1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand.h> 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 40 #include <linux/interrupt.h> 41 #include <linux/bitops.h> 42 #include <linux/io.h> 43 #include <linux/mtd/partitions.h> 44 #include <linux/of.h> 45 #include <linux/gpio/consumer.h> 46 47 #include "internals.h" 48 49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 50 struct mtd_pairing_info *info) 51 { 52 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 53 int dist = 3; 54 55 if (page == lastpage) 56 dist = 2; 57 58 if (!page || (page & 1)) { 59 info->group = 0; 60 info->pair = (page + 1) / 2; 61 } else { 62 info->group = 1; 63 info->pair = (page + 1 - dist) / 2; 64 } 65 66 return 0; 67 } 68 69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 70 const struct mtd_pairing_info *info) 71 { 72 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 73 int page = info->pair * 2; 74 int dist = 3; 75 76 if (!info->group && !info->pair) 77 return 0; 78 79 if (info->pair == lastpair && info->group) 80 dist = 2; 81 82 if (!info->group) 83 page--; 84 else if (info->pair) 85 page += dist - 1; 86 87 if (page >= mtd->erasesize / mtd->writesize) 88 return -EINVAL; 89 90 return page; 91 } 92 93 const struct mtd_pairing_scheme dist3_pairing_scheme = { 94 .ngroups = 2, 95 .get_info = nand_pairing_dist3_get_info, 96 .get_wunit = nand_pairing_dist3_get_wunit, 97 }; 98 99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 100 { 101 int ret = 0; 102 103 /* Start address must align on block boundary */ 104 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 105 pr_debug("%s: unaligned address\n", __func__); 106 ret = -EINVAL; 107 } 108 109 /* Length must align on block boundary */ 110 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 111 pr_debug("%s: length not block aligned\n", __func__); 112 ret = -EINVAL; 113 } 114 115 return ret; 116 } 117 118 /** 119 * nand_extract_bits - Copy unaligned bits from one buffer to another one 120 * @dst: destination buffer 121 * @dst_off: bit offset at which the writing starts 122 * @src: source buffer 123 * @src_off: bit offset at which the reading starts 124 * @nbits: number of bits to copy from @src to @dst 125 * 126 * Copy bits from one memory region to another (overlap authorized). 127 */ 128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 129 unsigned int src_off, unsigned int nbits) 130 { 131 unsigned int tmp, n; 132 133 dst += dst_off / 8; 134 dst_off %= 8; 135 src += src_off / 8; 136 src_off %= 8; 137 138 while (nbits) { 139 n = min3(8 - dst_off, 8 - src_off, nbits); 140 141 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 142 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 143 *dst |= tmp << dst_off; 144 145 dst_off += n; 146 if (dst_off >= 8) { 147 dst++; 148 dst_off -= 8; 149 } 150 151 src_off += n; 152 if (src_off >= 8) { 153 src++; 154 src_off -= 8; 155 } 156 157 nbits -= n; 158 } 159 } 160 EXPORT_SYMBOL_GPL(nand_extract_bits); 161 162 /** 163 * nand_select_target() - Select a NAND target (A.K.A. die) 164 * @chip: NAND chip object 165 * @cs: the CS line to select. Note that this CS id is always from the chip 166 * PoV, not the controller one 167 * 168 * Select a NAND target so that further operations executed on @chip go to the 169 * selected NAND target. 170 */ 171 void nand_select_target(struct nand_chip *chip, unsigned int cs) 172 { 173 /* 174 * cs should always lie between 0 and nanddev_ntargets(), when that's 175 * not the case it's a bug and the caller should be fixed. 176 */ 177 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 178 return; 179 180 chip->cur_cs = cs; 181 182 if (chip->legacy.select_chip) 183 chip->legacy.select_chip(chip, cs); 184 } 185 EXPORT_SYMBOL_GPL(nand_select_target); 186 187 /** 188 * nand_deselect_target() - Deselect the currently selected target 189 * @chip: NAND chip object 190 * 191 * Deselect the currently selected NAND target. The result of operations 192 * executed on @chip after the target has been deselected is undefined. 193 */ 194 void nand_deselect_target(struct nand_chip *chip) 195 { 196 if (chip->legacy.select_chip) 197 chip->legacy.select_chip(chip, -1); 198 199 chip->cur_cs = -1; 200 } 201 EXPORT_SYMBOL_GPL(nand_deselect_target); 202 203 /** 204 * nand_release_device - [GENERIC] release chip 205 * @chip: NAND chip object 206 * 207 * Release chip lock and wake up anyone waiting on the device. 208 */ 209 static void nand_release_device(struct nand_chip *chip) 210 { 211 /* Release the controller and the chip */ 212 mutex_unlock(&chip->controller->lock); 213 mutex_unlock(&chip->lock); 214 } 215 216 /** 217 * nand_bbm_get_next_page - Get the next page for bad block markers 218 * @chip: NAND chip object 219 * @page: First page to start checking for bad block marker usage 220 * 221 * Returns an integer that corresponds to the page offset within a block, for 222 * a page that is used to store bad block markers. If no more pages are 223 * available, -EINVAL is returned. 224 */ 225 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 226 { 227 struct mtd_info *mtd = nand_to_mtd(chip); 228 int last_page = ((mtd->erasesize - mtd->writesize) >> 229 chip->page_shift) & chip->pagemask; 230 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 231 | NAND_BBM_LASTPAGE; 232 233 if (page == 0 && !(chip->options & bbm_flags)) 234 return 0; 235 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 236 return 0; 237 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 238 return 1; 239 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 240 return last_page; 241 242 return -EINVAL; 243 } 244 245 /** 246 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 247 * @chip: NAND chip object 248 * @ofs: offset from device start 249 * 250 * Check, if the block is bad. 251 */ 252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 253 { 254 int first_page, page_offset; 255 int res; 256 u8 bad; 257 258 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 259 page_offset = nand_bbm_get_next_page(chip, 0); 260 261 while (page_offset >= 0) { 262 res = chip->ecc.read_oob(chip, first_page + page_offset); 263 if (res < 0) 264 return res; 265 266 bad = chip->oob_poi[chip->badblockpos]; 267 268 if (likely(chip->badblockbits == 8)) 269 res = bad != 0xFF; 270 else 271 res = hweight8(bad) < chip->badblockbits; 272 if (res) 273 return res; 274 275 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 276 } 277 278 return 0; 279 } 280 281 /** 282 * nand_region_is_secured() - Check if the region is secured 283 * @chip: NAND chip object 284 * @offset: Offset of the region to check 285 * @size: Size of the region to check 286 * 287 * Checks if the region is secured by comparing the offset and size with the 288 * list of secure regions obtained from DT. Returns true if the region is 289 * secured else false. 290 */ 291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) 292 { 293 int i; 294 295 /* Skip touching the secure regions if present */ 296 for (i = 0; i < chip->nr_secure_regions; i++) { 297 const struct nand_secure_region *region = &chip->secure_regions[i]; 298 299 if (offset + size <= region->offset || 300 offset >= region->offset + region->size) 301 continue; 302 303 pr_debug("%s: Region 0x%llx - 0x%llx is secured!", 304 __func__, offset, offset + size); 305 306 return true; 307 } 308 309 return false; 310 } 311 312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 313 { 314 struct mtd_info *mtd = nand_to_mtd(chip); 315 316 if (chip->options & NAND_NO_BBM_QUIRK) 317 return 0; 318 319 /* Check if the region is secured */ 320 if (nand_region_is_secured(chip, ofs, mtd->erasesize)) 321 return -EIO; 322 323 if (chip->legacy.block_bad) 324 return chip->legacy.block_bad(chip, ofs); 325 326 return nand_block_bad(chip, ofs); 327 } 328 329 /** 330 * nand_get_device - [GENERIC] Get chip for selected access 331 * @chip: NAND chip structure 332 * 333 * Lock the device and its controller for exclusive access 334 * 335 * Return: -EBUSY if the chip has been suspended, 0 otherwise 336 */ 337 static int nand_get_device(struct nand_chip *chip) 338 { 339 mutex_lock(&chip->lock); 340 if (chip->suspended) { 341 mutex_unlock(&chip->lock); 342 return -EBUSY; 343 } 344 mutex_lock(&chip->controller->lock); 345 346 return 0; 347 } 348 349 /** 350 * nand_check_wp - [GENERIC] check if the chip is write protected 351 * @chip: NAND chip object 352 * 353 * Check, if the device is write protected. The function expects, that the 354 * device is already selected. 355 */ 356 static int nand_check_wp(struct nand_chip *chip) 357 { 358 u8 status; 359 int ret; 360 361 /* Broken xD cards report WP despite being writable */ 362 if (chip->options & NAND_BROKEN_XD) 363 return 0; 364 365 /* Check the WP bit */ 366 ret = nand_status_op(chip, &status); 367 if (ret) 368 return ret; 369 370 return status & NAND_STATUS_WP ? 0 : 1; 371 } 372 373 /** 374 * nand_fill_oob - [INTERN] Transfer client buffer to oob 375 * @chip: NAND chip object 376 * @oob: oob data buffer 377 * @len: oob data write length 378 * @ops: oob ops structure 379 */ 380 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 381 struct mtd_oob_ops *ops) 382 { 383 struct mtd_info *mtd = nand_to_mtd(chip); 384 int ret; 385 386 /* 387 * Initialise to all 0xFF, to avoid the possibility of left over OOB 388 * data from a previous OOB read. 389 */ 390 memset(chip->oob_poi, 0xff, mtd->oobsize); 391 392 switch (ops->mode) { 393 394 case MTD_OPS_PLACE_OOB: 395 case MTD_OPS_RAW: 396 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 397 return oob + len; 398 399 case MTD_OPS_AUTO_OOB: 400 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 401 ops->ooboffs, len); 402 BUG_ON(ret); 403 return oob + len; 404 405 default: 406 BUG(); 407 } 408 return NULL; 409 } 410 411 /** 412 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 413 * @chip: NAND chip object 414 * @to: offset to write to 415 * @ops: oob operation description structure 416 * 417 * NAND write out-of-band. 418 */ 419 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 420 struct mtd_oob_ops *ops) 421 { 422 struct mtd_info *mtd = nand_to_mtd(chip); 423 int chipnr, page, status, len, ret; 424 425 pr_debug("%s: to = 0x%08x, len = %i\n", 426 __func__, (unsigned int)to, (int)ops->ooblen); 427 428 len = mtd_oobavail(mtd, ops); 429 430 /* Do not allow write past end of page */ 431 if ((ops->ooboffs + ops->ooblen) > len) { 432 pr_debug("%s: attempt to write past end of page\n", 433 __func__); 434 return -EINVAL; 435 } 436 437 /* Check if the region is secured */ 438 if (nand_region_is_secured(chip, to, ops->ooblen)) 439 return -EIO; 440 441 chipnr = (int)(to >> chip->chip_shift); 442 443 /* 444 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 445 * of my DiskOnChip 2000 test units) will clear the whole data page too 446 * if we don't do this. I have no clue why, but I seem to have 'fixed' 447 * it in the doc2000 driver in August 1999. dwmw2. 448 */ 449 ret = nand_reset(chip, chipnr); 450 if (ret) 451 return ret; 452 453 nand_select_target(chip, chipnr); 454 455 /* Shift to get page */ 456 page = (int)(to >> chip->page_shift); 457 458 /* Check, if it is write protected */ 459 if (nand_check_wp(chip)) { 460 nand_deselect_target(chip); 461 return -EROFS; 462 } 463 464 /* Invalidate the page cache, if we write to the cached page */ 465 if (page == chip->pagecache.page) 466 chip->pagecache.page = -1; 467 468 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 469 470 if (ops->mode == MTD_OPS_RAW) 471 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 472 else 473 status = chip->ecc.write_oob(chip, page & chip->pagemask); 474 475 nand_deselect_target(chip); 476 477 if (status) 478 return status; 479 480 ops->oobretlen = ops->ooblen; 481 482 return 0; 483 } 484 485 /** 486 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 487 * @chip: NAND chip object 488 * @ofs: offset from device start 489 * 490 * This is the default implementation, which can be overridden by a hardware 491 * specific driver. It provides the details for writing a bad block marker to a 492 * block. 493 */ 494 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 495 { 496 struct mtd_info *mtd = nand_to_mtd(chip); 497 struct mtd_oob_ops ops; 498 uint8_t buf[2] = { 0, 0 }; 499 int ret = 0, res, page_offset; 500 501 memset(&ops, 0, sizeof(ops)); 502 ops.oobbuf = buf; 503 ops.ooboffs = chip->badblockpos; 504 if (chip->options & NAND_BUSWIDTH_16) { 505 ops.ooboffs &= ~0x01; 506 ops.len = ops.ooblen = 2; 507 } else { 508 ops.len = ops.ooblen = 1; 509 } 510 ops.mode = MTD_OPS_PLACE_OOB; 511 512 page_offset = nand_bbm_get_next_page(chip, 0); 513 514 while (page_offset >= 0) { 515 res = nand_do_write_oob(chip, 516 ofs + (page_offset * mtd->writesize), 517 &ops); 518 519 if (!ret) 520 ret = res; 521 522 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 523 } 524 525 return ret; 526 } 527 528 /** 529 * nand_markbad_bbm - mark a block by updating the BBM 530 * @chip: NAND chip object 531 * @ofs: offset of the block to mark bad 532 */ 533 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 534 { 535 if (chip->legacy.block_markbad) 536 return chip->legacy.block_markbad(chip, ofs); 537 538 return nand_default_block_markbad(chip, ofs); 539 } 540 541 /** 542 * nand_block_markbad_lowlevel - mark a block bad 543 * @chip: NAND chip object 544 * @ofs: offset from device start 545 * 546 * This function performs the generic NAND bad block marking steps (i.e., bad 547 * block table(s) and/or marker(s)). We only allow the hardware driver to 548 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 549 * 550 * We try operations in the following order: 551 * 552 * (1) erase the affected block, to allow OOB marker to be written cleanly 553 * (2) write bad block marker to OOB area of affected block (unless flag 554 * NAND_BBT_NO_OOB_BBM is present) 555 * (3) update the BBT 556 * 557 * Note that we retain the first error encountered in (2) or (3), finish the 558 * procedures, and dump the error in the end. 559 */ 560 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 561 { 562 struct mtd_info *mtd = nand_to_mtd(chip); 563 int res, ret = 0; 564 565 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 566 struct erase_info einfo; 567 568 /* Attempt erase before marking OOB */ 569 memset(&einfo, 0, sizeof(einfo)); 570 einfo.addr = ofs; 571 einfo.len = 1ULL << chip->phys_erase_shift; 572 nand_erase_nand(chip, &einfo, 0); 573 574 /* Write bad block marker to OOB */ 575 ret = nand_get_device(chip); 576 if (ret) 577 return ret; 578 579 ret = nand_markbad_bbm(chip, ofs); 580 nand_release_device(chip); 581 } 582 583 /* Mark block bad in BBT */ 584 if (chip->bbt) { 585 res = nand_markbad_bbt(chip, ofs); 586 if (!ret) 587 ret = res; 588 } 589 590 if (!ret) 591 mtd->ecc_stats.badblocks++; 592 593 return ret; 594 } 595 596 /** 597 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 598 * @mtd: MTD device structure 599 * @ofs: offset from device start 600 * 601 * Check if the block is marked as reserved. 602 */ 603 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 604 { 605 struct nand_chip *chip = mtd_to_nand(mtd); 606 607 if (!chip->bbt) 608 return 0; 609 /* Return info from the table */ 610 return nand_isreserved_bbt(chip, ofs); 611 } 612 613 /** 614 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 615 * @chip: NAND chip object 616 * @ofs: offset from device start 617 * @allowbbt: 1, if its allowed to access the bbt area 618 * 619 * Check, if the block is bad. Either by reading the bad block table or 620 * calling of the scan function. 621 */ 622 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 623 { 624 /* Return info from the table */ 625 if (chip->bbt) 626 return nand_isbad_bbt(chip, ofs, allowbbt); 627 628 return nand_isbad_bbm(chip, ofs); 629 } 630 631 /** 632 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 633 * @chip: NAND chip structure 634 * @timeout_ms: Timeout in ms 635 * 636 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 637 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 638 * returned. 639 * 640 * This helper is intended to be used when the controller does not have access 641 * to the NAND R/B pin. 642 * 643 * Be aware that calling this helper from an ->exec_op() implementation means 644 * ->exec_op() must be re-entrant. 645 * 646 * Return 0 if the NAND chip is ready, a negative error otherwise. 647 */ 648 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 649 { 650 const struct nand_sdr_timings *timings; 651 u8 status = 0; 652 int ret; 653 654 if (!nand_has_exec_op(chip)) 655 return -ENOTSUPP; 656 657 /* Wait tWB before polling the STATUS reg. */ 658 timings = nand_get_sdr_timings(nand_get_interface_config(chip)); 659 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 660 661 ret = nand_status_op(chip, NULL); 662 if (ret) 663 return ret; 664 665 /* 666 * +1 below is necessary because if we are now in the last fraction 667 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 668 * small jiffy fraction - possibly leading to false timeout 669 */ 670 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 671 do { 672 ret = nand_read_data_op(chip, &status, sizeof(status), true, 673 false); 674 if (ret) 675 break; 676 677 if (status & NAND_STATUS_READY) 678 break; 679 680 /* 681 * Typical lowest execution time for a tR on most NANDs is 10us, 682 * use this as polling delay before doing something smarter (ie. 683 * deriving a delay from the timeout value, timeout_ms/ratio). 684 */ 685 udelay(10); 686 } while (time_before(jiffies, timeout_ms)); 687 688 /* 689 * We have to exit READ_STATUS mode in order to read real data on the 690 * bus in case the WAITRDY instruction is preceding a DATA_IN 691 * instruction. 692 */ 693 nand_exit_status_op(chip); 694 695 if (ret) 696 return ret; 697 698 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 699 }; 700 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 701 702 /** 703 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 704 * @chip: NAND chip structure 705 * @gpiod: GPIO descriptor of R/B pin 706 * @timeout_ms: Timeout in ms 707 * 708 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 709 * whitin the specified timeout, -ETIMEDOUT is returned. 710 * 711 * This helper is intended to be used when the controller has access to the 712 * NAND R/B pin over GPIO. 713 * 714 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 715 */ 716 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 717 unsigned long timeout_ms) 718 { 719 720 /* 721 * Wait until R/B pin indicates chip is ready or timeout occurs. 722 * +1 below is necessary because if we are now in the last fraction 723 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 724 * small jiffy fraction - possibly leading to false timeout. 725 */ 726 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 727 do { 728 if (gpiod_get_value_cansleep(gpiod)) 729 return 0; 730 731 cond_resched(); 732 } while (time_before(jiffies, timeout_ms)); 733 734 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 735 }; 736 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 737 738 /** 739 * panic_nand_wait - [GENERIC] wait until the command is done 740 * @chip: NAND chip structure 741 * @timeo: timeout 742 * 743 * Wait for command done. This is a helper function for nand_wait used when 744 * we are in interrupt context. May happen when in panic and trying to write 745 * an oops through mtdoops. 746 */ 747 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 748 { 749 int i; 750 for (i = 0; i < timeo; i++) { 751 if (chip->legacy.dev_ready) { 752 if (chip->legacy.dev_ready(chip)) 753 break; 754 } else { 755 int ret; 756 u8 status; 757 758 ret = nand_read_data_op(chip, &status, sizeof(status), 759 true, false); 760 if (ret) 761 return; 762 763 if (status & NAND_STATUS_READY) 764 break; 765 } 766 mdelay(1); 767 } 768 } 769 770 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 771 { 772 return (chip->parameters.supports_set_get_features && 773 test_bit(addr, chip->parameters.get_feature_list)); 774 } 775 776 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 777 { 778 return (chip->parameters.supports_set_get_features && 779 test_bit(addr, chip->parameters.set_feature_list)); 780 } 781 782 /** 783 * nand_reset_interface - Reset data interface and timings 784 * @chip: The NAND chip 785 * @chipnr: Internal die id 786 * 787 * Reset the Data interface and timings to ONFI mode 0. 788 * 789 * Returns 0 for success or negative error code otherwise. 790 */ 791 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 792 { 793 const struct nand_controller_ops *ops = chip->controller->ops; 794 int ret; 795 796 if (!nand_controller_can_setup_interface(chip)) 797 return 0; 798 799 /* 800 * The ONFI specification says: 801 * " 802 * To transition from NV-DDR or NV-DDR2 to the SDR data 803 * interface, the host shall use the Reset (FFh) command 804 * using SDR timing mode 0. A device in any timing mode is 805 * required to recognize Reset (FFh) command issued in SDR 806 * timing mode 0. 807 * " 808 * 809 * Configure the data interface in SDR mode and set the 810 * timings to timing mode 0. 811 */ 812 813 chip->current_interface_config = nand_get_reset_interface_config(); 814 ret = ops->setup_interface(chip, chipnr, 815 chip->current_interface_config); 816 if (ret) 817 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 818 819 return ret; 820 } 821 822 /** 823 * nand_setup_interface - Setup the best data interface and timings 824 * @chip: The NAND chip 825 * @chipnr: Internal die id 826 * 827 * Configure what has been reported to be the best data interface and NAND 828 * timings supported by the chip and the driver. 829 * 830 * Returns 0 for success or negative error code otherwise. 