Increment page address */
3939 		realpage++;
3940 
3941 		page = realpage & chip->pagemask;
3942 		/* Check, if we cross a chip boundary */
3943 		if (!page) {
3944 			chipnr++;
3945 			nand_deselect_target(chip);
3946 			nand_select_target(chip, chipnr);
3947 		}
3948 	}
3949 	nand_deselect_target(chip);
3950 
3951 	ops->oobretlen = ops->ooblen - readlen;
3952 
3953 	if (ret < 0)
3954 		return ret;
3955 
3956 	if (mtd->ecc_stats.failed - stats.failed)
3957 		return -EBADMSG;
3958 
3959 	return max_bitflips;
3960 }
3961 
3962 /**
3963  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3964  * @mtd: MTD device structure
3965  * @from: offset to read from
3966  * @ops: oob operation description structure
3967  *
3968  * NAND read data and/or out-of-band data.
3969  */
3970 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3971 			 struct mtd_oob_ops *ops)
3972 {
3973 	struct nand_chip *chip = mtd_to_nand(mtd);
3974 	struct mtd_ecc_stats old_stats;
3975 	int ret;
3976 
3977 	ops->retlen = 0;
3978 
3979 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3980 	    ops->mode != MTD_OPS_AUTO_OOB &&
3981 	    ops->mode != MTD_OPS_RAW)
3982 		return -ENOTSUPP;
3983 
3984 	nand_get_device(chip);
3985 
3986 	old_stats = mtd->ecc_stats;
3987 
3988 	if (!ops->datbuf)
3989 		ret = nand_do_read_oob(chip, from, ops);
3990 	else
3991 		ret = nand_do_read_ops(chip, from, ops);
3992 
3993 	if (ops->stats) {
3994 		ops->stats->uncorrectable_errors +=
3995 			mtd->ecc_stats.failed - old_stats.failed;
3996 		ops->stats->corrected_bitflips +=
3997 			mtd->ecc_stats.corrected - old_stats.corrected;
3998 	}
3999 
4000 	nand_release_device(chip);
4001 	return ret;
4002 }
4003 
4004 /**
4005  * nand_write_page_raw_notsupp - dummy raw page write function
4006  * @chip: nand chip info structure
4007  * @buf: data buffer
4008  * @oob_required: must write chip->oob_poi to OOB
4009  * @page: page number to write
4010  *
4011  * Returns -ENOTSUPP unconditionally.
4012  */
4013 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4014 				int oob_required, int page)
4015 {
4016 	return -ENOTSUPP;
4017 }
4018 
4019 /**
4020  * nand_write_page_raw - [INTERN] raw page write function
4021  * @chip: nand chip info structure
4022  * @buf: data buffer
4023  * @oob_required: must write chip->oob_poi to OOB
4024  * @page: page number to write
4025  *
4026  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4027  */
4028 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4029 			int oob_required, int page)
4030 {
4031 	struct mtd_info *mtd = nand_to_mtd(chip);
4032 	int ret;
4033 
4034 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4035 	if (ret)
4036 		return ret;
4037 
4038 	if (oob_required) {
4039 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4040 					 false);
4041 		if (ret)
4042 			return ret;
4043 	}
4044 
4045 	return nand_prog_page_end_op(chip);
4046 }
4047 EXPORT_SYMBOL(nand_write_page_raw);
4048 
4049 /**
4050  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4051  * @chip: NAND chip info structure
4052  * @buf: data buffer to write
4053  * @oob_required: must write chip->oob_poi to OOB
4054  * @page: page number to write
4055  *
4056  * This is a raw page write, ie. without any error detection/correction.
4057  * Monolithic means we are requesting all the relevant data (main plus
4058  * eventually OOB) to be sent over the bus and effectively programmed
4059  * into the NAND chip arrays in a single operation. This is an
4060  * alternative to nand_write_page_raw(), which first sends the main
4061  * data, then eventually send the OOB data by latching more data
4062  * cycles on the NAND bus, and finally sends the program command to
4063  * synchronyze the NAND chip cache.
4064  */
4065 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4066 				   int oob_required, int page)
4067 {
4068 	struct mtd_info *mtd = nand_to_mtd(chip);
4069 	unsigned int size = mtd->writesize;
4070 	u8 *write_buf = (u8 *)buf;
4071 
4072 	if (oob_required) {
4073 		size += mtd->oobsize;
4074 
4075 		if (buf != chip->data_buf) {
4076 			write_buf = nand_get_data_buf(chip);
4077 			memcpy(write_buf, buf, mtd->writesize);
4078 		}
4079 	}
4080 
4081 	return nand_prog_page_op(chip, page, 0, write_buf, size);
4082 }
4083 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4084 
4085 /**
4086  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4087  * @chip: nand chip info structure
4088  * @buf: data buffer
4089  * @oob_required: must write chip->oob_poi to OOB
4090  * @page: page number to write
4091  *
4092  * We need a special oob layout and handling even when ECC isn't checked.
4093  */
4094 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4095 					const uint8_t *buf, int oob_required,
4096 					int page)
4097 {
4098 	struct mtd_info *mtd = nand_to_mtd(chip);
4099 	int eccsize = chip->ecc.size;
4100 	int eccbytes = chip->ecc.bytes;
4101 	uint8_t *oob = chip->oob_poi;
4102 	int steps, size, ret;
4103 
4104 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4105 	if (ret)
4106 		return ret;
4107 
4108 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4109 		ret = nand_write_data_op(chip, buf, eccsize, false);
4110 		if (ret)
4111 			return ret;
4112 
4113 		buf += eccsize;
4114 
4115 		if (chip->ecc.prepad) {
4116 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4117 						 false);
4118 			if (ret)
4119 				return ret;
4120 
4121 			oob += chip->ecc.prepad;
4122 		}
4123 
4124 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4125 		if (ret)
4126 			return ret;
4127 
4128 		oob += eccbytes;
4129 
4130 		if (chip->ecc.postpad) {
4131 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4132 						 false);
4133 			if (ret)
4134 				return ret;
4135 
4136 			oob += chip->ecc.postpad;
4137 		}
4138 	}
4139 
4140 	size = mtd->oobsize - (oob - chip->oob_poi);
4141 	if (size) {
4142 		ret = nand_write_data_op(chip, oob, size, false);
4143 		if (ret)
4144 			return ret;
4145 	}
4146 
4147 	return nand_prog_page_end_op(chip);
4148 }
4149 /**
4150  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4151  * @chip: nand chip info structure
4152  * @buf: data buffer
4153  * @oob_required: must write chip->oob_poi to OOB
4154  * @page: page number to write
4155  */
4156 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4157 				 int oob_required, int page)
4158 {
4159 	struct mtd_info *mtd = nand_to_mtd(chip);
4160 	int i, eccsize = chip->ecc.size, ret;
4161 	int eccbytes = chip->ecc.bytes;
4162 	int eccsteps = chip->ecc.steps;
4163 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4164 	const uint8_t *p = buf;
4165 
4166 	/* Software ECC calculation */
4167 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4168 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4169 
4170 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4171 					 chip->ecc.total);
4172 	if (ret)
4173 		return ret;
4174 
4175 	return chip->ecc.write_page_raw(chip, buf, 1, page);
4176 }
4177 
4178 /**
4179  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4180  * @chip: nand chip info structure
4181  * @buf: data buffer
4182  * @oob_required: must write chip->oob_poi to OOB
4183  * @page: page number to write
4184  */
4185 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4186 				 int oob_required, int page)
4187 {
4188 	struct mtd_info *mtd = nand_to_mtd(chip);
4189 	int i, eccsize = chip->ecc.size, ret;
4190 	int eccbytes = chip->ecc.bytes;
4191 	int eccsteps = chip->ecc.steps;
4192 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4193 	const uint8_t *p = buf;
4194 
4195 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4196 	if (ret)
4197 		return ret;
4198 
4199 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4200 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4201 
4202 		ret = nand_write_data_op(chip, p, eccsize, false);
4203 		if (ret)
4204 			return ret;
4205 
4206 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4207 	}
4208 
4209 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4210 					 chip->ecc.total);
4211 	if (ret)
4212 		return ret;
4213 
4214 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4215 	if (ret)
4216 		return ret;
4217 
4218 	return nand_prog_page_end_op(chip);
4219 }
4220 
4221 
4222 /**
4223  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4224  * @chip:	nand chip info structure
4225  * @offset:	column address of subpage within the page
4226  * @data_len:	data length
4227  * @buf:	data buffer
4228  * @oob_required: must write chip->oob_poi to OOB
4229  * @page: page number to write
4230  */
4231 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4232 				    uint32_t data_len, const uint8_t *buf,
4233 				    int oob_required, int page)
4234 {
4235 	struct mtd_info *mtd = nand_to_mtd(chip);
4236 	uint8_t *oob_buf  = chip->oob_poi;
4237 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4238 	int ecc_size      = chip->ecc.size;
4239 	int ecc_bytes     = chip->ecc.bytes;
4240 	int ecc_steps     = chip->ecc.steps;
4241 	uint32_t start_step = offset / ecc_size;
4242 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4243 	int oob_bytes       = mtd->oobsize / ecc_steps;
4244 	int step, ret;
4245 
4246 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4247 	if (ret)
4248 		return ret;
4249 
4250 	for (step = 0; step < ecc_steps; step++) {
4251 		/* configure controller for WRITE access */
4252 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4253 
4254 		/* write data (untouched subpages already masked by 0xFF) */
4255 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4256 		if (ret)
4257 			return ret;
4258 
4259 		/* mask ECC of un-touched subpages by padding 0xFF */
4260 		if ((step < start_step) || (step > end_step))
4261 			memset(ecc_calc, 0xff, ecc_bytes);
4262 		else
4263 			chip->ecc.calculate(chip, buf, ecc_calc);
4264 
4265 		/* mask OOB of un-touched subpages by padding 0xFF */
4266 		/* if oob_required, preserve OOB metadata of written subpage */
4267 		if (!oob_required || (step < start_step) || (step > end_step))
4268 			memset(oob_buf, 0xff, oob_bytes);
4269 
4270 		buf += ecc_size;
4271 		ecc_calc += ecc_bytes;
4272 		oob_buf  += oob_bytes;
4273 	}
4274 
4275 	/* copy calculated ECC for whole page to chip->buffer->oob */
4276 	/* this include masked-value(0xFF) for unwritten subpages */
4277 	ecc_calc = chip->ecc.calc_buf;
4278 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4279 					 chip->ecc.total);
4280 	if (ret)
4281 		return ret;
4282 
4283 	/* write OOB buffer to NAND device */
4284 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4285 	if (ret)
4286 		return ret;
4287 
4288 	return nand_prog_page_end_op(chip);
4289 }
4290 
4291 
4292 /**
4293  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4294  * @chip: nand chip info structure
4295  * @buf: data buffer
4296  * @oob_required: must write chip->oob_poi to OOB
4297  * @page: page number to write
4298  *
4299  * The hw generator calculates the error syndrome automatically. Therefore we
4300  * need a special oob layout and handling.
