1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand.h> 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 40 #include <linux/interrupt.h> 41 #include <linux/bitops.h> 42 #include <linux/io.h> 43 #include <linux/mtd/partitions.h> 44 #include <linux/of.h> 45 #include <linux/gpio/consumer.h> 46 47 #include "internals.h" 48 49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 50 struct mtd_pairing_info *info) 51 { 52 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 53 int dist = 3; 54 55 if (page == lastpage) 56 dist = 2; 57 58 if (!page || (page & 1)) { 59 info->group = 0; 60 info->pair = (page + 1) / 2; 61 } else { 62 info->group = 1; 63 info->pair = (page + 1 - dist) / 2; 64 } 65 66 return 0; 67 } 68 69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 70 const struct mtd_pairing_info *info) 71 { 72 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 73 int page = info->pair * 2; 74 int dist = 3; 75 76 if (!info->group && !info->pair) 77 return 0; 78 79 if (info->pair == lastpair && info->group) 80 dist = 2; 81 82 if (!info->group) 83 page--; 84 else if (info->pair) 85 page += dist - 1; 86 87 if (page >= mtd->erasesize / mtd->writesize) 88 return -EINVAL; 89 90 return page; 91 } 92 93 const struct mtd_pairing_scheme dist3_pairing_scheme = { 94 .ngroups = 2, 95 .get_info = nand_pairing_dist3_get_info, 96 .get_wunit = nand_pairing_dist3_get_wunit, 97 }; 98 99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 100 { 101 int ret = 0; 102 103 /* Start address must align on block boundary */ 104 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 105 pr_debug("%s: unaligned address\n", __func__); 106 ret = -EINVAL; 107 } 108 109 /* Length must align on block boundary */ 110 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 111 pr_debug("%s: length not block aligned\n", __func__); 112 ret = -EINVAL; 113 } 114 115 return ret; 116 } 117 118 /** 119 * nand_extract_bits - Copy unaligned bits from one buffer to another one 120 * @dst: destination buffer 121 * @dst_off: bit offset at which the writing starts 122 * @src: source buffer 123 * @src_off: bit offset at which the reading starts 124 * @nbits: number of bits to copy from @src to @dst 125 * 126 * Copy bits from one memory region to another (overlap authorized). 127 */ 128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 129 unsigned int src_off, unsigned int nbits) 130 { 131 unsigned int tmp, n; 132 133 dst += dst_off / 8; 134 dst_off %= 8; 135 src += src_off / 8; 136 src_off %= 8; 137 138 while (nbits) { 139 n = min3(8 - dst_off, 8 - src_off, nbits); 140 141 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 142 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 143 *dst |= tmp << dst_off; 144 145 dst_off += n; 146 if (dst_off >= 8) { 147 dst++; 148 dst_off -= 8; 149 } 150 151 src_off += n; 152 if (src_off >= 8) { 153 src++; 154 src_off -= 8; 155 } 156 157 nbits -= n; 158 } 159 } 160 EXPORT_SYMBOL_GPL(nand_extract_bits); 161 162 /** 163 * nand_select_target() - Select a NAND target (A.K.A. die) 164 * @chip: NAND chip object 165 * @cs: the CS line to select. Note that this CS id is always from the chip 166 * PoV, not the controller one 167 * 168 * Select a NAND target so that further operations executed on @chip go to the 169 * selected NAND target. 170 */ 171 void nand_select_target(struct nand_chip *chip, unsigned int cs) 172 { 173 /* 174 * cs should always lie between 0 and nanddev_ntargets(), when that's 175 * not the case it's a bug and the caller should be fixed. 176 */ 177 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 178 return; 179 180 chip->cur_cs = cs; 181 182 if (chip->legacy.select_chip) 183 chip->legacy.select_chip(chip, cs); 184 } 185 EXPORT_SYMBOL_GPL(nand_select_target); 186 187 /** 188 * nand_deselect_target() - Deselect the currently selected target 189 * @chip: NAND chip object 190 * 191 * Deselect the currently selected NAND target. The result of operations 192 * executed on @chip after the target has been deselected is undefined. 193 */ 194 void nand_deselect_target(struct nand_chip *chip) 195 { 196 if (chip->legacy.select_chip) 197 chip->legacy.select_chip(chip, -1); 198 199 chip->cur_cs = -1; 200 } 201 EXPORT_SYMBOL_GPL(nand_deselect_target); 202 203 /** 204 * nand_release_device - [GENERIC] release chip 205 * @chip: NAND chip object 206 * 207 * Release chip lock and wake up anyone waiting on the device. 208 */ 209 static void nand_release_device(struct nand_chip *chip) 210 { 211 /* Release the controller and the chip */ 212 mutex_unlock(&chip->controller->lock); 213 mutex_unlock(&chip->lock); 214 } 215 216 /** 217 * nand_bbm_get_next_page - Get the next page for bad block markers 218 * @chip: NAND chip object 219 * @page: First page to start checking for bad block marker usage 220 * 221 * Returns an integer that corresponds to the page offset within a block, for 222 * a page that is used to store bad block markers. If no more pages are 223 * available, -EINVAL is returned. 224 */ 225 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 226 { 227 struct mtd_info *mtd = nand_to_mtd(chip); 228 int last_page = ((mtd->erasesize - mtd->writesize) >> 229 chip->page_shift) & chip->pagemask; 230 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 231 | NAND_BBM_LASTPAGE; 232 233 if (page == 0 && !(chip->options & bbm_flags)) 234 return 0; 235 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 236 return 0; 237 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 238 return 1; 239 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 240 return last_page; 241 242 return -EINVAL; 243 } 244 245 /** 246 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 247 * @chip: NAND chip object 248 * @ofs: offset from device start 249 * 250 * Check, if the block is bad. 251 */ 252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 253 { 254 int first_page, page_offset; 255 int res; 256 u8 bad; 257 258 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 259 page_offset = nand_bbm_get_next_page(chip, 0); 260 261 while (page_offset >= 0) { 262 res = chip->ecc.read_oob(chip, first_page + page_offset); 263 if (res < 0) 264 return res; 265 266 bad = chip->oob_poi[chip->badblockpos]; 267 268 if (likely(chip->badblockbits == 8)) 269 res = bad != 0xFF; 270 else 271 res = hweight8(bad) < chip->badblockbits; 272 if (res) 273 return res; 274 275 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 276 } 277 278 return 0; 279 } 280 281 /** 282 * nand_region_is_secured() - Check if the region is secured 283 * @chip: NAND chip object 284 * @offset: Offset of the region to check 285 * @size: Size of the region to check 286 * 287 * Checks if the region is secured by comparing the offset and size with the 288 * list of secure regions obtained from DT. Returns true if the region is 289 * secured else false. 290 */ 291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) 292 { 293 int i; 294 295 /* Skip touching the secure regions if present */ 296 for (i = 0; i < chip->nr_secure_regions; i++) { 297 const struct nand_secure_region *region = &chip->secure_regions[i]; 298 299 if (offset + size <= region->offset || 300 offset >= region->offset + region->size) 301 continue; 302 303 pr_debug("%s: Region 0x%llx - 0x%llx is secured!", 304 __func__, offset, offset + size); 305 306 return true; 307 } 308 309 return false; 310 } 311 312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 313 { 314 struct mtd_info *mtd = nand_to_mtd(chip); 315 316 if (chip->options & NAND_NO_BBM_QUIRK) 317 return 0; 318 319 /* Check if the region is secured */ 320 if (nand_region_is_secured(chip, ofs, mtd->erasesize)) 321 return -EIO; 322 323 if (mtd_check_expert_analysis_mode()) 324 return 0; 325 326 if (chip->legacy.block_bad) 327 return chip->legacy.block_bad(chip, ofs); 328 329 return nand_block_bad(chip, ofs); 330 } 331 332 /** 333 * nand_get_device - [GENERIC] Get chip for selected access 334 * @chip: NAND chip structure 335 * 336 * Lock the device and its controller for exclusive access 337 */ 338 static void nand_get_device(struct nand_chip *chip) 339 { 340 /* Wait until the device is resumed. */ 341 while (1) { 342 mutex_lock(&chip->lock); 343 if (!chip->suspended) { 344 mutex_lock(&chip->controller->lock); 345 return; 346 } 347 mutex_unlock(&chip->lock); 348 349 wait_event(chip->resume_wq, !chip->suspended); 350 } 351 } 352 353 /** 354 * nand_check_wp - [GENERIC] check if the chip is write protected 355 * @chip: NAND chip object 356 * 357 * Check, if the device is write protected. The function expects, that the 358 * device is already selected. 359 */ 360 static int nand_check_wp(struct nand_chip *chip) 361 { 362 u8 status; 363 int ret; 364 365 /* Broken xD cards report WP despite being writable */ 366 if (chip->options & NAND_BROKEN_XD) 367 return 0; 368 369 /* controller responsible for NAND write protect */ 370 if (chip->controller->controller_wp) 371 return 0; 372 373 /* Check the WP bit */ 374 ret = nand_status_op(chip, &status); 375 if (ret) 376 return ret; 377 378 return status & NAND_STATUS_WP ? 0 : 1; 379 } 380 381 /** 382 * nand_fill_oob - [INTERN] Transfer client buffer to oob 383 * @chip: NAND chip object 384 * @oob: oob data buffer 385 * @len: oob data write length 386 * @ops: oob ops structure 387 */ 388 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 389 struct mtd_oob_ops *ops) 390 { 391 struct mtd_info *mtd = nand_to_mtd(chip); 392 int ret; 393 394 /* 395 * Initialise to all 0xFF, to avoid the possibility of left over OOB 396 * data from a previous OOB read. 397 */ 398 memset(chip->oob_poi, 0xff, mtd->oobsize); 399 400 switch (ops->mode) { 401 402 case MTD_OPS_PLACE_OOB: 403 case MTD_OPS_RAW: 404 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 405 return oob + len; 406 407 case MTD_OPS_AUTO_OOB: 408 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 409 ops->ooboffs, len); 410 BUG_ON(ret); 411 return oob + len; 412 413 default: 414 BUG(); 415 } 416 return NULL; 417 } 418 419 /** 420 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 421 * @chip: NAND chip object 422 * @to: offset to write to 423 * @ops: oob operation description structure 424 * 425 * NAND write out-of-band. 426 */ 427 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 428 struct mtd_oob_ops *ops) 429 { 430 struct mtd_info *mtd = nand_to_mtd(chip); 431 int chipnr, page, status, len, ret; 432 433 pr_debug("%s: to = 0x%08x, len = %i\n", 434 __func__, (unsigned int)to, (int)ops->ooblen); 435 436 len = mtd_oobavail(mtd, ops); 437 438 /* Do not allow write past end of page */ 439 if ((ops->ooboffs + ops->ooblen) > len) { 440 pr_debug("%s: attempt to write past end of page\n", 441 __func__); 442 return -EINVAL; 443 } 444 445 /* Check if the region is secured */ 446 if (nand_region_is_secured(chip, to, ops->ooblen)) 447 return -EIO; 448 449 chipnr = (int)(to >> chip->chip_shift); 450 451 /* 452 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 453 * of my DiskOnChip 2000 test units) will clear the whole data page too 454 * if we don't do this. I have no clue why, but I seem to have 'fixed' 455 * it in the doc2000 driver in August 1999. dwmw2. 456 */ 457 ret = nand_reset(chip, chipnr); 458 if (ret) 459 return ret; 460 461 nand_select_target(chip, chipnr); 462 463 /* Shift to get page */ 464 page = (int)(to >> chip->page_shift); 465 466 /* Check, if it is write protected */ 467 if (nand_check_wp(chip)) { 468 nand_deselect_target(chip); 469 return -EROFS; 470 } 471 472 /* Invalidate the page cache, if we write to the cached page */ 473 if (page == chip->pagecache.page) 474 chip->pagecache.page = -1; 475 476 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 477 478 if (ops->mode == MTD_OPS_RAW) 479 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 480 else 481 status = chip->ecc.write_oob(chip, page & chip->pagemask); 482 483 nand_deselect_target(chip); 484 485 if (status) 486 return status; 487 488 ops->oobretlen = ops->ooblen; 489 490 return 0; 491 } 492 493 /** 494 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 495 * @chip: NAND chip object 496 * @ofs: offset from device start 497 * 498 * This is the default implementation, which can be overridden by a hardware 499 * specific driver. It provides the details for writing a bad block marker to a 500 * block. 