831 */ 832 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 833 { 834 const struct nand_controller_ops *ops = chip->controller->ops; 835 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }; 836 int ret; 837 838 if (!nand_controller_can_setup_interface(chip)) 839 return 0; 840 841 /* 842 * A nand_reset_interface() put both the NAND chip and the NAND 843 * controller in timings mode 0. If the default mode for this chip is 844 * also 0, no need to proceed to the change again. Plus, at probe time, 845 * nand_setup_interface() uses ->set/get_features() which would 846 * fail anyway as the parameter page is not available yet. 847 */ 848 if (!chip->best_interface_config) 849 return 0; 850 851 tmode_param[0] = chip->best_interface_config->timings.mode; 852 853 /* Change the mode on the chip side (if supported by the NAND chip) */ 854 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 855 nand_select_target(chip, chipnr); 856 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 857 tmode_param); 858 nand_deselect_target(chip); 859 if (ret) 860 return ret; 861 } 862 863 /* Change the mode on the controller side */ 864 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 865 if (ret) 866 return ret; 867 868 /* Check the mode has been accepted by the chip, if supported */ 869 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 870 goto update_interface_config; 871 872 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 873 nand_select_target(chip, chipnr); 874 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 875 tmode_param); 876 nand_deselect_target(chip); 877 if (ret) 878 goto err_reset_chip; 879 880 if (tmode_param[0] != chip->best_interface_config->timings.mode) { 881 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 882 chip->best_interface_config->timings.mode); 883 goto err_reset_chip; 884 } 885 886 update_interface_config: 887 chip->current_interface_config = chip->best_interface_config; 888 889 return 0; 890 891 err_reset_chip: 892 /* 893 * Fallback to mode 0 if the chip explicitly did not ack the chosen 894 * timing mode. 895 */ 896 nand_reset_interface(chip, chipnr); 897 nand_select_target(chip, chipnr); 898 nand_reset_op(chip); 899 nand_deselect_target(chip); 900 901 return ret; 902 } 903 904 /** 905 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 906 * NAND controller and the NAND chip support 907 * @chip: the NAND chip 908 * @iface: the interface configuration (can eventually be updated) 909 * @spec_timings: specific timings, when not fitting the ONFI specification 910 * 911 * If specific timings are provided, use them. Otherwise, retrieve supported 912 * timing modes from ONFI information. 913 */ 914 int nand_choose_best_sdr_timings(struct nand_chip *chip, 915 struct nand_interface_config *iface, 916 struct nand_sdr_timings *spec_timings) 917 { 918 const struct nand_controller_ops *ops = chip->controller->ops; 919 int best_mode = 0, mode, ret; 920 921 iface->type = NAND_SDR_IFACE; 922 923 if (spec_timings) { 924 iface->timings.sdr = *spec_timings; 925 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 926 927 /* Verify the controller supports the requested interface */ 928 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 929 iface); 930 if (!ret) { 931 chip->best_interface_config = iface; 932 return ret; 933 } 934 935 /* Fallback to slower modes */ 936 best_mode = iface->timings.mode; 937 } else if (chip->parameters.onfi) { 938 best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1; 939 } 940 941 for (mode = best_mode; mode >= 0; mode--) { 942 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 943 944 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 945 iface); 946 if (!ret) 947 break; 948 } 949 950 chip->best_interface_config = iface; 951 952 return 0; 953 } 954 955 /** 956 * nand_choose_interface_config - find the best data interface and timings 957 * @chip: The NAND chip 958 * 959 * Find the best data interface and NAND timings supported by the chip 960 * and the driver. Eventually let the NAND manufacturer driver propose his own 961 * set of timings. 962 * 963 * After this function nand_chip->interface_config is initialized with the best 964 * timing mode available. 965 * 966 * Returns 0 for success or negative error code otherwise. 967 */ 968 static int nand_choose_interface_config(struct nand_chip *chip) 969 { 970 struct nand_interface_config *iface; 971 int ret; 972 973 if (!nand_controller_can_setup_interface(chip)) 974 return 0; 975 976 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 977 if (!iface) 978 return -ENOMEM; 979 980 if (chip->ops.choose_interface_config) 981 ret = chip->ops.choose_interface_config(chip, iface); 982 else 983 ret = nand_choose_best_sdr_timings(chip, iface, NULL); 984 985 if (ret) 986 kfree(iface); 987 988 return ret; 989 } 990 991 /** 992 * nand_fill_column_cycles - fill the column cycles of an address 993 * @chip: The NAND chip 994 * @addrs: Array of address cycles to fill 995 * @offset_in_page: The offset in the page 996 * 997 * Fills the first or the first two bytes of the @addrs field depending 998 * on the NAND bus width and the page size. 999 * 1000 * Returns the number of cycles needed to encode the column, or a negative 1001 * error code in case one of the arguments is invalid. 1002 */ 1003 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1004 unsigned int offset_in_page) 1005 { 1006 struct mtd_info *mtd = nand_to_mtd(chip); 1007 1008 /* Make sure the offset is less than the actual page size. */ 1009 if (offset_in_page > mtd->writesize + mtd->oobsize) 1010 return -EINVAL; 1011 1012 /* 1013 * On small page NANDs, there's a dedicated command to access the OOB 1014 * area, and the column address is relative to the start of the OOB 1015 * area, not the start of the page. Asjust the address accordingly. 1016 */ 1017 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1018 offset_in_page -= mtd->writesize; 1019 1020 /* 1021 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1022 * wide, then it must be divided by 2. 1023 */ 1024 if (chip->options & NAND_BUSWIDTH_16) { 1025 if (WARN_ON(offset_in_page % 2)) 1026 return -EINVAL; 1027 1028 offset_in_page /= 2; 1029 } 1030 1031 addrs[0] = offset_in_page; 1032 1033 /* 1034 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1035 * need 2 1036 */ 1037 if (mtd->writesize <= 512) 1038 return 1; 1039 1040 addrs[1] = offset_in_page >> 8; 1041 1042 return 2; 1043 } 1044 1045 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1046 unsigned int offset_in_page, void *buf, 1047 unsigned int len) 1048 { 1049 const struct nand_sdr_timings *sdr = 1050 nand_get_sdr_timings(nand_get_interface_config(chip)); 1051 struct mtd_info *mtd = nand_to_mtd(chip); 1052 u8 addrs[4]; 1053 struct nand_op_instr instrs[] = { 1054 NAND_OP_CMD(NAND_CMD_READ0, 0), 1055 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1056 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1057 PSEC_TO_NSEC(sdr->tRR_min)), 1058 NAND_OP_DATA_IN(len, buf, 0), 1059 }; 1060 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1061 int ret; 1062 1063 /* Drop the DATA_IN instruction if len is set to 0. */ 1064 if (!len) 1065 op.ninstrs--; 1066 1067 if (offset_in_page >= mtd->writesize) 1068 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1069 else if (offset_in_page >= 256 && 1070 !(chip->options & NAND_BUSWIDTH_16)) 1071 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1072 1073 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1074 if (ret < 0) 1075 return ret; 1076 1077 addrs[1] = page; 1078 addrs[2] = page >> 8; 1079 1080 if (chip->options & NAND_ROW_ADDR_3) { 1081 addrs[3] = page >> 16; 1082 instrs[1].ctx.addr.naddrs++; 1083 } 1084 1085 return nand_exec_op(chip, &op); 1086 } 1087 1088 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1089 unsigned int offset_in_page, void *buf, 1090 unsigned int len) 1091 { 1092 const struct nand_sdr_timings *sdr = 1093 nand_get_sdr_timings(nand_get_interface_config(chip)); 1094 u8 addrs[5]; 1095 struct nand_op_instr instrs[] = { 1096 NAND_OP_CMD(NAND_CMD_READ0, 0), 1097 NAND_OP_ADDR(4, addrs, 0), 1098 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1099 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1100 PSEC_TO_NSEC(sdr->tRR_min)), 1101 NAND_OP_DATA_IN(len, buf, 0), 1102 }; 1103 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1104 int ret; 1105 1106 /* Drop the DATA_IN instruction if len is set to 0. */ 1107 if (!len) 1108 op.ninstrs--; 1109 1110 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1111 if (ret < 0) 1112 return ret; 1113 1114 addrs[2] = page; 1115 addrs[3] = page >> 8; 1116 1117 if (chip->options & NAND_ROW_ADDR_3) { 1118 addrs[4] = page >> 16; 1119 instrs[1].ctx.addr.naddrs++; 1120 } 1121 1122 return nand_exec_op(chip, &op); 1123 } 1124 1125 /** 1126 * nand_read_page_op - Do a READ PAGE operation 1127 * @chip: The NAND chip 1128 * @page: page to read 1129 * @offset_in_page: offset within the page 1130 * @buf: buffer used to store the data 1131 * @len: length of the buffer 1132 * 1133 * This function issues a READ PAGE operation. 1134 * This function does not select/unselect the CS line. 1135 * 1136 * Returns 0 on success, a negative error code otherwise. 1137 */ 1138 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1139 unsigned int offset_in_page, void *buf, unsigned int len) 1140 { 1141 struct mtd_info *mtd = nand_to_mtd(chip); 1142 1143 if (len && !buf) 1144 return -EINVAL; 1145 1146 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1147 return -EINVAL; 1148 1149 if (nand_has_exec_op(chip)) { 1150 if (mtd->writesize > 512) 1151 return nand_lp_exec_read_page_op(chip, page, 1152 offset_in_page, buf, 1153 len); 1154 1155 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1156 buf, len); 1157 } 1158 1159 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1160 if (len) 1161 chip->legacy.read_buf(chip, buf, len); 1162 1163 return 0; 1164 } 1165 EXPORT_SYMBOL_GPL(nand_read_page_op); 1166 1167 /** 1168 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1169 * @chip: The NAND chip 1170 * @page: parameter page to read 1171 * @buf: buffer used to store the data 1172 * @len: length of the buffer 1173 * 1174 * This function issues a READ PARAMETER PAGE operation. 1175 * This function does not select/unselect the CS line. 1176 * 1177 * Returns 0 on success, a negative error code otherwise. 1178 */ 1179 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1180 unsigned int len) 1181 { 1182 unsigned int i; 1183 u8 *p = buf; 1184 1185 if (len && !buf) 1186 return -EINVAL; 1187 1188 if (nand_has_exec_op(chip)) { 1189 const struct nand_sdr_timings *sdr = 1190 nand_get_sdr_timings(nand_get_interface_config(chip)); 1191 struct nand_op_instr instrs[] = { 1192 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1193 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1194 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1195 PSEC_TO_NSEC(sdr->tRR_min)), 1196 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1197 }; 1198 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1199 1200 /* Drop the DATA_IN instruction if len is set to 0. */ 1201 if (!len) 1202 op.ninstrs--; 1203 1204 return nand_exec_op(chip, &op); 1205 } 1206 1207 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1208 for (i = 0; i < len; i++) 1209 p[i] = chip->legacy.read_byte(chip); 1210 1211 return 0; 1212 } 1213 1214 /** 1215 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1216 * @chip: The NAND chip 1217 * @offset_in_page: offset within the page 1218 * @buf: buffer used to store the data 1219 * @len: length of the buffer 1220 * @force_8bit: force 8-bit bus access 1221 * 1222 * This function issues a CHANGE READ COLUMN operation. 1223 * This function does not select/unselect the CS line. 1224 * 1225 * Returns 0 on success, a negative error code otherwise. 1226 */ 1227 int nand_change_read_column_op(struct nand_chip *chip, 1228 unsigned int offset_in_page, void *buf, 1229 unsigned int len, bool force_8bit) 1230 { 1231 struct mtd_info *mtd = nand_to_mtd(chip); 1232 1233 if (len && !buf) 1234 return -EINVAL; 1235 1236 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1237 return -EINVAL; 1238 1239 /* Small page NANDs do not support column change. */ 1240 if (mtd->writesize <= 512) 1241 return -ENOTSUPP; 1242 1243 if (nand_has_exec_op(chip)) { 1244 const struct nand_sdr_timings *sdr = 1245 nand_get_sdr_timings(nand_get_interface_config(chip)); 1246 u8 addrs[2] = {}; 1247 struct nand_op_instr instrs[] = { 1248 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1249 NAND_OP_ADDR(2, addrs, 0), 1250 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1251 PSEC_TO_NSEC(sdr->tCCS_min)), 1252 NAND_OP_DATA_IN(len, buf, 0), 1253 }; 1254 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1255 int ret; 1256 1257 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1258 if (ret < 0) 1259 return ret; 1260 1261 /* Drop the DATA_IN instruction if len is set to 0. */ 1262 if (!len) 1263 op.ninstrs--; 1264 1265 instrs[3].ctx.data.force_8bit = force_8bit; 1266 1267 return nand_exec_op(chip, &op); 1268 } 1269 1270 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1271 if (len) 1272 chip->legacy.read_buf(chip, buf, len); 1273 1274 return 0; 1275 } 1276 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1277 1278 /** 1279 * nand_read_oob_op - Do a READ OOB operation 1280 * @chip: The NAND chip 1281 * @page: page to read 1282 * @offset_in_oob: offset within the OOB area 1283 * @buf: buffer used to store the data 1284 * @len: length of the buffer 1285 * 1286 * This function issues a READ OOB operation. 1287 * This function does not select/unselect the CS line. 1288 * 1289 * Returns 0 on success, a negative error code otherwise. 1290 */ 1291 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1292 unsigned int offset_in_oob, void *buf, unsigned int len) 1293 { 1294 struct mtd_info *mtd = nand_to_mtd(chip); 1295 1296 if (len && !buf) 1297 return -EINVAL; 1298 1299 if (offset_in_oob + len > mtd->oobsize) 1300 return -EINVAL; 1301 1302 if (nand_has_exec_op(chip)) 1303 return nand_read_page_op(chip, page, 1304 mtd->writesize + offset_in_oob, 1305 buf, len); 1306 1307 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1308 if (len) 1309 chip->legacy.read_buf(chip, buf, len); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1314 1315 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1316 unsigned int offset_in_page, const void *buf, 1317 unsigned int len, bool prog) 1318 { 1319 const struct nand_sdr_timings *sdr = 1320 nand_get_sdr_timings(nand_get_interface_config(chip)); 1321 struct mtd_info *mtd = nand_to_mtd(chip); 1322 u8 addrs[5] = {}; 1323 struct nand_op_instr instrs[] = { 1324 /* 1325 * The first instruction will be dropped if we're dealing 1326 * with a large page NAND and adjusted if we're dealing 1327 * with a small page NAND and the page offset is > 255. 1328 */ 1329 NAND_OP_CMD(NAND_CMD_READ0, 0), 1330 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1331 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1332 NAND_OP_DATA_OUT(len, buf, 0), 1333 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1334 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1335 }; 1336 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1337 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1338 1339 if (naddrs < 0) 1340 return naddrs; 1341 1342 addrs[naddrs++] = page; 1343 addrs[naddrs++] = page >> 8; 1344 if (chip->options & NAND_ROW_ADDR_3) 1345 addrs[naddrs++] = page >> 16; 1346 1347 instrs[2].ctx.addr.naddrs = naddrs; 1348 1349 /* Drop the last two instructions if we're not programming the page. */ 1350 if (!prog) { 1351 op.ninstrs -= 2; 1352 /* Also drop the DATA_OUT instruction if empty. */ 1353 if (!len) 1354 op.ninstrs--; 1355 } 1356 1357 if (mtd->writesize <= 512) { 1358 /* 1359 * Small pages need some more tweaking: we have to adjust the 1360 * first instruction depending on the page offset we're trying 1361 * to access. 1362 */ 1363 if (offset_in_page >= mtd->writesize) 1364 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1365 else if (offset_in_page >= 256 && 1366 !(chip->options & NAND_BUSWIDTH_16)) 1367 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1368 } else { 1369 /* 1370 * Drop the first command if we're dealing with a large page 1371 * NAND. 1372 */ 1373 op.instrs++; 1374 op.ninstrs--; 1375 } 1376 1377 return nand_exec_op(chip, &op); 1378 } 1379 1380 /** 1381 * nand_prog_page_begin_op - starts a PROG PAGE operation 1382 * @chip: The NAND chip 1383 * @page: page to write 1384 * @offset_in_page: offset within the page 1385 * @buf: buffer containing the data to write to the page 1386 * @len: length of the buffer 1387 * 1388 * This function issues the first half of a PROG PAGE operation. 1389 * This function does not select/unselect the CS line. 1390 * 1391 * Returns 0 on success, a negative error code otherwise. 1392 */ 1393 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1394 unsigned int offset_in_page, const void *buf, 1395 unsigned int len) 1396 { 1397 struct mtd_info *mtd = nand_to_mtd(chip); 1398 1399 if (len && !buf) 1400 return -EINVAL; 1401 1402 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1403 return -EINVAL; 1404 1405 if (nand_has_exec_op(chip)) 1406 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1407 len, false); 1408 1409 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1410 1411 if (buf) 1412 chip->legacy.write_buf(chip, buf, len); 1413 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1417 1418 /** 1419 * nand_prog_page_end_op - ends a PROG PAGE operation 1420 * @chip: The NAND chip 1421 * 1422 * This function issues the second half of a PROG PAGE operation. 1423 * This function does not select/unselect the CS line. 1424 * 1425 * Returns 0 on success, a negative error code otherwise. 1426 */ 1427 int nand_prog_page_end_op(struct nand_chip *chip) 1428 { 1429 int ret; 1430 u8 status; 1431 1432 if (nand_has_exec_op(chip)) { 1433 const struct nand_sdr_timings *sdr = 1434 nand_get_sdr_timings(nand_get_interface_config(chip)); 1435 struct nand_op_instr instrs[] = { 1436 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1437 PSEC_TO_NSEC(sdr->tWB_max)), 1438 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1439 }; 1440 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1441 1442 ret = nand_exec_op(chip, &op); 1443 if (ret) 1444 return ret; 1445 1446 ret = nand_status_op(chip, &status); 1447 if (ret) 1448 return ret; 1449 } else { 1450 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1451 ret = chip->legacy.waitfunc(chip); 1452 if (ret < 0) 1453 return ret; 1454 1455 status = ret; 1456 } 1457 1458 if (status & NAND_STATUS_FAIL) 1459 return -EIO; 1460 1461 return 0; 1462 } 1463 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1464 1465 /** 1466 * nand_prog_page_op - Do a full PROG PAGE operation 1467 * @chip: The NAND chip 1468 * @page: page to write 1469 * @offset_in_page: offset within the page 1470 * @buf: buffer containing the data to write to the page 1471 * @len: length of the buffer 1472 * 1473 * This function issues a full PROG PAGE operation. 1474 * This function does not select/unselect the CS line. 1475 * 1476 * Returns 0 on success, a negative error code otherwise. 1477 */ 1478 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1479 unsigned int offset_in_page, const void *buf, 1480 unsigned int len) 1481 { 1482 struct mtd_info *mtd = nand_to_mtd(chip); 1483 u8 status; 1484 int ret; 1485 1486 if (!len || !buf) 1487 return -EINVAL; 1488 1489 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1490 return -EINVAL; 1491 1492 if (nand_has_exec_op(chip)) { 1493 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1494 len, true); 1495 if (ret) 1496 return ret; 1497 1498 ret = nand_status_op(chip, &status); 1499 if (ret) 1500 return ret; 1501 } else { 1502 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1503 page); 1504 chip->legacy.write_buf(chip, buf, len); 1505 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1506 ret = chip->legacy.waitfunc(chip); 1507 if (ret < 0) 1508 return ret; 1509 1510 status = ret; 1511 } 1512 1513 if (status & NAND_STATUS_FAIL) 1514 return -EIO; 1515 1516 return 0; 1517 } 1518 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1519 1520 /** 1521 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1522 * @chip: The NAND chip 1523 * @offset_in_page: offset within the page 1524 * @buf: buffer containing the data to send to the NAND 1525 * @len: length of the buffer 1526 * @force_8bit: force 8-bit bus access 1527 * 1528 * This function issues a CHANGE WRITE COLUMN operation. 1529 * This function does not select/unselect the CS line. 1530 * 1531 * Returns 0 on success, a negative error code otherwise. 1532 */ 1533 int nand_change_write_column_op(struct nand_chip *chip, 1534 unsigned int offset_in_page, 1535 const void *buf, unsigned int len, 1536 bool force_8bit) 1537 { 1538 struct mtd_info *mtd = nand_to_mtd(chip); 1539 1540 if (len && !buf) 1541 return -EINVAL; 1542 1543 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1544 return -EINVAL; 1545 1546 /* Small page NANDs do not support column change. */ 1547 if (mtd->writesize <= 512) 1548 return -ENOTSUPP; 1549 1550 if (nand_has_exec_op(chip)) { 1551 const struct nand_sdr_timings *sdr = 1552 nand_get_sdr_timings(nand_get_interface_config(chip)); 1553 u8 addrs[2]; 1554 struct nand_op_instr instrs[] = { 1555 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1556 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1557 NAND_OP_DATA_OUT(len, buf, 0), 1558 }; 1559 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1560 int ret; 1561 1562 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1563 if (ret < 0) 1564 return ret; 1565 1566 instrs[2].ctx.data.force_8bit = force_8bit; 1567 1568 /* Drop the DATA_OUT instruction if len is set to 0. */ 1569 if (!len) 1570 op.ninstrs--; 1571 1572 return nand_exec_op(chip, &op); 1573 } 1574 1575 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1576 if (len) 1577 chip->legacy.write_buf(chip, buf, len); 1578 1579 return 0; 1580 } 1581 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1582 1583 /** 1584 * nand_readid_op - Do a READID operation 1585 * @chip: The NAND chip 1586 * @addr: address cycle to pass after the READID command 1587 * @buf: buffer used to store the ID 1588 * @len: length of the buffer 1589 * 1590 * This function sends a READID command and reads back the ID returned by the 1591 * NAND. 1592 * This function does not select/unselect the CS line. 1593 * 1594 * Returns 0 on success, a negative error code otherwise. 