4301  */
4302 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4303 				    int oob_required, int page)
4304 {
4305 	struct mtd_info *mtd = nand_to_mtd(chip);
4306 	int i, eccsize = chip->ecc.size;
4307 	int eccbytes = chip->ecc.bytes;
4308 	int eccsteps = chip->ecc.steps;
4309 	const uint8_t *p = buf;
4310 	uint8_t *oob = chip->oob_poi;
4311 	int ret;
4312 
4313 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4314 	if (ret)
4315 		return ret;
4316 
4317 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4318 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4319 
4320 		ret = nand_write_data_op(chip, p, eccsize, false);
4321 		if (ret)
4322 			return ret;
4323 
4324 		if (chip->ecc.prepad) {
4325 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4326 						 false);
4327 			if (ret)
4328 				return ret;
4329 
4330 			oob += chip->ecc.prepad;
4331 		}
4332 
4333 		chip->ecc.calculate(chip, p, oob);
4334 
4335 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4336 		if (ret)
4337 			return ret;
4338 
4339 		oob += eccbytes;
4340 
4341 		if (chip->ecc.postpad) {
4342 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4343 						 false);
4344 			if (ret)
4345 				return ret;
4346 
4347 			oob += chip->ecc.postpad;
4348 		}
4349 	}
4350 
4351 	/* Calculate remaining oob bytes */
4352 	i = mtd->oobsize - (oob - chip->oob_poi);
4353 	if (i) {
4354 		ret = nand_write_data_op(chip, oob, i, false);
4355 		if (ret)
4356 			return ret;
4357 	}
4358 
4359 	return nand_prog_page_end_op(chip);
4360 }
4361 
4362 /**
4363  * nand_write_page - write one page
4364  * @chip: NAND chip descriptor
4365  * @offset: address offset within the page
4366  * @data_len: length of actual data to be written
4367  * @buf: the data to write
4368  * @oob_required: must write chip->oob_poi to OOB
4369  * @page: page number to write
4370  * @raw: use _raw version of write_page
4371  */
4372 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4373 			   int data_len, const uint8_t *buf, int oob_required,
4374 			   int page, int raw)
4375 {
4376 	struct mtd_info *mtd = nand_to_mtd(chip);
4377 	int status, subpage;
4378 
4379 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4380 		chip->ecc.write_subpage)
4381 		subpage = offset || (data_len < mtd->writesize);
4382 	else
4383 		subpage = 0;
4384 
4385 	if (unlikely(raw))
4386 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4387 						  page);
4388 	else if (subpage)
4389 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4390 						 oob_required, page);
4391 	else
4392 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4393 
4394 	if (status < 0)
4395 		return status;
4396 
4397 	return 0;
4398 }
4399 
4400 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4401 
4402 /**
4403  * nand_do_write_ops - [INTERN] NAND write with ECC
4404  * @chip: NAND chip object
4405  * @to: offset to write to
4406  * @ops: oob operations description structure
4407  *
4408  * NAND write with ECC.
4409  */
4410 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4411 			     struct mtd_oob_ops *ops)
4412 {
4413 	struct mtd_info *mtd = nand_to_mtd(chip);
4414 	int chipnr, realpage, page, column;
4415 	uint32_t writelen = ops->len;
4416 
4417 	uint32_t oobwritelen = ops->ooblen;
4418 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4419 
4420 	uint8_t *oob = ops->oobbuf;
4421 	uint8_t *buf = ops->datbuf;
4422 	int ret;
4423 	int oob_required = oob ? 1 : 0;
4424 
4425 	ops->retlen = 0;
4426 	if (!writelen)
4427 		return 0;
4428 
4429 	/* Reject writes, which are not page aligned */
4430 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4431 		pr_notice("%s: attempt to write non page aligned data\n",
4432 			   __func__);
4433 		return -EINVAL;
4434 	}
4435 
4436 	/* Check if the region is secured */
4437 	if (nand_region_is_secured(chip, to, writelen))
4438 		return -EIO;
4439 
4440 	column = to & (mtd->writesize - 1);
4441 
4442 	chipnr = (int)(to >> chip->chip_shift);
4443 	nand_select_target(chip, chipnr);
4444 
4445 	/* Check, if it is write protected */
4446 	if (nand_check_wp(chip)) {
4447 		ret = -EIO;
4448 		goto err_out;
4449 	}
4450 
4451 	realpage = (int)(to >> chip->page_shift);
4452 	page = realpage & chip->pagemask;
4453 
4454 	/* Invalidate the page cache, when we write to the cached page */
4455 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4456 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4457 		chip->pagecache.page = -1;
4458 
4459 	/* Don't allow multipage oob writes with offset */
4460 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4461 		ret = -EINVAL;
4462 		goto err_out;
4463 	}
4464 
4465 	while (1) {
4466 		int bytes = mtd->writesize;
4467 		uint8_t *wbuf = buf;
4468 		int use_bounce_buf;
4469 		int part_pagewr = (column || writelen < mtd->writesize);
4470 
4471 		if (part_pagewr)
4472 			use_bounce_buf = 1;
4473 		else if (chip->options & NAND_USES_DMA)
4474 			use_bounce_buf = !virt_addr_valid(buf) ||
4475 					 !IS_ALIGNED((unsigned long)buf,
4476 						     chip->buf_align);
4477 		else
4478 			use_bounce_buf = 0;
4479 
4480 		/*
4481 		 * Copy the data from the initial buffer when doing partial page
4482 		 * writes or when a bounce buffer is required.
4483 		 */
4484 		if (use_bounce_buf) {
4485 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4486 					 __func__, buf);
4487 			if (part_pagewr)
4488 				bytes = min_t(int, bytes - column, writelen);
4489 			wbuf = nand_get_data_buf(chip);
4490 			memset(wbuf, 0xff, mtd->writesize);
4491 			memcpy(&wbuf[column], buf, bytes);
4492 		}
4493 
4494 		if (unlikely(oob)) {
4495 			size_t len = min(oobwritelen, oobmaxlen);
4496 			oob = nand_fill_oob(chip, oob, len, ops);
4497 			oobwritelen -= len;
4498 		} else {
4499 			/* We still need to erase leftover OOB data */
4500 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4501 		}
4502 
4503 		ret = nand_write_page(chip, column, bytes, wbuf,
4504 				      oob_required, page,
4505 				      (ops->mode == MTD_OPS_RAW));
4506 		if (ret)
4507 			break;
4508 
4509 		writelen -= bytes;
4510 		if (!writelen)
4511 			break;
4512 
4513 		column = 0;
4514 		buf += bytes;
4515 		realpage++;
4516 
4517 		page = realpage & chip->pagemask;
4518 		/* Check, if we cross a chip boundary */
4519 		if (!page) {
4520 			chipnr++;
4521 			nand_deselect_target(chip);
4522 			nand_select_target(chip, chipnr);
4523 		}
4524 	}
4525 
4526 	ops->retlen = ops->len - writelen;
4527 	if (unlikely(oob))
4528 		ops->oobretlen = ops->ooblen;
4529 
4530 err_out:
4531 	nand_deselect_target(chip);
4532 	return ret;
4533 }
4534 
4535 /**
4536  * panic_nand_write - [MTD Interface] NAND write with ECC
4537  * @mtd: MTD device structure
4538  * @to: offset to write to
4539  * @len: number of bytes to write
4540  * @retlen: pointer to variable to store the number of written bytes
4541  * @buf: the data to write
4542  *
4543  * NAND write with ECC. Used when performing writes in interrupt context, this
4544  * may for example be called by mtdoops when writing an oops while in panic.
4545  */
4546 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4547 			    size_t *retlen, const uint8_t *buf)
4548 {
4549 	struct nand_chip *chip = mtd_to_nand(mtd);
4550 	int chipnr = (int)(to >> chip->chip_shift);
4551 	struct mtd_oob_ops ops;
4552 	int ret;
4553 
4554 	nand_select_target(chip, chipnr);
4555 
4556 	/* Wait for the device to get ready */
4557 	panic_nand_wait(chip, 400);
4558 
4559 	memset(&ops, 0, sizeof(ops));
4560 	ops.len = len;
4561 	ops.datbuf = (uint8_t *)buf;
4562 	ops.mode = MTD_OPS_PLACE_OOB;
4563 
4564 	ret = nand_do_write_ops(chip, to, &ops);
4565 
4566 	*retlen = ops.retlen;
4567 	return ret;
4568 }
4569 
4570 /**
4571  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4572  * @mtd: MTD device structure
4573  * @to: offset to write to
4574  * @ops: oob operation description structure
4575  */
4576 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4577 			  struct mtd_oob_ops *ops)
4578 {
4579 	struct nand_chip *chip = mtd_to_nand(mtd);
4580 	int ret = 0;
4581 
4582 	ops->retlen = 0;
4583 
4584 	nand_get_device(chip);
4585 
4586 	switch (ops->mode) {
4587 	case MTD_OPS_PLACE_OOB:
4588 	case MTD_OPS_AUTO_OOB:
4589 	case MTD_OPS_RAW:
4590 		break;
4591 
4592 	default:
4593 		goto out;
4594 	}
4595 
4596 	if (!ops->datbuf)
4597 		ret = nand_do_write_oob(chip, to, ops);
4598 	else
4599 		ret = nand_do_write_ops(chip, to, ops);
4600 
4601 out:
4602 	nand_release_device(chip);
4603 	return ret;
4604 }
4605 
4606 /**
4607  * nand_erase - [MTD Interface] erase block(s)
4608  * @mtd: MTD device structure
4609  * @instr: erase instruction
4610  *
4611  * Erase one ore more blocks.
4612  */
4613 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4614 {
4615 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4616 }
4617 
4618 /**
4619  * nand_erase_nand - [INTERN] erase block(s)
4620  * @chip: NAND chip object
4621  * @instr: erase instruction
4622  * @allowbbt: allow erasing the bbt area
4623  *
4624  * Erase one ore more blocks.