501 */ 502 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 503 { 504 struct mtd_info *mtd = nand_to_mtd(chip); 505 struct mtd_oob_ops ops; 506 uint8_t buf[2] = { 0, 0 }; 507 int ret = 0, res, page_offset; 508 509 memset(&ops, 0, sizeof(ops)); 510 ops.oobbuf = buf; 511 ops.ooboffs = chip->badblockpos; 512 if (chip->options & NAND_BUSWIDTH_16) { 513 ops.ooboffs &= ~0x01; 514 ops.len = ops.ooblen = 2; 515 } else { 516 ops.len = ops.ooblen = 1; 517 } 518 ops.mode = MTD_OPS_PLACE_OOB; 519 520 page_offset = nand_bbm_get_next_page(chip, 0); 521 522 while (page_offset >= 0) { 523 res = nand_do_write_oob(chip, 524 ofs + (page_offset * mtd->writesize), 525 &ops); 526 527 if (!ret) 528 ret = res; 529 530 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 531 } 532 533 return ret; 534 } 535 536 /** 537 * nand_markbad_bbm - mark a block by updating the BBM 538 * @chip: NAND chip object 539 * @ofs: offset of the block to mark bad 540 */ 541 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 542 { 543 if (chip->legacy.block_markbad) 544 return chip->legacy.block_markbad(chip, ofs); 545 546 return nand_default_block_markbad(chip, ofs); 547 } 548 549 /** 550 * nand_block_markbad_lowlevel - mark a block bad 551 * @chip: NAND chip object 552 * @ofs: offset from device start 553 * 554 * This function performs the generic NAND bad block marking steps (i.e., bad 555 * block table(s) and/or marker(s)). We only allow the hardware driver to 556 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 557 * 558 * We try operations in the following order: 559 * 560 * (1) erase the affected block, to allow OOB marker to be written cleanly 561 * (2) write bad block marker to OOB area of affected block (unless flag 562 * NAND_BBT_NO_OOB_BBM is present) 563 * (3) update the BBT 564 * 565 * Note that we retain the first error encountered in (2) or (3), finish the 566 * procedures, and dump the error in the end. 567 */ 568 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 569 { 570 struct mtd_info *mtd = nand_to_mtd(chip); 571 int res, ret = 0; 572 573 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 574 struct erase_info einfo; 575 576 /* Attempt erase before marking OOB */ 577 memset(&einfo, 0, sizeof(einfo)); 578 einfo.addr = ofs; 579 einfo.len = 1ULL << chip->phys_erase_shift; 580 nand_erase_nand(chip, &einfo, 0); 581 582 /* Write bad block marker to OOB */ 583 nand_get_device(chip); 584 585 ret = nand_markbad_bbm(chip, ofs); 586 nand_release_device(chip); 587 } 588 589 /* Mark block bad in BBT */ 590 if (chip->bbt) { 591 res = nand_markbad_bbt(chip, ofs); 592 if (!ret) 593 ret = res; 594 } 595 596 if (!ret) 597 mtd->ecc_stats.badblocks++; 598 599 return ret; 600 } 601 602 /** 603 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 604 * @mtd: MTD device structure 605 * @ofs: offset from device start 606 * 607 * Check if the block is marked as reserved. 608 */ 609 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 610 { 611 struct nand_chip *chip = mtd_to_nand(mtd); 612 613 if (!chip->bbt) 614 return 0; 615 /* Return info from the table */ 616 return nand_isreserved_bbt(chip, ofs); 617 } 618 619 /** 620 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 621 * @chip: NAND chip object 622 * @ofs: offset from device start 623 * @allowbbt: 1, if its allowed to access the bbt area 624 * 625 * Check, if the block is bad. Either by reading the bad block table or 626 * calling of the scan function. 627 */ 628 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 629 { 630 /* Return info from the table */ 631 if (chip->bbt) 632 return nand_isbad_bbt(chip, ofs, allowbbt); 633 634 return nand_isbad_bbm(chip, ofs); 635 } 636 637 /** 638 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 639 * @chip: NAND chip structure 640 * @timeout_ms: Timeout in ms 641 * 642 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 643 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 644 * returned. 645 * 646 * This helper is intended to be used when the controller does not have access 647 * to the NAND R/B pin. 648 * 649 * Be aware that calling this helper from an ->exec_op() implementation means 650 * ->exec_op() must be re-entrant. 651 * 652 * Return 0 if the NAND chip is ready, a negative error otherwise. 653 */ 654 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 655 { 656 const struct nand_interface_config *conf; 657 u8 status = 0; 658 int ret; 659 660 if (!nand_has_exec_op(chip)) 661 return -ENOTSUPP; 662 663 /* Wait tWB before polling the STATUS reg. */ 664 conf = nand_get_interface_config(chip); 665 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max)); 666 667 ret = nand_status_op(chip, NULL); 668 if (ret) 669 return ret; 670 671 /* 672 * +1 below is necessary because if we are now in the last fraction 673 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 674 * small jiffy fraction - possibly leading to false timeout 675 */ 676 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 677 do { 678 ret = nand_read_data_op(chip, &status, sizeof(status), true, 679 false); 680 if (ret) 681 break; 682 683 if (status & NAND_STATUS_READY) 684 break; 685 686 /* 687 * Typical lowest execution time for a tR on most NANDs is 10us, 688 * use this as polling delay before doing something smarter (ie. 689 * deriving a delay from the timeout value, timeout_ms/ratio). 690 */ 691 udelay(10); 692 } while (time_before(jiffies, timeout_ms)); 693 694 /* 695 * We have to exit READ_STATUS mode in order to read real data on the 696 * bus in case the WAITRDY instruction is preceding a DATA_IN 697 * instruction. 698 */ 699 nand_exit_status_op(chip); 700 701 if (ret) 702 return ret; 703 704 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 705 }; 706 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 707 708 /** 709 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 710 * @chip: NAND chip structure 711 * @gpiod: GPIO descriptor of R/B pin 712 * @timeout_ms: Timeout in ms 713 * 714 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 715 * whitin the specified timeout, -ETIMEDOUT is returned. 716 * 717 * This helper is intended to be used when the controller has access to the 718 * NAND R/B pin over GPIO. 719 * 720 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 721 */ 722 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 723 unsigned long timeout_ms) 724 { 725 726 /* 727 * Wait until R/B pin indicates chip is ready or timeout occurs. 728 * +1 below is necessary because if we are now in the last fraction 729 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 730 * small jiffy fraction - possibly leading to false timeout. 731 */ 732 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 733 do { 734 if (gpiod_get_value_cansleep(gpiod)) 735 return 0; 736 737 cond_resched(); 738 } while (time_before(jiffies, timeout_ms)); 739 740 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 741 }; 742 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 743 744 /** 745 * panic_nand_wait - [GENERIC] wait until the command is done 746 * @chip: NAND chip structure 747 * @timeo: timeout 748 * 749 * Wait for command done. This is a helper function for nand_wait used when 750 * we are in interrupt context. May happen when in panic and trying to write 751 * an oops through mtdoops. 752 */ 753 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 754 { 755 int i; 756 for (i = 0; i < timeo; i++) { 757 if (chip->legacy.dev_ready) { 758 if (chip->legacy.dev_ready(chip)) 759 break; 760 } else { 761 int ret; 762 u8 status; 763 764 ret = nand_read_data_op(chip, &status, sizeof(status), 765 true, false); 766 if (ret) 767 return; 768 769 if (status & NAND_STATUS_READY) 770 break; 771 } 772 mdelay(1); 773 } 774 } 775 776 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 777 { 778 return (chip->parameters.supports_set_get_features && 779 test_bit(addr, chip->parameters.get_feature_list)); 780 } 781 782 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 783 { 784 return (chip->parameters.supports_set_get_features && 785 test_bit(addr, chip->parameters.set_feature_list)); 786 } 787 788 /** 789 * nand_reset_interface - Reset data interface and timings 790 * @chip: The NAND chip 791 * @chipnr: Internal die id 792 * 793 * Reset the Data interface and timings to ONFI mode 0. 794 * 795 * Returns 0 for success or negative error code otherwise. 796 */ 797 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 798 { 799 const struct nand_controller_ops *ops = chip->controller->ops; 800 int ret; 801 802 if (!nand_controller_can_setup_interface(chip)) 803 return 0; 804 805 /* 806 * The ONFI specification says: 807 * " 808 * To transition from NV-DDR or NV-DDR2 to the SDR data 809 * interface, the host shall use the Reset (FFh) command 810 * using SDR timing mode 0. A device in any timing mode is 811 * required to recognize Reset (FFh) command issued in SDR 812 * timing mode 0. 813 * " 814 * 815 * Configure the data interface in SDR mode and set the 816 * timings to timing mode 0. 817 */ 818 819 chip->current_interface_config = nand_get_reset_interface_config(); 820 ret = ops->setup_interface(chip, chipnr, 821 chip->current_interface_config); 822 if (ret) 823 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 824 825 return ret; 826 } 827 828 /** 829 * nand_setup_interface - Setup the best data interface and timings 830 * @chip: The NAND chip 831 * @chipnr: Internal die id 832 * 833 * Configure what has been reported to be the best data interface and NAND 834 * timings supported by the chip and the driver. 835 * 836 * Returns 0 for success or negative error code otherwise. 837 */ 838 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 839 { 840 const struct nand_controller_ops *ops = chip->controller->ops; 841 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request; 842 int ret; 843 844 if (!nand_controller_can_setup_interface(chip)) 845 return 0; 846 847 /* 848 * A nand_reset_interface() put both the NAND chip and the NAND 849 * controller in timings mode 0. If the default mode for this chip is 850 * also 0, no need to proceed to the change again. Plus, at probe time, 851 * nand_setup_interface() uses ->set/get_features() which would 852 * fail anyway as the parameter page is not available yet. 853 */ 854 if (!chip->best_interface_config) 855 return 0; 856 857 request = chip->best_interface_config->timings.mode; 858 if (nand_interface_is_sdr(chip->best_interface_config)) 859 request |= ONFI_DATA_INTERFACE_SDR; 860 else 861 request |= ONFI_DATA_INTERFACE_NVDDR; 862 tmode_param[0] = request; 863 864 /* Change the mode on the chip side (if supported by the NAND chip) */ 865 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 866 nand_select_target(chip, chipnr); 867 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 868 tmode_param); 869 nand_deselect_target(chip); 870 if (ret) 871 return ret; 872 } 873 874 /* Change the mode on the controller side */ 875 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 876 if (ret) 877 return ret; 878 879 /* Check the mode has been accepted by the chip, if supported */ 880 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 881 goto update_interface_config; 882 883 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 884 nand_select_target(chip, chipnr); 885 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 886 tmode_param); 887 nand_deselect_target(chip); 888 if (ret) 889 goto err_reset_chip; 890 891 if (request != tmode_param[0]) { 892 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n", 893 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR", 894 chip->best_interface_config->timings.mode); 895 pr_debug("NAND chip would work in %s timing mode %d\n", 896 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR", 897 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0])); 898 goto err_reset_chip; 899 } 900 901 update_interface_config: 902 chip->current_interface_config = chip->best_interface_config; 903 904 return 0; 905 906 err_reset_chip: 907 /* 908 * Fallback to mode 0 if the chip explicitly did not ack the chosen 909 * timing mode. 910 */ 911 nand_reset_interface(chip, chipnr); 912 nand_select_target(chip, chipnr); 913 nand_reset_op(chip); 914 nand_deselect_target(chip); 915 916 return ret; 917 } 918 919 /** 920 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 921 * NAND controller and the NAND chip support 922 * @chip: the NAND chip 923 * @iface: the interface configuration (can eventually be updated) 924 * @spec_timings: specific timings, when not fitting the ONFI specification 925 * 926 * If specific timings are provided, use them. Otherwise, retrieve supported 927 * timing modes from ONFI information. 928 */ 929 int nand_choose_best_sdr_timings(struct nand_chip *chip, 930 struct nand_interface_config *iface, 931 struct nand_sdr_timings *spec_timings) 932 { 933 const struct nand_controller_ops *ops = chip->controller->ops; 934 int best_mode = 0, mode, ret = -EOPNOTSUPP; 935 936 iface->type = NAND_SDR_IFACE; 937 938 if (spec_timings) { 939 iface->timings.sdr = *spec_timings; 940 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 941 942 /* Verify the controller supports the requested interface */ 943 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 944 iface); 945 if (!ret) { 946 chip->best_interface_config = iface; 947 return ret; 948 } 949 950 /* Fallback to slower modes */ 951 best_mode = iface->timings.mode; 952 } else if (chip->parameters.onfi) { 953 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1; 954 } 955 956 for (mode = best_mode; mode >= 0; mode--) { 957 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 958 959 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 960 iface); 961 if (!ret) { 962 chip->best_interface_config = iface; 963 break; 964 } 965 } 966 967 return ret; 968 } 969 970 /** 971 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the 972 * NAND controller and the NAND chip support 973 * @chip: the NAND chip 974 * @iface: the interface configuration (can eventually be updated) 975 * @spec_timings: specific timings, when not fitting the ONFI specification 976 * 977 * If specific timings are provided, use them. Otherwise, retrieve supported 978 * timing modes from ONFI information. 