1595 */ 1596 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1597 unsigned int len) 1598 { 1599 unsigned int i; 1600 u8 *id = buf; 1601 1602 if (len && !buf) 1603 return -EINVAL; 1604 1605 if (nand_has_exec_op(chip)) { 1606 const struct nand_sdr_timings *sdr = 1607 nand_get_sdr_timings(nand_get_interface_config(chip)); 1608 struct nand_op_instr instrs[] = { 1609 NAND_OP_CMD(NAND_CMD_READID, 0), 1610 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1611 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1612 }; 1613 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1614 1615 /* Drop the DATA_IN instruction if len is set to 0. */ 1616 if (!len) 1617 op.ninstrs--; 1618 1619 return nand_exec_op(chip, &op); 1620 } 1621 1622 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1623 1624 for (i = 0; i < len; i++) 1625 id[i] = chip->legacy.read_byte(chip); 1626 1627 return 0; 1628 } 1629 EXPORT_SYMBOL_GPL(nand_readid_op); 1630 1631 /** 1632 * nand_status_op - Do a STATUS operation 1633 * @chip: The NAND chip 1634 * @status: out variable to store the NAND status 1635 * 1636 * This function sends a STATUS command and reads back the status returned by 1637 * the NAND. 1638 * This function does not select/unselect the CS line. 1639 * 1640 * Returns 0 on success, a negative error code otherwise. 1641 */ 1642 int nand_status_op(struct nand_chip *chip, u8 *status) 1643 { 1644 if (nand_has_exec_op(chip)) { 1645 const struct nand_sdr_timings *sdr = 1646 nand_get_sdr_timings(nand_get_interface_config(chip)); 1647 struct nand_op_instr instrs[] = { 1648 NAND_OP_CMD(NAND_CMD_STATUS, 1649 PSEC_TO_NSEC(sdr->tADL_min)), 1650 NAND_OP_8BIT_DATA_IN(1, status, 0), 1651 }; 1652 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1653 1654 if (!status) 1655 op.ninstrs--; 1656 1657 return nand_exec_op(chip, &op); 1658 } 1659 1660 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1661 if (status) 1662 *status = chip->legacy.read_byte(chip); 1663 1664 return 0; 1665 } 1666 EXPORT_SYMBOL_GPL(nand_status_op); 1667 1668 /** 1669 * nand_exit_status_op - Exit a STATUS operation 1670 * @chip: The NAND chip 1671 * 1672 * This function sends a READ0 command to cancel the effect of the STATUS 1673 * command to avoid reading only the status until a new read command is sent. 1674 * 1675 * This function does not select/unselect the CS line. 1676 * 1677 * Returns 0 on success, a negative error code otherwise. 1678 */ 1679 int nand_exit_status_op(struct nand_chip *chip) 1680 { 1681 if (nand_has_exec_op(chip)) { 1682 struct nand_op_instr instrs[] = { 1683 NAND_OP_CMD(NAND_CMD_READ0, 0), 1684 }; 1685 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1686 1687 return nand_exec_op(chip, &op); 1688 } 1689 1690 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * nand_erase_op - Do an erase operation 1697 * @chip: The NAND chip 1698 * @eraseblock: block to erase 1699 * 1700 * This function sends an ERASE command and waits for the NAND to be ready 1701 * before returning. 1702 * This function does not select/unselect the CS line. 1703 * 1704 * Returns 0 on success, a negative error code otherwise. 1705 */ 1706 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1707 { 1708 unsigned int page = eraseblock << 1709 (chip->phys_erase_shift - chip->page_shift); 1710 int ret; 1711 u8 status; 1712 1713 if (nand_has_exec_op(chip)) { 1714 const struct nand_sdr_timings *sdr = 1715 nand_get_sdr_timings(nand_get_interface_config(chip)); 1716 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1717 struct nand_op_instr instrs[] = { 1718 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1719 NAND_OP_ADDR(2, addrs, 0), 1720 NAND_OP_CMD(NAND_CMD_ERASE2, 1721 PSEC_TO_MSEC(sdr->tWB_max)), 1722 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1723 }; 1724 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1725 1726 if (chip->options & NAND_ROW_ADDR_3) 1727 instrs[1].ctx.addr.naddrs++; 1728 1729 ret = nand_exec_op(chip, &op); 1730 if (ret) 1731 return ret; 1732 1733 ret = nand_status_op(chip, &status); 1734 if (ret) 1735 return ret; 1736 } else { 1737 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1738 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1739 1740 ret = chip->legacy.waitfunc(chip); 1741 if (ret < 0) 1742 return ret; 1743 1744 status = ret; 1745 } 1746 1747 if (status & NAND_STATUS_FAIL) 1748 return -EIO; 1749 1750 return 0; 1751 } 1752 EXPORT_SYMBOL_GPL(nand_erase_op); 1753 1754 /** 1755 * nand_set_features_op - Do a SET FEATURES operation 1756 * @chip: The NAND chip 1757 * @feature: feature id 1758 * @data: 4 bytes of data 1759 * 1760 * This function sends a SET FEATURES command and waits for the NAND to be 1761 * ready before returning. 1762 * This function does not select/unselect the CS line. 1763 * 1764 * Returns 0 on success, a negative error code otherwise. 1765 */ 1766 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1767 const void *data) 1768 { 1769 const u8 *params = data; 1770 int i, ret; 1771 1772 if (nand_has_exec_op(chip)) { 1773 const struct nand_sdr_timings *sdr = 1774 nand_get_sdr_timings(nand_get_interface_config(chip)); 1775 struct nand_op_instr instrs[] = { 1776 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1777 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1778 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1779 PSEC_TO_NSEC(sdr->tWB_max)), 1780 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1781 }; 1782 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1783 1784 return nand_exec_op(chip, &op); 1785 } 1786 1787 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1788 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1789 chip->legacy.write_byte(chip, params[i]); 1790 1791 ret = chip->legacy.waitfunc(chip); 1792 if (ret < 0) 1793 return ret; 1794 1795 if (ret & NAND_STATUS_FAIL) 1796 return -EIO; 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * nand_get_features_op - Do a GET FEATURES operation 1803 * @chip: The NAND chip 1804 * @feature: feature id 1805 * @data: 4 bytes of data 1806 * 1807 * This function sends a GET FEATURES command and waits for the NAND to be 1808 * ready before returning. 1809 * This function does not select/unselect the CS line. 1810 * 1811 * Returns 0 on success, a negative error code otherwise. 1812 */ 1813 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1814 void *data) 1815 { 1816 u8 *params = data; 1817 int i; 1818 1819 if (nand_has_exec_op(chip)) { 1820 const struct nand_sdr_timings *sdr = 1821 nand_get_sdr_timings(nand_get_interface_config(chip)); 1822 struct nand_op_instr instrs[] = { 1823 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1824 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1825 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1826 PSEC_TO_NSEC(sdr->tRR_min)), 1827 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1828 data, 0), 1829 }; 1830 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1831 1832 return nand_exec_op(chip, &op); 1833 } 1834 1835 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1836 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1837 params[i] = chip->legacy.read_byte(chip); 1838 1839 return 0; 1840 } 1841 1842 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1843 unsigned int delay_ns) 1844 { 1845 if (nand_has_exec_op(chip)) { 1846 struct nand_op_instr instrs[] = { 1847 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1848 PSEC_TO_NSEC(delay_ns)), 1849 }; 1850 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1851 1852 return nand_exec_op(chip, &op); 1853 } 1854 1855 /* Apply delay or wait for ready/busy pin */ 1856 if (!chip->legacy.dev_ready) 1857 udelay(chip->legacy.chip_delay); 1858 else 1859 nand_wait_ready(chip); 1860 1861 return 0; 1862 } 1863 1864 /** 1865 * nand_reset_op - Do a reset operation 1866 * @chip: The NAND chip 1867 * 1868 * This function sends a RESET command and waits for the NAND to be ready 1869 * before returning. 1870 * This function does not select/unselect the CS line. 1871 * 1872 * Returns 0 on success, a negative error code otherwise. 1873 */ 1874 int nand_reset_op(struct nand_chip *chip) 1875 { 1876 if (nand_has_exec_op(chip)) { 1877 const struct nand_sdr_timings *sdr = 1878 nand_get_sdr_timings(nand_get_interface_config(chip)); 1879 struct nand_op_instr instrs[] = { 1880 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1881 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1882 }; 1883 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1884 1885 return nand_exec_op(chip, &op); 1886 } 1887 1888 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 1889 1890 return 0; 1891 } 1892 EXPORT_SYMBOL_GPL(nand_reset_op); 1893 1894 /** 1895 * nand_read_data_op - Read data from the NAND 1896 * @chip: The NAND chip 1897 * @buf: buffer used to store the data 1898 * @len: length of the buffer 1899 * @force_8bit: force 8-bit bus access 1900 * @check_only: do not actually run the command, only checks if the 1901 * controller driver supports it 1902 * 1903 * This function does a raw data read on the bus. Usually used after launching 1904 * another NAND operation like nand_read_page_op(). 1905 * This function does not select/unselect the CS line. 1906 * 1907 * Returns 0 on success, a negative error code otherwise. 1908 */ 1909 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1910 bool force_8bit, bool check_only) 1911 { 1912 if (!len || !buf) 1913 return -EINVAL; 1914 1915 if (nand_has_exec_op(chip)) { 1916 struct nand_op_instr instrs[] = { 1917 NAND_OP_DATA_IN(len, buf, 0), 1918 }; 1919 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1920 1921 instrs[0].ctx.data.force_8bit = force_8bit; 1922 1923 if (check_only) 1924 return nand_check_op(chip, &op); 1925 1926 return nand_exec_op(chip, &op); 1927 } 1928 1929 if (check_only) 1930 return 0; 1931 1932 if (force_8bit) { 1933 u8 *p = buf; 1934 unsigned int i; 1935 1936 for (i = 0; i < len; i++) 1937 p[i] = chip->legacy.read_byte(chip); 1938 } else { 1939 chip->legacy.read_buf(chip, buf, len); 1940 } 1941 1942 return 0; 1943 } 1944 EXPORT_SYMBOL_GPL(nand_read_data_op); 1945 1946 /** 1947 * nand_write_data_op - Write data from the NAND 1948 * @chip: The NAND chip 1949 * @buf: buffer containing the data to send on the bus 1950 * @len: length of the buffer 1951 * @force_8bit: force 8-bit bus access 1952 * 1953 * This function does a raw data write on the bus. Usually used after launching 1954 * another NAND operation like nand_write_page_begin_op(). 1955 * This function does not select/unselect the CS line. 1956 * 1957 * Returns 0 on success, a negative error code otherwise. 1958 */ 1959 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1960 unsigned int len, bool force_8bit) 1961 { 1962 if (!len || !buf) 1963 return -EINVAL; 1964 1965 if (nand_has_exec_op(chip)) { 1966 struct nand_op_instr instrs[] = { 1967 NAND_OP_DATA_OUT(len, buf, 0), 1968 }; 1969 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1970 1971 instrs[0].ctx.data.force_8bit = force_8bit; 1972 1973 return nand_exec_op(chip, &op); 1974 } 1975 1976 if (force_8bit) { 1977 const u8 *p = buf; 1978 unsigned int i; 1979 1980 for (i = 0; i < len; i++) 1981 chip->legacy.write_byte(chip, p[i]); 1982 } else { 1983 chip->legacy.write_buf(chip, buf, len); 1984 } 1985 1986 return 0; 1987 } 1988 EXPORT_SYMBOL_GPL(nand_write_data_op); 1989 1990 /** 1991 * struct nand_op_parser_ctx - Context used by the parser 1992 * @instrs: array of all the instructions that must be addressed 1993 * @ninstrs: length of the @instrs array 1994 * @subop: Sub-operation to be passed to the NAND controller 1995 * 1996 * This structure is used by the core to split NAND operations into 1997 * sub-operations that can be handled by the NAND controller. 1998 */ 1999 struct nand_op_parser_ctx { 2000 const struct nand_op_instr *instrs; 2001 unsigned int ninstrs; 2002 struct nand_subop subop; 2003 }; 2004 2005 /** 2006 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2007 * @pat: the parser pattern element that matches @instr 2008 * @instr: pointer to the instruction to check 2009 * @start_offset: this is an in/out parameter. If @instr has already been 2010 * split, then @start_offset is the offset from which to start 2011 * (either an address cycle or an offset in the data buffer). 2012 * Conversely, if the function returns true (ie. instr must be 2013 * split), this parameter is updated to point to the first 2014 * data/address cycle that has not been taken care of. 2015 * 2016 * Some NAND controllers are limited and cannot send X address cycles with a 2017 * unique operation, or cannot read/write more than Y bytes at the same time. 2018 * In this case, split the instruction that does not fit in a single 2019 * controller-operation into two or more chunks. 2020 * 2021 * Returns true if the instruction must be split, false otherwise. 2022 * The @start_offset parameter is also updated to the offset at which the next 2023 * bundle of instruction must start (if an address or a data instruction). 2024 */ 2025 static bool 2026 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2027 const struct nand_op_instr *instr, 2028 unsigned int *start_offset) 2029 { 2030 switch (pat->type) { 2031 case NAND_OP_ADDR_INSTR: 2032 if (!pat->ctx.addr.maxcycles) 2033 break; 2034 2035 if (instr->ctx.addr.naddrs - *start_offset > 2036 pat->ctx.addr.maxcycles) { 2037 *start_offset += pat->ctx.addr.maxcycles; 2038 return true; 2039 } 2040 break; 2041 2042 case NAND_OP_DATA_IN_INSTR: 2043 case NAND_OP_DATA_OUT_INSTR: 2044 if (!pat->ctx.data.maxlen) 2045 break; 2046 2047 if (instr->ctx.data.len - *start_offset > 2048 pat->ctx.data.maxlen) { 2049 *start_offset += pat->ctx.data.maxlen; 2050 return true; 2051 } 2052 break; 2053 2054 default: 2055 break; 2056 } 2057 2058 return false; 2059 } 2060 2061 /** 2062 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2063 * remaining in the parser context 2064 * @pat: the pattern to test 2065 * @ctx: the parser context structure to match with the pattern @pat 2066 * 2067 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2068 * Returns true if this is the case, false ortherwise. When true is returned, 2069 * @ctx->subop is updated with the set of instructions to be passed to the 2070 * controller driver. 2071 */ 2072 static bool 2073 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2074 struct nand_op_parser_ctx *ctx) 2075 { 2076 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2077 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2078 const struct nand_op_instr *instr = ctx->subop.instrs; 2079 unsigned int i, ninstrs; 2080 2081 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2082 /* 2083 * The pattern instruction does not match the operation 2084 * instruction. If the instruction is marked optional in the 2085 * pattern definition, we skip the pattern element and continue 2086 * to the next one. If the element is mandatory, there's no 2087 * match and we can return false directly. 2088 */ 2089 if (instr->type != pat->elems[i].type) { 2090 if (!pat->elems[i].optional) 2091 return false; 2092 2093 continue; 2094 } 2095 2096 /* 2097 * Now check the pattern element constraints. If the pattern is 2098 * not able to handle the whole instruction in a single step, 2099 * we have to split it. 2100 * The last_instr_end_off value comes back updated to point to 2101 * the position where we have to split the instruction (the 2102 * start of the next subop chunk). 2103 */ 2104 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2105 &instr_offset)) { 2106 ninstrs++; 2107 i++; 2108 break; 2109 } 2110 2111 instr++; 2112 ninstrs++; 2113 instr_offset = 0; 2114 } 2115 2116 /* 2117 * This can happen if all instructions of a pattern are optional. 2118 * Still, if there's not at least one instruction handled by this 2119 * pattern, this is not a match, and we should try the next one (if 2120 * any). 2121 */ 2122 if (!ninstrs) 2123 return false; 2124 2125 /* 2126 * We had a match on the pattern head, but the pattern may be longer 2127 * than the instructions we're asked to execute. We need to make sure 2128 * there's no mandatory elements in the pattern tail. 2129 */ 2130 for (; i < pat->nelems; i++) { 2131 if (!pat->elems[i].optional) 2132 return false; 2133 } 2134 2135 /* 2136 * We have a match: update the subop structure accordingly and return 2137 * true. 2138 */ 2139 ctx->subop.ninstrs = ninstrs; 2140 ctx->subop.last_instr_end_off = instr_offset; 2141 2142 return true; 2143 } 2144 2145 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2146 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2147 { 2148 const struct nand_op_instr *instr; 2149 char *prefix = " "; 2150 unsigned int i; 2151 2152 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2153 2154 for (i = 0; i < ctx->ninstrs; i++) { 2155 instr = &ctx->instrs[i]; 2156 2157 if (instr == &ctx->subop.instrs[0]) 2158 prefix = " ->"; 2159 2160 nand_op_trace(prefix, instr); 2161 2162 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2163 prefix = " "; 2164 } 2165 } 2166 #else 2167 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2168 { 2169 /* NOP */ 2170 } 2171 #endif 2172 2173 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2174 const struct nand_op_parser_ctx *b) 2175 { 2176 if (a->subop.ninstrs < b->subop.ninstrs) 2177 return -1; 2178 else if (a->subop.ninstrs > b->subop.ninstrs) 2179 return 1; 2180 2181 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2182 return -1; 2183 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2184 return 1; 2185 2186 return 0; 2187 } 2188 2189 /** 2190 * nand_op_parser_exec_op - exec_op parser 2191 * @chip: the NAND chip 2192 * @parser: patterns description provided by the controller driver 2193 * @op: the NAND operation to address 2194 * @check_only: when true, the function only checks if @op can be handled but 2195 * does not execute the operation 2196 * 2197 * Helper function designed to ease integration of NAND controller drivers that 2198 * only support a limited set of instruction sequences. The supported sequences 2199 * are described in @parser, and the framework takes care of splitting @op into 2200 * multiple sub-operations (if required) and pass them back to the ->exec() 2201 * callback of the matching pattern if @check_only is set to false. 2202 * 2203 * NAND controller drivers should call this function from their own ->exec_op() 2204 * implementation. 2205 * 2206 * Returns 0 on success, a negative error code otherwise. A failure can be 2207 * caused by an unsupported operation (none of the supported patterns is able 2208 * to handle the requested operation), or an error returned by one of the 2209 * matching pattern->exec() hook. 2210 */ 2211 int nand_op_parser_exec_op(struct nand_chip *chip, 2212 const struct nand_op_parser *parser, 2213 const struct nand_operation *op, bool check_only) 2214 { 2215 struct nand_op_parser_ctx ctx = { 2216 .subop.cs = op->cs, 2217 .subop.instrs = op->instrs, 2218 .instrs = op->instrs, 2219 .ninstrs = op->ninstrs, 2220 }; 2221 unsigned int i; 2222 2223 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2224 const struct nand_op_parser_pattern *pattern; 2225 struct nand_op_parser_ctx best_ctx; 2226 int ret, best_pattern = -1; 2227 2228 for (i = 0; i < parser->npatterns; i++) { 2229 struct nand_op_parser_ctx test_ctx = ctx; 2230 2231 pattern = &parser->patterns[i]; 2232 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2233 continue; 2234 2235 if (best_pattern >= 0 && 2236 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2237 continue; 2238 2239 best_pattern = i; 2240 best_ctx = test_ctx; 2241 } 2242 2243 if (best_pattern < 0) { 2244 pr_debug("->exec_op() parser: pattern not found!\n"); 2245 return -ENOTSUPP; 2246 } 2247 2248 ctx = best_ctx; 2249 nand_op_parser_trace(&ctx); 2250 2251 if (!check_only) { 2252 pattern = &parser->patterns[best_pattern]; 2253 ret = pattern->exec(chip, &ctx.subop); 2254 if (ret) 2255 return ret; 2256 } 2257 2258 /* 2259 * Update the context structure by pointing to the start of the 2260 * next subop. 2261 */ 2262 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2263 if (ctx.subop.last_instr_end_off) 2264 ctx.subop.instrs -= 1; 2265 2266 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2267 } 2268 2269 return 0; 2270 } 2271 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2272 2273 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2274 { 2275 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2276 instr->type == NAND_OP_DATA_OUT_INSTR); 2277 } 2278 2279 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2280 unsigned int instr_idx) 2281 { 2282 return subop && instr_idx < subop->ninstrs; 2283 } 2284 2285 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2286 unsigned int instr_idx) 2287 { 2288 if (instr_idx) 2289 return 0; 2290 2291 return subop->first_instr_start_off; 2292 } 2293 2294 /** 2295 * nand_subop_get_addr_start_off - Get the start offset in an address array 2296 * @subop: The entire sub-operation 2297 * @instr_idx: Index of the instruction inside the sub-operation 2298 * 2299 * During driver development, one could be tempted to directly use the 2300 * ->addr.addrs field of address instructions. This is wrong as address 2301 * instructions might be split. 2302 * 2303 * Given an address instruction, returns the offset of the first cycle to issue. 2304 */ 2305 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2306 unsigned int instr_idx) 2307 { 2308 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2309 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2310 return 0; 2311 2312 return nand_subop_get_start_off(subop, instr_idx); 2313 } 2314 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2315 2316 /** 2317 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2318 * @subop: The entire sub-operation 2319 * @instr_idx: Index of the instruction inside the sub-operation 2320 * 2321 * During driver development, one could be tempted to directly use the 2322 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2323 * might be split. 2324 * 2325 * Given an address instruction, returns the number of address cycle to issue. 