4625  */
4626 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4627 		    int allowbbt)
4628 {
4629 	int page, pages_per_block, ret, chipnr;
4630 	loff_t len;
4631 
4632 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4633 			__func__, (unsigned long long)instr->addr,
4634 			(unsigned long long)instr->len);
4635 
4636 	if (check_offs_len(chip, instr->addr, instr->len))
4637 		return -EINVAL;
4638 
4639 	/* Check if the region is secured */
4640 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4641 		return -EIO;
4642 
4643 	/* Grab the lock and see if the device is available */
4644 	nand_get_device(chip);
4645 
4646 	/* Shift to get first page */
4647 	page = (int)(instr->addr >> chip->page_shift);
4648 	chipnr = (int)(instr->addr >> chip->chip_shift);
4649 
4650 	/* Calculate pages in each block */
4651 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4652 
4653 	/* Select the NAND device */
4654 	nand_select_target(chip, chipnr);
4655 
4656 	/* Check, if it is write protected */
4657 	if (nand_check_wp(chip)) {
4658 		pr_debug("%s: device is write protected!\n",
4659 				__func__);
4660 		ret = -EIO;
4661 		goto erase_exit;
4662 	}
4663 
4664 	/* Loop through the pages */
4665 	len = instr->len;
4666 
4667 	while (len) {
4668 		loff_t ofs = (loff_t)page << chip->page_shift;
4669 
4670 		/* Check if we have a bad block, we do not erase bad blocks! */
4671 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4672 					chip->page_shift, allowbbt)) {
4673 			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4674 				    __func__, (unsigned long long)ofs);
4675 			ret = -EIO;
4676 			goto erase_exit;
4677 		}
4678 
4679 		/*
4680 		 * Invalidate the page cache, if we erase the block which
4681 		 * contains the current cached page.
4682 		 */
4683 		if (page <= chip->pagecache.page && chip->pagecache.page <
4684 		    (page + pages_per_block))
4685 			chip->pagecache.page = -1;
4686 
4687 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4688 				    (chip->phys_erase_shift - chip->page_shift));
4689 		if (ret) {
4690 			pr_debug("%s: failed erase, page 0x%08x\n",
4691 					__func__, page);
4692 			instr->fail_addr = ofs;
4693 			goto erase_exit;
4694 		}
4695 
4696 		/* Increment page address and decrement length */
4697 		len -= (1ULL << chip->phys_erase_shift);
4698 		page += pages_per_block;
4699 
4700 		/* Check, if we cross a chip boundary */
4701 		if (len && !(page & chip->pagemask)) {
4702 			chipnr++;
4703 			nand_deselect_target(chip);
4704 			nand_select_target(chip, chipnr);
4705 		}
4706 	}
4707 
4708 	ret = 0;
4709 erase_exit:
4710 
4711 	/* Deselect and wake up anyone waiting on the device */
4712 	nand_deselect_target(chip);
4713 	nand_release_device(chip);
4714 
4715 	/* Return more or less happy */
4716 	return ret;
4717 }
4718 
4719 /**
4720  * nand_sync - [MTD Interface] sync
4721  * @mtd: MTD device structure
4722  *
4723  * Sync is actually a wait for chip ready function.
4724  */
4725 static void nand_sync(struct mtd_info *mtd)
4726 {
4727 	struct nand_chip *chip = mtd_to_nand(mtd);
4728 
4729 	pr_debug("%s: called\n", __func__);
4730 
4731 	/* Grab the lock and see if the device is available */
4732 	nand_get_device(chip);
4733 	/* Release it and go back */
4734 	nand_release_device(chip);
4735 }
4736 
4737 /**
4738  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4739  * @mtd: MTD device structure
4740  * @offs: offset relative to mtd start
4741  */
4742 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4743 {
4744 	struct nand_chip *chip = mtd_to_nand(mtd);
4745 	int chipnr = (int)(offs >> chip->chip_shift);
4746 	int ret;
4747 
4748 	/* Select the NAND device */
4749 	nand_get_device(chip);
4750 
4751 	nand_select_target(chip, chipnr);
4752 
4753 	ret = nand_block_checkbad(chip, offs, 0);
4754 
4755 	nand_deselect_target(chip);
4756 	nand_release_device(chip);
4757 
4758 	return ret;
4759 }
4760 
4761 /**
4762  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4763  * @mtd: MTD device structure
4764  * @ofs: offset relative to mtd start
4765  */
4766 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4767 {
4768 	int ret;
4769 
4770 	ret = nand_block_isbad(mtd, ofs);
4771 	if (ret) {
4772 		/* If it was bad already, return success and do nothing */
4773 		if (ret > 0)
4774 			return 0;
4775 		return ret;
4776 	}
4777 
4778 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4779 }
4780 
4781 /**
4782  * nand_suspend - [MTD Interface] Suspend the NAND flash
4783  * @mtd: MTD device structure
4784  *
4785  * Returns 0 for success or negative error code otherwise.
4786  */
4787 static int nand_suspend(struct mtd_info *mtd)
4788 {
4789 	struct nand_chip *chip = mtd_to_nand(mtd);
4790 	int ret = 0;
4791 
4792 	mutex_lock(&chip->lock);
4793 	if (chip->ops.suspend)
4794 		ret = chip->ops.suspend(chip);
4795 	if (!ret)
4796 		chip->suspended = 1;
4797 	mutex_unlock(&chip->lock);
4798 
4799 	return ret;
4800 }
4801 
4802 /**
4803  * nand_resume - [MTD Interface] Resume the NAND flash
4804  * @mtd: MTD device structure
4805  */
4806 static void nand_resume(struct mtd_info *mtd)
4807 {
4808 	struct nand_chip *chip = mtd_to_nand(mtd);
4809 
4810 	mutex_lock(&chip->lock);
4811 	if (chip->suspended) {
4812 		if (chip->ops.resume)
4813 			chip->ops.resume(chip);
4814 		chip->suspended = 0;
4815 	} else {
4816 		pr_err("%s called for a chip which is not in suspended state\n",
4817 			__func__);
4818 	}
4819 	mutex_unlock(&chip->lock);
4820 
4821 	wake_up_all(&chip->resume_wq);
4822 }
4823 
4824 /**
4825  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4826  *                 prevent further operations
4827  * @mtd: MTD device structure
4828  */
4829 static void nand_shutdown(struct mtd_info *mtd)
4830 {
4831 	nand_suspend(mtd);
4832 }
4833 
4834 /**
4835  * nand_lock - [MTD Interface] Lock the NAND flash
4836  * @mtd: MTD device structure
4837  * @ofs: offset byte address
4838  * @len: number of bytes to lock (must be a multiple of block/page size)
4839  */
4840 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4841 {
4842 	struct nand_chip *chip = mtd_to_nand(mtd);
4843 
4844 	if (!chip->ops.lock_area)
4845 		return -ENOTSUPP;
4846 
4847 	return chip->ops.lock_area(chip, ofs, len);
4848 }
4849 
4850 /**
4851  * nand_unlock - [MTD Interface] Unlock the NAND flash
4852  * @mtd: MTD device structure
4853  * @ofs: offset byte address
4854  * @len: number of bytes to unlock (must be a multiple of block/page size)
4855  */
4856 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4857 {
4858 	struct nand_chip *chip = mtd_to_nand(mtd);
4859 
4860 	if (!chip->ops.unlock_area)
4861 		return -ENOTSUPP;
4862 
4863 	return chip->ops.unlock_area(chip, ofs, len);
4864 }
4865 
4866 /* Set default functions */
4867 static void nand_set_defaults(struct nand_chip *chip)
4868 {
4869 	/* If no controller is provided, use the dummy, legacy one. */
4870 	if (!chip->controller) {
4871 		chip->controller = &chip->legacy.dummy_controller;
4872 		nand_controller_init(chip->controller);
4873 	}
4874 
4875 	nand_legacy_set_defaults(chip);
4876 
4877 	if (!chip->buf_align)
4878 		chip->buf_align = 1;
4879 }
4880 
4881 /* Sanitize ONFI strings so we can safely print them */
4882 void sanitize_string(uint8_t *s, size_t len)
4883 {
4884 	ssize_t i;
4885 
4886 	/* Null terminate */
4887 	s[len - 1] = 0;
4888 
4889 	/* Remove non printable chars */
4890 	for (i = 0; i < len - 1; i++) {
4891 		if (s[i] < ' ' || s[i] > 127)
4892 			s[i] = '?';
4893 	}
4894 
4895 	/* Remove trailing spaces */
4896 	strim(s);
4897 }
4898 
4899 /*
4900  * nand_id_has_period - Check if an ID string has a given wraparound period
4901  * @id_data: the ID string
4902  * @arrlen: the length of the @id_data array
4903  * @period: the period of repitition
4904  *
4905  * Check if an ID string is repeated within a given sequence of bytes at
4906  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4907  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4908  * if the repetition has a period of @period; otherwise, returns zero.
4909  */
4910 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4911 {
4912 	int i, j;
4913 	for (i = 0; i < period; i++)
4914 		for (j = i + period; j < arrlen; j += period)
4915 			if (id_data[i] != id_data[j])
4916 				return 0;
4917 	return 1;
4918 }
4919 
4920 /*
4921  * nand_id_len - Get the length of an ID string returned by CMD_READID
4922  * @id_data: the ID string
4923  * @arrlen: the length of the @id_data array
4924 
4925  * Returns the length of the ID string, according to known wraparound/trailing
4926  * zero patterns. If no pattern exists, returns the length of the array.
4927  */
4928 static int nand_id_len(u8 *id_data, int arrlen)
4929 {
4930 	int last_nonzero, period;
4931 
4932 	/* Find last non-zero byte */
4933 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4934 		if (id_data[last_nonzero])
4935 			break;
4936 
4937 	/* All zeros */
4938 	if (last_nonzero < 0)
4939 		return 0;
4940 
4941 	/* Calculate wraparound period */
4942 	for (period = 1; period < arrlen; period++)
4943 		if (nand_id_has_period(id_data, arrlen, period))
4944 			break;
4945 
4946 	/* There's a repeated pattern */
4947 	if (period < arrlen)
4948 		return period;
4949 
4950 	/* There are trailing zeros */
4951 	if (last_nonzero < arrlen - 1)
4952 		return last_nonzero + 1;
4953 
4954 	/* No pattern detected */
4955 	return arrlen;
4956 }
4957 
4958 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4959 static int nand_get_bits_per_cell(u8 cellinfo)
4960 {
4961 	int bits;
4962 
4963 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4964 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4965 	return bits + 1;
4966 }
4967 
4968 /*
4969  * Many new NAND share similar device ID codes, which represent the size of the
4970  * chip. The rest of the parameters must be decoded according to generic or
4971  * manufacturer-specific "extended ID" decoding patterns.
4972  */
4973 void nand_decode_ext_id(struct nand_chip *chip)
4974 {
4975 	struct nand_memory_organization *memorg;
4976 	struct mtd_info *mtd = nand_to_mtd(chip);
4977 	int extid;
4978 	u8 *id_data = chip->id.data;
4979 
4980 	memorg = nanddev_get_memorg(&chip->base);
4981 
4982 	/* The 3rd id byte holds MLC / multichip data */
4983 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4984 	/* The 4th id byte is the important one */
4985 	extid = id_data[3];
4986 
4987 	/* Calc pagesize */
4988 	memorg->pagesize = 1024 << (extid & 0x03);
4989 	mtd->writesize = memorg->pagesize;
4990 	extid >>= 2;
4991 	/* Calc oobsize */
4992 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4993 	mtd->oobsize = memorg->oobsize;
4994 	extid >>= 2;
4995 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4996 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4997 				       memorg->pagesize;
4998 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4999 	extid >>= 2;
5000 	/* Get buswidth information */
5001 	if (extid & 0x1)
5002 		chip->options |= NAND_BUSWIDTH_16;
5003 }
5004 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5005 
5006 /*
5007  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5008  * decodes a matching ID table entry and assigns the MTD size parameters for
5009  * the chip.