979 */ 980 int nand_choose_best_nvddr_timings(struct nand_chip *chip, 981 struct nand_interface_config *iface, 982 struct nand_nvddr_timings *spec_timings) 983 { 984 const struct nand_controller_ops *ops = chip->controller->ops; 985 int best_mode = 0, mode, ret = -EOPNOTSUPP; 986 987 iface->type = NAND_NVDDR_IFACE; 988 989 if (spec_timings) { 990 iface->timings.nvddr = *spec_timings; 991 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings); 992 993 /* Verify the controller supports the requested interface */ 994 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 995 iface); 996 if (!ret) { 997 chip->best_interface_config = iface; 998 return ret; 999 } 1000 1001 /* Fallback to slower modes */ 1002 best_mode = iface->timings.mode; 1003 } else if (chip->parameters.onfi) { 1004 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1; 1005 } 1006 1007 for (mode = best_mode; mode >= 0; mode--) { 1008 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode); 1009 1010 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 1011 iface); 1012 if (!ret) { 1013 chip->best_interface_config = iface; 1014 break; 1015 } 1016 } 1017 1018 return ret; 1019 } 1020 1021 /** 1022 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both 1023 * NAND controller and the NAND chip support 1024 * @chip: the NAND chip 1025 * @iface: the interface configuration (can eventually be updated) 1026 * 1027 * If specific timings are provided, use them. Otherwise, retrieve supported 1028 * timing modes from ONFI information. 1029 */ 1030 static int nand_choose_best_timings(struct nand_chip *chip, 1031 struct nand_interface_config *iface) 1032 { 1033 int ret; 1034 1035 /* Try the fastest timings: NV-DDR */ 1036 ret = nand_choose_best_nvddr_timings(chip, iface, NULL); 1037 if (!ret) 1038 return 0; 1039 1040 /* Fallback to SDR timings otherwise */ 1041 return nand_choose_best_sdr_timings(chip, iface, NULL); 1042 } 1043 1044 /** 1045 * nand_choose_interface_config - find the best data interface and timings 1046 * @chip: The NAND chip 1047 * 1048 * Find the best data interface and NAND timings supported by the chip 1049 * and the driver. Eventually let the NAND manufacturer driver propose his own 1050 * set of timings. 1051 * 1052 * After this function nand_chip->interface_config is initialized with the best 1053 * timing mode available. 1054 * 1055 * Returns 0 for success or negative error code otherwise. 1056 */ 1057 static int nand_choose_interface_config(struct nand_chip *chip) 1058 { 1059 struct nand_interface_config *iface; 1060 int ret; 1061 1062 if (!nand_controller_can_setup_interface(chip)) 1063 return 0; 1064 1065 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 1066 if (!iface) 1067 return -ENOMEM; 1068 1069 if (chip->ops.choose_interface_config) 1070 ret = chip->ops.choose_interface_config(chip, iface); 1071 else 1072 ret = nand_choose_best_timings(chip, iface); 1073 1074 if (ret) 1075 kfree(iface); 1076 1077 return ret; 1078 } 1079 1080 /** 1081 * nand_fill_column_cycles - fill the column cycles of an address 1082 * @chip: The NAND chip 1083 * @addrs: Array of address cycles to fill 1084 * @offset_in_page: The offset in the page 1085 * 1086 * Fills the first or the first two bytes of the @addrs field depending 1087 * on the NAND bus width and the page size. 1088 * 1089 * Returns the number of cycles needed to encode the column, or a negative 1090 * error code in case one of the arguments is invalid. 1091 */ 1092 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1093 unsigned int offset_in_page) 1094 { 1095 struct mtd_info *mtd = nand_to_mtd(chip); 1096 bool ident_stage = !mtd->writesize; 1097 1098 /* Bypass all checks during NAND identification */ 1099 if (likely(!ident_stage)) { 1100 /* Make sure the offset is less than the actual page size. */ 1101 if (offset_in_page > mtd->writesize + mtd->oobsize) 1102 return -EINVAL; 1103 1104 /* 1105 * On small page NANDs, there's a dedicated command to access the OOB 1106 * area, and the column address is relative to the start of the OOB 1107 * area, not the start of the page. Asjust the address accordingly. 1108 */ 1109 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1110 offset_in_page -= mtd->writesize; 1111 1112 /* 1113 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1114 * wide, then it must be divided by 2. 1115 */ 1116 if (chip->options & NAND_BUSWIDTH_16) { 1117 if (WARN_ON(offset_in_page % 2)) 1118 return -EINVAL; 1119 1120 offset_in_page /= 2; 1121 } 1122 } 1123 1124 addrs[0] = offset_in_page; 1125 1126 /* 1127 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1128 * need 2 1129 */ 1130 if (!ident_stage && mtd->writesize <= 512) 1131 return 1; 1132 1133 addrs[1] = offset_in_page >> 8; 1134 1135 return 2; 1136 } 1137 1138 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1139 unsigned int offset_in_page, void *buf, 1140 unsigned int len) 1141 { 1142 const struct nand_interface_config *conf = 1143 nand_get_interface_config(chip); 1144 struct mtd_info *mtd = nand_to_mtd(chip); 1145 u8 addrs[4]; 1146 struct nand_op_instr instrs[] = { 1147 NAND_OP_CMD(NAND_CMD_READ0, 0), 1148 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1149 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1150 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1151 NAND_OP_DATA_IN(len, buf, 0), 1152 }; 1153 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1154 int ret; 1155 1156 /* Drop the DATA_IN instruction if len is set to 0. */ 1157 if (!len) 1158 op.ninstrs--; 1159 1160 if (offset_in_page >= mtd->writesize) 1161 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1162 else if (offset_in_page >= 256 && 1163 !(chip->options & NAND_BUSWIDTH_16)) 1164 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1165 1166 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1167 if (ret < 0) 1168 return ret; 1169 1170 addrs[1] = page; 1171 addrs[2] = page >> 8; 1172 1173 if (chip->options & NAND_ROW_ADDR_3) { 1174 addrs[3] = page >> 16; 1175 instrs[1].ctx.addr.naddrs++; 1176 } 1177 1178 return nand_exec_op(chip, &op); 1179 } 1180 1181 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1182 unsigned int offset_in_page, void *buf, 1183 unsigned int len) 1184 { 1185 const struct nand_interface_config *conf = 1186 nand_get_interface_config(chip); 1187 u8 addrs[5]; 1188 struct nand_op_instr instrs[] = { 1189 NAND_OP_CMD(NAND_CMD_READ0, 0), 1190 NAND_OP_ADDR(4, addrs, 0), 1191 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1192 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1193 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1194 NAND_OP_DATA_IN(len, buf, 0), 1195 }; 1196 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1197 int ret; 1198 1199 /* Drop the DATA_IN instruction if len is set to 0. */ 1200 if (!len) 1201 op.ninstrs--; 1202 1203 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1204 if (ret < 0) 1205 return ret; 1206 1207 addrs[2] = page; 1208 addrs[3] = page >> 8; 1209 1210 if (chip->options & NAND_ROW_ADDR_3) { 1211 addrs[4] = page >> 16; 1212 instrs[1].ctx.addr.naddrs++; 1213 } 1214 1215 return nand_exec_op(chip, &op); 1216 } 1217 1218 static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun) 1219 { 1220 /* lun is expected to be very small */ 1221 return (lun * pages_per_lun) + pages_per_lun - 1; 1222 } 1223 1224 static void rawnand_cap_cont_reads(struct nand_chip *chip) 1225 { 1226 struct nand_memory_organization *memorg; 1227 unsigned int ppl, first_lun, last_lun; 1228 1229 memorg = nanddev_get_memorg(&chip->base); 1230 ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun; 1231 first_lun = chip->cont_read.first_page / ppl; 1232 last_lun = chip->cont_read.last_page / ppl; 1233 1234 /* Prevent sequential cache reads across LUN boundaries */ 1235 if (first_lun != last_lun) 1236 chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun); 1237 else 1238 chip->cont_read.pause_page = chip->cont_read.last_page; 1239 1240 if (chip->cont_read.first_page == chip->cont_read.pause_page) { 1241 chip->cont_read.first_page++; 1242 chip->cont_read.pause_page = min(chip->cont_read.last_page, 1243 rawnand_last_page_of_lun(ppl, first_lun + 1)); 1244 } 1245 1246 if (chip->cont_read.first_page >= chip->cont_read.last_page) 1247 chip->cont_read.ongoing = false; 1248 } 1249 1250 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page, 1251 unsigned int offset_in_page, void *buf, 1252 unsigned int len, bool check_only) 1253 { 1254 const struct nand_interface_config *conf = 1255 nand_get_interface_config(chip); 1256 u8 addrs[5]; 1257 struct nand_op_instr start_instrs[] = { 1258 NAND_OP_CMD(NAND_CMD_READ0, 0), 1259 NAND_OP_ADDR(4, addrs, 0), 1260 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1261 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0), 1262 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1263 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1264 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1265 NAND_OP_DATA_IN(len, buf, 0), 1266 }; 1267 struct nand_op_instr cont_instrs[] = { 1268 NAND_OP_CMD(page == chip->cont_read.pause_page ? 1269 NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ, 1270 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1271 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1272 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1273 NAND_OP_DATA_IN(len, buf, 0), 1274 }; 1275 struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs); 1276 struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs); 1277 int ret; 1278 1279 if (!len) { 1280 start_op.ninstrs--; 1281 cont_op.ninstrs--; 1282 } 1283 1284 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1285 if (ret < 0) 1286 return ret; 1287 1288 addrs[2] = page; 1289 addrs[3] = page >> 8; 1290 1291 if (chip->options & NAND_ROW_ADDR_3) { 1292 addrs[4] = page >> 16; 1293 start_instrs[1].ctx.addr.naddrs++; 1294 } 1295 1296 /* Check if cache reads are supported */ 1297 if (check_only) { 1298 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op)) 1299 return -EOPNOTSUPP; 1300 1301 return 0; 1302 } 1303 1304 if (page == chip->cont_read.first_page) 1305 ret = nand_exec_op(chip, &start_op); 1306 else 1307 ret = nand_exec_op(chip, &cont_op); 1308 if (ret) 1309 return ret; 1310 1311 if (!chip->cont_read.ongoing) 1312 return 0; 1313 1314 if (page == chip->cont_read.last_page) { 1315 chip->cont_read.ongoing = false; 1316 } else if (page == chip->cont_read.pause_page) { 1317 chip->cont_read.first_page++; 1318 rawnand_cap_cont_reads(chip); 1319 } 1320 1321 return 0; 1322 } 1323 1324 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page) 1325 { 1326 return chip->cont_read.ongoing && page >= chip->cont_read.first_page; 1327 } 1328 1329 /** 1330 * nand_read_page_op - Do a READ PAGE operation 1331 * @chip: The NAND chip 1332 * @page: page to read 1333 * @offset_in_page: offset within the page 1334 * @buf: buffer used to store the data 1335 * @len: length of the buffer 1336 * 1337 * This function issues a READ PAGE operation. 1338 * This function does not select/unselect the CS line. 1339 * 1340 * Returns 0 on success, a negative error code otherwise. 1341 */ 1342 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1343 unsigned int offset_in_page, void *buf, unsigned int len) 1344 { 1345 struct mtd_info *mtd = nand_to_mtd(chip); 1346 1347 if (len && !buf) 1348 return -EINVAL; 1349 1350 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1351 return -EINVAL; 1352 1353 if (nand_has_exec_op(chip)) { 1354 if (mtd->writesize > 512) { 1355 if (rawnand_cont_read_ongoing(chip, page)) 1356 return nand_lp_exec_cont_read_page_op(chip, page, 1357 offset_in_page, 1358 buf, len, false); 1359 else 1360 return nand_lp_exec_read_page_op(chip, page, 1361 offset_in_page, buf, 1362 len); 1363 } 1364 1365 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1366 buf, len); 1367 } 1368 1369 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1370 if (len) 1371 chip->legacy.read_buf(chip, buf, len); 1372 1373 return 0; 1374 } 1375 EXPORT_SYMBOL_GPL(nand_read_page_op); 1376 1377 /** 1378 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1379 * @chip: The NAND chip 1380 * @page: parameter page to read 1381 * @buf: buffer used to store the data 1382 * @len: length of the buffer 1383 * 1384 * This function issues a READ PARAMETER PAGE operation. 1385 * This function does not select/unselect the CS line. 1386 * 1387 * Returns 0 on success, a negative error code otherwise. 1388 */ 1389 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1390 unsigned int len) 1391 { 1392 unsigned int i; 1393 u8 *p = buf; 1394 1395 if (len && !buf) 1396 return -EINVAL; 1397 1398 if (nand_has_exec_op(chip)) { 1399 const struct nand_interface_config *conf = 1400 nand_get_interface_config(chip); 1401 struct nand_op_instr instrs[] = { 1402 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1403 NAND_OP_ADDR(1, &page, 1404 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1405 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1406 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1407 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1408 }; 1409 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1410 1411 /* Drop the DATA_IN instruction if len is set to 0. */ 1412 if (!len) 1413 op.ninstrs--; 1414 1415 return nand_exec_op(chip, &op); 1416 } 1417 1418 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1419 for (i = 0; i < len; i++) 1420 p[i] = chip->legacy.read_byte(chip); 1421 1422 return 0; 1423 } 1424 1425 /** 1426 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1427 * @chip: The NAND chip 1428 * @offset_in_page: offset within the page 1429 * @buf: buffer used to store the data 1430 * @len: length of the buffer 1431 * @force_8bit: force 8-bit bus access 1432 * 1433 * This function issues a CHANGE READ COLUMN operation. 