2326 */ 2327 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2328 unsigned int instr_idx) 2329 { 2330 int start_off, end_off; 2331 2332 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2333 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2334 return 0; 2335 2336 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2337 2338 if (instr_idx == subop->ninstrs - 1 && 2339 subop->last_instr_end_off) 2340 end_off = subop->last_instr_end_off; 2341 else 2342 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2343 2344 return end_off - start_off; 2345 } 2346 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2347 2348 /** 2349 * nand_subop_get_data_start_off - Get the start offset in a data array 2350 * @subop: The entire sub-operation 2351 * @instr_idx: Index of the instruction inside the sub-operation 2352 * 2353 * During driver development, one could be tempted to directly use the 2354 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2355 * instructions might be split. 2356 * 2357 * Given a data instruction, returns the offset to start from. 2358 */ 2359 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2360 unsigned int instr_idx) 2361 { 2362 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2363 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2364 return 0; 2365 2366 return nand_subop_get_start_off(subop, instr_idx); 2367 } 2368 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2369 2370 /** 2371 * nand_subop_get_data_len - Get the number of bytes to retrieve 2372 * @subop: The entire sub-operation 2373 * @instr_idx: Index of the instruction inside the sub-operation 2374 * 2375 * During driver development, one could be tempted to directly use the 2376 * ->data->len field of a data instruction. This is wrong as data instructions 2377 * might be split. 2378 * 2379 * Returns the length of the chunk of data to send/receive. 2380 */ 2381 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2382 unsigned int instr_idx) 2383 { 2384 int start_off = 0, end_off; 2385 2386 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2387 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2388 return 0; 2389 2390 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2391 2392 if (instr_idx == subop->ninstrs - 1 && 2393 subop->last_instr_end_off) 2394 end_off = subop->last_instr_end_off; 2395 else 2396 end_off = subop->instrs[instr_idx].ctx.data.len; 2397 2398 return end_off - start_off; 2399 } 2400 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2401 2402 /** 2403 * nand_reset - Reset and initialize a NAND device 2404 * @chip: The NAND chip 2405 * @chipnr: Internal die id 2406 * 2407 * Save the timings data structure, then apply SDR timings mode 0 (see 2408 * nand_reset_interface for details), do the reset operation, and apply 2409 * back the previous timings. 2410 * 2411 * Returns 0 on success, a negative error code otherwise. 2412 */ 2413 int nand_reset(struct nand_chip *chip, int chipnr) 2414 { 2415 int ret; 2416 2417 ret = nand_reset_interface(chip, chipnr); 2418 if (ret) 2419 return ret; 2420 2421 /* 2422 * The CS line has to be released before we can apply the new NAND 2423 * interface settings, hence this weird nand_select_target() 2424 * nand_deselect_target() dance. 2425 */ 2426 nand_select_target(chip, chipnr); 2427 ret = nand_reset_op(chip); 2428 nand_deselect_target(chip); 2429 if (ret) 2430 return ret; 2431 2432 ret = nand_setup_interface(chip, chipnr); 2433 if (ret) 2434 return ret; 2435 2436 return 0; 2437 } 2438 EXPORT_SYMBOL_GPL(nand_reset); 2439 2440 /** 2441 * nand_get_features - wrapper to perform a GET_FEATURE 2442 * @chip: NAND chip info structure 2443 * @addr: feature address 2444 * @subfeature_param: the subfeature parameters, a four bytes array 2445 * 2446 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2447 * operation cannot be handled. 2448 */ 2449 int nand_get_features(struct nand_chip *chip, int addr, 2450 u8 *subfeature_param) 2451 { 2452 if (!nand_supports_get_features(chip, addr)) 2453 return -ENOTSUPP; 2454 2455 if (chip->legacy.get_features) 2456 return chip->legacy.get_features(chip, addr, subfeature_param); 2457 2458 return nand_get_features_op(chip, addr, subfeature_param); 2459 } 2460 2461 /** 2462 * nand_set_features - wrapper to perform a SET_FEATURE 2463 * @chip: NAND chip info structure 2464 * @addr: feature address 2465 * @subfeature_param: the subfeature parameters, a four bytes array 2466 * 2467 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2468 * operation cannot be handled. 2469 */ 2470 int nand_set_features(struct nand_chip *chip, int addr, 2471 u8 *subfeature_param) 2472 { 2473 if (!nand_supports_set_features(chip, addr)) 2474 return -ENOTSUPP; 2475 2476 if (chip->legacy.set_features) 2477 return chip->legacy.set_features(chip, addr, subfeature_param); 2478 2479 return nand_set_features_op(chip, addr, subfeature_param); 2480 } 2481 2482 /** 2483 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2484 * @buf: buffer to test 2485 * @len: buffer length 2486 * @bitflips_threshold: maximum number of bitflips 2487 * 2488 * Check if a buffer contains only 0xff, which means the underlying region 2489 * has been erased and is ready to be programmed. 2490 * The bitflips_threshold specify the maximum number of bitflips before 2491 * considering the region is not erased. 2492 * Note: The logic of this function has been extracted from the memweight 2493 * implementation, except that nand_check_erased_buf function exit before 2494 * testing the whole buffer if the number of bitflips exceed the 2495 * bitflips_threshold value. 2496 * 2497 * Returns a positive number of bitflips less than or equal to 2498 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2499 * threshold. 2500 */ 2501 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2502 { 2503 const unsigned char *bitmap = buf; 2504 int bitflips = 0; 2505 int weight; 2506 2507 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2508 len--, bitmap++) { 2509 weight = hweight8(*bitmap); 2510 bitflips += BITS_PER_BYTE - weight; 2511 if (unlikely(bitflips > bitflips_threshold)) 2512 return -EBADMSG; 2513 } 2514 2515 for (; len >= sizeof(long); 2516 len -= sizeof(long), bitmap += sizeof(long)) { 2517 unsigned long d = *((unsigned long *)bitmap); 2518 if (d == ~0UL) 2519 continue; 2520 weight = hweight_long(d); 2521 bitflips += BITS_PER_LONG - weight; 2522 if (unlikely(bitflips > bitflips_threshold)) 2523 return -EBADMSG; 2524 } 2525 2526 for (; len > 0; len--, bitmap++) { 2527 weight = hweight8(*bitmap); 2528 bitflips += BITS_PER_BYTE - weight; 2529 if (unlikely(bitflips > bitflips_threshold)) 2530 return -EBADMSG; 2531 } 2532 2533 return bitflips; 2534 } 2535 2536 /** 2537 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2538 * 0xff data 2539 * @data: data buffer to test 2540 * @datalen: data length 2541 * @ecc: ECC buffer 2542 * @ecclen: ECC length 2543 * @extraoob: extra OOB buffer 2544 * @extraooblen: extra OOB length 2545 * @bitflips_threshold: maximum number of bitflips 2546 * 2547 * Check if a data buffer and its associated ECC and OOB data contains only 2548 * 0xff pattern, which means the underlying region has been erased and is 2549 * ready to be programmed. 2550 * The bitflips_threshold specify the maximum number of bitflips before 2551 * considering the region as not erased. 2552 * 2553 * Note: 2554 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2555 * different from the NAND page size. When fixing bitflips, ECC engines will 2556 * report the number of errors per chunk, and the NAND core infrastructure 2557 * expect you to return the maximum number of bitflips for the whole page. 2558 * This is why you should always use this function on a single chunk and 2559 * not on the whole page. After checking each chunk you should update your 2560 * max_bitflips value accordingly. 2561 * 2/ When checking for bitflips in erased pages you should not only check 2562 * the payload data but also their associated ECC data, because a user might 2563 * have programmed almost all bits to 1 but a few. In this case, we 2564 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2565 * this case. 2566 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2567 * data are protected by the ECC engine. 2568 * It could also be used if you support subpages and want to attach some 2569 * extra OOB data to an ECC chunk. 2570 * 2571 * Returns a positive number of bitflips less than or equal to 2572 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2573 * threshold. In case of success, the passed buffers are filled with 0xff. 2574 */ 2575 int nand_check_erased_ecc_chunk(void *data, int datalen, 2576 void *ecc, int ecclen, 2577 void *extraoob, int extraooblen, 2578 int bitflips_threshold) 2579 { 2580 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2581 2582 data_bitflips = nand_check_erased_buf(data, datalen, 2583 bitflips_threshold); 2584 if (data_bitflips < 0) 2585 return data_bitflips; 2586 2587 bitflips_threshold -= data_bitflips; 2588 2589 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2590 if (ecc_bitflips < 0) 2591 return ecc_bitflips; 2592 2593 bitflips_threshold -= ecc_bitflips; 2594 2595 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2596 bitflips_threshold); 2597 if (extraoob_bitflips < 0) 2598 return extraoob_bitflips; 2599 2600 if (data_bitflips) 2601 memset(data, 0xff, datalen); 2602 2603 if (ecc_bitflips) 2604 memset(ecc, 0xff, ecclen); 2605 2606 if (extraoob_bitflips) 2607 memset(extraoob, 0xff, extraooblen); 2608 2609 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2610 } 2611 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2612 2613 /** 2614 * nand_read_page_raw_notsupp - dummy read raw page function 2615 * @chip: nand chip info structure 2616 * @buf: buffer to store read data 2617 * @oob_required: caller requires OOB data read to chip->oob_poi 2618 * @page: page number to read 2619 * 2620 * Returns -ENOTSUPP unconditionally. 2621 */ 2622 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2623 int oob_required, int page) 2624 { 2625 return -ENOTSUPP; 2626 } 2627 2628 /** 2629 * nand_read_page_raw - [INTERN] read raw page data without ecc 2630 * @chip: nand chip info structure 2631 * @buf: buffer to store read data 2632 * @oob_required: caller requires OOB data read to chip->oob_poi 2633 * @page: page number to read 2634 * 2635 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2636 */ 2637 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2638 int page) 2639 { 2640 struct mtd_info *mtd = nand_to_mtd(chip); 2641 int ret; 2642 2643 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2644 if (ret) 2645 return ret; 2646 2647 if (oob_required) { 2648 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2649 false, false); 2650 if (ret) 2651 return ret; 2652 } 2653 2654 return 0; 2655 } 2656 EXPORT_SYMBOL(nand_read_page_raw); 2657 2658 /** 2659 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2660 * @chip: NAND chip info structure 2661 * @buf: buffer to store read data 2662 * @oob_required: caller requires OOB data read to chip->oob_poi 2663 * @page: page number to read 2664 * 2665 * This is a raw page read, ie. without any error detection/correction. 2666 * Monolithic means we are requesting all the relevant data (main plus 2667 * eventually OOB) to be loaded in the NAND cache and sent over the 2668 * bus (from the NAND chip to the NAND controller) in a single 2669 * operation. This is an alternative to nand_read_page_raw(), which 2670 * first reads the main data, and if the OOB data is requested too, 2671 * then reads more data on the bus. 2672 */ 2673 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2674 int oob_required, int page) 2675 { 2676 struct mtd_info *mtd = nand_to_mtd(chip); 2677 unsigned int size = mtd->writesize; 2678 u8 *read_buf = buf; 2679 int ret; 2680 2681 if (oob_required) { 2682 size += mtd->oobsize; 2683 2684 if (buf != chip->data_buf) 2685 read_buf = nand_get_data_buf(chip); 2686 } 2687 2688 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2689 if (ret) 2690 return ret; 2691 2692 if (buf != chip->data_buf) 2693 memcpy(buf, read_buf, mtd->writesize); 2694 2695 return 0; 2696 } 2697 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 2698 2699 /** 2700 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2701 * @chip: nand chip info structure 2702 * @buf: buffer to store read data 2703 * @oob_required: caller requires OOB data read to chip->oob_poi 2704 * @page: page number to read 2705 * 2706 * We need a special oob layout and handling even when OOB isn't used. 2707 */ 2708 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2709 int oob_required, int page) 2710 { 2711 struct mtd_info *mtd = nand_to_mtd(chip); 2712 int eccsize = chip->ecc.size; 2713 int eccbytes = chip->ecc.bytes; 2714 uint8_t *oob = chip->oob_poi; 2715 int steps, size, ret; 2716 2717 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2718 if (ret) 2719 return ret; 2720 2721 for (steps = chip->ecc.steps; steps > 0; steps--) { 2722 ret = nand_read_data_op(chip, buf, eccsize, false, false); 2723 if (ret) 2724 return ret; 2725 2726 buf += eccsize; 2727 2728 if (chip->ecc.prepad) { 2729 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2730 false, false); 2731 if (ret) 2732 return ret; 2733 2734 oob += chip->ecc.prepad; 2735 } 2736 2737 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 2738 if (ret) 2739 return ret; 2740 2741 oob += eccbytes; 2742 2743 if (chip->ecc.postpad) { 2744 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2745 false, false); 2746 if (ret) 2747 return ret; 2748 2749 oob += chip->ecc.postpad; 2750 } 2751 } 2752 2753 size = mtd->oobsize - (oob - chip->oob_poi); 2754 if (size) { 2755 ret = nand_read_data_op(chip, oob, size, false, false); 2756 if (ret) 2757 return ret; 2758 } 2759 2760 return 0; 2761 } 2762 2763 /** 2764 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2765 * @chip: nand chip info structure 2766 * @buf: buffer to store read data 2767 * @oob_required: caller requires OOB data read to chip->oob_poi 2768 * @page: page number to read 2769 */ 2770 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2771 int oob_required, int page) 2772 { 2773 struct mtd_info *mtd = nand_to_mtd(chip); 2774 int i, eccsize = chip->ecc.size, ret; 2775 int eccbytes = chip->ecc.bytes; 2776 int eccsteps = chip->ecc.steps; 2777 uint8_t *p = buf; 2778 uint8_t *ecc_calc = chip->ecc.calc_buf; 2779 uint8_t *ecc_code = chip->ecc.code_buf; 2780 unsigned int max_bitflips = 0; 2781 2782 chip->ecc.read_page_raw(chip, buf, 1, page); 2783 2784 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2785 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2786 2787 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2788 chip->ecc.total); 2789 if (ret) 2790 return ret; 2791 2792 eccsteps = chip->ecc.steps; 2793 p = buf; 2794 2795 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2796 int stat; 2797 2798 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2799 if (stat < 0) { 2800 mtd->ecc_stats.failed++; 2801 } else { 2802 mtd->ecc_stats.corrected += stat; 2803 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2804 } 2805 } 2806 return max_bitflips; 2807 } 2808 2809 /** 2810 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2811 * @chip: nand chip info structure 2812 * @data_offs: offset of requested data within the page 2813 * @readlen: data length 2814 * @bufpoi: buffer to store read data 2815 * @page: page number to read 2816 */ 2817 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2818 uint32_t readlen, uint8_t *bufpoi, int page) 2819 { 2820 struct mtd_info *mtd = nand_to_mtd(chip); 2821 int start_step, end_step, num_steps, ret; 2822 uint8_t *p; 2823 int data_col_addr, i, gaps = 0; 2824 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2825 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2826 int index, section = 0; 2827 unsigned int max_bitflips = 0; 2828 struct mtd_oob_region oobregion = { }; 2829 2830 /* Column address within the page aligned to ECC size (256bytes) */ 2831 start_step = data_offs / chip->ecc.size; 2832 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2833 num_steps = end_step - start_step + 1; 2834 index = start_step * chip->ecc.bytes; 2835 2836 /* Data size aligned to ECC ecc.size */ 2837 datafrag_len = num_steps * chip->ecc.size; 2838 eccfrag_len = num_steps * chip->ecc.bytes; 2839 2840 data_col_addr = start_step * chip->ecc.size; 2841 /* If we read not a page aligned data */ 2842 p = bufpoi + data_col_addr; 2843 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2844 if (ret) 2845 return ret; 2846 2847 /* Calculate ECC */ 2848 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2849 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2850 2851 /* 2852 * The performance is faster if we position offsets according to 2853 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2854 */ 2855 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2856 if (ret) 2857 return ret; 2858 2859 if (oobregion.length < eccfrag_len) 2860 gaps = 1; 2861 2862 if (gaps) { 2863 ret = nand_change_read_column_op(chip, mtd->writesize, 2864 chip->oob_poi, mtd->oobsize, 2865 false); 2866 if (ret) 2867 return ret; 2868 } else { 2869 /* 2870 * Send the command to read the particular ECC bytes take care 2871 * about buswidth alignment in read_buf. 2872 */ 2873 aligned_pos = oobregion.offset & ~(busw - 1); 2874 aligned_len = eccfrag_len; 2875 if (oobregion.offset & (busw - 1)) 2876 aligned_len++; 2877 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2878 (busw - 1)) 2879 aligned_len++; 2880 2881 ret = nand_change_read_column_op(chip, 2882 mtd->writesize + aligned_pos, 2883 &chip->oob_poi[aligned_pos], 2884 aligned_len, false); 2885 if (ret) 2886 return ret; 2887 } 2888 2889 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 2890 chip->oob_poi, index, eccfrag_len); 2891 if (ret) 2892 return ret; 2893 2894 p = bufpoi + data_col_addr; 2895 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 2896 int stat; 2897 2898 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 2899 &chip->ecc.calc_buf[i]); 2900 if (stat == -EBADMSG && 2901 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2902 /* check for empty pages with bitflips */ 2903 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2904 &chip->ecc.code_buf[i], 2905 chip->ecc.bytes, 2906 NULL, 0, 2907 chip->ecc.strength); 2908 } 2909 2910 if (stat < 0) { 2911 mtd->ecc_stats.failed++; 2912 } else { 2913 mtd->ecc_stats.corrected += stat; 2914 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2915 } 2916 } 2917 return max_bitflips; 2918 } 2919 2920 /** 2921 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 2922 * @chip: nand chip info structure 2923 * @buf: buffer to store read data 2924 * @oob_required: caller requires OOB data read to chip->oob_poi 2925 * @page: page number to read 2926 * 2927 * Not for syndrome calculating ECC controllers which need a special oob layout. 2928 */ 2929 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 2930 int oob_required, int page) 2931 { 2932 struct mtd_info *mtd = nand_to_mtd(chip); 2933 int i, eccsize = chip->ecc.size, ret; 2934 int eccbytes = chip->ecc.bytes; 2935 int eccsteps = chip->ecc.steps; 2936 uint8_t *p = buf; 2937 uint8_t *ecc_calc = chip->ecc.calc_buf; 2938 uint8_t *ecc_code = chip->ecc.code_buf; 2939 unsigned int max_bitflips = 0; 2940 2941 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2942 if (ret) 2943 return ret; 2944 2945 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2946 chip->ecc.hwctl(chip, NAND_ECC_READ); 2947 2948 ret = nand_read_data_op(chip, p, eccsize, false, false); 2949 if (ret) 2950 return ret; 2951 2952 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2953 } 2954 2955 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 2956 false); 2957 if (ret) 2958 return ret; 2959 2960 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2961 chip->ecc.total); 2962 if (ret) 2963 return ret; 2964 2965 eccsteps = chip->ecc.steps; 2966 p = buf; 2967 2968 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2969 int stat; 2970 2971 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2972 if (stat == -EBADMSG && 2973 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2974 /* check for empty pages with bitflips */ 2975 stat = nand_check_erased_ecc_chunk(p, eccsize, 2976 &ecc_code[i], eccbytes, 2977 NULL, 0, 2978 chip->ecc.strength); 2979 } 2980 2981 if (stat < 0) { 2982 mtd->ecc_stats.failed++; 2983 } else { 2984 mtd->ecc_stats.corrected += stat; 2985 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2986 } 2987 } 2988 return max_bitflips; 2989 } 2990 2991 /** 2992 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 2993 * @chip: nand chip info structure 2994 * @buf: buffer to store read data 2995 * @oob_required: caller requires OOB data read to chip->oob_poi 2996 * @page: page number to read 2997 * 2998 * The hw generator calculates the error syndrome automatically. Therefore we 2999 * need a special oob layout and handling. 