5010  */
5011 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5012 {
5013 	struct mtd_info *mtd = nand_to_mtd(chip);
5014 	struct nand_memory_organization *memorg;
5015 
5016 	memorg = nanddev_get_memorg(&chip->base);
5017 
5018 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5019 	mtd->erasesize = type->erasesize;
5020 	memorg->pagesize = type->pagesize;
5021 	mtd->writesize = memorg->pagesize;
5022 	memorg->oobsize = memorg->pagesize / 32;
5023 	mtd->oobsize = memorg->oobsize;
5024 
5025 	/* All legacy ID NAND are small-page, SLC */
5026 	memorg->bits_per_cell = 1;
5027 }
5028 
5029 /*
5030  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5031  * heuristic patterns using various detected parameters (e.g., manufacturer,
5032  * page size, cell-type information).
5033  */
5034 static void nand_decode_bbm_options(struct nand_chip *chip)
5035 {
5036 	struct mtd_info *mtd = nand_to_mtd(chip);
5037 
5038 	/* Set the bad block position */
5039 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5040 		chip->badblockpos = NAND_BBM_POS_LARGE;
5041 	else
5042 		chip->badblockpos = NAND_BBM_POS_SMALL;
5043 }
5044 
5045 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5046 {
5047 	return type->id_len;
5048 }
5049 
5050 static bool find_full_id_nand(struct nand_chip *chip,
5051 			      struct nand_flash_dev *type)
5052 {
5053 	struct nand_device *base = &chip->base;
5054 	struct nand_ecc_props requirements;
5055 	struct mtd_info *mtd = nand_to_mtd(chip);
5056 	struct nand_memory_organization *memorg;
5057 	u8 *id_data = chip->id.data;
5058 
5059 	memorg = nanddev_get_memorg(&chip->base);
5060 
5061 	if (!strncmp(type->id, id_data, type->id_len)) {
5062 		memorg->pagesize = type->pagesize;
5063 		mtd->writesize = memorg->pagesize;
5064 		memorg->pages_per_eraseblock = type->erasesize /
5065 					       type->pagesize;
5066 		mtd->erasesize = type->erasesize;
5067 		memorg->oobsize = type->oobsize;
5068 		mtd->oobsize = memorg->oobsize;
5069 
5070 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5071 		memorg->eraseblocks_per_lun =
5072 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5073 					   memorg->pagesize *
5074 					   memorg->pages_per_eraseblock);
5075 		chip->options |= type->options;
5076 		requirements.strength = NAND_ECC_STRENGTH(type);
5077 		requirements.step_size = NAND_ECC_STEP(type);
5078 		nanddev_set_ecc_requirements(base, &requirements);
5079 
5080 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5081 		if (!chip->parameters.model)
5082 			return false;
5083 
5084 		return true;
5085 	}
5086 	return false;
5087 }
5088 
5089 /*
5090  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5091  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5092  * table.
5093  */
5094 static void nand_manufacturer_detect(struct nand_chip *chip)
5095 {
5096 	/*
5097 	 * Try manufacturer detection if available and use
5098 	 * nand_decode_ext_id() otherwise.
5099 	 */
5100 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5101 	    chip->manufacturer.desc->ops->detect) {
5102 		struct nand_memory_organization *memorg;
5103 
5104 		memorg = nanddev_get_memorg(&chip->base);
5105 
5106 		/* The 3rd id byte holds MLC / multichip data */
5107 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5108 		chip->manufacturer.desc->ops->detect(chip);
5109 	} else {
5110 		nand_decode_ext_id(chip);
5111 	}
5112 }
5113 
5114 /*
5115  * Manufacturer initialization. This function is called for all NANDs including
5116  * ONFI and JEDEC compliant ones.
5117  * Manufacturer drivers should put all their specific initialization code in
5118  * their ->init() hook.
5119  */
5120 static int nand_manufacturer_init(struct nand_chip *chip)
5121 {
5122 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5123 	    !chip->manufacturer.desc->ops->init)
5124 		return 0;
5125 
5126 	return chip->manufacturer.desc->ops->init(chip);
5127 }
5128 
5129 /*
5130  * Manufacturer cleanup. This function is called for all NANDs including
5131  * ONFI and JEDEC compliant ones.
5132  * Manufacturer drivers should put all their specific cleanup code in their
5133  * ->cleanup() hook.
5134  */
5135 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5136 {
5137 	/* Release manufacturer private data */
5138 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5139 	    chip->manufacturer.desc->ops->cleanup)
5140 		chip->manufacturer.desc->ops->cleanup(chip);
5141 }
5142 
5143 static const char *
5144 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5145 {
5146 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5147 }
5148 
5149 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5150 {
5151 	/* Use an arbitrary size for the check */
5152 	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5153 		chip->controller->supported_op.data_only_read = 1;
5154 }
5155 
5156 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5157 {
5158 	/* The supported_op fields should not be set by individual drivers */
5159 	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5160 
5161 	if (!nand_has_exec_op(chip))
5162 		return;
5163 
5164 	rawnand_check_data_only_read_support(chip);
5165 }
5166 
5167 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5168 {
5169 	struct mtd_info *mtd = nand_to_mtd(chip);
5170 
5171 	if (!chip->parameters.supports_read_cache)
5172 		return;
5173 
5174 	if (chip->read_retries)
5175 		return;
5176 
5177 	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5178 					    mtd->writesize, true))
5179 		chip->controller->supported_op.cont_read = 1;
5180 }
5181 
5182 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5183 {
5184 	/* The supported_op fields should not be set by individual drivers */
5185 	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5186 
5187 	/*
5188 	 * Too many devices do not support sequential cached reads with on-die
5189 	 * ECC correction enabled, so in this case refuse to perform the
5190 	 * automation.
5191 	 */
5192 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5193 		return;
5194 
5195 	if (!nand_has_exec_op(chip))
5196 		return;
5197 
5198 	rawnand_check_cont_read_support(chip);
5199 }
5200 
5201 /*
5202  * Get the flash and manufacturer id and lookup if the type is supported.
5203  */
5204 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5205 {
5206 	const struct nand_manufacturer_desc *manufacturer_desc;
5207 	struct mtd_info *mtd = nand_to_mtd(chip);
5208 	struct nand_memory_organization *memorg;
5209 	int busw, ret;
5210 	u8 *id_data = chip->id.data;
5211 	u8 maf_id, dev_id;
5212 	u64 targetsize;
5213 
5214 	/*
5215 	 * Let's start by initializing memorg fields that might be left
5216 	 * unassigned by the ID-based detection logic.
5217 	 */
5218 	memorg = nanddev_get_memorg(&chip->base);
5219 	memorg->planes_per_lun = 1;
5220 	memorg->luns_per_target = 1;
5221 
5222 	/*
5223 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5224 	 * after power-up.
5225 	 */
5226 	ret = nand_reset(chip, 0);
5227 	if (ret)
5228 		return ret;
5229 
5230 	/* Select the device */
5231 	nand_select_target(chip, 0);
5232 
5233 	rawnand_early_check_supported_ops(chip);
5234 
5235 	/* Send the command for reading device ID */
5236 	ret = nand_readid_op(chip, 0, id_data, 2);
5237 	if (ret)
5238 		return ret;
5239 
5240 	/* Read manufacturer and device IDs */
5241 	maf_id = id_data[0];
5242 	dev_id = id_data[1];
5243 
5244 	/*
5245 	 * Try again to make sure, as some systems the bus-hold or other
5246 	 * interface concerns can cause random data which looks like a
5247 	 * possibly credible NAND flash to appear. If the two results do
5248 	 * not match, ignore the device completely.
5249 	 */
5250 
5251 	/* Read entire ID string */
5252 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5253 	if (ret)
5254 		return ret;
5255 
5256 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5257 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5258 			maf_id, dev_id, id_data[0], id_data[1]);
5259 		return -ENODEV;
5260 	}
5261 
5262 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5263 
5264 	/* Try to identify manufacturer */
5265 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5266 	chip->manufacturer.desc = manufacturer_desc;
5267 
5268 	if (!type)
5269 		type = nand_flash_ids;
5270 
5271 	/*
5272 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5273 	 * override it.
5274 	 * This is required to make sure initial NAND bus width set by the
5275 	 * NAND controller driver is coherent with the real NAND bus width
5276 	 * (extracted by auto-detection code).
5277 	 */
5278 	busw = chip->options & NAND_BUSWIDTH_16;
5279 
5280 	/*
5281 	 * The flag is only set (never cleared), reset it to its default value
5282 	 * before starting auto-detection.
5283 	 */
5284 	chip->options &= ~NAND_BUSWIDTH_16;
5285 
5286 	for (; type->name != NULL; type++) {
5287 		if (is_full_id_nand(type)) {
5288 			if (find_full_id_nand(chip, type))
5289 				goto ident_done;
5290 		} else if (dev_id == type->dev_id) {
5291 			break;
5292 		}
5293 	}
5294 
5295 	if (!type->name || !type->pagesize) {
5296 		/* Check if the chip is ONFI compliant */
5297 		ret = nand_onfi_detect(chip);
5298 		if (ret < 0)
5299 			return ret;
5300 		else if (ret)
5301 			goto ident_done;
5302 
5303 		/* Check if the chip is JEDEC compliant */
5304 		ret = nand_jedec_detect(chip);
5305 		if (ret < 0)
5306 			return ret;
5307 		else if (ret)
5308 			goto ident_done;
5309 	}
5310 
5311 	if (!type->name)
5312 		return -ENODEV;
5313 
5314 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5315 	if (!chip->parameters.model)
5316 		return -ENOMEM;
5317 
5318 	if (!type->pagesize)
5319 		nand_manufacturer_detect(chip);
5320 	else
5321 		nand_decode_id(chip, type);
5322 
5323 	/* Get chip options */
5324 	chip->options |= type->options;
5325 
5326 	memorg->eraseblocks_per_lun =
5327 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5328 					   memorg->pagesize *
5329 					   memorg->pages_per_eraseblock);
5330 
5331 ident_done:
5332 	if (!mtd->name)
5333 		mtd->name = chip->parameters.model;
5334 
5335 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5336 		WARN_ON(busw & NAND_BUSWIDTH_16);
5337 		nand_set_defaults(chip);
5338 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5339 		/*
5340 		 * Check, if buswidth is correct. Hardware drivers should set
5341 		 * chip correct!