1434 * This function does not select/unselect the CS line. 1435 * 1436 * Returns 0 on success, a negative error code otherwise. 1437 */ 1438 int nand_change_read_column_op(struct nand_chip *chip, 1439 unsigned int offset_in_page, void *buf, 1440 unsigned int len, bool force_8bit) 1441 { 1442 struct mtd_info *mtd = nand_to_mtd(chip); 1443 bool ident_stage = !mtd->writesize; 1444 1445 if (len && !buf) 1446 return -EINVAL; 1447 1448 if (!ident_stage) { 1449 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1450 return -EINVAL; 1451 1452 /* Small page NANDs do not support column change. */ 1453 if (mtd->writesize <= 512) 1454 return -ENOTSUPP; 1455 } 1456 1457 if (nand_has_exec_op(chip)) { 1458 const struct nand_interface_config *conf = 1459 nand_get_interface_config(chip); 1460 u8 addrs[2] = {}; 1461 struct nand_op_instr instrs[] = { 1462 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1463 NAND_OP_ADDR(2, addrs, 0), 1464 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1465 NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1466 NAND_OP_DATA_IN(len, buf, 0), 1467 }; 1468 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1469 int ret; 1470 1471 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1472 if (ret < 0) 1473 return ret; 1474 1475 /* Drop the DATA_IN instruction if len is set to 0. */ 1476 if (!len) 1477 op.ninstrs--; 1478 1479 instrs[3].ctx.data.force_8bit = force_8bit; 1480 1481 return nand_exec_op(chip, &op); 1482 } 1483 1484 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1485 if (len) 1486 chip->legacy.read_buf(chip, buf, len); 1487 1488 return 0; 1489 } 1490 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1491 1492 /** 1493 * nand_read_oob_op - Do a READ OOB operation 1494 * @chip: The NAND chip 1495 * @page: page to read 1496 * @offset_in_oob: offset within the OOB area 1497 * @buf: buffer used to store the data 1498 * @len: length of the buffer 1499 * 1500 * This function issues a READ OOB operation. 1501 * This function does not select/unselect the CS line. 1502 * 1503 * Returns 0 on success, a negative error code otherwise. 1504 */ 1505 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1506 unsigned int offset_in_oob, void *buf, unsigned int len) 1507 { 1508 struct mtd_info *mtd = nand_to_mtd(chip); 1509 1510 if (len && !buf) 1511 return -EINVAL; 1512 1513 if (offset_in_oob + len > mtd->oobsize) 1514 return -EINVAL; 1515 1516 if (nand_has_exec_op(chip)) 1517 return nand_read_page_op(chip, page, 1518 mtd->writesize + offset_in_oob, 1519 buf, len); 1520 1521 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1522 if (len) 1523 chip->legacy.read_buf(chip, buf, len); 1524 1525 return 0; 1526 } 1527 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1528 1529 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1530 unsigned int offset_in_page, const void *buf, 1531 unsigned int len, bool prog) 1532 { 1533 const struct nand_interface_config *conf = 1534 nand_get_interface_config(chip); 1535 struct mtd_info *mtd = nand_to_mtd(chip); 1536 u8 addrs[5] = {}; 1537 struct nand_op_instr instrs[] = { 1538 /* 1539 * The first instruction will be dropped if we're dealing 1540 * with a large page NAND and adjusted if we're dealing 1541 * with a small page NAND and the page offset is > 255. 1542 */ 1543 NAND_OP_CMD(NAND_CMD_READ0, 0), 1544 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1545 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)), 1546 NAND_OP_DATA_OUT(len, buf, 0), 1547 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1548 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1549 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0), 1550 }; 1551 struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs, 1552 instrs); 1553 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1554 1555 if (naddrs < 0) 1556 return naddrs; 1557 1558 addrs[naddrs++] = page; 1559 addrs[naddrs++] = page >> 8; 1560 if (chip->options & NAND_ROW_ADDR_3) 1561 addrs[naddrs++] = page >> 16; 1562 1563 instrs[2].ctx.addr.naddrs = naddrs; 1564 1565 /* Drop the last two instructions if we're not programming the page. */ 1566 if (!prog) { 1567 op.ninstrs -= 2; 1568 /* Also drop the DATA_OUT instruction if empty. */ 1569 if (!len) 1570 op.ninstrs--; 1571 } 1572 1573 if (mtd->writesize <= 512) { 1574 /* 1575 * Small pages need some more tweaking: we have to adjust the 1576 * first instruction depending on the page offset we're trying 1577 * to access. 1578 */ 1579 if (offset_in_page >= mtd->writesize) 1580 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1581 else if (offset_in_page >= 256 && 1582 !(chip->options & NAND_BUSWIDTH_16)) 1583 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1584 } else { 1585 /* 1586 * Drop the first command if we're dealing with a large page 1587 * NAND. 1588 */ 1589 op.instrs++; 1590 op.ninstrs--; 1591 } 1592 1593 return nand_exec_op(chip, &op); 1594 } 1595 1596 /** 1597 * nand_prog_page_begin_op - starts a PROG PAGE operation 1598 * @chip: The NAND chip 1599 * @page: page to write 1600 * @offset_in_page: offset within the page 1601 * @buf: buffer containing the data to write to the page 1602 * @len: length of the buffer 1603 * 1604 * This function issues the first half of a PROG PAGE operation. 1605 * This function does not select/unselect the CS line. 1606 * 1607 * Returns 0 on success, a negative error code otherwise. 1608 */ 1609 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1610 unsigned int offset_in_page, const void *buf, 1611 unsigned int len) 1612 { 1613 struct mtd_info *mtd = nand_to_mtd(chip); 1614 1615 if (len && !buf) 1616 return -EINVAL; 1617 1618 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1619 return -EINVAL; 1620 1621 if (nand_has_exec_op(chip)) 1622 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1623 len, false); 1624 1625 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1626 1627 if (buf) 1628 chip->legacy.write_buf(chip, buf, len); 1629 1630 return 0; 1631 } 1632 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1633 1634 /** 1635 * nand_prog_page_end_op - ends a PROG PAGE operation 1636 * @chip: The NAND chip 1637 * 1638 * This function issues the second half of a PROG PAGE operation. 1639 * This function does not select/unselect the CS line. 1640 * 1641 * Returns 0 on success, a negative error code otherwise. 1642 */ 1643 int nand_prog_page_end_op(struct nand_chip *chip) 1644 { 1645 int ret; 1646 u8 status; 1647 1648 if (nand_has_exec_op(chip)) { 1649 const struct nand_interface_config *conf = 1650 nand_get_interface_config(chip); 1651 struct nand_op_instr instrs[] = { 1652 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1653 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1654 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 1655 0), 1656 }; 1657 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1658 1659 ret = nand_exec_op(chip, &op); 1660 if (ret) 1661 return ret; 1662 1663 ret = nand_status_op(chip, &status); 1664 if (ret) 1665 return ret; 1666 } else { 1667 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1668 ret = chip->legacy.waitfunc(chip); 1669 if (ret < 0) 1670 return ret; 1671 1672 status = ret; 1673 } 1674 1675 if (status & NAND_STATUS_FAIL) 1676 return -EIO; 1677 1678 return 0; 1679 } 1680 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1681 1682 /** 1683 * nand_prog_page_op - Do a full PROG PAGE operation 1684 * @chip: The NAND chip 1685 * @page: page to write 1686 * @offset_in_page: offset within the page 1687 * @buf: buffer containing the data to write to the page 1688 * @len: length of the buffer 1689 * 1690 * This function issues a full PROG PAGE operation. 1691 * This function does not select/unselect the CS line. 1692 * 1693 * Returns 0 on success, a negative error code otherwise. 1694 */ 1695 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1696 unsigned int offset_in_page, const void *buf, 1697 unsigned int len) 1698 { 1699 struct mtd_info *mtd = nand_to_mtd(chip); 1700 u8 status; 1701 int ret; 1702 1703 if (!len || !buf) 1704 return -EINVAL; 1705 1706 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1707 return -EINVAL; 1708 1709 if (nand_has_exec_op(chip)) { 1710 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1711 len, true); 1712 if (ret) 1713 return ret; 1714 1715 ret = nand_status_op(chip, &status); 1716 if (ret) 1717 return ret; 1718 } else { 1719 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1720 page); 1721 chip->legacy.write_buf(chip, buf, len); 1722 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1723 ret = chip->legacy.waitfunc(chip); 1724 if (ret < 0) 1725 return ret; 1726 1727 status = ret; 1728 } 1729 1730 if (status & NAND_STATUS_FAIL) 1731 return -EIO; 1732 1733 return 0; 1734 } 1735 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1736 1737 /** 1738 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1739 * @chip: The NAND chip 1740 * @offset_in_page: offset within the page 1741 * @buf: buffer containing the data to send to the NAND 1742 * @len: length of the buffer 1743 * @force_8bit: force 8-bit bus access 1744 * 1745 * This function issues a CHANGE WRITE COLUMN operation. 1746 * This function does not select/unselect the CS line. 1747 * 1748 * Returns 0 on success, a negative error code otherwise. 1749 */ 1750 int nand_change_write_column_op(struct nand_chip *chip, 1751 unsigned int offset_in_page, 1752 const void *buf, unsigned int len, 1753 bool force_8bit) 1754 { 1755 struct mtd_info *mtd = nand_to_mtd(chip); 1756 1757 if (len && !buf) 1758 return -EINVAL; 1759 1760 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1761 return -EINVAL; 1762 1763 /* Small page NANDs do not support column change. */ 1764 if (mtd->writesize <= 512) 1765 return -ENOTSUPP; 1766 1767 if (nand_has_exec_op(chip)) { 1768 const struct nand_interface_config *conf = 1769 nand_get_interface_config(chip); 1770 u8 addrs[2]; 1771 struct nand_op_instr instrs[] = { 1772 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1773 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1774 NAND_OP_DATA_OUT(len, buf, 0), 1775 }; 1776 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1777 int ret; 1778 1779 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1780 if (ret < 0) 1781 return ret; 1782 1783 instrs[2].ctx.data.force_8bit = force_8bit; 1784 1785 /* Drop the DATA_OUT instruction if len is set to 0. */ 1786 if (!len) 1787 op.ninstrs--; 1788 1789 return nand_exec_op(chip, &op); 1790 } 1791 1792 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1793 if (len) 1794 chip->legacy.write_buf(chip, buf, len); 1795 1796 return 0; 1797 } 1798 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1799 1800 /** 1801 * nand_readid_op - Do a READID operation 1802 * @chip: The NAND chip 1803 * @addr: address cycle to pass after the READID command 1804 * @buf: buffer used to store the ID 1805 * @len: length of the buffer 1806 * 1807 * This function sends a READID command and reads back the ID returned by the 1808 * NAND. 1809 * This function does not select/unselect the CS line. 1810 * 1811 * Returns 0 on success, a negative error code otherwise. 1812 */ 1813 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1814 unsigned int len) 1815 { 1816 unsigned int i; 1817 u8 *id = buf, *ddrbuf = NULL; 1818 1819 if (len && !buf) 1820 return -EINVAL; 1821 1822 if (nand_has_exec_op(chip)) { 1823 const struct nand_interface_config *conf = 1824 nand_get_interface_config(chip); 1825 struct nand_op_instr instrs[] = { 1826 NAND_OP_CMD(NAND_CMD_READID, 0), 1827 NAND_OP_ADDR(1, &addr, 1828 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1829 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1830 }; 1831 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1832 int ret; 1833 1834 /* READ_ID data bytes are received twice in NV-DDR mode */ 1835 if (len && nand_interface_is_nvddr(conf)) { 1836 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 1837 if (!ddrbuf) 1838 return -ENOMEM; 1839 1840 instrs[2].ctx.data.len *= 2; 1841 instrs[2].ctx.data.buf.in = ddrbuf; 1842 } 1843 1844 /* Drop the DATA_IN instruction if len is set to 0. */ 1845 if (!len) 1846 op.ninstrs--; 1847 1848 ret = nand_exec_op(chip, &op); 1849 if (!ret && len && nand_interface_is_nvddr(conf)) { 1850 for (i = 0; i < len; i++) 1851 id[i] = ddrbuf[i * 2]; 1852 } 1853 1854 kfree(ddrbuf); 1855 1856 return ret; 1857 } 1858 1859 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1860 1861 for (i = 0; i < len; i++) 1862 id[i] = chip->legacy.read_byte(chip); 1863 1864 return 0; 1865 } 1866 EXPORT_SYMBOL_GPL(nand_readid_op); 1867 1868 /** 1869 * nand_status_op - Do a STATUS operation 1870 * @chip: The NAND chip 1871 * @status: out variable to store the NAND status 1872 * 1873 * This function sends a STATUS command and reads back the status returned by 1874 * the NAND. 1875 * This function does not select/unselect the CS line. 1876 * 1877 * Returns 0 on success, a negative error code otherwise. 