3000 */ 3001 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3002 int oob_required, int page) 3003 { 3004 struct mtd_info *mtd = nand_to_mtd(chip); 3005 int ret, i, eccsize = chip->ecc.size; 3006 int eccbytes = chip->ecc.bytes; 3007 int eccsteps = chip->ecc.steps; 3008 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3009 uint8_t *p = buf; 3010 uint8_t *oob = chip->oob_poi; 3011 unsigned int max_bitflips = 0; 3012 3013 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3014 if (ret) 3015 return ret; 3016 3017 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3018 int stat; 3019 3020 chip->ecc.hwctl(chip, NAND_ECC_READ); 3021 3022 ret = nand_read_data_op(chip, p, eccsize, false, false); 3023 if (ret) 3024 return ret; 3025 3026 if (chip->ecc.prepad) { 3027 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3028 false, false); 3029 if (ret) 3030 return ret; 3031 3032 oob += chip->ecc.prepad; 3033 } 3034 3035 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3036 3037 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3038 if (ret) 3039 return ret; 3040 3041 stat = chip->ecc.correct(chip, p, oob, NULL); 3042 3043 oob += eccbytes; 3044 3045 if (chip->ecc.postpad) { 3046 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3047 false, false); 3048 if (ret) 3049 return ret; 3050 3051 oob += chip->ecc.postpad; 3052 } 3053 3054 if (stat == -EBADMSG && 3055 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3056 /* check for empty pages with bitflips */ 3057 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3058 oob - eccpadbytes, 3059 eccpadbytes, 3060 NULL, 0, 3061 chip->ecc.strength); 3062 } 3063 3064 if (stat < 0) { 3065 mtd->ecc_stats.failed++; 3066 } else { 3067 mtd->ecc_stats.corrected += stat; 3068 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3069 } 3070 } 3071 3072 /* Calculate remaining oob bytes */ 3073 i = mtd->oobsize - (oob - chip->oob_poi); 3074 if (i) { 3075 ret = nand_read_data_op(chip, oob, i, false, false); 3076 if (ret) 3077 return ret; 3078 } 3079 3080 return max_bitflips; 3081 } 3082 3083 /** 3084 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3085 * @chip: NAND chip object 3086 * @oob: oob destination address 3087 * @ops: oob ops structure 3088 * @len: size of oob to transfer 3089 */ 3090 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3091 struct mtd_oob_ops *ops, size_t len) 3092 { 3093 struct mtd_info *mtd = nand_to_mtd(chip); 3094 int ret; 3095 3096 switch (ops->mode) { 3097 3098 case MTD_OPS_PLACE_OOB: 3099 case MTD_OPS_RAW: 3100 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3101 return oob + len; 3102 3103 case MTD_OPS_AUTO_OOB: 3104 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3105 ops->ooboffs, len); 3106 BUG_ON(ret); 3107 return oob + len; 3108 3109 default: 3110 BUG(); 3111 } 3112 return NULL; 3113 } 3114 3115 /** 3116 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3117 * @chip: NAND chip object 3118 * @retry_mode: the retry mode to use 3119 * 3120 * Some vendors supply a special command to shift the Vt threshold, to be used 3121 * when there are too many bitflips in a page (i.e., ECC error). After setting 3122 * a new threshold, the host should retry reading the page. 3123 */ 3124 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3125 { 3126 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3127 3128 if (retry_mode >= chip->read_retries) 3129 return -EINVAL; 3130 3131 if (!chip->ops.setup_read_retry) 3132 return -EOPNOTSUPP; 3133 3134 return chip->ops.setup_read_retry(chip, retry_mode); 3135 } 3136 3137 static void nand_wait_readrdy(struct nand_chip *chip) 3138 { 3139 const struct nand_sdr_timings *sdr; 3140 3141 if (!(chip->options & NAND_NEED_READRDY)) 3142 return; 3143 3144 sdr = nand_get_sdr_timings(nand_get_interface_config(chip)); 3145 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 3146 } 3147 3148 /** 3149 * nand_do_read_ops - [INTERN] Read data with ECC 3150 * @chip: NAND chip object 3151 * @from: offset to read from 3152 * @ops: oob ops structure 3153 * 3154 * Internal function. Called with chip held. 3155 */ 3156 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3157 struct mtd_oob_ops *ops) 3158 { 3159 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3160 struct mtd_info *mtd = nand_to_mtd(chip); 3161 int ret = 0; 3162 uint32_t readlen = ops->len; 3163 uint32_t oobreadlen = ops->ooblen; 3164 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3165 3166 uint8_t *bufpoi, *oob, *buf; 3167 int use_bounce_buf; 3168 unsigned int max_bitflips = 0; 3169 int retry_mode = 0; 3170 bool ecc_fail = false; 3171 3172 /* Check if the region is secured */ 3173 if (nand_region_is_secured(chip, from, readlen)) 3174 return -EIO; 3175 3176 chipnr = (int)(from >> chip->chip_shift); 3177 nand_select_target(chip, chipnr); 3178 3179 realpage = (int)(from >> chip->page_shift); 3180 page = realpage & chip->pagemask; 3181 3182 col = (int)(from & (mtd->writesize - 1)); 3183 3184 buf = ops->datbuf; 3185 oob = ops->oobbuf; 3186 oob_required = oob ? 1 : 0; 3187 3188 while (1) { 3189 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3190 3191 bytes = min(mtd->writesize - col, readlen); 3192 aligned = (bytes == mtd->writesize); 3193 3194 if (!aligned) 3195 use_bounce_buf = 1; 3196 else if (chip->options & NAND_USES_DMA) 3197 use_bounce_buf = !virt_addr_valid(buf) || 3198 !IS_ALIGNED((unsigned long)buf, 3199 chip->buf_align); 3200 else 3201 use_bounce_buf = 0; 3202 3203 /* Is the current page in the buffer? */ 3204 if (realpage != chip->pagecache.page || oob) { 3205 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3206 3207 if (use_bounce_buf && aligned) 3208 pr_debug("%s: using read bounce buffer for buf@%p\n", 3209 __func__, buf); 3210 3211 read_retry: 3212 /* 3213 * Now read the page into the buffer. Absent an error, 3214 * the read methods return max bitflips per ecc step. 3215 */ 3216 if (unlikely(ops->mode == MTD_OPS_RAW)) 3217 ret = chip->ecc.read_page_raw(chip, bufpoi, 3218 oob_required, 3219 page); 3220 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3221 !oob) 3222 ret = chip->ecc.read_subpage(chip, col, bytes, 3223 bufpoi, page); 3224 else 3225 ret = chip->ecc.read_page(chip, bufpoi, 3226 oob_required, page); 3227 if (ret < 0) { 3228 if (use_bounce_buf) 3229 /* Invalidate page cache */ 3230 chip->pagecache.page = -1; 3231 break; 3232 } 3233 3234 /* 3235 * Copy back the data in the initial buffer when reading 3236 * partial pages or when a bounce buffer is required. 3237 */ 3238 if (use_bounce_buf) { 3239 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3240 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3241 (ops->mode != MTD_OPS_RAW)) { 3242 chip->pagecache.page = realpage; 3243 chip->pagecache.bitflips = ret; 3244 } else { 3245 /* Invalidate page cache */ 3246 chip->pagecache.page = -1; 3247 } 3248 memcpy(buf, bufpoi + col, bytes); 3249 } 3250 3251 if (unlikely(oob)) { 3252 int toread = min(oobreadlen, max_oobsize); 3253 3254 if (toread) { 3255 oob = nand_transfer_oob(chip, oob, ops, 3256 toread); 3257 oobreadlen -= toread; 3258 } 3259 } 3260 3261 nand_wait_readrdy(chip); 3262 3263 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3264 if (retry_mode + 1 < chip->read_retries) { 3265 retry_mode++; 3266 ret = nand_setup_read_retry(chip, 3267 retry_mode); 3268 if (ret < 0) 3269 break; 3270 3271 /* Reset ecc_stats; retry */ 3272 mtd->ecc_stats = ecc_stats; 3273 goto read_retry; 3274 } else { 3275 /* No more retry modes; real failure */ 3276 ecc_fail = true; 3277 } 3278 } 3279 3280 buf += bytes; 3281 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3282 } else { 3283 memcpy(buf, chip->data_buf + col, bytes); 3284 buf += bytes; 3285 max_bitflips = max_t(unsigned int, max_bitflips, 3286 chip->pagecache.bitflips); 3287 } 3288 3289 readlen -= bytes; 3290 3291 /* Reset to retry mode 0 */ 3292 if (retry_mode) { 3293 ret = nand_setup_read_retry(chip, 0); 3294 if (ret < 0) 3295 break; 3296 retry_mode = 0; 3297 } 3298 3299 if (!readlen) 3300 break; 3301 3302 /* For subsequent reads align to page boundary */ 3303 col = 0; 3304 /* Increment page address */ 3305 realpage++; 3306 3307 page = realpage & chip->pagemask; 3308 /* Check, if we cross a chip boundary */ 3309 if (!page) { 3310 chipnr++; 3311 nand_deselect_target(chip); 3312 nand_select_target(chip, chipnr); 3313 } 3314 } 3315 nand_deselect_target(chip); 3316 3317 ops->retlen = ops->len - (size_t) readlen; 3318 if (oob) 3319 ops->oobretlen = ops->ooblen - oobreadlen; 3320 3321 if (ret < 0) 3322 return ret; 3323 3324 if (ecc_fail) 3325 return -EBADMSG; 3326 3327 return max_bitflips; 3328 } 3329 3330 /** 3331 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3332 * @chip: nand chip info structure 3333 * @page: page number to read 3334 */ 3335 int nand_read_oob_std(struct nand_chip *chip, int page) 3336 { 3337 struct mtd_info *mtd = nand_to_mtd(chip); 3338 3339 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3340 } 3341 EXPORT_SYMBOL(nand_read_oob_std); 3342 3343 /** 3344 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3345 * with syndromes 3346 * @chip: nand chip info structure 3347 * @page: page number to read 3348 */ 3349 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3350 { 3351 struct mtd_info *mtd = nand_to_mtd(chip); 3352 int length = mtd->oobsize; 3353 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3354 int eccsize = chip->ecc.size; 3355 uint8_t *bufpoi = chip->oob_poi; 3356 int i, toread, sndrnd = 0, pos, ret; 3357 3358 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3359 if (ret) 3360 return ret; 3361 3362 for (i = 0; i < chip->ecc.steps; i++) { 3363 if (sndrnd) { 3364 int ret; 3365 3366 pos = eccsize + i * (eccsize + chunk); 3367 if (mtd->writesize > 512) 3368 ret = nand_change_read_column_op(chip, pos, 3369 NULL, 0, 3370 false); 3371 else 3372 ret = nand_read_page_op(chip, page, pos, NULL, 3373 0); 3374 3375 if (ret) 3376 return ret; 3377 } else 3378 sndrnd = 1; 3379 toread = min_t(int, length, chunk); 3380 3381 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3382 if (ret) 3383 return ret; 3384 3385 bufpoi += toread; 3386 length -= toread; 3387 } 3388 if (length > 0) { 3389 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3390 if (ret) 3391 return ret; 3392 } 3393 3394 return 0; 3395 } 3396 3397 /** 3398 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3399 * @chip: nand chip info structure 3400 * @page: page number to write 3401 */ 3402 int nand_write_oob_std(struct nand_chip *chip, int page) 3403 { 3404 struct mtd_info *mtd = nand_to_mtd(chip); 3405 3406 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3407 mtd->oobsize); 3408 } 3409 EXPORT_SYMBOL(nand_write_oob_std); 3410 3411 /** 3412 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3413 * with syndrome - only for large page flash 3414 * @chip: nand chip info structure 3415 * @page: page number to write 3416 */ 3417 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3418 { 3419 struct mtd_info *mtd = nand_to_mtd(chip); 3420 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3421 int eccsize = chip->ecc.size, length = mtd->oobsize; 3422 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3423 const uint8_t *bufpoi = chip->oob_poi; 3424 3425 /* 3426 * data-ecc-data-ecc ... ecc-oob 3427 * or 3428 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3429 */ 3430 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3431 pos = steps * (eccsize + chunk); 3432 steps = 0; 3433 } else 3434 pos = eccsize; 3435 3436 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3437 if (ret) 3438 return ret; 3439 3440 for (i = 0; i < steps; i++) { 3441 if (sndcmd) { 3442 if (mtd->writesize <= 512) { 3443 uint32_t fill = 0xFFFFFFFF; 3444 3445 len = eccsize; 3446 while (len > 0) { 3447 int num = min_t(int, len, 4); 3448 3449 ret = nand_write_data_op(chip, &fill, 3450 num, false); 3451 if (ret) 3452 return ret; 3453 3454 len -= num; 3455 } 3456 } else { 3457 pos = eccsize + i * (eccsize + chunk); 3458 ret = nand_change_write_column_op(chip, pos, 3459 NULL, 0, 3460 false); 3461 if (ret) 3462 return ret; 3463 } 3464 } else 3465 sndcmd = 1; 3466 len = min_t(int, length, chunk); 3467 3468 ret = nand_write_data_op(chip, bufpoi, len, false); 3469 if (ret) 3470 return ret; 3471 3472 bufpoi += len; 3473 length -= len; 3474 } 3475 if (length > 0) { 3476 ret = nand_write_data_op(chip, bufpoi, length, false); 3477 if (ret) 3478 return ret; 3479 } 3480 3481 return nand_prog_page_end_op(chip); 3482 } 3483 3484 /** 3485 * nand_do_read_oob - [INTERN] NAND read out-of-band 3486 * @chip: NAND chip object 3487 * @from: offset to read from 3488 * @ops: oob operations description structure 3489 * 3490 * NAND read out-of-band data from the spare area. 3491 */ 3492 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3493 struct mtd_oob_ops *ops) 3494 { 3495 struct mtd_info *mtd = nand_to_mtd(chip); 3496 unsigned int max_bitflips = 0; 3497 int page, realpage, chipnr; 3498 struct mtd_ecc_stats stats; 3499 int readlen = ops->ooblen; 3500 int len; 3501 uint8_t *buf = ops->oobbuf; 3502 int ret = 0; 3503 3504 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3505 __func__, (unsigned long long)from, readlen); 3506 3507 /* Check if the region is secured */ 3508 if (nand_region_is_secured(chip, from, readlen)) 3509 return -EIO; 3510 3511 stats = mtd->ecc_stats; 3512 3513 len = mtd_oobavail(mtd, ops); 3514 3515 chipnr = (int)(from >> chip->chip_shift); 3516 nand_select_target(chip, chipnr); 3517 3518 /* Shift to get page */ 3519 realpage = (int)(from >> chip->page_shift); 3520 page = realpage & chip->pagemask; 3521 3522 while (1) { 3523 if (ops->mode == MTD_OPS_RAW) 3524 ret = chip->ecc.read_oob_raw(chip, page); 3525 else 3526 ret = chip->ecc.read_oob(chip, page); 3527 3528 if (ret < 0) 3529 break; 3530 3531 len = min(len, readlen); 3532 buf = nand_transfer_oob(chip, buf, ops, len); 3533 3534 nand_wait_readrdy(chip); 3535 3536 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3537 3538 readlen -= len; 3539 if (!readlen) 3540 break; 3541 3542 /* Increment page address */ 3543 realpage++; 3544 3545 page = realpage & chip->pagemask; 3546 /* Check, if we cross a chip boundary */ 3547 if (!page) { 3548 chipnr++; 3549 nand_deselect_target(chip); 3550 nand_select_target(chip, chipnr); 3551 } 3552 } 3553 nand_deselect_target(chip); 3554 3555 ops->oobretlen = ops->ooblen - readlen; 3556 3557 if (ret < 0) 3558 return ret; 3559 3560 if (mtd->ecc_stats.failed - stats.failed) 3561 return -EBADMSG; 3562 3563 return max_bitflips; 3564 } 3565 3566 /** 3567 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3568 * @mtd: MTD device structure 3569 * @from: offset to read from 3570 * @ops: oob operation description structure 3571 * 3572 * NAND read data and/or out-of-band data. 3573 */ 3574 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3575 struct mtd_oob_ops *ops) 3576 { 3577 struct nand_chip *chip = mtd_to_nand(mtd); 3578 int ret; 3579 3580 ops->retlen = 0; 3581 3582 if (ops->mode != MTD_OPS_PLACE_OOB && 3583 ops->mode != MTD_OPS_AUTO_OOB && 3584 ops->mode != MTD_OPS_RAW) 3585 return -ENOTSUPP; 3586 3587 ret = nand_get_device(chip); 3588 if (ret) 3589 return ret; 3590 3591 if (!ops->datbuf) 3592 ret = nand_do_read_oob(chip, from, ops); 3593 else 3594 ret = nand_do_read_ops(chip, from, ops); 3595 3596 nand_release_device(chip); 3597 return ret; 3598 } 3599 3600 /** 3601 * nand_write_page_raw_notsupp - dummy raw page write function 3602 * @chip: nand chip info structure 3603 * @buf: data buffer 3604 * @oob_required: must write chip->oob_poi to OOB 3605 * @page: page number to write 3606 * 3607 * Returns -ENOTSUPP unconditionally. 3608 */ 3609 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3610 int oob_required, int page) 3611 { 3612 return -ENOTSUPP; 3613 } 3614 3615 /** 3616 * nand_write_page_raw - [INTERN] raw page write function 3617 * @chip: nand chip info structure 3618 * @buf: data buffer 3619 * @oob_required: must write chip->oob_poi to OOB 3620 * @page: page number to write 3621 * 3622 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3623 */ 3624 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3625 int oob_required, int page) 3626 { 3627 struct mtd_info *mtd = nand_to_mtd(chip); 3628 int ret; 3629 3630 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3631 if (ret) 3632 return ret; 3633 3634 if (oob_required) { 3635 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3636 false); 3637 if (ret) 3638 return ret; 3639 } 3640 3641 return nand_prog_page_end_op(chip); 3642 } 3643 EXPORT_SYMBOL(nand_write_page_raw); 3644 3645 /** 3646 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 3647 * @chip: NAND chip info structure 3648 * @buf: data buffer to write 3649 * @oob_required: must write chip->oob_poi to OOB 3650 * @page: page number to write 3651 * 3652 * This is a raw page write, ie. without any error detection/correction. 3653 * Monolithic means we are requesting all the relevant data (main plus 3654 * eventually OOB) to be sent over the bus and effectively programmed 3655 * into the NAND chip arrays in a single operation. This is an 3656 * alternative to nand_write_page_raw(), which first sends the main 3657 * data, then eventually send the OOB data by latching more data 3658 * cycles on the NAND bus, and finally sends the program command to 3659 * synchronyze the NAND chip cache. 3660 */ 3661 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 3662 int oob_required, int page) 3663 { 3664 struct mtd_info *mtd = nand_to_mtd(chip); 3665 unsigned int size = mtd->writesize; 3666 u8 *write_buf = (u8 *)buf; 3667 3668 if (oob_required) { 3669 size += mtd->oobsize; 3670 3671 if (buf != chip->data_buf) { 3672 write_buf = nand_get_data_buf(chip); 3673 memcpy(write_buf, buf, mtd->writesize); 3674 } 3675 } 3676 3677 return nand_prog_page_op(chip, page, 0, write_buf, size); 3678 } 3679 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 3680 3681 /** 3682 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3683 * @chip: nand chip info structure 3684 * @buf: data buffer 3685 * @oob_required: must write chip->oob_poi to OOB 3686 * @page: page number to write 3687 * 3688 * We need a special oob layout and handling even when ECC isn't checked. 3689 */ 3690 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3691 const uint8_t *buf, int oob_required, 3692 int page) 3693 { 3694 struct mtd_info *mtd = nand_to_mtd(chip); 3695 int eccsize = chip->ecc.size; 3696 int eccbytes = chip->ecc.bytes; 3697 uint8_t *oob = chip->oob_poi; 3698 int steps, size, ret; 3699 3700 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3701 if (ret) 3702 return ret; 3703 3704 for (steps = chip->ecc.steps; steps > 0; steps--) { 3705 ret = nand_write_data_op(chip, buf, eccsize, false); 3706 if (ret) 3707 return ret; 3708 3709 buf += eccsize; 3710 3711 if (chip->ecc.prepad) { 3712 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3713 false); 3714 if (ret) 3715 return ret; 3716 3717 oob += chip->ecc.prepad; 3718 } 3719 3720 ret = nand_write_data_op(chip, oob, eccbytes, false); 3721 if (ret) 3722 return ret; 3723 3724 oob += eccbytes; 3725 3726 if (chip->ecc.postpad) { 3727 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3728 false); 3729 if (ret) 3730 return ret; 3731 3732 oob += chip->ecc.postpad; 3733 } 3734 } 3735 3736 size = mtd->oobsize - (oob - chip->oob_poi); 3737 if (size) { 3738 ret = nand_write_data_op(chip, oob, size, false); 3739 if (ret) 3740 return ret; 3741 } 3742 3743 return nand_prog_page_end_op(chip); 3744 } 3745 /** 3746 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3747 * @chip: nand chip info structure 3748 * @buf: data buffer 3749 * @oob_required: must write chip->oob_poi to OOB 3750 * @page: page number to write 3751 */ 3752 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3753 int oob_required, int page) 3754 { 3755 struct mtd_info *mtd = nand_to_mtd(chip); 3756 int i, eccsize = chip->ecc.size, ret; 3757 int eccbytes = chip->ecc.bytes; 3758 int eccsteps = chip->ecc.steps; 3759 uint8_t *ecc_calc = chip->ecc.calc_buf; 3760 const uint8_t *p = buf; 3761 3762 /* Software ECC calculation */ 3763 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3764 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3765 3766 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3767 chip->ecc.total); 3768 if (ret) 3769 return ret; 3770 3771 return chip->ecc.write_page_raw(chip, buf, 1, page); 3772 } 3773 3774 /** 3775 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3776 * @chip: nand chip info structure 3777 * @buf: data buffer 3778 * @oob_required: must write chip->oob_poi to OOB 3779 * @page: page number to write 3780 */ 3781 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3782 int oob_required, int page) 3783 { 3784 struct mtd_info *mtd = nand_to_mtd(chip); 3785 int i, eccsize = chip->ecc.size, ret; 3786 int eccbytes = chip->ecc.bytes; 3787 int eccsteps = chip->ecc.steps; 3788 uint8_t *ecc_calc = chip->ecc.calc_buf; 3789 const uint8_t *p = buf; 3790 3791 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3792 if (ret) 3793 return ret; 3794 3795 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3796 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3797 3798 ret = nand_write_data_op(chip, p, eccsize, false); 3799 if (ret) 3800 return ret; 3801 3802 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3803 } 3804 3805 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3806 chip->ecc.total); 3807 if (ret) 3808 return ret; 3809 3810 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3811 if (ret) 3812 return ret; 3813 3814 return nand_prog_page_end_op(chip); 3815 } 3816 3817 3818 /** 3819 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3820 * @chip: nand chip info structure 3821 * @offset: column address of subpage within the page 3822 * @data_len: data length 3823 * @buf: data buffer 3824 * @oob_required: must write chip->oob_poi to OOB 3825 * @page: page number to write 3826 */ 3827 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3828 uint32_t data_len, const uint8_t *buf, 3829 int oob_required, int page) 3830 { 3831 struct mtd_info *mtd = nand_to_mtd(chip); 3832 uint8_t *oob_buf = chip->oob_poi; 3833 uint8_t *ecc_calc = chip->ecc.calc_buf; 3834 int ecc_size = chip->ecc.size; 3835 int ecc_bytes = chip->ecc.bytes; 3836 int ecc_steps = chip->ecc.steps; 3837 uint32_t start_step = offset / ecc_size; 3838 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3839 int oob_bytes = mtd->oobsize / ecc_steps; 3840 int step, ret; 3841 3842 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3843 if (ret) 3844 return ret; 3845 3846 for (step = 0; step < ecc_steps; step++) { 3847 /* configure controller for WRITE access */ 3848 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3849 3850 /* write data (untouched subpages already masked by 0xFF) */ 3851 ret = nand_write_data_op(chip, buf, ecc_size, false); 3852 if (ret) 3853 return ret; 3854 3855 /* mask ECC of un-touched subpages by padding 0xFF */ 3856 if ((step < start_step) || (step > end_step)) 3857 memset(ecc_calc, 0xff, ecc_bytes); 3858 else 3859 chip->ecc.calculate(chip, buf, ecc_calc); 3860 3861 /* mask OOB of un-touched subpages by padding 0xFF */ 3862 /* if oob_required, preserve OOB metadata of written subpage */ 3863 if (!oob_required || (step < start_step) || (step > end_step)) 3864 memset(oob_buf, 0xff, oob_bytes); 3865 3866 buf += ecc_size; 3867 ecc_calc += ecc_bytes; 3868 oob_buf += oob_bytes; 3869 } 3870 3871 /* copy calculated ECC for whole page to chip->buffer->oob */ 3872 /* this include masked-value(0xFF) for unwritten subpages */ 3873 ecc_calc = chip->ecc.calc_buf; 3874 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3875 chip->ecc.total); 3876 if (ret) 3877 return ret; 3878 3879 /* write OOB buffer to NAND device */ 3880 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3881 if (ret) 3882 return ret; 3883 3884 return nand_prog_page_end_op(chip); 3885 } 3886 3887 3888 /** 3889 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3890 * @chip: nand chip info structure 3891 * @buf: data buffer 3892 * @oob_required: must write chip->oob_poi to OOB 3893 * @page: page number to write 3894 * 3895 * The hw generator calculates the error syndrome automatically. Therefore we 3896 * need a special oob layout and handling. 