5342 		 */
5343 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5344 			maf_id, dev_id);
5345 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5346 			mtd->name);
5347 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5348 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5349 		ret = -EINVAL;
5350 
5351 		goto free_detect_allocation;
5352 	}
5353 
5354 	nand_decode_bbm_options(chip);
5355 
5356 	/* Calculate the address shift from the page size */
5357 	chip->page_shift = ffs(mtd->writesize) - 1;
5358 	/* Convert chipsize to number of pages per chip -1 */
5359 	targetsize = nanddev_target_size(&chip->base);
5360 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5361 
5362 	chip->bbt_erase_shift = chip->phys_erase_shift =
5363 		ffs(mtd->erasesize) - 1;
5364 	if (targetsize & 0xffffffff)
5365 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5366 	else {
5367 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5368 		chip->chip_shift += 32 - 1;
5369 	}
5370 
5371 	if (chip->chip_shift - chip->page_shift > 16)
5372 		chip->options |= NAND_ROW_ADDR_3;
5373 
5374 	chip->badblockbits = 8;
5375 
5376 	nand_legacy_adjust_cmdfunc(chip);
5377 
5378 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5379 		maf_id, dev_id);
5380 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5381 		chip->parameters.model);
5382 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5383 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5384 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5385 	return 0;
5386 
5387 free_detect_allocation:
5388 	kfree(chip->parameters.model);
5389 
5390 	return ret;
5391 }
5392 
5393 static enum nand_ecc_engine_type
5394 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5395 {
5396 	enum nand_ecc_legacy_mode {
5397 		NAND_ECC_INVALID,
5398 		NAND_ECC_NONE,
5399 		NAND_ECC_SOFT,
5400 		NAND_ECC_SOFT_BCH,
5401 		NAND_ECC_HW,
5402 		NAND_ECC_HW_SYNDROME,
5403 		NAND_ECC_ON_DIE,
5404 	};
5405 	const char * const nand_ecc_legacy_modes[] = {
5406 		[NAND_ECC_NONE]		= "none",
5407 		[NAND_ECC_SOFT]		= "soft",
5408 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5409 		[NAND_ECC_HW]		= "hw",
5410 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5411 		[NAND_ECC_ON_DIE]	= "on-die",
5412 	};
5413 	enum nand_ecc_legacy_mode eng_type;
5414 	const char *pm;
5415 	int err;
5416 
5417 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5418 	if (err)
5419 		return NAND_ECC_ENGINE_TYPE_INVALID;
5420 
5421 	for (eng_type = NAND_ECC_NONE;
5422 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5423 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5424 			switch (eng_type) {
5425 			case NAND_ECC_NONE:
5426 				return NAND_ECC_ENGINE_TYPE_NONE;
5427 			case NAND_ECC_SOFT:
5428 			case NAND_ECC_SOFT_BCH:
5429 				return NAND_ECC_ENGINE_TYPE_SOFT;
5430 			case NAND_ECC_HW:
5431 			case NAND_ECC_HW_SYNDROME:
5432 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5433 			case NAND_ECC_ON_DIE:
5434 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5435 			default:
5436 				break;
5437 			}
5438 		}
5439 	}
5440 
5441 	return NAND_ECC_ENGINE_TYPE_INVALID;
5442 }
5443 
5444 static enum nand_ecc_placement
5445 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5446 {
5447 	const char *pm;
5448 	int err;
5449 
5450 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5451 	if (!err) {
5452 		if (!strcasecmp(pm, "hw_syndrome"))
5453 			return NAND_ECC_PLACEMENT_INTERLEAVED;
5454 	}
5455 
5456 	return NAND_ECC_PLACEMENT_UNKNOWN;
5457 }
5458 
5459 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5460 {
5461 	const char *pm;
5462 	int err;
5463 
5464 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5465 	if (!err) {
5466 		if (!strcasecmp(pm, "soft"))
5467 			return NAND_ECC_ALGO_HAMMING;
5468 		else if (!strcasecmp(pm, "soft_bch"))
5469 			return NAND_ECC_ALGO_BCH;
5470 	}
5471 
5472 	return NAND_ECC_ALGO_UNKNOWN;
5473 }
5474 
5475 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5476 {
5477 	struct device_node *dn = nand_get_flash_node(chip);
5478 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5479 
5480 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5481 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5482 
5483 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5484 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5485 
5486 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5487 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5488 }
5489 
5490 static int of_get_nand_bus_width(struct nand_chip *chip)
5491 {
5492 	struct device_node *dn = nand_get_flash_node(chip);
5493 	u32 val;
5494 	int ret;
5495 
5496 	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5497 	if (ret == -EINVAL)
5498 		/* Buswidth defaults to 8 if the property does not exist .*/
5499 		return 0;
5500 	else if (ret)
5501 		return ret;
5502 
5503 	if (val == 16)
5504 		chip->options |= NAND_BUSWIDTH_16;
5505 	else if (val != 8)
5506 		return -EINVAL;
5507 	return 0;
5508 }
5509 
5510 static int of_get_nand_secure_regions(struct nand_chip *chip)
5511 {
5512 	struct device_node *dn = nand_get_flash_node(chip);
5513 	struct property *prop;
5514 	int nr_elem, i, j;
5515 
5516 	/* Only proceed if the "secure-regions" property is present in DT */
5517 	prop = of_find_property(dn, "secure-regions", NULL);
5518 	if (!prop)
5519 		return 0;
5520 
5521 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5522 	if (nr_elem <= 0)
5523 		return nr_elem;
5524 
5525 	chip->nr_secure_regions = nr_elem / 2;
5526 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5527 				       GFP_KERNEL);
5528 	if (!chip->secure_regions)
5529 		return -ENOMEM;
5530 
5531 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5532 		of_property_read_u64_index(dn, "secure-regions", j,
5533 					   &chip->secure_regions[i].offset);
5534 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5535 					   &chip->secure_regions[i].size);
5536 	}
5537 
5538 	return 0;
5539 }
5540 
5541 /**
5542  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5543  * @dev: Device that will be parsed. Also used for managed allocations.
5544  * @cs_array: Array of GPIO desc pointers allocated on success
5545  * @ncs_array: Number of entries in @cs_array updated on success.
5546  * @return 0 on success, an error otherwise.
5547  */
5548 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5549 			     unsigned int *ncs_array)
5550 {
5551 	struct gpio_desc **descs;
5552 	int ndescs, i;
5553 
5554 	ndescs = gpiod_count(dev, "cs");
5555 	if (ndescs < 0) {
5556 		dev_dbg(dev, "No valid cs-gpios property\n");
5557 		return 0;
5558 	}
5559 
5560 	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5561 	if (!descs)
5562 		return -ENOMEM;
5563 
5564 	for (i = 0; i < ndescs; i++) {
5565 		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5566 						    GPIOD_OUT_HIGH);
5567 		if (IS_ERR(descs[i]))
5568 			return PTR_ERR(descs[i]);
5569 	}
5570 
5571 	*ncs_array = ndescs;
5572 	*cs_array = descs;
5573 
5574 	return 0;
5575 }
5576 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5577 
5578 static int rawnand_dt_init(struct nand_chip *chip)
5579 {
5580 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5581 	struct device_node *dn = nand_get_flash_node(chip);
5582 	int ret;
5583 
5584 	if (!dn)
5585 		return 0;
5586 
5587 	ret = of_get_nand_bus_width(chip);
5588 	if (ret)
5589 		return ret;
5590 
5591 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5592 		chip->options |= NAND_IS_BOOT_MEDIUM;
5593 
5594 	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5595 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5596 
5597 	of_get_nand_ecc_user_config(nand);
5598 	of_get_nand_ecc_legacy_user_config(chip);
5599 
5600 	/*
5601 	 * If neither the user nor the NAND controller have requested a specific
5602 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5603 	 */
5604 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5605 
5606 	/*
5607 	 * Use the user requested engine type, unless there is none, in this
5608 	 * case default to the NAND controller choice, otherwise fallback to
5609 	 * the raw NAND default one.
5610 	 */
5611 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5612 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5613 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5614 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5615 
5616 	chip->ecc.placement = nand->ecc.user_conf.placement;
5617 	chip->ecc.algo = nand->ecc.user_conf.algo;
5618 	chip->ecc.strength = nand->ecc.user_conf.strength;
5619 	chip->ecc.size = nand->ecc.user_conf.step_size;
5620 
5621 	return 0;
5622 }
5623 
5624 /**
5625  * nand_scan_ident - Scan for the NAND device
5626  * @chip: NAND chip object
5627  * @maxchips: number of chips to scan for
5628  * @table: alternative NAND ID table
5629  *
5630  * This is the first phase of the normal nand_scan() function. It reads the
5631  * flash ID and sets up MTD fields accordingly.