1878 */ 1879 int nand_status_op(struct nand_chip *chip, u8 *status) 1880 { 1881 if (nand_has_exec_op(chip)) { 1882 const struct nand_interface_config *conf = 1883 nand_get_interface_config(chip); 1884 u8 ddrstatus[2]; 1885 struct nand_op_instr instrs[] = { 1886 NAND_OP_CMD(NAND_CMD_STATUS, 1887 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1888 NAND_OP_8BIT_DATA_IN(1, status, 0), 1889 }; 1890 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1891 int ret; 1892 1893 /* The status data byte will be received twice in NV-DDR mode */ 1894 if (status && nand_interface_is_nvddr(conf)) { 1895 instrs[1].ctx.data.len *= 2; 1896 instrs[1].ctx.data.buf.in = ddrstatus; 1897 } 1898 1899 if (!status) 1900 op.ninstrs--; 1901 1902 ret = nand_exec_op(chip, &op); 1903 if (!ret && status && nand_interface_is_nvddr(conf)) 1904 *status = ddrstatus[0]; 1905 1906 return ret; 1907 } 1908 1909 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1910 if (status) 1911 *status = chip->legacy.read_byte(chip); 1912 1913 return 0; 1914 } 1915 EXPORT_SYMBOL_GPL(nand_status_op); 1916 1917 /** 1918 * nand_exit_status_op - Exit a STATUS operation 1919 * @chip: The NAND chip 1920 * 1921 * This function sends a READ0 command to cancel the effect of the STATUS 1922 * command to avoid reading only the status until a new read command is sent. 1923 * 1924 * This function does not select/unselect the CS line. 1925 * 1926 * Returns 0 on success, a negative error code otherwise. 1927 */ 1928 int nand_exit_status_op(struct nand_chip *chip) 1929 { 1930 if (nand_has_exec_op(chip)) { 1931 struct nand_op_instr instrs[] = { 1932 NAND_OP_CMD(NAND_CMD_READ0, 0), 1933 }; 1934 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1935 1936 return nand_exec_op(chip, &op); 1937 } 1938 1939 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1940 1941 return 0; 1942 } 1943 EXPORT_SYMBOL_GPL(nand_exit_status_op); 1944 1945 /** 1946 * nand_erase_op - Do an erase operation 1947 * @chip: The NAND chip 1948 * @eraseblock: block to erase 1949 * 1950 * This function sends an ERASE command and waits for the NAND to be ready 1951 * before returning. 1952 * This function does not select/unselect the CS line. 1953 * 1954 * Returns 0 on success, a negative error code otherwise. 1955 */ 1956 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1957 { 1958 unsigned int page = eraseblock << 1959 (chip->phys_erase_shift - chip->page_shift); 1960 int ret; 1961 u8 status; 1962 1963 if (nand_has_exec_op(chip)) { 1964 const struct nand_interface_config *conf = 1965 nand_get_interface_config(chip); 1966 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1967 struct nand_op_instr instrs[] = { 1968 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1969 NAND_OP_ADDR(2, addrs, 0), 1970 NAND_OP_CMD(NAND_CMD_ERASE2, 1971 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1972 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max), 1973 0), 1974 }; 1975 struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs, 1976 instrs); 1977 1978 if (chip->options & NAND_ROW_ADDR_3) 1979 instrs[1].ctx.addr.naddrs++; 1980 1981 ret = nand_exec_op(chip, &op); 1982 if (ret) 1983 return ret; 1984 1985 ret = nand_status_op(chip, &status); 1986 if (ret) 1987 return ret; 1988 } else { 1989 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1990 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1991 1992 ret = chip->legacy.waitfunc(chip); 1993 if (ret < 0) 1994 return ret; 1995 1996 status = ret; 1997 } 1998 1999 if (status & NAND_STATUS_FAIL) 2000 return -EIO; 2001 2002 return 0; 2003 } 2004 EXPORT_SYMBOL_GPL(nand_erase_op); 2005 2006 /** 2007 * nand_set_features_op - Do a SET FEATURES operation 2008 * @chip: The NAND chip 2009 * @feature: feature id 2010 * @data: 4 bytes of data 2011 * 2012 * This function sends a SET FEATURES command and waits for the NAND to be 2013 * ready before returning. 2014 * This function does not select/unselect the CS line. 2015 * 2016 * Returns 0 on success, a negative error code otherwise. 2017 */ 2018 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 2019 const void *data) 2020 { 2021 const u8 *params = data; 2022 int i, ret; 2023 2024 if (nand_has_exec_op(chip)) { 2025 const struct nand_interface_config *conf = 2026 nand_get_interface_config(chip); 2027 struct nand_op_instr instrs[] = { 2028 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 2029 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf, 2030 tADL_min)), 2031 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 2032 NAND_COMMON_TIMING_NS(conf, 2033 tWB_max)), 2034 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 2035 0), 2036 }; 2037 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2038 2039 return nand_exec_op(chip, &op); 2040 } 2041 2042 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 2043 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2044 chip->legacy.write_byte(chip, params[i]); 2045 2046 ret = chip->legacy.waitfunc(chip); 2047 if (ret < 0) 2048 return ret; 2049 2050 if (ret & NAND_STATUS_FAIL) 2051 return -EIO; 2052 2053 return 0; 2054 } 2055 2056 /** 2057 * nand_get_features_op - Do a GET FEATURES operation 2058 * @chip: The NAND chip 2059 * @feature: feature id 2060 * @data: 4 bytes of data 2061 * 2062 * This function sends a GET FEATURES command and waits for the NAND to be 2063 * ready before returning. 2064 * This function does not select/unselect the CS line. 2065 * 2066 * Returns 0 on success, a negative error code otherwise. 2067 */ 2068 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 2069 void *data) 2070 { 2071 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2]; 2072 int i; 2073 2074 if (nand_has_exec_op(chip)) { 2075 const struct nand_interface_config *conf = 2076 nand_get_interface_config(chip); 2077 struct nand_op_instr instrs[] = { 2078 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 2079 NAND_OP_ADDR(1, &feature, 2080 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2081 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 2082 NAND_COMMON_TIMING_NS(conf, tRR_min)), 2083 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 2084 data, 0), 2085 }; 2086 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2087 int ret; 2088 2089 /* GET_FEATURE data bytes are received twice in NV-DDR mode */ 2090 if (nand_interface_is_nvddr(conf)) { 2091 instrs[3].ctx.data.len *= 2; 2092 instrs[3].ctx.data.buf.in = ddrbuf; 2093 } 2094 2095 ret = nand_exec_op(chip, &op); 2096 if (nand_interface_is_nvddr(conf)) { 2097 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++) 2098 params[i] = ddrbuf[i * 2]; 2099 } 2100 2101 return ret; 2102 } 2103 2104 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 2105 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2106 params[i] = chip->legacy.read_byte(chip); 2107 2108 return 0; 2109 } 2110 2111 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 2112 unsigned int delay_ns) 2113 { 2114 if (nand_has_exec_op(chip)) { 2115 struct nand_op_instr instrs[] = { 2116 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 2117 PSEC_TO_NSEC(delay_ns)), 2118 }; 2119 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2120 2121 return nand_exec_op(chip, &op); 2122 } 2123 2124 /* Apply delay or wait for ready/busy pin */ 2125 if (!chip->legacy.dev_ready) 2126 udelay(chip->legacy.chip_delay); 2127 else 2128 nand_wait_ready(chip); 2129 2130 return 0; 2131 } 2132 2133 /** 2134 * nand_reset_op - Do a reset operation 2135 * @chip: The NAND chip 2136 * 2137 * This function sends a RESET command and waits for the NAND to be ready 2138 * before returning. 2139 * This function does not select/unselect the CS line. 2140 * 2141 * Returns 0 on success, a negative error code otherwise. 2142 */ 2143 int nand_reset_op(struct nand_chip *chip) 2144 { 2145 if (nand_has_exec_op(chip)) { 2146 const struct nand_interface_config *conf = 2147 nand_get_interface_config(chip); 2148 struct nand_op_instr instrs[] = { 2149 NAND_OP_CMD(NAND_CMD_RESET, 2150 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2151 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max), 2152 0), 2153 }; 2154 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2155 2156 return nand_exec_op(chip, &op); 2157 } 2158 2159 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 2160 2161 return 0; 2162 } 2163 EXPORT_SYMBOL_GPL(nand_reset_op); 2164 2165 /** 2166 * nand_read_data_op - Read data from the NAND 2167 * @chip: The NAND chip 2168 * @buf: buffer used to store the data 2169 * @len: length of the buffer 2170 * @force_8bit: force 8-bit bus access 2171 * @check_only: do not actually run the command, only checks if the 2172 * controller driver supports it 2173 * 2174 * This function does a raw data read on the bus. Usually used after launching 2175 * another NAND operation like nand_read_page_op(). 2176 * This function does not select/unselect the CS line. 2177 * 2178 * Returns 0 on success, a negative error code otherwise. 2179 */ 2180 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2181 bool force_8bit, bool check_only) 2182 { 2183 if (!len || (!check_only && !buf)) 2184 return -EINVAL; 2185 2186 if (nand_has_exec_op(chip)) { 2187 const struct nand_interface_config *conf = 2188 nand_get_interface_config(chip); 2189 struct nand_op_instr instrs[] = { 2190 NAND_OP_DATA_IN(len, buf, 0), 2191 }; 2192 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2193 u8 *ddrbuf = NULL; 2194 int ret, i; 2195 2196 instrs[0].ctx.data.force_8bit = force_8bit; 2197 2198 /* 2199 * Parameter payloads (ID, status, features, etc) do not go 2200 * through the same pipeline as regular data, hence the 2201 * force_8bit flag must be set and this also indicates that in 2202 * case NV-DDR timings are being used the data will be received 2203 * twice. 2204 */ 2205 if (force_8bit && nand_interface_is_nvddr(conf)) { 2206 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 2207 if (!ddrbuf) 2208 return -ENOMEM; 2209 2210 instrs[0].ctx.data.len *= 2; 2211 instrs[0].ctx.data.buf.in = ddrbuf; 2212 } 2213 2214 if (check_only) { 2215 ret = nand_check_op(chip, &op); 2216 kfree(ddrbuf); 2217 return ret; 2218 } 2219 2220 ret = nand_exec_op(chip, &op); 2221 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) { 2222 u8 *dst = buf; 2223 2224 for (i = 0; i < len; i++) 2225 dst[i] = ddrbuf[i * 2]; 2226 } 2227 2228 kfree(ddrbuf); 2229 2230 return ret; 2231 } 2232 2233 if (check_only) 2234 return 0; 2235 2236 if (force_8bit) { 2237 u8 *p = buf; 2238 unsigned int i; 2239 2240 for (i = 0; i < len; i++) 2241 p[i] = chip->legacy.read_byte(chip); 2242 } else { 2243 chip->legacy.read_buf(chip, buf, len); 2244 } 2245 2246 return 0; 2247 } 2248 EXPORT_SYMBOL_GPL(nand_read_data_op); 2249 2250 /** 2251 * nand_write_data_op - Write data from the NAND 2252 * @chip: The NAND chip 2253 * @buf: buffer containing the data to send on the bus 2254 * @len: length of the buffer 2255 * @force_8bit: force 8-bit bus access 2256 * 2257 * This function does a raw data write on the bus. Usually used after launching 2258 * another NAND operation like nand_write_page_begin_op(). 2259 * This function does not select/unselect the CS line. 2260 * 2261 * Returns 0 on success, a negative error code otherwise. 2262 */ 2263 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2264 unsigned int len, bool force_8bit) 2265 { 2266 if (!len || !buf) 2267 return -EINVAL; 2268 2269 if (nand_has_exec_op(chip)) { 2270 struct nand_op_instr instrs[] = { 2271 NAND_OP_DATA_OUT(len, buf, 0), 2272 }; 2273 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2274 2275 instrs[0].ctx.data.force_8bit = force_8bit; 2276 2277 return nand_exec_op(chip, &op); 2278 } 2279 2280 if (force_8bit) { 2281 const u8 *p = buf; 2282 unsigned int i; 2283 2284 for (i = 0; i < len; i++) 2285 chip->legacy.write_byte(chip, p[i]); 2286 } else { 2287 chip->legacy.write_buf(chip, buf, len); 2288 } 2289 2290 return 0; 2291 } 2292 EXPORT_SYMBOL_GPL(nand_write_data_op); 2293 2294 /** 2295 * struct nand_op_parser_ctx - Context used by the parser 2296 * @instrs: array of all the instructions that must be addressed 2297 * @ninstrs: length of the @instrs array 2298 * @subop: Sub-operation to be passed to the NAND controller 2299 * 2300 * This structure is used by the core to split NAND operations into 2301 * sub-operations that can be handled by the NAND controller. 2302 */ 2303 struct nand_op_parser_ctx { 2304 const struct nand_op_instr *instrs; 2305 unsigned int ninstrs; 2306 struct nand_subop subop; 2307 }; 2308 2309 /** 2310 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2311 * @pat: the parser pattern element that matches @instr 2312 * @instr: pointer to the instruction to check 2313 * @start_offset: this is an in/out parameter. If @instr has already been 2314 * split, then @start_offset is the offset from which to start 2315 * (either an address cycle or an offset in the data buffer). 