3897 */ 3898 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 3899 int oob_required, int page) 3900 { 3901 struct mtd_info *mtd = nand_to_mtd(chip); 3902 int i, eccsize = chip->ecc.size; 3903 int eccbytes = chip->ecc.bytes; 3904 int eccsteps = chip->ecc.steps; 3905 const uint8_t *p = buf; 3906 uint8_t *oob = chip->oob_poi; 3907 int ret; 3908 3909 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3910 if (ret) 3911 return ret; 3912 3913 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3914 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3915 3916 ret = nand_write_data_op(chip, p, eccsize, false); 3917 if (ret) 3918 return ret; 3919 3920 if (chip->ecc.prepad) { 3921 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3922 false); 3923 if (ret) 3924 return ret; 3925 3926 oob += chip->ecc.prepad; 3927 } 3928 3929 chip->ecc.calculate(chip, p, oob); 3930 3931 ret = nand_write_data_op(chip, oob, eccbytes, false); 3932 if (ret) 3933 return ret; 3934 3935 oob += eccbytes; 3936 3937 if (chip->ecc.postpad) { 3938 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3939 false); 3940 if (ret) 3941 return ret; 3942 3943 oob += chip->ecc.postpad; 3944 } 3945 } 3946 3947 /* Calculate remaining oob bytes */ 3948 i = mtd->oobsize - (oob - chip->oob_poi); 3949 if (i) { 3950 ret = nand_write_data_op(chip, oob, i, false); 3951 if (ret) 3952 return ret; 3953 } 3954 3955 return nand_prog_page_end_op(chip); 3956 } 3957 3958 /** 3959 * nand_write_page - write one page 3960 * @chip: NAND chip descriptor 3961 * @offset: address offset within the page 3962 * @data_len: length of actual data to be written 3963 * @buf: the data to write 3964 * @oob_required: must write chip->oob_poi to OOB 3965 * @page: page number to write 3966 * @raw: use _raw version of write_page 3967 */ 3968 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 3969 int data_len, const uint8_t *buf, int oob_required, 3970 int page, int raw) 3971 { 3972 struct mtd_info *mtd = nand_to_mtd(chip); 3973 int status, subpage; 3974 3975 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 3976 chip->ecc.write_subpage) 3977 subpage = offset || (data_len < mtd->writesize); 3978 else 3979 subpage = 0; 3980 3981 if (unlikely(raw)) 3982 status = chip->ecc.write_page_raw(chip, buf, oob_required, 3983 page); 3984 else if (subpage) 3985 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 3986 oob_required, page); 3987 else 3988 status = chip->ecc.write_page(chip, buf, oob_required, page); 3989 3990 if (status < 0) 3991 return status; 3992 3993 return 0; 3994 } 3995 3996 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 3997 3998 /** 3999 * nand_do_write_ops - [INTERN] NAND write with ECC 4000 * @chip: NAND chip object 4001 * @to: offset to write to 4002 * @ops: oob operations description structure 4003 * 4004 * NAND write with ECC. 4005 */ 4006 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 4007 struct mtd_oob_ops *ops) 4008 { 4009 struct mtd_info *mtd = nand_to_mtd(chip); 4010 int chipnr, realpage, page, column; 4011 uint32_t writelen = ops->len; 4012 4013 uint32_t oobwritelen = ops->ooblen; 4014 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4015 4016 uint8_t *oob = ops->oobbuf; 4017 uint8_t *buf = ops->datbuf; 4018 int ret; 4019 int oob_required = oob ? 1 : 0; 4020 4021 ops->retlen = 0; 4022 if (!writelen) 4023 return 0; 4024 4025 /* Reject writes, which are not page aligned */ 4026 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4027 pr_notice("%s: attempt to write non page aligned data\n", 4028 __func__); 4029 return -EINVAL; 4030 } 4031 4032 /* Check if the region is secured */ 4033 if (nand_region_is_secured(chip, to, writelen)) 4034 return -EIO; 4035 4036 column = to & (mtd->writesize - 1); 4037 4038 chipnr = (int)(to >> chip->chip_shift); 4039 nand_select_target(chip, chipnr); 4040 4041 /* Check, if it is write protected */ 4042 if (nand_check_wp(chip)) { 4043 ret = -EIO; 4044 goto err_out; 4045 } 4046 4047 realpage = (int)(to >> chip->page_shift); 4048 page = realpage & chip->pagemask; 4049 4050 /* Invalidate the page cache, when we write to the cached page */ 4051 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 4052 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 4053 chip->pagecache.page = -1; 4054 4055 /* Don't allow multipage oob writes with offset */ 4056 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4057 ret = -EINVAL; 4058 goto err_out; 4059 } 4060 4061 while (1) { 4062 int bytes = mtd->writesize; 4063 uint8_t *wbuf = buf; 4064 int use_bounce_buf; 4065 int part_pagewr = (column || writelen < mtd->writesize); 4066 4067 if (part_pagewr) 4068 use_bounce_buf = 1; 4069 else if (chip->options & NAND_USES_DMA) 4070 use_bounce_buf = !virt_addr_valid(buf) || 4071 !IS_ALIGNED((unsigned long)buf, 4072 chip->buf_align); 4073 else 4074 use_bounce_buf = 0; 4075 4076 /* 4077 * Copy the data from the initial buffer when doing partial page 4078 * writes or when a bounce buffer is required. 4079 */ 4080 if (use_bounce_buf) { 4081 pr_debug("%s: using write bounce buffer for buf@%p\n", 4082 __func__, buf); 4083 if (part_pagewr) 4084 bytes = min_t(int, bytes - column, writelen); 4085 wbuf = nand_get_data_buf(chip); 4086 memset(wbuf, 0xff, mtd->writesize); 4087 memcpy(&wbuf[column], buf, bytes); 4088 } 4089 4090 if (unlikely(oob)) { 4091 size_t len = min(oobwritelen, oobmaxlen); 4092 oob = nand_fill_oob(chip, oob, len, ops); 4093 oobwritelen -= len; 4094 } else { 4095 /* We still need to erase leftover OOB data */ 4096 memset(chip->oob_poi, 0xff, mtd->oobsize); 4097 } 4098 4099 ret = nand_write_page(chip, column, bytes, wbuf, 4100 oob_required, page, 4101 (ops->mode == MTD_OPS_RAW)); 4102 if (ret) 4103 break; 4104 4105 writelen -= bytes; 4106 if (!writelen) 4107 break; 4108 4109 column = 0; 4110 buf += bytes; 4111 realpage++; 4112 4113 page = realpage & chip->pagemask; 4114 /* Check, if we cross a chip boundary */ 4115 if (!page) { 4116 chipnr++; 4117 nand_deselect_target(chip); 4118 nand_select_target(chip, chipnr); 4119 } 4120 } 4121 4122 ops->retlen = ops->len - writelen; 4123 if (unlikely(oob)) 4124 ops->oobretlen = ops->ooblen; 4125 4126 err_out: 4127 nand_deselect_target(chip); 4128 return ret; 4129 } 4130 4131 /** 4132 * panic_nand_write - [MTD Interface] NAND write with ECC 4133 * @mtd: MTD device structure 4134 * @to: offset to write to 4135 * @len: number of bytes to write 4136 * @retlen: pointer to variable to store the number of written bytes 4137 * @buf: the data to write 4138 * 4139 * NAND write with ECC. Used when performing writes in interrupt context, this 4140 * may for example be called by mtdoops when writing an oops while in panic. 4141 */ 4142 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4143 size_t *retlen, const uint8_t *buf) 4144 { 4145 struct nand_chip *chip = mtd_to_nand(mtd); 4146 int chipnr = (int)(to >> chip->chip_shift); 4147 struct mtd_oob_ops ops; 4148 int ret; 4149 4150 nand_select_target(chip, chipnr); 4151 4152 /* Wait for the device to get ready */ 4153 panic_nand_wait(chip, 400); 4154 4155 memset(&ops, 0, sizeof(ops)); 4156 ops.len = len; 4157 ops.datbuf = (uint8_t *)buf; 4158 ops.mode = MTD_OPS_PLACE_OOB; 4159 4160 ret = nand_do_write_ops(chip, to, &ops); 4161 4162 *retlen = ops.retlen; 4163 return ret; 4164 } 4165 4166 /** 4167 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4168 * @mtd: MTD device structure 4169 * @to: offset to write to 4170 * @ops: oob operation description structure 4171 */ 4172 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4173 struct mtd_oob_ops *ops) 4174 { 4175 struct nand_chip *chip = mtd_to_nand(mtd); 4176 int ret; 4177 4178 ops->retlen = 0; 4179 4180 ret = nand_get_device(chip); 4181 if (ret) 4182 return ret; 4183 4184 switch (ops->mode) { 4185 case MTD_OPS_PLACE_OOB: 4186 case MTD_OPS_AUTO_OOB: 4187 case MTD_OPS_RAW: 4188 break; 4189 4190 default: 4191 goto out; 4192 } 4193 4194 if (!ops->datbuf) 4195 ret = nand_do_write_oob(chip, to, ops); 4196 else 4197 ret = nand_do_write_ops(chip, to, ops); 4198 4199 out: 4200 nand_release_device(chip); 4201 return ret; 4202 } 4203 4204 /** 4205 * nand_erase - [MTD Interface] erase block(s) 4206 * @mtd: MTD device structure 4207 * @instr: erase instruction 4208 * 4209 * Erase one ore more blocks. 4210 */ 4211 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4212 { 4213 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4214 } 4215 4216 /** 4217 * nand_erase_nand - [INTERN] erase block(s) 4218 * @chip: NAND chip object 4219 * @instr: erase instruction 4220 * @allowbbt: allow erasing the bbt area 4221 * 4222 * Erase one ore more blocks. 4223 */ 4224 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4225 int allowbbt) 4226 { 4227 int page, pages_per_block, ret, chipnr; 4228 loff_t len; 4229 4230 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4231 __func__, (unsigned long long)instr->addr, 4232 (unsigned long long)instr->len); 4233 4234 if (check_offs_len(chip, instr->addr, instr->len)) 4235 return -EINVAL; 4236 4237 /* Check if the region is secured */ 4238 if (nand_region_is_secured(chip, instr->addr, instr->len)) 4239 return -EIO; 4240 4241 /* Grab the lock and see if the device is available */ 4242 ret = nand_get_device(chip); 4243 if (ret) 4244 return ret; 4245 4246 /* Shift to get first page */ 4247 page = (int)(instr->addr >> chip->page_shift); 4248 chipnr = (int)(instr->addr >> chip->chip_shift); 4249 4250 /* Calculate pages in each block */ 4251 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4252 4253 /* Select the NAND device */ 4254 nand_select_target(chip, chipnr); 4255 4256 /* Check, if it is write protected */ 4257 if (nand_check_wp(chip)) { 4258 pr_debug("%s: device is write protected!\n", 4259 __func__); 4260 ret = -EIO; 4261 goto erase_exit; 4262 } 4263 4264 /* Loop through the pages */ 4265 len = instr->len; 4266 4267 while (len) { 4268 /* Check if we have a bad block, we do not erase bad blocks! */ 4269 if (nand_block_checkbad(chip, ((loff_t) page) << 4270 chip->page_shift, allowbbt)) { 4271 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4272 __func__, page); 4273 ret = -EIO; 4274 goto erase_exit; 4275 } 4276 4277 /* 4278 * Invalidate the page cache, if we erase the block which 4279 * contains the current cached page. 4280 */ 4281 if (page <= chip->pagecache.page && chip->pagecache.page < 4282 (page + pages_per_block)) 4283 chip->pagecache.page = -1; 4284 4285 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4286 (chip->phys_erase_shift - chip->page_shift)); 4287 if (ret) { 4288 pr_debug("%s: failed erase, page 0x%08x\n", 4289 __func__, page); 4290 instr->fail_addr = 4291 ((loff_t)page << chip->page_shift); 4292 goto erase_exit; 4293 } 4294 4295 /* Increment page address and decrement length */ 4296 len -= (1ULL << chip->phys_erase_shift); 4297 page += pages_per_block; 4298 4299 /* Check, if we cross a chip boundary */ 4300 if (len && !(page & chip->pagemask)) { 4301 chipnr++; 4302 nand_deselect_target(chip); 4303 nand_select_target(chip, chipnr); 4304 } 4305 } 4306 4307 ret = 0; 4308 erase_exit: 4309 4310 /* Deselect and wake up anyone waiting on the device */ 4311 nand_deselect_target(chip); 4312 nand_release_device(chip); 4313 4314 /* Return more or less happy */ 4315 return ret; 4316 } 4317 4318 /** 4319 * nand_sync - [MTD Interface] sync 4320 * @mtd: MTD device structure 4321 * 4322 * Sync is actually a wait for chip ready function. 4323 */ 4324 static void nand_sync(struct mtd_info *mtd) 4325 { 4326 struct nand_chip *chip = mtd_to_nand(mtd); 4327 4328 pr_debug("%s: called\n", __func__); 4329 4330 /* Grab the lock and see if the device is available */ 4331 WARN_ON(nand_get_device(chip)); 4332 /* Release it and go back */ 4333 nand_release_device(chip); 4334 } 4335 4336 /** 4337 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4338 * @mtd: MTD device structure 4339 * @offs: offset relative to mtd start 4340 */ 4341 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4342 { 4343 struct nand_chip *chip = mtd_to_nand(mtd); 4344 int chipnr = (int)(offs >> chip->chip_shift); 4345 int ret; 4346 4347 /* Select the NAND device */ 4348 ret = nand_get_device(chip); 4349 if (ret) 4350 return ret; 4351 4352 nand_select_target(chip, chipnr); 4353 4354 ret = nand_block_checkbad(chip, offs, 0); 4355 4356 nand_deselect_target(chip); 4357 nand_release_device(chip); 4358 4359 return ret; 4360 } 4361 4362 /** 4363 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4364 * @mtd: MTD device structure 4365 * @ofs: offset relative to mtd start 4366 */ 4367 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4368 { 4369 int ret; 4370 4371 ret = nand_block_isbad(mtd, ofs); 4372 if (ret) { 4373 /* If it was bad already, return success and do nothing */ 4374 if (ret > 0) 4375 return 0; 4376 return ret; 4377 } 4378 4379 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4380 } 4381 4382 /** 4383 * nand_suspend - [MTD Interface] Suspend the NAND flash 4384 * @mtd: MTD device structure 4385 * 4386 * Returns 0 for success or negative error code otherwise. 4387 */ 4388 static int nand_suspend(struct mtd_info *mtd) 4389 { 4390 struct nand_chip *chip = mtd_to_nand(mtd); 4391 int ret = 0; 4392 4393 mutex_lock(&chip->lock); 4394 if (chip->ops.suspend) 4395 ret = chip->ops.suspend(chip); 4396 if (!ret) 4397 chip->suspended = 1; 4398 mutex_unlock(&chip->lock); 4399 4400 return ret; 4401 } 4402 4403 /** 4404 * nand_resume - [MTD Interface] Resume the NAND flash 4405 * @mtd: MTD device structure 4406 */ 4407 static void nand_resume(struct mtd_info *mtd) 4408 { 4409 struct nand_chip *chip = mtd_to_nand(mtd); 4410 4411 mutex_lock(&chip->lock); 4412 if (chip->suspended) { 4413 if (chip->ops.resume) 4414 chip->ops.resume(chip); 4415 chip->suspended = 0; 4416 } else { 4417 pr_err("%s called for a chip which is not in suspended state\n", 4418 __func__); 4419 } 4420 mutex_unlock(&chip->lock); 4421 } 4422 4423 /** 4424 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4425 * prevent further operations 4426 * @mtd: MTD device structure 4427 */ 4428 static void nand_shutdown(struct mtd_info *mtd) 4429 { 4430 nand_suspend(mtd); 4431 } 4432 4433 /** 4434 * nand_lock - [MTD Interface] Lock the NAND flash 4435 * @mtd: MTD device structure 4436 * @ofs: offset byte address 4437 * @len: number of bytes to lock (must be a multiple of block/page size) 4438 */ 4439 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4440 { 4441 struct nand_chip *chip = mtd_to_nand(mtd); 4442 4443 if (!chip->ops.lock_area) 4444 return -ENOTSUPP; 4445 4446 return chip->ops.lock_area(chip, ofs, len); 4447 } 4448 4449 /** 4450 * nand_unlock - [MTD Interface] Unlock the NAND flash 4451 * @mtd: MTD device structure 4452 * @ofs: offset byte address 4453 * @len: number of bytes to unlock (must be a multiple of block/page size) 4454 */ 4455 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4456 { 4457 struct nand_chip *chip = mtd_to_nand(mtd); 4458 4459 if (!chip->ops.unlock_area) 4460 return -ENOTSUPP; 4461 4462 return chip->ops.unlock_area(chip, ofs, len); 4463 } 4464 4465 /* Set default functions */ 4466 static void nand_set_defaults(struct nand_chip *chip) 4467 { 4468 /* If no controller is provided, use the dummy, legacy one. */ 4469 if (!chip->controller) { 4470 chip->controller = &chip->legacy.dummy_controller; 4471 nand_controller_init(chip->controller); 4472 } 4473 4474 nand_legacy_set_defaults(chip); 4475 4476 if (!chip->buf_align) 4477 chip->buf_align = 1; 4478 } 4479 4480 /* Sanitize ONFI strings so we can safely print them */ 4481 void sanitize_string(uint8_t *s, size_t len) 4482 { 4483 ssize_t i; 4484 4485 /* Null terminate */ 4486 s[len - 1] = 0; 4487 4488 /* Remove non printable chars */ 4489 for (i = 0; i < len - 1; i++) { 4490 if (s[i] < ' ' || s[i] > 127) 4491 s[i] = '?'; 4492 } 4493 4494 /* Remove trailing spaces */ 4495 strim(s); 4496 } 4497 4498 /* 4499 * nand_id_has_period - Check if an ID string has a given wraparound period 4500 * @id_data: the ID string 4501 * @arrlen: the length of the @id_data array 4502 * @period: the period of repitition 4503 * 4504 * Check if an ID string is repeated within a given sequence of bytes at 4505 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4506 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4507 * if the repetition has a period of @period; otherwise, returns zero. 4508 */ 4509 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4510 { 4511 int i, j; 4512 for (i = 0; i < period; i++) 4513 for (j = i + period; j < arrlen; j += period) 4514 if (id_data[i] != id_data[j]) 4515 return 0; 4516 return 1; 4517 } 4518 4519 /* 4520 * nand_id_len - Get the length of an ID string returned by CMD_READID 4521 * @id_data: the ID string 4522 * @arrlen: the length of the @id_data array 4523 4524 * Returns the length of the ID string, according to known wraparound/trailing 4525 * zero patterns. If no pattern exists, returns the length of the array. 4526 */ 4527 static int nand_id_len(u8 *id_data, int arrlen) 4528 { 4529 int last_nonzero, period; 4530 4531 /* Find last non-zero byte */ 4532 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4533 if (id_data[last_nonzero]) 4534 break; 4535 4536 /* All zeros */ 4537 if (last_nonzero < 0) 4538 return 0; 4539 4540 /* Calculate wraparound period */ 4541 for (period = 1; period < arrlen; period++) 4542 if (nand_id_has_period(id_data, arrlen, period)) 4543 break; 4544 4545 /* There's a repeated pattern */ 4546 if (period < arrlen) 4547 return period; 4548 4549 /* There are trailing zeros */ 4550 if (last_nonzero < arrlen - 1) 4551 return last_nonzero + 1; 4552 4553 /* No pattern detected */ 4554 return arrlen; 4555 } 4556 4557 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4558 static int nand_get_bits_per_cell(u8 cellinfo) 4559 { 4560 int bits; 4561 4562 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4563 bits >>= NAND_CI_CELLTYPE_SHIFT; 4564 return bits + 1; 4565 } 4566 4567 /* 4568 * Many new NAND share similar device ID codes, which represent the size of the 4569 * chip. The rest of the parameters must be decoded according to generic or 4570 * manufacturer-specific "extended ID" decoding patterns. 4571 */ 4572 void nand_decode_ext_id(struct nand_chip *chip) 4573 { 4574 struct nand_memory_organization *memorg; 4575 struct mtd_info *mtd = nand_to_mtd(chip); 4576 int extid; 4577 u8 *id_data = chip->id.data; 4578 4579 memorg = nanddev_get_memorg(&chip->base); 4580 4581 /* The 3rd id byte holds MLC / multichip data */ 4582 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4583 /* The 4th id byte is the important one */ 4584 extid = id_data[3]; 4585 4586 /* Calc pagesize */ 4587 memorg->pagesize = 1024 << (extid & 0x03); 4588 mtd->writesize = memorg->pagesize; 4589 extid >>= 2; 4590 /* Calc oobsize */ 4591 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4592 mtd->oobsize = memorg->oobsize; 4593 extid >>= 2; 4594 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4595 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4596 memorg->pagesize; 4597 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4598 extid >>= 2; 4599 /* Get buswidth information */ 4600 if (extid & 0x1) 4601 chip->options |= NAND_BUSWIDTH_16; 4602 } 4603 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4604 4605 /* 4606 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4607 * decodes a matching ID table entry and assigns the MTD size parameters for 4608 * the chip. 4609 */ 4610 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4611 { 4612 struct mtd_info *mtd = nand_to_mtd(chip); 4613 struct nand_memory_organization *memorg; 4614 4615 memorg = nanddev_get_memorg(&chip->base); 4616 4617 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4618 mtd->erasesize = type->erasesize; 4619 memorg->pagesize = type->pagesize; 4620 mtd->writesize = memorg->pagesize; 4621 memorg->oobsize = memorg->pagesize / 32; 4622 mtd->oobsize = memorg->oobsize; 4623 4624 /* All legacy ID NAND are small-page, SLC */ 4625 memorg->bits_per_cell = 1; 4626 } 4627 4628 /* 4629 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4630 * heuristic patterns using various detected parameters (e.g., manufacturer, 4631 * page size, cell-type information). 4632 */ 4633 static void nand_decode_bbm_options(struct nand_chip *chip) 4634 { 4635 struct mtd_info *mtd = nand_to_mtd(chip); 4636 4637 /* Set the bad block position */ 4638 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4639 chip->badblockpos = NAND_BBM_POS_LARGE; 4640 else 4641 chip->badblockpos = NAND_BBM_POS_SMALL; 4642 } 4643 4644 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4645 { 4646 return type->id_len; 4647 } 4648 4649 static bool find_full_id_nand(struct nand_chip *chip, 4650 struct nand_flash_dev *type) 4651 { 4652 struct nand_device *base = &chip->base; 4653 struct nand_ecc_props requirements; 4654 struct mtd_info *mtd = nand_to_mtd(chip); 4655 struct nand_memory_organization *memorg; 4656 u8 *id_data = chip->id.data; 4657 4658 memorg = nanddev_get_memorg(&chip->base); 4659 4660 if (!strncmp(type->id, id_data, type->id_len)) { 4661 memorg->pagesize = type->pagesize; 4662 mtd->writesize = memorg->pagesize; 4663 memorg->pages_per_eraseblock = type->erasesize / 4664 type->pagesize; 4665 mtd->erasesize = type->erasesize; 4666 memorg->oobsize = type->oobsize; 4667 mtd->oobsize = memorg->oobsize; 4668 4669 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4670 memorg->eraseblocks_per_lun = 4671 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4672 memorg->pagesize * 4673 memorg->pages_per_eraseblock); 4674 chip->options |= type->options; 4675 requirements.strength = NAND_ECC_STRENGTH(type); 4676 requirements.step_size = NAND_ECC_STEP(type); 4677 nanddev_set_ecc_requirements(base, &requirements); 4678 4679 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4680 if (!chip->parameters.model) 4681 return false; 4682 4683 return true; 4684 } 4685 return false; 4686 } 4687 4688 /* 4689 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4690 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4691 * table. 