5632  *
5633  * This helper used to be called directly from controller drivers that needed
5634  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5635  * prevented dynamic allocations during this phase which was unconvenient and
5636  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5637  */
5638 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5639 			   struct nand_flash_dev *table)
5640 {
5641 	struct mtd_info *mtd = nand_to_mtd(chip);
5642 	struct nand_memory_organization *memorg;
5643 	int nand_maf_id, nand_dev_id;
5644 	unsigned int i;
5645 	int ret;
5646 
5647 	memorg = nanddev_get_memorg(&chip->base);
5648 
5649 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5650 	chip->cur_cs = -1;
5651 
5652 	mutex_init(&chip->lock);
5653 	init_waitqueue_head(&chip->resume_wq);
5654 
5655 	/* Enforce the right timings for reset/detection */
5656 	chip->current_interface_config = nand_get_reset_interface_config();
5657 
5658 	ret = rawnand_dt_init(chip);
5659 	if (ret)
5660 		return ret;
5661 
5662 	if (!mtd->name && mtd->dev.parent)
5663 		mtd->name = dev_name(mtd->dev.parent);
5664 
5665 	/* Set the default functions */
5666 	nand_set_defaults(chip);
5667 
5668 	ret = nand_legacy_check_hooks(chip);
5669 	if (ret)
5670 		return ret;
5671 
5672 	memorg->ntargets = maxchips;
5673 
5674 	/* Read the flash type */
5675 	ret = nand_detect(chip, table);
5676 	if (ret) {
5677 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5678 			pr_warn("No NAND device found\n");
5679 		nand_deselect_target(chip);
5680 		return ret;
5681 	}
5682 
5683 	nand_maf_id = chip->id.data[0];
5684 	nand_dev_id = chip->id.data[1];
5685 
5686 	nand_deselect_target(chip);
5687 
5688 	/* Check for a chip array */
5689 	for (i = 1; i < maxchips; i++) {
5690 		u8 id[2];
5691 
5692 		/* See comment in nand_get_flash_type for reset */
5693 		ret = nand_reset(chip, i);
5694 		if (ret)
5695 			break;
5696 
5697 		nand_select_target(chip, i);
5698 		/* Send the command for reading device ID */
5699 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5700 		if (ret)
5701 			break;
5702 		/* Read manufacturer and device IDs */
5703 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5704 			nand_deselect_target(chip);
5705 			break;
5706 		}
5707 		nand_deselect_target(chip);
5708 	}
5709 	if (i > 1)
5710 		pr_info("%d chips detected\n", i);
5711 
5712 	/* Store the number of chips and calc total size for mtd */
5713 	memorg->ntargets = i;
5714 	mtd->size = i * nanddev_target_size(&chip->base);
5715 
5716 	return 0;
5717 }
5718 
5719 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5720 {
5721 	kfree(chip->parameters.model);
5722 	kfree(chip->parameters.onfi);
5723 }
5724 
5725 int rawnand_sw_hamming_init(struct nand_chip *chip)
5726 {
5727 	struct nand_ecc_sw_hamming_conf *engine_conf;
5728 	struct nand_device *base = &chip->base;
5729 	int ret;
5730 
5731 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5732 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5733 	base->ecc.user_conf.strength = chip->ecc.strength;
5734 	base->ecc.user_conf.step_size = chip->ecc.size;
5735 
5736 	ret = nand_ecc_sw_hamming_init_ctx(base);
5737 	if (ret)
5738 		return ret;
5739 
5740 	engine_conf = base->ecc.ctx.priv;
5741 
5742 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5743 		engine_conf->sm_order = true;
5744 
5745 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5746 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5747 	chip->ecc.total = base->ecc.ctx.total;
5748 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5749 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5750 
5751 	return 0;
5752 }
5753 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5754 
5755 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5756 				 const unsigned char *buf,
5757 				 unsigned char *code)
5758 {
5759 	struct nand_device *base = &chip->base;
5760 
5761 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5762 }
5763 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5764 
5765 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5766 			       unsigned char *buf,
5767 			       unsigned char *read_ecc,
5768 			       unsigned char *calc_ecc)
5769 {
5770 	struct nand_device *base = &chip->base;
5771 
5772 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5773 }
5774 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5775 
5776 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5777 {
5778 	struct nand_device *base = &chip->base;
5779 
5780 	nand_ecc_sw_hamming_cleanup_ctx(base);
5781 }
5782 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5783 
5784 int rawnand_sw_bch_init(struct nand_chip *chip)
5785 {
5786 	struct nand_device *base = &chip->base;
5787 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5788 	int ret;
5789 
5790 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5791 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5792 	base->ecc.user_conf.step_size = chip->ecc.size;
5793 	base->ecc.user_conf.strength = chip->ecc.strength;
5794 
5795 	ret = nand_ecc_sw_bch_init_ctx(base);
5796 	if (ret)
5797 		return ret;
5798 
5799 	chip->ecc.size = ecc_conf->step_size;
5800 	chip->ecc.strength = ecc_conf->strength;
5801 	chip->ecc.total = base->ecc.ctx.total;
5802 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5803 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5804 
5805 	return 0;
5806 }
5807 EXPORT_SYMBOL(rawnand_sw_bch_init);
5808 
5809 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5810 				    const unsigned char *buf,
5811 				    unsigned char *code)
5812 {
5813 	struct nand_device *base = &chip->base;
5814 
5815 	return nand_ecc_sw_bch_calculate(base, buf, code);
5816 }
5817 
5818 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5819 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5820 {
5821 	struct nand_device *base = &chip->base;
5822 
5823 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5824 }
5825 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5826 
5827 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5828 {
5829 	struct nand_device *base = &chip->base;
5830 
5831 	nand_ecc_sw_bch_cleanup_ctx(base);
5832 }
5833 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5834 
5835 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5836 {
5837 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5838 
5839 	switch (ecc->placement) {
5840 	case NAND_ECC_PLACEMENT_UNKNOWN:
5841 	case NAND_ECC_PLACEMENT_OOB:
5842 		/* Use standard hwecc read page function? */
5843 		if (!ecc->read_page)
5844 			ecc->read_page = nand_read_page_hwecc;
5845 		if (!ecc->write_page)
5846 			ecc->write_page = nand_write_page_hwecc;
5847 		if (!ecc->read_page_raw)
5848 			ecc->read_page_raw = nand_read_page_raw;
5849 		if (!ecc->write_page_raw)
5850 			ecc->write_page_raw = nand_write_page_raw;
5851 		if (!ecc->read_oob)
5852 			ecc->read_oob = nand_read_oob_std;
5853 		if (!ecc->write_oob)
5854 			ecc->write_oob = nand_write_oob_std;
5855 		if (!ecc->read_subpage)
5856 			ecc->read_subpage = nand_read_subpage;
5857 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5858 			ecc->write_subpage = nand_write_subpage_hwecc;
5859 		fallthrough;
5860 
5861 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5862 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5863 		    (!ecc->read_page ||
5864 		     ecc->read_page == nand_read_page_hwecc ||
5865 		     !ecc->write_page ||
5866 		     ecc->write_page == nand_write_page_hwecc)) {
5867 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5868 			return -EINVAL;
5869 		}
5870 		/* Use standard syndrome read/write page function? */
5871 		if (!ecc->read_page)
5872 			ecc->read_page = nand_read_page_syndrome;
5873 		if (!ecc->write_page)
5874 			ecc->write_page = nand_write_page_syndrome;
5875 		if (!ecc->read_page_raw)
5876 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5877 		if (!ecc->write_page_raw)
5878 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5879 		if (!ecc->read_oob)
5880 			ecc->read_oob = nand_read_oob_syndrome;
5881 		if (!ecc->write_oob)
5882 			ecc->write_oob = nand_write_oob_syndrome;
5883 		break;
5884 
5885 	default:
5886 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5887 			ecc->placement);
5888 		return -EINVAL;
5889 	}
5890 
5891 	return 0;
5892 }
5893 
5894 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5895 {
5896 	struct mtd_info *mtd = nand_to_mtd(chip);
5897 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5898 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5899 	int ret;
5900 
5901 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5902 		return -EINVAL;
5903 
5904 	switch (ecc->algo) {
5905 	case NAND_ECC_ALGO_HAMMING:
5906 		ecc->calculate = rawnand_sw_hamming_calculate;
5907 		ecc->correct = rawnand_sw_hamming_correct;
5908 		ecc->read_page = nand_read_page_swecc;
5909 		ecc->read_subpage = nand_read_subpage;
5910 		ecc->write_page = nand_write_page_swecc;
5911 		if (!ecc->read_page_raw)
5912 			ecc->read_page_raw = nand_read_page_raw;
5913 		if (!ecc->write_page_raw)
5914 			ecc->write_page_raw = nand_write_page_raw;
5915 		ecc->read_oob = nand_read_oob_std;
5916 		ecc->write_oob = nand_write_oob_std;
5917 		if (!ecc->size)
5918 			ecc->size = 256;
5919 		ecc->bytes = 3;
5920 		ecc->strength = 1;
5921 
5922 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5923 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5924 
5925 		ret = rawnand_sw_hamming_init(chip);
5926 		if (ret) {
5927 			WARN(1, "Hamming ECC initialization failed!\n");
5928 			return ret;
5929 		}
5930 
5931 		return 0;
5932 	case NAND_ECC_ALGO_BCH:
5933 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5934 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5935 			return -EINVAL;
5936 		}
5937 		ecc->calculate = rawnand_sw_bch_calculate;
5938 		ecc->correct = rawnand_sw_bch_correct;
5939 		ecc->read_page = nand_read_page_swecc;
5940 		ecc->read_subpage = nand_read_subpage;
5941 		ecc->write_page = nand_write_page_swecc;
5942 		if (!ecc->read_page_raw)
5943 			ecc->read_page_raw = nand_read_page_raw;
5944 		if (!ecc->write_page_raw)
5945 			ecc->write_page_raw = nand_write_page_raw;
5946 		ecc->read_oob = nand_read_oob_std;
5947 		ecc->write_oob = nand_write_oob_std;
5948 
5949 		/*
5950 		 * We can only maximize ECC config when the default layout is
5951 		 * used, otherwise we don't know how many bytes can really be
5952 		 * used.
5953 		 */
5954 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5955 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5956 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5957 
5958 		ret = rawnand_sw_bch_init(chip);
5959 		if (ret) {
5960 			WARN(1, "BCH ECC initialization failed!\n");
5961 			return ret;
5962 		}
5963 
5964 		return 0;
5965 	default:
5966 		WARN(1, "Unsupported ECC algorithm!\n");
5967 		return -EINVAL;
5968 	}
5969 }
5970 
5971 /**
5972  * nand_check_ecc_caps - check the sanity of preset ECC settings
5973  * @chip: nand chip info structure
5974  * @caps: ECC caps info structure
5975  * @oobavail: OOB size that the ECC engine can use
5976  *
5977  * When ECC step size and strength are already set, check if they are supported
5978  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5979  * On success, the calculated ECC bytes is set.
5980  */
5981 static int
5982 nand_check_ecc_caps(struct nand_chip *chip,
5983 		    const struct nand_ecc_caps *caps, int oobavail)
5984 {
5985 	struct mtd_info *mtd = nand_to_mtd(chip);
5986 	const struct nand_ecc_step_info *stepinfo;
5987 	int preset_step = chip->ecc.size;
5988 	int preset_strength = chip->ecc.strength;
5989 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5990 	int i, j;
5991 
5992 	for (i = 0; i < caps->nstepinfos; i++) {
5993 		stepinfo = &caps->stepinfos[i];
5994 
5995 		if (stepinfo->stepsize != preset_step)
5996 			continue;
5997 
5998 		for (j = 0; j < stepinfo->nstrengths; j++) {
5999 			if (stepinfo->strengths[j] != preset_strength)
6000 				continue;
6001 
6002 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6003 							 preset_strength);
6004 			if (WARN_ON_ONCE(ecc_bytes < 0))
6005 				return ecc_bytes;
6006 
6007 			if (ecc_bytes * nsteps > oobavail) {
6008 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6009 				       preset_step, preset_strength);
6010 				return -ENOSPC;
6011 			}
6012 
6013 			chip->ecc.bytes = ecc_bytes;
6014 
6015 			return 0;
6016 		}
6017 	}
6018 
6019 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6020 	       preset_step, preset_strength);
6021 
6022 	return -ENOTSUPP;
6023 }
6024 
6025 /**
6026  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6027  * @chip: nand chip info structure
6028  * @caps: ECC engine caps info structure
6029  * @oobavail: OOB size that the ECC engine can use
6030  *
6031  * If a chip's ECC requirement is provided, try to meet it with the least
6032  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6033  * On success, the chosen ECC settings are set.