2316 * Conversely, if the function returns true (ie. instr must be 2317 * split), this parameter is updated to point to the first 2318 * data/address cycle that has not been taken care of. 2319 * 2320 * Some NAND controllers are limited and cannot send X address cycles with a 2321 * unique operation, or cannot read/write more than Y bytes at the same time. 2322 * In this case, split the instruction that does not fit in a single 2323 * controller-operation into two or more chunks. 2324 * 2325 * Returns true if the instruction must be split, false otherwise. 2326 * The @start_offset parameter is also updated to the offset at which the next 2327 * bundle of instruction must start (if an address or a data instruction). 2328 */ 2329 static bool 2330 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2331 const struct nand_op_instr *instr, 2332 unsigned int *start_offset) 2333 { 2334 switch (pat->type) { 2335 case NAND_OP_ADDR_INSTR: 2336 if (!pat->ctx.addr.maxcycles) 2337 break; 2338 2339 if (instr->ctx.addr.naddrs - *start_offset > 2340 pat->ctx.addr.maxcycles) { 2341 *start_offset += pat->ctx.addr.maxcycles; 2342 return true; 2343 } 2344 break; 2345 2346 case NAND_OP_DATA_IN_INSTR: 2347 case NAND_OP_DATA_OUT_INSTR: 2348 if (!pat->ctx.data.maxlen) 2349 break; 2350 2351 if (instr->ctx.data.len - *start_offset > 2352 pat->ctx.data.maxlen) { 2353 *start_offset += pat->ctx.data.maxlen; 2354 return true; 2355 } 2356 break; 2357 2358 default: 2359 break; 2360 } 2361 2362 return false; 2363 } 2364 2365 /** 2366 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2367 * remaining in the parser context 2368 * @pat: the pattern to test 2369 * @ctx: the parser context structure to match with the pattern @pat 2370 * 2371 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2372 * Returns true if this is the case, false ortherwise. When true is returned, 2373 * @ctx->subop is updated with the set of instructions to be passed to the 2374 * controller driver. 2375 */ 2376 static bool 2377 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2378 struct nand_op_parser_ctx *ctx) 2379 { 2380 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2381 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2382 const struct nand_op_instr *instr = ctx->subop.instrs; 2383 unsigned int i, ninstrs; 2384 2385 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2386 /* 2387 * The pattern instruction does not match the operation 2388 * instruction. If the instruction is marked optional in the 2389 * pattern definition, we skip the pattern element and continue 2390 * to the next one. If the element is mandatory, there's no 2391 * match and we can return false directly. 2392 */ 2393 if (instr->type != pat->elems[i].type) { 2394 if (!pat->elems[i].optional) 2395 return false; 2396 2397 continue; 2398 } 2399 2400 /* 2401 * Now check the pattern element constraints. If the pattern is 2402 * not able to handle the whole instruction in a single step, 2403 * we have to split it. 2404 * The last_instr_end_off value comes back updated to point to 2405 * the position where we have to split the instruction (the 2406 * start of the next subop chunk). 2407 */ 2408 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2409 &instr_offset)) { 2410 ninstrs++; 2411 i++; 2412 break; 2413 } 2414 2415 instr++; 2416 ninstrs++; 2417 instr_offset = 0; 2418 } 2419 2420 /* 2421 * This can happen if all instructions of a pattern are optional. 2422 * Still, if there's not at least one instruction handled by this 2423 * pattern, this is not a match, and we should try the next one (if 2424 * any). 2425 */ 2426 if (!ninstrs) 2427 return false; 2428 2429 /* 2430 * We had a match on the pattern head, but the pattern may be longer 2431 * than the instructions we're asked to execute. We need to make sure 2432 * there's no mandatory elements in the pattern tail. 2433 */ 2434 for (; i < pat->nelems; i++) { 2435 if (!pat->elems[i].optional) 2436 return false; 2437 } 2438 2439 /* 2440 * We have a match: update the subop structure accordingly and return 2441 * true. 2442 */ 2443 ctx->subop.ninstrs = ninstrs; 2444 ctx->subop.last_instr_end_off = instr_offset; 2445 2446 return true; 2447 } 2448 2449 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2450 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2451 { 2452 const struct nand_op_instr *instr; 2453 char *prefix = " "; 2454 unsigned int i; 2455 2456 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2457 2458 for (i = 0; i < ctx->ninstrs; i++) { 2459 instr = &ctx->instrs[i]; 2460 2461 if (instr == &ctx->subop.instrs[0]) 2462 prefix = " ->"; 2463 2464 nand_op_trace(prefix, instr); 2465 2466 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2467 prefix = " "; 2468 } 2469 } 2470 #else 2471 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2472 { 2473 /* NOP */ 2474 } 2475 #endif 2476 2477 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2478 const struct nand_op_parser_ctx *b) 2479 { 2480 if (a->subop.ninstrs < b->subop.ninstrs) 2481 return -1; 2482 else if (a->subop.ninstrs > b->subop.ninstrs) 2483 return 1; 2484 2485 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2486 return -1; 2487 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2488 return 1; 2489 2490 return 0; 2491 } 2492 2493 /** 2494 * nand_op_parser_exec_op - exec_op parser 2495 * @chip: the NAND chip 2496 * @parser: patterns description provided by the controller driver 2497 * @op: the NAND operation to address 2498 * @check_only: when true, the function only checks if @op can be handled but 2499 * does not execute the operation 2500 * 2501 * Helper function designed to ease integration of NAND controller drivers that 2502 * only support a limited set of instruction sequences. The supported sequences 2503 * are described in @parser, and the framework takes care of splitting @op into 2504 * multiple sub-operations (if required) and pass them back to the ->exec() 2505 * callback of the matching pattern if @check_only is set to false. 2506 * 2507 * NAND controller drivers should call this function from their own ->exec_op() 2508 * implementation. 2509 * 2510 * Returns 0 on success, a negative error code otherwise. A failure can be 2511 * caused by an unsupported operation (none of the supported patterns is able 2512 * to handle the requested operation), or an error returned by one of the 2513 * matching pattern->exec() hook. 2514 */ 2515 int nand_op_parser_exec_op(struct nand_chip *chip, 2516 const struct nand_op_parser *parser, 2517 const struct nand_operation *op, bool check_only) 2518 { 2519 struct nand_op_parser_ctx ctx = { 2520 .subop.cs = op->cs, 2521 .subop.instrs = op->instrs, 2522 .instrs = op->instrs, 2523 .ninstrs = op->ninstrs, 2524 }; 2525 unsigned int i; 2526 2527 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2528 const struct nand_op_parser_pattern *pattern; 2529 struct nand_op_parser_ctx best_ctx; 2530 int ret, best_pattern = -1; 2531 2532 for (i = 0; i < parser->npatterns; i++) { 2533 struct nand_op_parser_ctx test_ctx = ctx; 2534 2535 pattern = &parser->patterns[i]; 2536 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2537 continue; 2538 2539 if (best_pattern >= 0 && 2540 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2541 continue; 2542 2543 best_pattern = i; 2544 best_ctx = test_ctx; 2545 } 2546 2547 if (best_pattern < 0) { 2548 pr_debug("->exec_op() parser: pattern not found!\n"); 2549 return -ENOTSUPP; 2550 } 2551 2552 ctx = best_ctx; 2553 nand_op_parser_trace(&ctx); 2554 2555 if (!check_only) { 2556 pattern = &parser->patterns[best_pattern]; 2557 ret = pattern->exec(chip, &ctx.subop); 2558 if (ret) 2559 return ret; 2560 } 2561 2562 /* 2563 * Update the context structure by pointing to the start of the 2564 * next subop. 2565 */ 2566 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2567 if (ctx.subop.last_instr_end_off) 2568 ctx.subop.instrs -= 1; 2569 2570 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2571 } 2572 2573 return 0; 2574 } 2575 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2576 2577 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2578 { 2579 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2580 instr->type == NAND_OP_DATA_OUT_INSTR); 2581 } 2582 2583 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2584 unsigned int instr_idx) 2585 { 2586 return subop && instr_idx < subop->ninstrs; 2587 } 2588 2589 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2590 unsigned int instr_idx) 2591 { 2592 if (instr_idx) 2593 return 0; 2594 2595 return subop->first_instr_start_off; 2596 } 2597 2598 /** 2599 * nand_subop_get_addr_start_off - Get the start offset in an address array 2600 * @subop: The entire sub-operation 2601 * @instr_idx: Index of the instruction inside the sub-operation 2602 * 2603 * During driver development, one could be tempted to directly use the 2604 * ->addr.addrs field of address instructions. This is wrong as address 2605 * instructions might be split. 2606 * 2607 * Given an address instruction, returns the offset of the first cycle to issue. 2608 */ 2609 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2610 unsigned int instr_idx) 2611 { 2612 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2613 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2614 return 0; 2615 2616 return nand_subop_get_start_off(subop, instr_idx); 2617 } 2618 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2619 2620 /** 2621 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2622 * @subop: The entire sub-operation 2623 * @instr_idx: Index of the instruction inside the sub-operation 2624 * 2625 * During driver development, one could be tempted to directly use the 2626 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2627 * might be split. 2628 * 2629 * Given an address instruction, returns the number of address cycle to issue. 2630 */ 2631 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2632 unsigned int instr_idx) 2633 { 2634 int start_off, end_off; 2635 2636 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2637 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2638 return 0; 2639 2640 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2641 2642 if (instr_idx == subop->ninstrs - 1 && 2643 subop->last_instr_end_off) 2644 end_off = subop->last_instr_end_off; 2645 else 2646 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2647 2648 return end_off - start_off; 2649 } 2650 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2651 2652 /** 2653 * nand_subop_get_data_start_off - Get the start offset in a data array 2654 * @subop: The entire sub-operation 2655 * @instr_idx: Index of the instruction inside the sub-operation 2656 * 2657 * During driver development, one could be tempted to directly use the 2658 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2659 * instructions might be split. 2660 * 2661 * Given a data instruction, returns the offset to start from. 2662 */ 2663 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2664 unsigned int instr_idx) 2665 { 2666 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2667 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2668 return 0; 2669 2670 return nand_subop_get_start_off(subop, instr_idx); 2671 } 2672 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2673 2674 /** 2675 * nand_subop_get_data_len - Get the number of bytes to retrieve 2676 * @subop: The entire sub-operation 2677 * @instr_idx: Index of the instruction inside the sub-operation 2678 * 2679 * During driver development, one could be tempted to directly use the 2680 * ->data->len field of a data instruction. This is wrong as data instructions 2681 * might be split. 2682 * 2683 * Returns the length of the chunk of data to send/receive. 2684 */ 2685 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2686 unsigned int instr_idx) 2687 { 2688 int start_off = 0, end_off; 2689 2690 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2691 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2692 return 0; 2693 2694 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2695 2696 if (instr_idx == subop->ninstrs - 1 && 2697 subop->last_instr_end_off) 2698 end_off = subop->last_instr_end_off; 2699 else 2700 end_off = subop->instrs[instr_idx].ctx.data.len; 2701 2702 return end_off - start_off; 2703 } 2704 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2705 2706 /** 2707 * nand_reset - Reset and initialize a NAND device 2708 * @chip: The NAND chip 2709 * @chipnr: Internal die id 2710 * 2711 * Save the timings data structure, then apply SDR timings mode 0 (see 2712 * nand_reset_interface for details), do the reset operation, and apply 2713 * back the previous timings. 2714 * 2715 * Returns 0 on success, a negative error code otherwise. 2716 */ 2717 int nand_reset(struct nand_chip *chip, int chipnr) 2718 { 2719 int ret; 2720 2721 ret = nand_reset_interface(chip, chipnr); 2722 if (ret) 2723 return ret; 2724 2725 /* 2726 * The CS line has to be released before we can apply the new NAND 2727 * interface settings, hence this weird nand_select_target() 2728 * nand_deselect_target() dance. 