4692 */ 4693 static void nand_manufacturer_detect(struct nand_chip *chip) 4694 { 4695 /* 4696 * Try manufacturer detection if available and use 4697 * nand_decode_ext_id() otherwise. 4698 */ 4699 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4700 chip->manufacturer.desc->ops->detect) { 4701 struct nand_memory_organization *memorg; 4702 4703 memorg = nanddev_get_memorg(&chip->base); 4704 4705 /* The 3rd id byte holds MLC / multichip data */ 4706 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4707 chip->manufacturer.desc->ops->detect(chip); 4708 } else { 4709 nand_decode_ext_id(chip); 4710 } 4711 } 4712 4713 /* 4714 * Manufacturer initialization. This function is called for all NANDs including 4715 * ONFI and JEDEC compliant ones. 4716 * Manufacturer drivers should put all their specific initialization code in 4717 * their ->init() hook. 4718 */ 4719 static int nand_manufacturer_init(struct nand_chip *chip) 4720 { 4721 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4722 !chip->manufacturer.desc->ops->init) 4723 return 0; 4724 4725 return chip->manufacturer.desc->ops->init(chip); 4726 } 4727 4728 /* 4729 * Manufacturer cleanup. This function is called for all NANDs including 4730 * ONFI and JEDEC compliant ones. 4731 * Manufacturer drivers should put all their specific cleanup code in their 4732 * ->cleanup() hook. 4733 */ 4734 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4735 { 4736 /* Release manufacturer private data */ 4737 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4738 chip->manufacturer.desc->ops->cleanup) 4739 chip->manufacturer.desc->ops->cleanup(chip); 4740 } 4741 4742 static const char * 4743 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 4744 { 4745 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 4746 } 4747 4748 /* 4749 * Get the flash and manufacturer id and lookup if the type is supported. 4750 */ 4751 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4752 { 4753 const struct nand_manufacturer_desc *manufacturer_desc; 4754 struct mtd_info *mtd = nand_to_mtd(chip); 4755 struct nand_memory_organization *memorg; 4756 int busw, ret; 4757 u8 *id_data = chip->id.data; 4758 u8 maf_id, dev_id; 4759 u64 targetsize; 4760 4761 /* 4762 * Let's start by initializing memorg fields that might be left 4763 * unassigned by the ID-based detection logic. 4764 */ 4765 memorg = nanddev_get_memorg(&chip->base); 4766 memorg->planes_per_lun = 1; 4767 memorg->luns_per_target = 1; 4768 4769 /* 4770 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4771 * after power-up. 4772 */ 4773 ret = nand_reset(chip, 0); 4774 if (ret) 4775 return ret; 4776 4777 /* Select the device */ 4778 nand_select_target(chip, 0); 4779 4780 /* Send the command for reading device ID */ 4781 ret = nand_readid_op(chip, 0, id_data, 2); 4782 if (ret) 4783 return ret; 4784 4785 /* Read manufacturer and device IDs */ 4786 maf_id = id_data[0]; 4787 dev_id = id_data[1]; 4788 4789 /* 4790 * Try again to make sure, as some systems the bus-hold or other 4791 * interface concerns can cause random data which looks like a 4792 * possibly credible NAND flash to appear. If the two results do 4793 * not match, ignore the device completely. 4794 */ 4795 4796 /* Read entire ID string */ 4797 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4798 if (ret) 4799 return ret; 4800 4801 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4802 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4803 maf_id, dev_id, id_data[0], id_data[1]); 4804 return -ENODEV; 4805 } 4806 4807 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4808 4809 /* Try to identify manufacturer */ 4810 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 4811 chip->manufacturer.desc = manufacturer_desc; 4812 4813 if (!type) 4814 type = nand_flash_ids; 4815 4816 /* 4817 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4818 * override it. 4819 * This is required to make sure initial NAND bus width set by the 4820 * NAND controller driver is coherent with the real NAND bus width 4821 * (extracted by auto-detection code). 4822 */ 4823 busw = chip->options & NAND_BUSWIDTH_16; 4824 4825 /* 4826 * The flag is only set (never cleared), reset it to its default value 4827 * before starting auto-detection. 4828 */ 4829 chip->options &= ~NAND_BUSWIDTH_16; 4830 4831 for (; type->name != NULL; type++) { 4832 if (is_full_id_nand(type)) { 4833 if (find_full_id_nand(chip, type)) 4834 goto ident_done; 4835 } else if (dev_id == type->dev_id) { 4836 break; 4837 } 4838 } 4839 4840 if (!type->name || !type->pagesize) { 4841 /* Check if the chip is ONFI compliant */ 4842 ret = nand_onfi_detect(chip); 4843 if (ret < 0) 4844 return ret; 4845 else if (ret) 4846 goto ident_done; 4847 4848 /* Check if the chip is JEDEC compliant */ 4849 ret = nand_jedec_detect(chip); 4850 if (ret < 0) 4851 return ret; 4852 else if (ret) 4853 goto ident_done; 4854 } 4855 4856 if (!type->name) 4857 return -ENODEV; 4858 4859 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4860 if (!chip->parameters.model) 4861 return -ENOMEM; 4862 4863 if (!type->pagesize) 4864 nand_manufacturer_detect(chip); 4865 else 4866 nand_decode_id(chip, type); 4867 4868 /* Get chip options */ 4869 chip->options |= type->options; 4870 4871 memorg->eraseblocks_per_lun = 4872 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4873 memorg->pagesize * 4874 memorg->pages_per_eraseblock); 4875 4876 ident_done: 4877 if (!mtd->name) 4878 mtd->name = chip->parameters.model; 4879 4880 if (chip->options & NAND_BUSWIDTH_AUTO) { 4881 WARN_ON(busw & NAND_BUSWIDTH_16); 4882 nand_set_defaults(chip); 4883 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4884 /* 4885 * Check, if buswidth is correct. Hardware drivers should set 4886 * chip correct! 4887 */ 4888 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4889 maf_id, dev_id); 4890 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 4891 mtd->name); 4892 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4893 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4894 ret = -EINVAL; 4895 4896 goto free_detect_allocation; 4897 } 4898 4899 nand_decode_bbm_options(chip); 4900 4901 /* Calculate the address shift from the page size */ 4902 chip->page_shift = ffs(mtd->writesize) - 1; 4903 /* Convert chipsize to number of pages per chip -1 */ 4904 targetsize = nanddev_target_size(&chip->base); 4905 chip->pagemask = (targetsize >> chip->page_shift) - 1; 4906 4907 chip->bbt_erase_shift = chip->phys_erase_shift = 4908 ffs(mtd->erasesize) - 1; 4909 if (targetsize & 0xffffffff) 4910 chip->chip_shift = ffs((unsigned)targetsize) - 1; 4911 else { 4912 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 4913 chip->chip_shift += 32 - 1; 4914 } 4915 4916 if (chip->chip_shift - chip->page_shift > 16) 4917 chip->options |= NAND_ROW_ADDR_3; 4918 4919 chip->badblockbits = 8; 4920 4921 nand_legacy_adjust_cmdfunc(chip); 4922 4923 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4924 maf_id, dev_id); 4925 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 4926 chip->parameters.model); 4927 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 4928 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 4929 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 4930 return 0; 4931 4932 free_detect_allocation: 4933 kfree(chip->parameters.model); 4934 4935 return ret; 4936 } 4937 4938 static enum nand_ecc_engine_type 4939 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) 4940 { 4941 enum nand_ecc_legacy_mode { 4942 NAND_ECC_INVALID, 4943 NAND_ECC_NONE, 4944 NAND_ECC_SOFT, 4945 NAND_ECC_SOFT_BCH, 4946 NAND_ECC_HW, 4947 NAND_ECC_HW_SYNDROME, 4948 NAND_ECC_ON_DIE, 4949 }; 4950 const char * const nand_ecc_legacy_modes[] = { 4951 [NAND_ECC_NONE] = "none", 4952 [NAND_ECC_SOFT] = "soft", 4953 [NAND_ECC_SOFT_BCH] = "soft_bch", 4954 [NAND_ECC_HW] = "hw", 4955 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 4956 [NAND_ECC_ON_DIE] = "on-die", 4957 }; 4958 enum nand_ecc_legacy_mode eng_type; 4959 const char *pm; 4960 int err; 4961 4962 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4963 if (err) 4964 return NAND_ECC_ENGINE_TYPE_INVALID; 4965 4966 for (eng_type = NAND_ECC_NONE; 4967 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { 4968 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { 4969 switch (eng_type) { 4970 case NAND_ECC_NONE: 4971 return NAND_ECC_ENGINE_TYPE_NONE; 4972 case NAND_ECC_SOFT: 4973 case NAND_ECC_SOFT_BCH: 4974 return NAND_ECC_ENGINE_TYPE_SOFT; 4975 case NAND_ECC_HW: 4976 case NAND_ECC_HW_SYNDROME: 4977 return NAND_ECC_ENGINE_TYPE_ON_HOST; 4978 case NAND_ECC_ON_DIE: 4979 return NAND_ECC_ENGINE_TYPE_ON_DIE; 4980 default: 4981 break; 4982 } 4983 } 4984 } 4985 4986 return NAND_ECC_ENGINE_TYPE_INVALID; 4987 } 4988 4989 static enum nand_ecc_placement 4990 of_get_rawnand_ecc_placement_legacy(struct device_node *np) 4991 { 4992 const char *pm; 4993 int err; 4994 4995 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4996 if (!err) { 4997 if (!strcasecmp(pm, "hw_syndrome")) 4998 return NAND_ECC_PLACEMENT_INTERLEAVED; 4999 } 5000 5001 return NAND_ECC_PLACEMENT_UNKNOWN; 5002 } 5003 5004 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) 5005 { 5006 const char *pm; 5007 int err; 5008 5009 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5010 if (!err) { 5011 if (!strcasecmp(pm, "soft")) 5012 return NAND_ECC_ALGO_HAMMING; 5013 else if (!strcasecmp(pm, "soft_bch")) 5014 return NAND_ECC_ALGO_BCH; 5015 } 5016 5017 return NAND_ECC_ALGO_UNKNOWN; 5018 } 5019 5020 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) 5021 { 5022 struct device_node *dn = nand_get_flash_node(chip); 5023 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; 5024 5025 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5026 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); 5027 5028 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) 5029 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); 5030 5031 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) 5032 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); 5033 } 5034 5035 static int of_get_nand_bus_width(struct device_node *np) 5036 { 5037 u32 val; 5038 5039 if (of_property_read_u32(np, "nand-bus-width", &val)) 5040 return 8; 5041 5042 switch (val) { 5043 case 8: 5044 case 16: 5045 return val; 5046 default: 5047 return -EIO; 5048 } 5049 } 5050 5051 static bool of_get_nand_on_flash_bbt(struct device_node *np) 5052 { 5053 return of_property_read_bool(np, "nand-on-flash-bbt"); 5054 } 5055 5056 static int of_get_nand_secure_regions(struct nand_chip *chip) 5057 { 5058 struct device_node *dn = nand_get_flash_node(chip); 5059 int nr_elem, i, j; 5060 5061 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); 5062 if (!nr_elem) 5063 return 0; 5064 5065 chip->nr_secure_regions = nr_elem / 2; 5066 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), 5067 GFP_KERNEL); 5068 if (!chip->secure_regions) 5069 return -ENOMEM; 5070 5071 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { 5072 of_property_read_u64_index(dn, "secure-regions", j, 5073 &chip->secure_regions[i].offset); 5074 of_property_read_u64_index(dn, "secure-regions", j + 1, 5075 &chip->secure_regions[i].size); 5076 } 5077 5078 return 0; 5079 } 5080 5081 static int rawnand_dt_init(struct nand_chip *chip) 5082 { 5083 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); 5084 struct device_node *dn = nand_get_flash_node(chip); 5085 5086 if (!dn) 5087 return 0; 5088 5089 if (of_get_nand_bus_width(dn) == 16) 5090 chip->options |= NAND_BUSWIDTH_16; 5091 5092 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5093 chip->options |= NAND_IS_BOOT_MEDIUM; 5094 5095 if (of_get_nand_on_flash_bbt(dn)) 5096 chip->bbt_options |= NAND_BBT_USE_FLASH; 5097 5098 of_get_nand_ecc_user_config(nand); 5099 of_get_nand_ecc_legacy_user_config(chip); 5100 5101 /* 5102 * If neither the user nor the NAND controller have requested a specific 5103 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. 5104 */ 5105 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 5106 5107 /* 5108 * Use the user requested engine type, unless there is none, in this 5109 * case default to the NAND controller choice, otherwise fallback to 5110 * the raw NAND default one. 5111 */ 5112 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) 5113 chip->ecc.engine_type = nand->ecc.user_conf.engine_type; 5114 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5115 chip->ecc.engine_type = nand->ecc.defaults.engine_type; 5116 5117 chip->ecc.placement = nand->ecc.user_conf.placement; 5118 chip->ecc.algo = nand->ecc.user_conf.algo; 5119 chip->ecc.strength = nand->ecc.user_conf.strength; 5120 chip->ecc.size = nand->ecc.user_conf.step_size; 5121 5122 return 0; 5123 } 5124 5125 /** 5126 * nand_scan_ident - Scan for the NAND device 5127 * @chip: NAND chip object 5128 * @maxchips: number of chips to scan for 5129 * @table: alternative NAND ID table 5130 * 5131 * This is the first phase of the normal nand_scan() function. It reads the 5132 * flash ID and sets up MTD fields accordingly. 5133 * 5134 * This helper used to be called directly from controller drivers that needed 5135 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5136 * prevented dynamic allocations during this phase which was unconvenient and 5137 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5138 */ 5139 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5140 struct nand_flash_dev *table) 5141 { 5142 struct mtd_info *mtd = nand_to_mtd(chip); 5143 struct nand_memory_organization *memorg; 5144 int nand_maf_id, nand_dev_id; 5145 unsigned int i; 5146 int ret; 5147 5148 memorg = nanddev_get_memorg(&chip->base); 5149 5150 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5151 chip->cur_cs = -1; 5152 5153 mutex_init(&chip->lock); 5154 5155 /* Enforce the right timings for reset/detection */ 5156 chip->current_interface_config = nand_get_reset_interface_config(); 5157 5158 ret = rawnand_dt_init(chip); 5159 if (ret) 5160 return ret; 5161 5162 if (!mtd->name && mtd->dev.parent) 5163 mtd->name = dev_name(mtd->dev.parent); 5164 5165 /* Set the default functions */ 5166 nand_set_defaults(chip); 5167 5168 ret = nand_legacy_check_hooks(chip); 5169 if (ret) 5170 return ret; 5171 5172 memorg->ntargets = maxchips; 5173 5174 /* Read the flash type */ 5175 ret = nand_detect(chip, table); 5176 if (ret) { 5177 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5178 pr_warn("No NAND device found\n"); 5179 nand_deselect_target(chip); 5180 return ret; 5181 } 5182 5183 nand_maf_id = chip->id.data[0]; 5184 nand_dev_id = chip->id.data[1]; 5185 5186 nand_deselect_target(chip); 5187 5188 /* Check for a chip array */ 5189 for (i = 1; i < maxchips; i++) { 5190 u8 id[2]; 5191 5192 /* See comment in nand_get_flash_type for reset */ 5193 ret = nand_reset(chip, i); 5194 if (ret) 5195 break; 5196 5197 nand_select_target(chip, i); 5198 /* Send the command for reading device ID */ 5199 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5200 if (ret) 5201 break; 5202 /* Read manufacturer and device IDs */ 5203 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5204 nand_deselect_target(chip); 5205 break; 5206 } 5207 nand_deselect_target(chip); 5208 } 5209 if (i > 1) 5210 pr_info("%d chips detected\n", i); 5211 5212 /* Store the number of chips and calc total size for mtd */ 5213 memorg->ntargets = i; 5214 mtd->size = i * nanddev_target_size(&chip->base); 5215 5216 return 0; 5217 } 5218 5219 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5220 { 5221 kfree(chip->parameters.model); 5222 kfree(chip->parameters.onfi); 5223 } 5224 5225 int rawnand_sw_hamming_init(struct nand_chip *chip) 5226 { 5227 struct nand_ecc_sw_hamming_conf *engine_conf; 5228 struct nand_device *base = &chip->base; 5229 int ret; 5230 5231 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5232 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; 5233 base->ecc.user_conf.strength = chip->ecc.strength; 5234 base->ecc.user_conf.step_size = chip->ecc.size; 5235 5236 ret = nand_ecc_sw_hamming_init_ctx(base); 5237 if (ret) 5238 return ret; 5239 5240 engine_conf = base->ecc.ctx.priv; 5241 5242 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) 5243 engine_conf->sm_order = true; 5244 5245 chip->ecc.size = base->ecc.ctx.conf.step_size; 5246 chip->ecc.strength = base->ecc.ctx.conf.strength; 5247 chip->ecc.total = base->ecc.ctx.total; 5248 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5249 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5250 5251 return 0; 5252 } 5253 EXPORT_SYMBOL(rawnand_sw_hamming_init); 5254 5255 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 5256 const unsigned char *buf, 5257 unsigned char *code) 5258 { 5259 struct nand_device *base = &chip->base; 5260 5261 return nand_ecc_sw_hamming_calculate(base, buf, code); 5262 } 5263 EXPORT_SYMBOL(rawnand_sw_hamming_calculate); 5264 5265 int rawnand_sw_hamming_correct(struct nand_chip *chip, 5266 unsigned char *buf, 5267 unsigned char *read_ecc, 5268 unsigned char *calc_ecc) 5269 { 5270 struct nand_device *base = &chip->base; 5271 5272 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); 5273 } 5274 EXPORT_SYMBOL(rawnand_sw_hamming_correct); 5275 5276 void rawnand_sw_hamming_cleanup(struct nand_chip *chip) 5277 { 5278 struct nand_device *base = &chip->base; 5279 5280 nand_ecc_sw_hamming_cleanup_ctx(base); 5281 } 5282 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); 5283 5284 int rawnand_sw_bch_init(struct nand_chip *chip) 5285 { 5286 struct nand_device *base = &chip->base; 5287 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); 5288 int ret; 5289 5290 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5291 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; 5292 base->ecc.user_conf.step_size = chip->ecc.size; 5293 base->ecc.user_conf.strength = chip->ecc.strength; 5294 5295 ret = nand_ecc_sw_bch_init_ctx(base); 5296 if (ret) 5297 return ret; 5298 5299 chip->ecc.size = ecc_conf->step_size; 5300 chip->ecc.strength = ecc_conf->strength; 5301 chip->ecc.total = base->ecc.ctx.total; 5302 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5303 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5304 5305 return 0; 5306 } 5307 EXPORT_SYMBOL(rawnand_sw_bch_init); 5308 5309 static int rawnand_sw_bch_calculate(struct nand_chip *chip, 5310 const unsigned char *buf, 5311 unsigned char *code) 5312 { 5313 struct nand_device *base = &chip->base; 5314 5315 return nand_ecc_sw_bch_calculate(base, buf, code); 5316 } 5317 5318 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 5319 unsigned char *read_ecc, unsigned char *calc_ecc) 5320 { 5321 struct nand_device *base = &chip->base; 5322 5323 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); 5324 } 5325 EXPORT_SYMBOL(rawnand_sw_bch_correct); 5326 5327 void rawnand_sw_bch_cleanup(struct nand_chip *chip) 5328 { 5329 struct nand_device *base = &chip->base; 5330 5331 nand_ecc_sw_bch_cleanup_ctx(base); 5332 } 5333 EXPORT_SYMBOL(rawnand_sw_bch_cleanup); 5334 5335 static int nand_set_ecc_on_host_ops(struct nand_chip *chip) 5336 { 5337 struct nand_ecc_ctrl *ecc = &chip->ecc; 5338 5339 switch (ecc->placement) { 5340 case NAND_ECC_PLACEMENT_UNKNOWN: 5341 case NAND_ECC_PLACEMENT_OOB: 5342 /* Use standard hwecc read page function? */ 5343 if (!ecc->read_page) 5344 ecc->read_page = nand_read_page_hwecc; 5345 if (!ecc->write_page) 5346 ecc->write_page = nand_write_page_hwecc; 5347 if (!ecc->read_page_raw) 5348 ecc->read_page_raw = nand_read_page_raw; 5349 if (!ecc->write_page_raw) 5350 ecc->write_page_raw = nand_write_page_raw; 5351 if (!ecc->read_oob) 5352 ecc->read_oob = nand_read_oob_std; 5353 if (!ecc->write_oob) 5354 ecc->write_oob = nand_write_oob_std; 5355 if (!ecc->read_subpage) 5356 ecc->read_subpage = nand_read_subpage; 5357 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5358 ecc->write_subpage = nand_write_subpage_hwecc; 5359 fallthrough; 5360 5361 case NAND_ECC_PLACEMENT_INTERLEAVED: 5362 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5363 (!ecc->read_page || 5364 ecc->read_page == nand_read_page_hwecc || 5365 !ecc->write_page || 5366 ecc->write_page == nand_write_page_hwecc)) { 5367 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5368 return -EINVAL; 5369 } 5370 /* Use standard syndrome read/write page function? */ 5371 if (!ecc->read_page) 5372 ecc->read_page = nand_read_page_syndrome; 5373 if (!ecc->write_page) 5374 ecc->write_page = nand_write_page_syndrome; 5375 if (!ecc->read_page_raw) 5376 ecc->read_page_raw = nand_read_page_raw_syndrome; 5377 if (!ecc->write_page_raw) 5378 ecc->write_page_raw = nand_write_page_raw_syndrome; 5379 if (!ecc->read_oob) 5380 ecc->read_oob = nand_read_oob_syndrome; 5381 if (!ecc->write_oob) 5382 ecc->write_oob = nand_write_oob_syndrome; 5383 break; 5384 5385 default: 5386 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", 5387 ecc->placement); 5388 return -EINVAL; 5389 } 5390 5391 return 0; 5392 } 5393 5394 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5395 { 5396 struct mtd_info *mtd = nand_to_mtd(chip); 5397 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5398 struct nand_ecc_ctrl *ecc = &chip->ecc; 5399 int ret; 5400 5401 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) 5402 return -EINVAL; 5403 5404 switch (ecc->algo) { 5405 case NAND_ECC_ALGO_HAMMING: 5406 ecc->calculate = rawnand_sw_hamming_calculate; 5407 ecc->correct = rawnand_sw_hamming_correct; 5408 ecc->read_page = nand_read_page_swecc; 5409 ecc->read_subpage = nand_read_subpage; 5410 ecc->write_page = nand_write_page_swecc; 5411 if (!ecc->read_page_raw) 5412 ecc->read_page_raw = nand_read_page_raw; 5413 if (!ecc->write_page_raw) 5414 ecc->write_page_raw = nand_write_page_raw; 5415 ecc->read_oob = nand_read_oob_std; 5416 ecc->write_oob = nand_write_oob_std; 5417 if (!ecc->size) 5418 ecc->size = 256; 5419 ecc->bytes = 3; 5420 ecc->strength = 1; 5421 5422 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5423 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5424 5425 ret = rawnand_sw_hamming_init(chip); 5426 if (ret) { 5427 WARN(1, "Hamming ECC initialization failed!