6034  */
6035 static int
6036 nand_match_ecc_req(struct nand_chip *chip,
6037 		   const struct nand_ecc_caps *caps, int oobavail)
6038 {
6039 	const struct nand_ecc_props *requirements =
6040 		nanddev_get_ecc_requirements(&chip->base);
6041 	struct mtd_info *mtd = nand_to_mtd(chip);
6042 	const struct nand_ecc_step_info *stepinfo;
6043 	int req_step = requirements->step_size;
6044 	int req_strength = requirements->strength;
6045 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6046 	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6047 	int best_ecc_bytes_total = INT_MAX;
6048 	int i, j;
6049 
6050 	/* No information provided by the NAND chip */
6051 	if (!req_step || !req_strength)
6052 		return -ENOTSUPP;
6053 
6054 	/* number of correctable bits the chip requires in a page */
6055 	req_corr = mtd->writesize / req_step * req_strength;
6056 
6057 	for (i = 0; i < caps->nstepinfos; i++) {
6058 		stepinfo = &caps->stepinfos[i];
6059 		step_size = stepinfo->stepsize;
6060 
6061 		for (j = 0; j < stepinfo->nstrengths; j++) {
6062 			strength = stepinfo->strengths[j];
6063 
6064 			/*
6065 			 * If both step size and strength are smaller than the
6066 			 * chip's requirement, it is not easy to compare the
6067 			 * resulted reliability.
6068 			 */
6069 			if (step_size < req_step && strength < req_strength)
6070 				continue;
6071 
6072 			if (mtd->writesize % step_size)
6073 				continue;
6074 
6075 			nsteps = mtd->writesize / step_size;
6076 
6077 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6078 			if (WARN_ON_ONCE(ecc_bytes < 0))
6079 				continue;
6080 			ecc_bytes_total = ecc_bytes * nsteps;
6081 
6082 			if (ecc_bytes_total > oobavail ||
6083 			    strength * nsteps < req_corr)
6084 				continue;
6085 
6086 			/*
6087 			 * We assume the best is to meet the chip's requrement
6088 			 * with the least number of ECC bytes.
6089 			 */
6090 			if (ecc_bytes_total < best_ecc_bytes_total) {
6091 				best_ecc_bytes_total = ecc_bytes_total;
6092 				best_step = step_size;
6093 				best_strength = strength;
6094 				best_ecc_bytes = ecc_bytes;
6095 			}
6096 		}
6097 	}
6098 
6099 	if (best_ecc_bytes_total == INT_MAX)
6100 		return -ENOTSUPP;
6101 
6102 	chip->ecc.size = best_step;
6103 	chip->ecc.strength = best_strength;
6104 	chip->ecc.bytes = best_ecc_bytes;
6105 
6106 	return 0;
6107 }
6108 
6109 /**
6110  * nand_maximize_ecc - choose the max ECC strength available
6111  * @chip: nand chip info structure
6112  * @caps: ECC engine caps info structure
6113  * @oobavail: OOB size that the ECC engine can use
6114  *
6115  * Choose the max ECC strength that is supported on the controller, and can fit
6116  * within the chip's OOB.  On success, the chosen ECC settings are set.
6117  */
6118 static int
6119 nand_maximize_ecc(struct nand_chip *chip,
6120 		  const struct nand_ecc_caps *caps, int oobavail)
6121 {
6122 	struct mtd_info *mtd = nand_to_mtd(chip);
6123 	const struct nand_ecc_step_info *stepinfo;
6124 	int step_size, strength, nsteps, ecc_bytes, corr;
6125 	int best_corr = 0;
6126 	int best_step = 0;
6127 	int best_strength = 0, best_ecc_bytes = 0;
6128 	int i, j;
6129 
6130 	for (i = 0; i < caps->nstepinfos; i++) {
6131 		stepinfo = &caps->stepinfos[i];
6132 		step_size = stepinfo->stepsize;
6133 
6134 		/* If chip->ecc.size is already set, respect it */
6135 		if (chip->ecc.size && step_size != chip->ecc.size)
6136 			continue;
6137 
6138 		for (j = 0; j < stepinfo->nstrengths; j++) {
6139 			strength = stepinfo->strengths[j];
6140 
6141 			if (mtd->writesize % step_size)
6142 				continue;
6143 
6144 			nsteps = mtd->writesize / step_size;
6145 
6146 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6147 			if (WARN_ON_ONCE(ecc_bytes < 0))
6148 				continue;
6149 
6150 			if (ecc_bytes * nsteps > oobavail)
6151 				continue;
6152 
6153 			corr = strength * nsteps;
6154 
6155 			/*
6156 			 * If the number of correctable bits is the same,
6157 			 * bigger step_size has more reliability.
6158 			 */
6159 			if (corr > best_corr ||
6160 			    (corr == best_corr && step_size > best_step)) {
6161 				best_corr = corr;
6162 				best_step = step_size;
6163 				best_strength = strength;
6164 				best_ecc_bytes = ecc_bytes;
6165 			}
6166 		}
6167 	}
6168 
6169 	if (!best_corr)
6170 		return -ENOTSUPP;
6171 
6172 	chip->ecc.size = best_step;
6173 	chip->ecc.strength = best_strength;
6174 	chip->ecc.bytes = best_ecc_bytes;
6175 
6176 	return 0;
6177 }
6178 
6179 /**
6180  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6181  * @chip: nand chip info structure
6182  * @caps: ECC engine caps info structure
6183  * @oobavail: OOB size that the ECC engine can use
6184  *
6185  * Choose the ECC configuration according to following logic.
6186  *
6187  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6188  *    then check if it is supported by this controller.
6189  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6190  *    ECC strength.
6191  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6192  *    to the chip's requirement. If available OOB size can't fit the chip
6193  *    requirement then fallback to the maximum ECC step size and ECC strength.
6194  *
6195  * On success, the chosen ECC settings are set.
6196  */
6197 int nand_ecc_choose_conf(struct nand_chip *chip,
6198 			 const struct nand_ecc_caps *caps, int oobavail)
6199 {
6200 	struct mtd_info *mtd = nand_to_mtd(chip);
6201 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6202 
6203 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6204 		return -EINVAL;
6205 
6206 	if (chip->ecc.size && chip->ecc.strength)
6207 		return nand_check_ecc_caps(chip, caps, oobavail);
6208 
6209 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6210 		return nand_maximize_ecc(chip, caps, oobavail);
6211 
6212 	if (!nand_match_ecc_req(chip, caps, oobavail))
6213 		return 0;
6214 
6215 	return nand_maximize_ecc(chip, caps, oobavail);
6216 }
6217 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6218 
6219 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6220 {
6221 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6222 					      base);
6223 	unsigned int eb = nanddev_pos_to_row(nand, pos);
6224 	int ret;
6225 
6226 	eb >>= nand->rowconv.eraseblock_addr_shift;
6227 
6228 	nand_select_target(chip, pos->target);
6229 	ret = nand_erase_op(chip, eb);
6230 	nand_deselect_target(chip);
6231 
6232 	return ret;
6233 }
6234 
6235 static int rawnand_markbad(struct nand_device *nand,
6236 			   const struct nand_pos *pos)
6237 {
6238 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6239 					      base);
6240 
6241 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6242 }
6243 
6244 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6245 {
6246 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6247 					      base);
6248 	int ret;
6249 
6250 	nand_select_target(chip, pos->target);
6251 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6252 	nand_deselect_target(chip);
6253 
6254 	return ret;
6255 }
6256 
6257 static const struct nand_ops rawnand_ops = {
6258 	.erase = rawnand_erase,
6259 	.markbad = rawnand_markbad,
6260 	.isbad = rawnand_isbad,
6261 };
6262 
6263 /**
6264  * nand_scan_tail - Scan for the NAND device
6265  * @chip: NAND chip object
6266  *
6267  * This is the second phase of the normal nand_scan() function. It fills out
6268  * all the uninitialized function pointers with the defaults and scans for a
6269  * bad block table if appropriate.
6270  */
6271 static int nand_scan_tail(struct nand_chip *chip)
6272 {
6273 	struct mtd_info *mtd = nand_to_mtd(chip);
6274 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6275 	int ret, i;
6276 
6277 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6278 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6279 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6280 		return -EINVAL;
6281 	}
6282 
6283 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6284 	if (!chip->data_buf)
6285 		return -ENOMEM;
6286 
6287 	/*
6288 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6289 	 * selected when manufacturer->init() is called. They should be fixed
6290 	 * to explictly select the relevant die when interacting with the NAND
6291 	 * chip.
6292 	 */
6293 	nand_select_target(chip, 0);
6294 	ret = nand_manufacturer_init(chip);
6295 	nand_deselect_target(chip);
6296 	if (ret)
6297 		goto err_free_buf;
6298 
6299 	/* Set the internal oob buffer location, just after the page data */
6300 	chip->oob_poi = chip->data_buf + mtd->writesize;
6301 
6302 	/*
6303 	 * If no default placement scheme is given, select an appropriate one.
6304 	 */
6305 	if (!mtd->ooblayout &&
6306 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6307 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6308 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6309 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6310 		switch (mtd->oobsize) {
6311 		case 8:
6312 		case 16:
6313 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6314 			break;
6315 		case 64:
6316 		case 128:
6317 			mtd_set_ooblayout(mtd,
6318 					  nand_get_large_page_hamming_ooblayout());
6319 			break;
6320 		default:
6321 			/*
6322 			 * Expose the whole OOB area to users if ECC_NONE
6323 			 * is passed. We could do that for all kind of
6324 			 * ->oobsize, but we must keep the old large/small
6325 			 * page with ECC layout when ->oobsize <= 128 for
6326 			 * compatibility reasons.