2729 */ 2730 nand_select_target(chip, chipnr); 2731 ret = nand_reset_op(chip); 2732 nand_deselect_target(chip); 2733 if (ret) 2734 return ret; 2735 2736 ret = nand_setup_interface(chip, chipnr); 2737 if (ret) 2738 return ret; 2739 2740 return 0; 2741 } 2742 EXPORT_SYMBOL_GPL(nand_reset); 2743 2744 /** 2745 * nand_get_features - wrapper to perform a GET_FEATURE 2746 * @chip: NAND chip info structure 2747 * @addr: feature address 2748 * @subfeature_param: the subfeature parameters, a four bytes array 2749 * 2750 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2751 * operation cannot be handled. 2752 */ 2753 int nand_get_features(struct nand_chip *chip, int addr, 2754 u8 *subfeature_param) 2755 { 2756 if (!nand_supports_get_features(chip, addr)) 2757 return -ENOTSUPP; 2758 2759 if (chip->legacy.get_features) 2760 return chip->legacy.get_features(chip, addr, subfeature_param); 2761 2762 return nand_get_features_op(chip, addr, subfeature_param); 2763 } 2764 2765 /** 2766 * nand_set_features - wrapper to perform a SET_FEATURE 2767 * @chip: NAND chip info structure 2768 * @addr: feature address 2769 * @subfeature_param: the subfeature parameters, a four bytes array 2770 * 2771 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2772 * operation cannot be handled. 2773 */ 2774 int nand_set_features(struct nand_chip *chip, int addr, 2775 u8 *subfeature_param) 2776 { 2777 if (!nand_supports_set_features(chip, addr)) 2778 return -ENOTSUPP; 2779 2780 if (chip->legacy.set_features) 2781 return chip->legacy.set_features(chip, addr, subfeature_param); 2782 2783 return nand_set_features_op(chip, addr, subfeature_param); 2784 } 2785 2786 /** 2787 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2788 * @buf: buffer to test 2789 * @len: buffer length 2790 * @bitflips_threshold: maximum number of bitflips 2791 * 2792 * Check if a buffer contains only 0xff, which means the underlying region 2793 * has been erased and is ready to be programmed. 2794 * The bitflips_threshold specify the maximum number of bitflips before 2795 * considering the region is not erased. 2796 * Note: The logic of this function has been extracted from the memweight 2797 * implementation, except that nand_check_erased_buf function exit before 2798 * testing the whole buffer if the number of bitflips exceed the 2799 * bitflips_threshold value. 2800 * 2801 * Returns a positive number of bitflips less than or equal to 2802 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2803 * threshold. 2804 */ 2805 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2806 { 2807 const unsigned char *bitmap = buf; 2808 int bitflips = 0; 2809 int weight; 2810 2811 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2812 len--, bitmap++) { 2813 weight = hweight8(*bitmap); 2814 bitflips += BITS_PER_BYTE - weight; 2815 if (unlikely(bitflips > bitflips_threshold)) 2816 return -EBADMSG; 2817 } 2818 2819 for (; len >= sizeof(long); 2820 len -= sizeof(long), bitmap += sizeof(long)) { 2821 unsigned long d = *((unsigned long *)bitmap); 2822 if (d == ~0UL) 2823 continue; 2824 weight = hweight_long(d); 2825 bitflips += BITS_PER_LONG - weight; 2826 if (unlikely(bitflips > bitflips_threshold)) 2827 return -EBADMSG; 2828 } 2829 2830 for (; len > 0; len--, bitmap++) { 2831 weight = hweight8(*bitmap); 2832 bitflips += BITS_PER_BYTE - weight; 2833 if (unlikely(bitflips > bitflips_threshold)) 2834 return -EBADMSG; 2835 } 2836 2837 return bitflips; 2838 } 2839 2840 /** 2841 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2842 * 0xff data 2843 * @data: data buffer to test 2844 * @datalen: data length 2845 * @ecc: ECC buffer 2846 * @ecclen: ECC length 2847 * @extraoob: extra OOB buffer 2848 * @extraooblen: extra OOB length 2849 * @bitflips_threshold: maximum number of bitflips 2850 * 2851 * Check if a data buffer and its associated ECC and OOB data contains only 2852 * 0xff pattern, which means the underlying region has been erased and is 2853 * ready to be programmed. 2854 * The bitflips_threshold specify the maximum number of bitflips before 2855 * considering the region as not erased. 2856 * 2857 * Note: 2858 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2859 * different from the NAND page size. When fixing bitflips, ECC engines will 2860 * report the number of errors per chunk, and the NAND core infrastructure 2861 * expect you to return the maximum number of bitflips for the whole page. 2862 * This is why you should always use this function on a single chunk and 2863 * not on the whole page. After checking each chunk you should update your 2864 * max_bitflips value accordingly. 2865 * 2/ When checking for bitflips in erased pages you should not only check 2866 * the payload data but also their associated ECC data, because a user might 2867 * have programmed almost all bits to 1 but a few. In this case, we 2868 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2869 * this case. 2870 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2871 * data are protected by the ECC engine. 2872 * It could also be used if you support subpages and want to attach some 2873 * extra OOB data to an ECC chunk. 2874 * 2875 * Returns a positive number of bitflips less than or equal to 2876 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2877 * threshold. In case of success, the passed buffers are filled with 0xff. 2878 */ 2879 int nand_check_erased_ecc_chunk(void *data, int datalen, 2880 void *ecc, int ecclen, 2881 void *extraoob, int extraooblen, 2882 int bitflips_threshold) 2883 { 2884 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2885 2886 data_bitflips = nand_check_erased_buf(data, datalen, 2887 bitflips_threshold); 2888 if (data_bitflips < 0) 2889 return data_bitflips; 2890 2891 bitflips_threshold -= data_bitflips; 2892 2893 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2894 if (ecc_bitflips < 0) 2895 return ecc_bitflips; 2896 2897 bitflips_threshold -= ecc_bitflips; 2898 2899 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2900 bitflips_threshold); 2901 if (extraoob_bitflips < 0) 2902 return extraoob_bitflips; 2903 2904 if (data_bitflips) 2905 memset(data, 0xff, datalen); 2906 2907 if (ecc_bitflips) 2908 memset(ecc, 0xff, ecclen); 2909 2910 if (extraoob_bitflips) 2911 memset(extraoob, 0xff, extraooblen); 2912 2913 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2914 } 2915 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2916 2917 /** 2918 * nand_read_page_raw_notsupp - dummy read raw page function 2919 * @chip: nand chip info structure 2920 * @buf: buffer to store read data 2921 * @oob_required: caller requires OOB data read to chip->oob_poi 2922 * @page: page number to read 2923 * 2924 * Returns -ENOTSUPP unconditionally. 2925 */ 2926 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2927 int oob_required, int page) 2928 { 2929 return -ENOTSUPP; 2930 } 2931 2932 /** 2933 * nand_read_page_raw - [INTERN] read raw page data without ecc 2934 * @chip: nand chip info structure 2935 * @buf: buffer to store read data 2936 * @oob_required: caller requires OOB data read to chip->oob_poi 2937 * @page: page number to read 2938 * 2939 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2940 */ 2941 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2942 int page) 2943 { 2944 struct mtd_info *mtd = nand_to_mtd(chip); 2945 int ret; 2946 2947 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2948 if (ret) 2949 return ret; 2950 2951 if (oob_required) { 2952 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2953 false, false); 2954 if (ret) 2955 return ret; 2956 } 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(nand_read_page_raw); 2961 2962 /** 2963 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2964 * @chip: NAND chip info structure 2965 * @buf: buffer to store read data 2966 * @oob_required: caller requires OOB data read to chip->oob_poi 2967 * @page: page number to read 2968 * 2969 * This is a raw page read, ie. without any error detection/correction. 2970 * Monolithic means we are requesting all the relevant data (main plus 2971 * eventually OOB) to be loaded in the NAND cache and sent over the 2972 * bus (from the NAND chip to the NAND controller) in a single 2973 * operation. This is an alternative to nand_read_page_raw(), which 2974 * first reads the main data, and if the OOB data is requested too, 2975 * then reads more data on the bus. 2976 */ 2977 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2978 int oob_required, int page) 2979 { 2980 struct mtd_info *mtd = nand_to_mtd(chip); 2981 unsigned int size = mtd->writesize; 2982 u8 *read_buf = buf; 2983 int ret; 2984 2985 if (oob_required) { 2986 size += mtd->oobsize; 2987 2988 if (buf != chip->data_buf) 2989 read_buf = nand_get_data_buf(chip); 2990 } 2991 2992 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2993 if (ret) 2994 return ret; 2995 2996 if (buf != chip->data_buf) 2997 memcpy(buf, read_buf, mtd->writesize); 2998 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 3002 3003 /** 3004 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 3005 * @chip: nand chip info structure 3006 * @buf: buffer to store read data 3007 * @oob_required: caller requires OOB data read to chip->oob_poi 3008 * @page: page number to read 3009 * 3010 * We need a special oob layout and handling even when OOB isn't used. 3011 */ 3012 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 3013 int oob_required, int page) 3014 { 3015 struct mtd_info *mtd = nand_to_mtd(chip); 3016 int eccsize = chip->ecc.size; 3017 int eccbytes = chip->ecc.bytes; 3018 uint8_t *oob = chip->oob_poi; 3019 int steps, size, ret; 3020 3021 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3022 if (ret) 3023 return ret; 3024 3025 for (steps = chip->ecc.steps; steps > 0; steps--) { 3026 ret = nand_read_data_op(chip, buf, eccsize, false, false); 3027 if (ret) 3028 return ret; 3029 3030 buf += eccsize; 3031 3032 if (chip->ecc.prepad) { 3033 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3034 false, false); 3035 if (ret) 3036 return ret; 3037 3038 oob += chip->ecc.prepad; 3039 } 3040 3041 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3042 if (ret) 3043 return ret; 3044 3045 oob += eccbytes; 3046 3047 if (chip->ecc.postpad) { 3048 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3049 false, false); 3050 if (ret) 3051 return ret; 3052 3053 oob += chip->ecc.postpad; 3054 } 3055 } 3056 3057 size = mtd->oobsize - (oob - chip->oob_poi); 3058 if (size) { 3059 ret = nand_read_data_op(chip, oob, size, false, false); 3060 if (ret) 3061 return ret; 3062 } 3063 3064 return 0; 3065 } 3066 3067 /** 3068 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 3069 * @chip: nand chip info structure 3070 * @buf: buffer to store read data 3071 * @oob_required: caller requires OOB data read to chip->oob_poi 3072 * @page: page number to read 3073 */ 3074 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 3075 int oob_required, int page) 3076 { 3077 struct mtd_info *mtd = nand_to_mtd(chip); 3078 int i, eccsize = chip->ecc.size, ret; 3079 int eccbytes = chip->ecc.bytes; 3080 int eccsteps = chip->ecc.steps; 3081 uint8_t *p = buf; 3082 uint8_t *ecc_calc = chip->ecc.calc_buf; 3083 uint8_t *ecc_code = chip->ecc.code_buf; 3084 unsigned int max_bitflips = 0; 3085 3086 chip->ecc.read_page_raw(chip, buf, 1, page); 3087 3088 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3089 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3090 3091 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3092 chip->ecc.total); 3093 if (ret) 3094 return ret; 3095 3096 eccsteps = chip->ecc.steps; 3097 p = buf; 3098 3099 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3100 int stat; 3101 3102 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3103 if (stat < 0) { 3104 mtd->ecc_stats.failed++; 3105 } else { 3106 mtd->ecc_stats.corrected += stat; 3107 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3108 } 3109 } 3110 return max_bitflips; 3111 } 3112 3113 /** 3114 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 3115 * @chip: nand chip info structure 3116 * @data_offs: offset of requested data within the page 3117 * @readlen: data length 3118 * @bufpoi: buffer to store read data 3119 * @page: page number to read 3120 */ 3121 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 3122 uint32_t readlen, uint8_t *bufpoi, int page) 3123 { 3124 struct mtd_info *mtd = nand_to_mtd(chip); 3125 int start_step, end_step, num_steps, ret; 3126 uint8_t *p; 3127 int data_col_addr, i, gaps = 0; 3128 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 3129 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 3130 int index, section = 0; 3131 unsigned int max_bitflips = 0; 3132 struct mtd_oob_region oobregion = { }; 3133 3134 /* Column address within the page aligned to ECC size (256bytes) */ 3135 start_step = data_offs / chip->ecc.size; 3136 end_step = (data_offs + readlen - 1) / chip->ecc.size; 3137 num_steps = end_step - start_step + 1; 3138 index = start_step * chip->ecc.bytes; 3139 3140 /* Data size aligned to ECC ecc.size */ 3141 datafrag_len = num_steps * chip->ecc.size; 3142 eccfrag_len = num_steps * chip->ecc.bytes; 3143 3144 data_col_addr = start_step * chip->ecc.size; 3145 /* If we read not a page aligned data */ 3146 p = bufpoi + data_col_addr; 3147 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 3148 if (ret) 3149 return ret; 3150 3151 /* Calculate ECC */ 3152 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 3153 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 3154 3155 /* 3156 * The performance is faster if