\n"); 5428 return ret; 5429 } 5430 5431 return 0; 5432 case NAND_ECC_ALGO_BCH: 5433 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 5434 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5435 return -EINVAL; 5436 } 5437 ecc->calculate = rawnand_sw_bch_calculate; 5438 ecc->correct = rawnand_sw_bch_correct; 5439 ecc->read_page = nand_read_page_swecc; 5440 ecc->read_subpage = nand_read_subpage; 5441 ecc->write_page = nand_write_page_swecc; 5442 if (!ecc->read_page_raw) 5443 ecc->read_page_raw = nand_read_page_raw; 5444 if (!ecc->write_page_raw) 5445 ecc->write_page_raw = nand_write_page_raw; 5446 ecc->read_oob = nand_read_oob_std; 5447 ecc->write_oob = nand_write_oob_std; 5448 5449 /* 5450 * We can only maximize ECC config when the default layout is 5451 * used, otherwise we don't know how many bytes can really be 5452 * used. 5453 */ 5454 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && 5455 mtd->ooblayout != nand_get_large_page_ooblayout()) 5456 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; 5457 5458 ret = rawnand_sw_bch_init(chip); 5459 if (ret) { 5460 WARN(1, "BCH ECC initialization failed!\n"); 5461 return ret; 5462 } 5463 5464 return 0; 5465 default: 5466 WARN(1, "Unsupported ECC algorithm!\n"); 5467 return -EINVAL; 5468 } 5469 } 5470 5471 /** 5472 * nand_check_ecc_caps - check the sanity of preset ECC settings 5473 * @chip: nand chip info structure 5474 * @caps: ECC caps info structure 5475 * @oobavail: OOB size that the ECC engine can use 5476 * 5477 * When ECC step size and strength are already set, check if they are supported 5478 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5479 * On success, the calculated ECC bytes is set. 5480 */ 5481 static int 5482 nand_check_ecc_caps(struct nand_chip *chip, 5483 const struct nand_ecc_caps *caps, int oobavail) 5484 { 5485 struct mtd_info *mtd = nand_to_mtd(chip); 5486 const struct nand_ecc_step_info *stepinfo; 5487 int preset_step = chip->ecc.size; 5488 int preset_strength = chip->ecc.strength; 5489 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5490 int i, j; 5491 5492 for (i = 0; i < caps->nstepinfos; i++) { 5493 stepinfo = &caps->stepinfos[i]; 5494 5495 if (stepinfo->stepsize != preset_step) 5496 continue; 5497 5498 for (j = 0; j < stepinfo->nstrengths; j++) { 5499 if (stepinfo->strengths[j] != preset_strength) 5500 continue; 5501 5502 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5503 preset_strength); 5504 if (WARN_ON_ONCE(ecc_bytes < 0)) 5505 return ecc_bytes; 5506 5507 if (ecc_bytes * nsteps > oobavail) { 5508 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5509 preset_step, preset_strength); 5510 return -ENOSPC; 5511 } 5512 5513 chip->ecc.bytes = ecc_bytes; 5514 5515 return 0; 5516 } 5517 } 5518 5519 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5520 preset_step, preset_strength); 5521 5522 return -ENOTSUPP; 5523 } 5524 5525 /** 5526 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5527 * @chip: nand chip info structure 5528 * @caps: ECC engine caps info structure 5529 * @oobavail: OOB size that the ECC engine can use 5530 * 5531 * If a chip's ECC requirement is provided, try to meet it with the least 5532 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5533 * On success, the chosen ECC settings are set. 5534 */ 5535 static int 5536 nand_match_ecc_req(struct nand_chip *chip, 5537 const struct nand_ecc_caps *caps, int oobavail) 5538 { 5539 const struct nand_ecc_props *requirements = 5540 nanddev_get_ecc_requirements(&chip->base); 5541 struct mtd_info *mtd = nand_to_mtd(chip); 5542 const struct nand_ecc_step_info *stepinfo; 5543 int req_step = requirements->step_size; 5544 int req_strength = requirements->strength; 5545 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5546 int best_step, best_strength, best_ecc_bytes; 5547 int best_ecc_bytes_total = INT_MAX; 5548 int i, j; 5549 5550 /* No information provided by the NAND chip */ 5551 if (!req_step || !req_strength) 5552 return -ENOTSUPP; 5553 5554 /* number of correctable bits the chip requires in a page */ 5555 req_corr = mtd->writesize / req_step * req_strength; 5556 5557 for (i = 0; i < caps->nstepinfos; i++) { 5558 stepinfo = &caps->stepinfos[i]; 5559 step_size = stepinfo->stepsize; 5560 5561 for (j = 0; j < stepinfo->nstrengths; j++) { 5562 strength = stepinfo->strengths[j]; 5563 5564 /* 5565 * If both step size and strength are smaller than the 5566 * chip's requirement, it is not easy to compare the 5567 * resulted reliability. 5568 */ 5569 if (step_size < req_step && strength < req_strength) 5570 continue; 5571 5572 if (mtd->writesize % step_size) 5573 continue; 5574 5575 nsteps = mtd->writesize / step_size; 5576 5577 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5578 if (WARN_ON_ONCE(ecc_bytes < 0)) 5579 continue; 5580 ecc_bytes_total = ecc_bytes * nsteps; 5581 5582 if (ecc_bytes_total > oobavail || 5583 strength * nsteps < req_corr) 5584 continue; 5585 5586 /* 5587 * We assume the best is to meet the chip's requrement 5588 * with the least number of ECC bytes. 5589 */ 5590 if (ecc_bytes_total < best_ecc_bytes_total) { 5591 best_ecc_bytes_total = ecc_bytes_total; 5592 best_step = step_size; 5593 best_strength = strength; 5594 best_ecc_bytes = ecc_bytes; 5595 } 5596 } 5597 } 5598 5599 if (best_ecc_bytes_total == INT_MAX) 5600 return -ENOTSUPP; 5601 5602 chip->ecc.size = best_step; 5603 chip->ecc.strength = best_strength; 5604 chip->ecc.bytes = best_ecc_bytes; 5605 5606 return 0; 5607 } 5608 5609 /** 5610 * nand_maximize_ecc - choose the max ECC strength available 5611 * @chip: nand chip info structure 5612 * @caps: ECC engine caps info structure 5613 * @oobavail: OOB size that the ECC engine can use 5614 * 5615 * Choose the max ECC strength that is supported on the controller, and can fit 5616 * within the chip's OOB. On success, the chosen ECC settings are set. 5617 */ 5618 static int 5619 nand_maximize_ecc(struct nand_chip *chip, 5620 const struct nand_ecc_caps *caps, int oobavail) 5621 { 5622 struct mtd_info *mtd = nand_to_mtd(chip); 5623 const struct nand_ecc_step_info *stepinfo; 5624 int step_size, strength, nsteps, ecc_bytes, corr; 5625 int best_corr = 0; 5626 int best_step = 0; 5627 int best_strength, best_ecc_bytes; 5628 int i, j; 5629 5630 for (i = 0; i < caps->nstepinfos; i++) { 5631 stepinfo = &caps->stepinfos[i]; 5632 step_size = stepinfo->stepsize; 5633 5634 /* If chip->ecc.size is already set, respect it */ 5635 if (chip->ecc.size && step_size != chip->ecc.size) 5636 continue; 5637 5638 for (j = 0; j < stepinfo->nstrengths; j++) { 5639 strength = stepinfo->strengths[j]; 5640 5641 if (mtd->writesize % step_size) 5642 continue; 5643 5644 nsteps = mtd->writesize / step_size; 5645 5646 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5647 if (WARN_ON_ONCE(ecc_bytes < 0)) 5648 continue; 5649 5650 if (ecc_bytes * nsteps > oobavail) 5651 continue; 5652 5653 corr = strength * nsteps; 5654 5655 /* 5656 * If the number of correctable bits is the same, 5657 * bigger step_size has more reliability. 5658 */ 5659 if (corr > best_corr || 5660 (corr == best_corr && step_size > best_step)) { 5661 best_corr = corr; 5662 best_step = step_size; 5663 best_strength = strength; 5664 best_ecc_bytes = ecc_bytes; 5665 } 5666 } 5667 } 5668 5669 if (!best_corr) 5670 return -ENOTSUPP; 5671 5672 chip->ecc.size = best_step; 5673 chip->ecc.strength = best_strength; 5674 chip->ecc.bytes = best_ecc_bytes; 5675 5676 return 0; 5677 } 5678 5679 /** 5680 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5681 * @chip: nand chip info structure 5682 * @caps: ECC engine caps info structure 5683 * @oobavail: OOB size that the ECC engine can use 5684 * 5685 * Choose the ECC configuration according to following logic. 5686 * 5687 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5688 * then check if it is supported by this controller. 5689 * 2. If the user provided the nand-ecc-maximize property, then select maximum 5690 * ECC strength. 5691 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5692 * to the chip's requirement. If available OOB size can't fit the chip 5693 * requirement then fallback to the maximum ECC step size and ECC strength. 5694 * 5695 * On success, the chosen ECC settings are set. 5696 */ 5697 int nand_ecc_choose_conf(struct nand_chip *chip, 5698 const struct nand_ecc_caps *caps, int oobavail) 5699 { 5700 struct mtd_info *mtd = nand_to_mtd(chip); 5701 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5702 5703 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5704 return -EINVAL; 5705 5706 if (chip->ecc.size && chip->ecc.strength) 5707 return nand_check_ecc_caps(chip, caps, oobavail); 5708 5709 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 5710 return nand_maximize_ecc(chip, caps, oobavail); 5711 5712 if (!nand_match_ecc_req(chip, caps, oobavail)) 5713 return 0; 5714 5715 return nand_maximize_ecc(chip, caps, oobavail); 5716 } 5717 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5718 5719 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 5720 { 5721 struct nand_chip *chip = container_of(nand, struct nand_chip, 5722 base); 5723 unsigned int eb = nanddev_pos_to_row(nand, pos); 5724 int ret; 5725 5726 eb >>= nand->rowconv.eraseblock_addr_shift; 5727 5728 nand_select_target(chip, pos->target); 5729 ret = nand_erase_op(chip, eb); 5730 nand_deselect_target(chip); 5731 5732 return ret; 5733 } 5734 5735 static int rawnand_markbad(struct nand_device *nand, 5736 const struct nand_pos *pos) 5737 { 5738 struct nand_chip *chip = container_of(nand, struct nand_chip, 5739 base); 5740 5741 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5742 } 5743 5744 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 5745 { 5746 struct nand_chip *chip = container_of(nand, struct nand_chip, 5747 base); 5748 int ret; 5749 5750 nand_select_target(chip, pos->target); 5751 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5752 nand_deselect_target(chip); 5753 5754 return ret; 5755 } 5756 5757 static const struct nand_ops rawnand_ops = { 5758 .erase = rawnand_erase, 5759 .markbad = rawnand_markbad, 5760 .isbad = rawnand_isbad, 5761 }; 5762 5763 /** 5764 * nand_scan_tail - Scan for the NAND device 5765 * @chip: NAND chip object 5766 * 5767 * This is the second phase of the normal nand_scan() function. It fills out 5768 * all the uninitialized function pointers with the defaults and scans for a 5769 * bad block table if appropriate. 5770 */ 5771 static int nand_scan_tail(struct nand_chip *chip) 5772 { 5773 struct mtd_info *mtd = nand_to_mtd(chip); 5774 struct nand_ecc_ctrl *ecc = &chip->ecc; 5775 int ret, i; 5776 5777 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5778 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5779 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5780 return -EINVAL; 5781 } 5782 5783 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5784 if (!chip->data_buf) 5785 return -ENOMEM; 5786 5787 /* 5788 * FIXME: some NAND manufacturer drivers expect the first die to be 5789 * selected when manufacturer->init() is called. They should be fixed 5790 * to explictly select the relevant die when interacting with the NAND 5791 * chip. 5792 */ 5793 nand_select_target(chip, 0); 5794 ret = nand_manufacturer_init(chip); 5795 nand_deselect_target(chip); 5796 if (ret) 5797 goto err_free_buf; 5798 5799 /* Set the internal oob buffer location, just after the page data */ 5800 chip->oob_poi = chip->data_buf + mtd->writesize; 5801 5802 /* 5803 * If no default placement scheme is given, select an appropriate one. 5804 */ 5805 if (!mtd->ooblayout && 5806 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 5807 ecc->algo == NAND_ECC_ALGO_BCH) && 5808 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 5809 ecc->algo == NAND_ECC_ALGO_HAMMING)) { 5810 switch (mtd->oobsize) { 5811 case 8: 5812 case 16: 5813 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); 5814 break; 5815 case 64: 5816 case 128: 5817 mtd_set_ooblayout(mtd, 5818 nand_get_large_page_hamming_ooblayout()); 5819 break; 5820 default: 5821 /* 5822 * Expose the whole OOB area to users if ECC_NONE 5823 * is passed. We could do that for all kind of 5824 * ->oobsize, but we must keep the old large/small 5825 * page with ECC layout when ->oobsize <= 128 for 5826 * compatibility reasons. 5827 */ 5828 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { 5829 mtd_set_ooblayout(mtd, 5830 nand_get_large_page_ooblayout()); 5831 break; 5832 } 5833 5834 WARN(1, "No oob scheme defined for oobsize %d\n", 5835 mtd->oobsize); 5836 ret = -EINVAL; 5837 goto err_nand_manuf_cleanup; 5838 } 5839 } 5840 5841 /* 5842 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5843 * selected and we have 256 byte pagesize fallback to software ECC 5844 */ 5845 5846 switch (ecc->engine_type) { 5847 case NAND_ECC_ENGINE_TYPE_ON_HOST: 5848 ret = nand_set_ecc_on_host_ops(chip); 5849 if (ret) 5850 goto err_nand_manuf_cleanup; 5851 5852 if (mtd->writesize >= ecc->size) { 5853 if (!ecc->strength) { 5854 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5855 ret = -EINVAL; 5856 goto err_nand_manuf_cleanup; 5857 } 5858 break; 5859 } 5860 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5861 ecc->size, mtd->writesize); 5862 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5863 ecc->algo = NAND_ECC_ALGO_HAMMING; 5864 fallthrough; 5865 5866 case NAND_ECC_ENGINE_TYPE_SOFT: 5867 ret = nand_set_ecc_soft_ops(chip); 5868 if (ret) 5869 goto err_nand_manuf_cleanup; 5870 break; 5871 5872 case NAND_ECC_ENGINE_TYPE_ON_DIE: 5873 if (!ecc->read_page || !ecc->write_page) { 5874 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5875 ret = -EINVAL; 5876 goto err_nand_manuf_cleanup; 5877 } 5878 if (!ecc->read_oob) 5879 ecc->read_oob = nand_read_oob_std; 5880 if (!ecc->write_oob) 5881 ecc->write_oob = nand_write_oob_std; 5882 break; 5883 5884 case NAND_ECC_ENGINE_TYPE_NONE: 5885 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); 5886 ecc->read_page = nand_read_page_raw; 5887 ecc->write_page = nand_write_page_raw; 5888 ecc->read_oob = nand_read_oob_std; 5889 ecc->read_page_raw = nand_read_page_raw; 5890 ecc->write_page_raw = nand_write_page_raw; 5891 ecc->write_oob = nand_write_oob_std; 5892 ecc->size = mtd->writesize; 5893 ecc->bytes = 0; 5894 ecc->strength = 0; 5895 break; 5896 5897 default: 5898 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); 5899 ret = -EINVAL; 5900 goto err_nand_manuf_cleanup; 5901 } 5902 5903 if (ecc->correct || ecc->calculate) { 5904 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5905 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5906 if (!ecc->calc_buf || !ecc->code_buf) { 5907 ret = -ENOMEM; 5908 goto err_nand_manuf_cleanup; 5909 } 5910 } 5911 5912 /* For many systems, the standard OOB write also works for raw */ 5913 if (!ecc->read_oob_raw) 5914 ecc->read_oob_raw = ecc->read_oob; 5915 if (!ecc->write_oob_raw) 5916 ecc->write_oob_raw = ecc->write_oob; 5917 5918 /* propagate ecc info to mtd_info */ 5919 mtd->ecc_strength = ecc->strength; 5920 mtd->ecc_step_size = ecc->size; 5921 5922 /* 5923 * Set the number of read / write steps for one page depending on ECC 5924 * mode. 5925 */ 5926 if (!ecc->steps) 5927 ecc->steps = mtd->writesize / ecc->size; 5928 if (ecc->steps * ecc->size != mtd->writesize) { 5929 WARN(1, "Invalid ECC parameters\n"); 5930 ret = -EINVAL; 5931 goto err_nand_manuf_cleanup; 5932 } 5933 5934 if (!ecc->total) { 5935 ecc->total = ecc->steps * ecc->bytes; 5936 chip->base.ecc.ctx.total = ecc->total; 5937 } 5938 5939 if (ecc->total > mtd->oobsize) { 5940 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5941 ret = -EINVAL; 5942 goto err_nand_manuf_cleanup; 5943 } 5944 5945 /* 5946 * The number of bytes available for a client to place data into 5947 * the out of band area. 5948 */ 5949 ret = mtd_ooblayout_count_freebytes(mtd); 5950 if (ret < 0) 5951 ret = 0; 5952 5953 mtd->oobavail = ret; 5954 5955 /* ECC sanity check: warn if it's too weak */ 5956 if (!nand_ecc_is_strong_enough(&chip->base)) 5957 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 5958 mtd->name, chip->ecc.strength, chip->ecc.size, 5959 nanddev_get_ecc_requirements(&chip->base)->strength, 5960 nanddev_get_ecc_requirements(&chip->base)->step_size); 5961 5962 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5963 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5964 switch (ecc->steps) { 5965 case 2: 5966 mtd->subpage_sft = 1; 5967 break; 5968 case 4: 5969 case 8: 5970 case 16: 5971 mtd->subpage_sft = 2; 5972 break; 5973 } 5974 } 5975 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5976 5977 /* Invalidate the pagebuffer reference */ 5978 chip->pagecache.page = -1; 5979 5980 /* Large page NAND with SOFT_ECC should support subpage reads */ 5981 switch (ecc->engine_type) { 5982 case NAND_ECC_ENGINE_TYPE_SOFT: 5983 if (chip->page_shift > 9) 5984 chip->options |= NAND_SUBPAGE_READ; 5985 break; 5986 5987 default: 5988 break; 5989 } 5990 5991 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 5992 if (ret) 5993 goto err_nand_manuf_cleanup; 5994 5995 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 5996 if (chip->options & NAND_ROM) 5997 mtd->flags = MTD_CAP_ROM; 5998 5999 /* Fill in remaining MTD driver data */ 6000 mtd->_erase = nand_erase; 6001 mtd->_point = NULL; 6002 mtd->_unpoint = NULL; 6003 mtd->_panic_write = panic_nand_write; 6004 mtd->_read_oob = nand_read_oob; 6005 mtd->_write_oob = nand_write_oob; 6006 mtd->_sync = nand_sync; 6007 mtd->_lock = nand_lock; 6008 mtd->_unlock = nand_unlock; 6009 mtd->_suspend = nand_suspend; 6010 mtd->_resume = nand_resume; 6011 mtd->_reboot = nand_shutdown; 6012 mtd->_block_isreserved = nand_block_isreserved; 6013 mtd->_block_isbad = nand_block_isbad; 6014 mtd->_block_markbad = nand_block_markbad; 6015 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 6016 6017 /* 6018 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6019 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6020 * properly set. 6021 */ 6022 if (!mtd->bitflip_threshold) 6023 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6024 6025 /* Find the fastest data interface for this chip */ 6026 ret = nand_choose_interface_config(chip); 6027 if (ret) 6028 goto err_nanddev_cleanup; 6029 6030 /* Enter fastest possible mode on all dies. */ 6031 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 6032 ret = nand_setup_interface(chip, i); 6033 if (ret) 6034 goto err_free_interface_config; 6035 } 6036 6037 /* 6038 * Look for secure regions in the NAND chip. These regions are supposed 6039 * to be protected by a secure element like Trustzone. So the read/write 6040 * accesses to these regions will be blocked in the runtime by this 6041 * driver. 6042 */ 6043 ret = of_get_nand_secure_regions(chip); 6044 if (ret) 6045 goto err_free_interface_config; 6046 6047 /* Check, if we should skip the bad block table scan */ 6048 if (chip->options & NAND_SKIP_BBTSCAN) 6049 return 0; 6050 6051 /* Build bad block table */ 6052 ret = nand_create_bbt(chip); 6053 if (ret) 6054 goto err_free_secure_regions; 6055 6056 return 0; 6057 6058 err_free_secure_regions: 6059 kfree(chip->secure_regions); 6060 6061 err_free_interface_config: 6062 kfree(chip->best_interface_config); 6063 6064 err_nanddev_cleanup: 6065 nanddev_cleanup(&chip->base); 6066 6067 err_nand_manuf_cleanup: 6068 nand_manufacturer_cleanup(chip); 6069 6070 err_free_buf: 6071 kfree(chip->data_buf); 6072 kfree(ecc->code_buf); 6073 kfree(ecc->calc_buf); 6074 6075 return ret; 6076 } 6077 6078 static int nand_attach(struct nand_chip *chip) 6079 { 6080 if (chip->controller->ops && chip->controller->ops->attach_chip) 6081 return chip->controller->ops->attach_chip(chip); 6082 6083 return 0; 6084 } 6085 6086 static void nand_detach(struct nand_chip *chip) 6087 { 6088 if (chip->controller->ops && chip->controller->ops->detach_chip) 6089 chip->controller->ops->detach_chip(chip); 6090 } 6091 6092 /** 6093 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6094 * @chip: NAND chip object 6095 * @maxchips: number of chips to scan for. 6096 * @ids: optional flash IDs table 6097 * 6098 * This fills out all the uninitialized function pointers with the defaults. 6099 * The flash ID is read and the mtd/chip structures are filled with the 6100 * appropriate values. 6101 */ 6102 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6103 struct nand_flash_dev *ids) 6104 { 6105 int ret; 6106 6107 if (!maxchips) 6108 return -EINVAL; 6109 6110 ret = nand_scan_ident(chip, maxchips, ids); 6111 if (ret) 6112 return ret; 6113 6114 ret = nand_attach(chip); 6115 if (ret) 6116 goto cleanup_ident; 6117 6118 ret = nand_scan_tail(chip); 6119 if (ret) 6120 goto detach_chip; 6121 6122 return 0; 6123 6124 detach_chip: 6125 nand_detach(chip); 6126 cleanup_ident: 6127 nand_scan_ident_cleanup(chip); 6128 6129 return ret; 6130 } 6131 EXPORT_SYMBOL(nand_scan_with_ids); 6132 6133 /** 6134 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6135 * @chip: NAND chip object 6136 */ 6137 void nand_cleanup(struct nand_chip *chip) 6138 { 6139 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { 6140 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 6141 rawnand_sw_hamming_cleanup(chip); 6142 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 6143 rawnand_sw_bch_cleanup(chip); 6144 } 6145 6146 nanddev_cleanup(&chip->base); 6147 6148 /* Free secure regions data */ 6149 kfree(chip->secure_regions); 6150 6151 /* Free bad block table memory */ 6152 kfree(chip->bbt); 6153 kfree(chip->data_buf); 6154 kfree(chip->ecc.code_buf); 6155 kfree(chip->ecc.calc_buf); 6156 6157 /* Free bad block descriptor memory */ 6158 if (chip->badblock_pattern && chip->badblock_pattern->options 6159 & NAND_BBT_DYNAMICSTRUCT) 6160 kfree(chip->badblock_pattern); 6161 6162 /* Free the data interface */ 6163 kfree(chip->best_interface_config); 6164 6165 /* Free manufacturer priv data. */ 6166 nand_manufacturer_cleanup(chip); 6167 6168 /* Free controller specific allocations after chip identification */ 6169 nand_detach(chip); 6170 6171 /* Free identification phase allocations */ 6172 nand_scan_ident_cleanup(chip); 6173 } 6174 6175 EXPORT_SYMBOL_GPL(nand_cleanup); 6176 6177 MODULE_LICENSE("GPL"); 6178 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6179 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6180 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6181