6327 			 */
6328 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6329 				mtd_set_ooblayout(mtd,
6330 						  nand_get_large_page_ooblayout());
6331 				break;
6332 			}
6333 
6334 			WARN(1, "No oob scheme defined for oobsize %d\n",
6335 				mtd->oobsize);
6336 			ret = -EINVAL;
6337 			goto err_nand_manuf_cleanup;
6338 		}
6339 	}
6340 
6341 	/*
6342 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6343 	 * selected and we have 256 byte pagesize fallback to software ECC
6344 	 */
6345 
6346 	switch (ecc->engine_type) {
6347 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6348 		ret = nand_set_ecc_on_host_ops(chip);
6349 		if (ret)
6350 			goto err_nand_manuf_cleanup;
6351 
6352 		if (mtd->writesize >= ecc->size) {
6353 			if (!ecc->strength) {
6354 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6355 				ret = -EINVAL;
6356 				goto err_nand_manuf_cleanup;
6357 			}
6358 			break;
6359 		}
6360 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6361 			ecc->size, mtd->writesize);
6362 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6363 		ecc->algo = NAND_ECC_ALGO_HAMMING;
6364 		fallthrough;
6365 
6366 	case NAND_ECC_ENGINE_TYPE_SOFT:
6367 		ret = nand_set_ecc_soft_ops(chip);
6368 		if (ret)
6369 			goto err_nand_manuf_cleanup;
6370 		break;
6371 
6372 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6373 		if (!ecc->read_page || !ecc->write_page) {
6374 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6375 			ret = -EINVAL;
6376 			goto err_nand_manuf_cleanup;
6377 		}
6378 		if (!ecc->read_oob)
6379 			ecc->read_oob = nand_read_oob_std;
6380 		if (!ecc->write_oob)
6381 			ecc->write_oob = nand_write_oob_std;
6382 		break;
6383 
6384 	case NAND_ECC_ENGINE_TYPE_NONE:
6385 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6386 		ecc->read_page = nand_read_page_raw;
6387 		ecc->write_page = nand_write_page_raw;
6388 		ecc->read_oob = nand_read_oob_std;
6389 		ecc->read_page_raw = nand_read_page_raw;
6390 		ecc->write_page_raw = nand_write_page_raw;
6391 		ecc->write_oob = nand_write_oob_std;
6392 		ecc->size = mtd->writesize;
6393 		ecc->bytes = 0;
6394 		ecc->strength = 0;
6395 		break;
6396 
6397 	default:
6398 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6399 		ret = -EINVAL;
6400 		goto err_nand_manuf_cleanup;
6401 	}
6402 
6403 	if (ecc->correct || ecc->calculate) {
6404 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6405 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6406 		if (!ecc->calc_buf || !ecc->code_buf) {
6407 			ret = -ENOMEM;
6408 			goto err_nand_manuf_cleanup;
6409 		}
6410 	}
6411 
6412 	/* For many systems, the standard OOB write also works for raw */
6413 	if (!ecc->read_oob_raw)
6414 		ecc->read_oob_raw = ecc->read_oob;
6415 	if (!ecc->write_oob_raw)
6416 		ecc->write_oob_raw = ecc->write_oob;
6417 
6418 	/* propagate ecc info to mtd_info */
6419 	mtd->ecc_strength = ecc->strength;
6420 	mtd->ecc_step_size = ecc->size;
6421 
6422 	/*
6423 	 * Set the number of read / write steps for one page depending on ECC
6424 	 * mode.
6425 	 */
6426 	if (!ecc->steps)
6427 		ecc->steps = mtd->writesize / ecc->size;
6428 	if (ecc->steps * ecc->size != mtd->writesize) {
6429 		WARN(1, "Invalid ECC parameters\n");
6430 		ret = -EINVAL;
6431 		goto err_nand_manuf_cleanup;
6432 	}
6433 
6434 	if (!ecc->total) {
6435 		ecc->total = ecc->steps * ecc->bytes;
6436 		chip->base.ecc.ctx.total = ecc->total;
6437 	}
6438 
6439 	if (ecc->total > mtd->oobsize) {
6440 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6441 		ret = -EINVAL;
6442 		goto err_nand_manuf_cleanup;
6443 	}
6444 
6445 	/*
6446 	 * The number of bytes available for a client to place data into
6447 	 * the out of band area.
6448 	 */
6449 	ret = mtd_ooblayout_count_freebytes(mtd);
6450 	if (ret < 0)
6451 		ret = 0;
6452 
6453 	mtd->oobavail = ret;
6454 
6455 	/* ECC sanity check: warn if it's too weak */
6456 	if (!nand_ecc_is_strong_enough(&chip->base))
6457 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6458 			mtd->name, chip->ecc.strength, chip->ecc.size,
6459 			nanddev_get_ecc_requirements(&chip->base)->strength,
6460 			nanddev_get_ecc_requirements(&chip->base)->step_size);
6461 
6462 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6463 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6464 		switch (ecc->steps) {
6465 		case 2:
6466 			mtd->subpage_sft = 1;
6467 			break;
6468 		case 4:
6469 		case 8:
6470 		case 16:
6471 			mtd->subpage_sft = 2;
6472 			break;
6473 		}
6474 	}
6475 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6476 
6477 	/* Invalidate the pagebuffer reference */
6478 	chip->pagecache.page = -1;
6479 
6480 	/* Large page NAND with SOFT_ECC should support subpage reads */
6481 	switch (ecc->engine_type) {
6482 	case NAND_ECC_ENGINE_TYPE_SOFT:
6483 		if (chip->page_shift > 9)
6484 			chip->options |= NAND_SUBPAGE_READ;
6485 		break;
6486 
6487 	default:
6488 		break;
6489 	}
6490 
6491 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6492 	if (ret)
6493 		goto err_nand_manuf_cleanup;
6494 
6495 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6496 	if (chip->options & NAND_ROM)
6497 		mtd->flags = MTD_CAP_ROM;
6498 
6499 	/* Fill in remaining MTD driver data */
6500 	mtd->_erase = nand_erase;
6501 	mtd->_point = NULL;
6502 	mtd->_unpoint = NULL;
6503 	mtd->_panic_write = panic_nand_write;
6504 	mtd->_read_oob = nand_read_oob;
6505 	mtd->_write_oob = nand_write_oob;
6506 	mtd->_sync = nand_sync;
6507 	mtd->_lock = nand_lock;
6508 	mtd->_unlock = nand_unlock;
6509 	mtd->_suspend = nand_suspend;
6510 	mtd->_resume = nand_resume;
6511 	mtd->_reboot = nand_shutdown;
6512 	mtd->_block_isreserved = nand_block_isreserved;
6513 	mtd->_block_isbad = nand_block_isbad;
6514 	mtd->_block_markbad = nand_block_markbad;
6515 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6516 
6517 	/*
6518 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6519 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6520 	 * properly set.
6521 	 */
6522 	if (!mtd->bitflip_threshold)
6523 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6524 
6525 	/* Find the fastest data interface for this chip */
6526 	ret = nand_choose_interface_config(chip);
6527 	if (ret)
6528 		goto err_nanddev_cleanup;
6529 
6530 	/* Enter fastest possible mode on all dies. */
6531 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6532 		ret = nand_setup_interface(chip, i);
6533 		if (ret)
6534 			goto err_free_interface_config;
6535 	}
6536 
6537 	rawnand_late_check_supported_ops(chip);
6538 
6539 	/*
6540 	 * Look for secure regions in the NAND chip. These regions are supposed
6541 	 * to be protected by a secure element like Trustzone. So the read/write
6542 	 * accesses to these regions will be blocked in the runtime by this
6543 	 * driver.
6544 	 */
6545 	ret = of_get_nand_secure_regions(chip);
6546 	if (ret)
6547 		goto err_free_interface_config;
6548 
6549 	/* Check, if we should skip the bad block table scan */
6550 	if (chip->options & NAND_SKIP_BBTSCAN)
6551 		return 0;
6552 
6553 	/* Build bad block table */
6554 	ret = nand_create_bbt(chip);
6555 	if (ret)
6556 		goto err_free_secure_regions;
6557 
6558 	return 0;
6559 
6560 err_free_secure_regions:
6561 	kfree(chip->secure_regions);
6562 
6563 err_free_interface_config:
6564 	kfree(chip->best_interface_config);
6565 
6566 err_nanddev_cleanup:
6567 	nanddev_cleanup(&chip->base);
6568 
6569 err_nand_manuf_cleanup:
6570 	nand_manufacturer_cleanup(chip);
6571 
6572 err_free_buf:
6573 	kfree(chip->data_buf);
6574 	kfree(ecc->code_buf);
6575 	kfree(ecc->calc_buf);
6576 
6577 	return ret;
6578 }
6579 
6580 static int nand_attach(struct nand_chip *chip)
6581 {
6582 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6583 		return chip->controller->ops->attach_chip(chip);
6584 
6585 	return 0;
6586 }
6587 
6588 static void nand_detach(struct nand_chip *chip)
6589 {
6590 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6591 		chip->controller->ops->detach_chip(chip);
6592 }
6593 
6594 /**
6595  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6596  * @chip: NAND chip object
6597  * @maxchips: number of chips to scan for.
6598  * @ids: optional flash IDs table
6599  *
6600  * This fills out all the uninitialized function pointers with the defaults.
6601  * The flash ID is read and the mtd/chip structures are filled with the
6602  * appropriate values.
6603  */
6604 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6605 		       struct nand_flash_dev *ids)
6606 {
6607 	int ret;
6608 
6609 	if (!maxchips)
6610 		return -EINVAL;
6611 
6612 	ret = nand_scan_ident(chip, maxchips, ids);
6613 	if (ret)
6614 		return ret;
6615 
6616 	ret = nand_attach(chip);
6617 	if (ret)
6618 		goto cleanup_ident;
6619 
6620 	ret = nand_scan_tail(chip);
6621 	if (ret)
6622 		goto detach_chip;
6623 
6624 	return 0;
6625 
6626 detach_chip:
6627 	nand_detach(chip);
6628 cleanup_ident:
6629 	nand_scan_ident_cleanup(chip);
6630 
6631 	return ret;
6632 }
6633 EXPORT_SYMBOL(nand_scan_with_ids);
6634 
6635 /**
6636  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6637  * @chip: NAND chip object
6638  */
6639 void nand_cleanup(struct nand_chip *chip)
6640 {
6641 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6642 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6643 			rawnand_sw_hamming_cleanup(chip);
6644 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6645 			rawnand_sw_bch_cleanup(chip);
6646 	}
6647 
6648 	nanddev_cleanup(&chip->base);
6649 
6650 	/* Free secure regions data */
6651 	kfree(chip->secure_regions);
6652 
6653 	/* Free bad block table memory */
6654 	kfree(chip->bbt);
6655 	kfree(chip->data_buf);
6656 	kfree(chip->ecc.code_buf);
6657 	kfree(chip->ecc.calc_buf);
6658 
6659 	/* Free bad block descriptor memory */
6660 	if (chip->badblock_pattern && chip->badblock_pattern->options
6661 			& NAND_BBT_DYNAMICSTRUCT)
6662 		kfree(chip->badblock_pattern);
6663 
6664 	/* Free the data interface */
6665 	kfree(chip->best_interface_config);
6666 
6667 	/* Free manufacturer priv data. */
6668 	nand_manufacturer_cleanup(chip);
6669 
6670 	/* Free controller specific allocations after chip identification */
6671 	nand_detach(chip);
6672 
6673 	/* Free identification phase allocations */
6674 	nand_scan_ident_cleanup(chip);
6675 }
6676 
6677 EXPORT_SYMBOL_GPL(nand_cleanup);
6678 
6679 MODULE_LICENSE("GPL");
6680 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6681 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6682 MODULE_DESCRIPTION("Generic NAND flash driver code");
6683