we position offsets according to 3157 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 3158 */ 3159 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 3160 if (ret) 3161 return ret; 3162 3163 if (oobregion.length < eccfrag_len) 3164 gaps = 1; 3165 3166 if (gaps) { 3167 ret = nand_change_read_column_op(chip, mtd->writesize, 3168 chip->oob_poi, mtd->oobsize, 3169 false); 3170 if (ret) 3171 return ret; 3172 } else { 3173 /* 3174 * Send the command to read the particular ECC bytes take care 3175 * about buswidth alignment in read_buf. 3176 */ 3177 aligned_pos = oobregion.offset & ~(busw - 1); 3178 aligned_len = eccfrag_len; 3179 if (oobregion.offset & (busw - 1)) 3180 aligned_len++; 3181 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 3182 (busw - 1)) 3183 aligned_len++; 3184 3185 ret = nand_change_read_column_op(chip, 3186 mtd->writesize + aligned_pos, 3187 &chip->oob_poi[aligned_pos], 3188 aligned_len, false); 3189 if (ret) 3190 return ret; 3191 } 3192 3193 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3194 chip->oob_poi, index, eccfrag_len); 3195 if (ret) 3196 return ret; 3197 3198 p = bufpoi + data_col_addr; 3199 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3200 int stat; 3201 3202 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 3203 &chip->ecc.calc_buf[i]); 3204 if (stat == -EBADMSG && 3205 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3206 /* check for empty pages with bitflips */ 3207 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3208 &chip->ecc.code_buf[i], 3209 chip->ecc.bytes, 3210 NULL, 0, 3211 chip->ecc.strength); 3212 } 3213 3214 if (stat < 0) { 3215 mtd->ecc_stats.failed++; 3216 } else { 3217 mtd->ecc_stats.corrected += stat; 3218 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3219 } 3220 } 3221 return max_bitflips; 3222 } 3223 3224 /** 3225 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3226 * @chip: nand chip info structure 3227 * @buf: buffer to store read data 3228 * @oob_required: caller requires OOB data read to chip->oob_poi 3229 * @page: page number to read 3230 * 3231 * Not for syndrome calculating ECC controllers which need a special oob layout. 3232 */ 3233 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 3234 int oob_required, int page) 3235 { 3236 struct mtd_info *mtd = nand_to_mtd(chip); 3237 int i, eccsize = chip->ecc.size, ret; 3238 int eccbytes = chip->ecc.bytes; 3239 int eccsteps = chip->ecc.steps; 3240 uint8_t *p = buf; 3241 uint8_t *ecc_calc = chip->ecc.calc_buf; 3242 uint8_t *ecc_code = chip->ecc.code_buf; 3243 unsigned int max_bitflips = 0; 3244 3245 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3246 if (ret) 3247 return ret; 3248 3249 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3250 chip->ecc.hwctl(chip, NAND_ECC_READ); 3251 3252 ret = nand_read_data_op(chip, p, eccsize, false, false); 3253 if (ret) 3254 return ret; 3255 3256 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3257 } 3258 3259 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 3260 false); 3261 if (ret) 3262 return ret; 3263 3264 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3265 chip->ecc.total); 3266 if (ret) 3267 return ret; 3268 3269 eccsteps = chip->ecc.steps; 3270 p = buf; 3271 3272 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3273 int stat; 3274 3275 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3276 if (stat == -EBADMSG && 3277 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3278 /* check for empty pages with bitflips */ 3279 stat = nand_check_erased_ecc_chunk(p, eccsize, 3280 &ecc_code[i], eccbytes, 3281 NULL, 0, 3282 chip->ecc.strength); 3283 } 3284 3285 if (stat < 0) { 3286 mtd->ecc_stats.failed++; 3287 } else { 3288 mtd->ecc_stats.corrected += stat; 3289 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3290 } 3291 } 3292 return max_bitflips; 3293 } 3294 3295 /** 3296 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC 3297 * data read from OOB area 3298 * @chip: nand chip info structure 3299 * @buf: buffer to store read data 3300 * @oob_required: caller requires OOB data read to chip->oob_poi 3301 * @page: page number to read 3302 * 3303 * Hardware ECC for large page chips, which requires the ECC data to be 3304 * extracted from the OOB before the actual data is read. 3305 */ 3306 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 3307 int oob_required, int page) 3308 { 3309 struct mtd_info *mtd = nand_to_mtd(chip); 3310 int i, eccsize = chip->ecc.size, ret; 3311 int eccbytes = chip->ecc.bytes; 3312 int eccsteps = chip->ecc.steps; 3313 uint8_t *p = buf; 3314 uint8_t *ecc_code = chip->ecc.code_buf; 3315 unsigned int max_bitflips = 0; 3316 3317 /* Read the OOB area first */ 3318 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3319 if (ret) 3320 return ret; 3321 3322 /* Move read cursor to start of page */ 3323 ret = nand_change_read_column_op(chip, 0, NULL, 0, false); 3324 if (ret) 3325 return ret; 3326 3327 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3328 chip->ecc.total); 3329 if (ret) 3330 return ret; 3331 3332 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3333 int stat; 3334 3335 chip->ecc.hwctl(chip, NAND_ECC_READ); 3336 3337 ret = nand_read_data_op(chip, p, eccsize, false, false); 3338 if (ret) 3339 return ret; 3340 3341 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 3342 if (stat == -EBADMSG && 3343 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3344 /* check for empty pages with bitflips */ 3345 stat = nand_check_erased_ecc_chunk(p, eccsize, 3346 &ecc_code[i], 3347 eccbytes, NULL, 0, 3348 chip->ecc.strength); 3349 } 3350 3351 if (stat < 0) { 3352 mtd->ecc_stats.failed++; 3353 } else { 3354 mtd->ecc_stats.corrected += stat; 3355 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3356 } 3357 } 3358 return max_bitflips; 3359 } 3360 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first); 3361 3362 /** 3363 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3364 * @chip: nand chip info structure 3365 * @buf: buffer to store read data 3366 * @oob_required: caller requires OOB data read to chip->oob_poi 3367 * @page: page number to read 3368 * 3369 * The hw generator calculates the error syndrome automatically. Therefore we 3370 * need a special oob layout and handling. 3371 */ 3372 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3373 int oob_required, int page) 3374 { 3375 struct mtd_info *mtd = nand_to_mtd(chip); 3376 int ret, i, eccsize = chip->ecc.size; 3377 int eccbytes = chip->ecc.bytes; 3378 int eccsteps = chip->ecc.steps; 3379 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3380 uint8_t *p = buf; 3381 uint8_t *oob = chip->oob_poi; 3382 unsigned int max_bitflips = 0; 3383 3384 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3385 if (ret) 3386 return ret; 3387 3388 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3389 int stat; 3390 3391 chip->ecc.hwctl(chip, NAND_ECC_READ); 3392 3393 ret = nand_read_data_op(chip, p, eccsize, false, false); 3394 if (ret) 3395 return ret; 3396 3397 if (chip->ecc.prepad) { 3398 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3399 false, false); 3400 if (ret) 3401 return ret; 3402 3403 oob += chip->ecc.prepad; 3404 } 3405 3406 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3407 3408 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3409 if (ret) 3410 return ret; 3411 3412 stat = chip->ecc.correct(chip, p, oob, NULL); 3413 3414 oob += eccbytes; 3415 3416 if (chip->ecc.postpad) { 3417 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3418 false, false); 3419 if (ret) 3420 return ret; 3421 3422 oob += chip->ecc.postpad; 3423 } 3424 3425 if (stat == -EBADMSG && 3426 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3427 /* check for empty pages with bitflips */ 3428 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3429 oob - eccpadbytes, 3430 eccpadbytes, 3431 NULL, 0, 3432 chip->ecc.strength); 3433 } 3434 3435 if (stat < 0) { 3436 mtd->ecc_stats.failed++; 3437 } else { 3438 mtd->ecc_stats.corrected += stat; 3439 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3440 } 3441 } 3442 3443 /* Calculate remaining oob bytes */ 3444 i = mtd->oobsize - (oob - chip->oob_poi); 3445 if (i) { 3446 ret = nand_read_data_op(chip, oob, i, false, false); 3447 if (ret) 3448 return ret; 3449 } 3450 3451 return max_bitflips; 3452 } 3453 3454 /** 3455 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3456 * @chip: NAND chip object 3457 * @oob: oob destination address 3458 * @ops: oob ops structure 3459 * @len: size of oob to transfer 3460 */ 3461 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3462 struct mtd_oob_ops *ops, size_t len) 3463 { 3464 struct mtd_info *mtd = nand_to_mtd(chip); 3465 int ret; 3466 3467 switch (ops->mode) { 3468 3469 case MTD_OPS_PLACE_OOB: 3470 case MTD_OPS_RAW: 3471 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3472 return oob + len; 3473 3474 case MTD_OPS_AUTO_OOB: 3475 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3476 ops->ooboffs, len); 3477 BUG_ON(ret); 3478 return oob + len; 3479 3480 default: 3481 BUG(); 3482 } 3483 return NULL; 3484 } 3485 3486 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page, 3487 u32 readlen, int col) 3488 { 3489 struct mtd_info *mtd = nand_to_mtd(chip); 3490 unsigned int first_page, last_page; 3491 3492 chip->cont_read.ongoing = false; 3493 3494 if (!chip->controller->supported_op.cont_read) 3495 return; 3496 3497 /* 3498 * Don't bother making any calculations if the length is too small. 3499 * Side effect: avoids possible integer underflows below. 3500 */ 3501 if (readlen < (2 * mtd->writesize)) 3502 return; 3503 3504 /* Derive the page where continuous read should start (the first full page read) */ 3505 first_page = page; 3506 if (col) 3507 first_page++; 3508 3509 /* Derive the page where continuous read should stop (the last full page read) */ 3510 last_page = page + ((col + readlen) / mtd->writesize) - 1; 3511 3512 /* Configure and enable continuous read when suitable */ 3513 if (first_page < last_page) { 3514 chip->cont_read.first_page = first_page; 3515 chip->cont_read.last_page = last_page; 3516 chip->cont_read.ongoing = true; 3517 /* May reset the ongoing flag */ 3518 rawnand_cap_cont_reads(chip); 3519 } 3520 } 3521 3522 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page) 3523 { 3524 if (!chip->cont_read.ongoing || page != chip->cont_read.first_page) 3525 return; 3526 3527 chip->cont_read.first_page++; 3528 rawnand_cap_cont_reads(chip); 3529 } 3530 3531 /** 3532 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3533 * @chip: NAND chip object 3534 * @retry_mode: the retry mode to use 3535 * 3536 * Some vendors supply a special command to shift the Vt threshold, to be used 3537 * when there are too many bitflips in a page (i.e., ECC error). After setting 3538 * a new threshold, the host should retry reading the page. 3539 */ 3540 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3541 { 3542 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3543 3544 if (retry_mode >= chip->read_retries) 3545 return -EINVAL; 3546 3547 if (!chip->ops.setup_read_retry) 3548 return -EOPNOTSUPP; 3549 3550 return chip->ops.setup_read_retry(chip, retry_mode); 3551 } 3552 3553 static void nand_wait_readrdy(struct nand_chip *chip) 3554 { 3555 const struct nand_interface_config *conf; 3556 3557 if (!(chip->options & NAND_NEED_READRDY)) 3558 return; 3559 3560 conf = nand_get_interface_config(chip); 3561 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0)); 3562 } 3563 3564 /** 3565 * nand_do_read_ops - [INTERN] Read data with ECC 3566 * @chip: NAND chip object 3567 * @from: offset to read from 3568 * @ops: oob ops structure 3569 * 3570 * Internal function. Called with chip held. 3571 */ 3572 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3573 struct mtd_oob_ops *ops) 3574 { 3575 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3576 struct mtd_info *mtd = nand_to_mtd(chip); 3577 int ret = 0; 3578 uint32_t readlen = ops->len; 3579 uint32_t oobreadlen = ops->ooblen; 3580 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3581 3582 uint8_t *bufpoi, *oob, *buf; 3583 int use_bounce_buf; 3584 unsigned int max_bitflips = 0; 3585 int retry_mode = 0; 3586 bool ecc_fail = false; 3587 3588 /* Check if the region is secured */ 3589 if (nand_region_is_secured(chip, from, readlen)) 3590 return -EIO; 3591 3592 chipnr = (int)(from >> chip->chip_shift); 3593 nand_select_target(chip, chipnr); 3594 3595 realpage = (int)(from >> chip->page_shift); 3596 page = realpage & chip->pagemask; 3597 3598 col = (int)(from & (mtd->writesize - 1)); 3599 3600 buf = ops->datbuf; 3601 oob = ops->oobbuf; 3602 oob_required = oob ? 1 : 0; 3603 3604 if (likely(ops->mode != MTD_OPS_RAW)) 3605 rawnand_enable_cont_reads(chip, page, readlen, col); 3606 3607 while (1) { 3608 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3609 3610 bytes = min(mtd->writesize - col, readlen); 3611 aligned = (bytes == mtd->writesize); 3612 3613 if (!aligned) 3614 use_bounce_buf = 1; 3615 else if (chip->options & NAND_USES_DMA) 3616 use_bounce_buf = !virt_addr_valid(buf) || 3617 !IS_ALIGNED((unsigned long)buf, 3618 chip->buf_align); 3619 else 3620 use_bounce_buf = 0; 3621 3622 /* Is the current page in the buffer? */ 3623 if (realpage != chip->pagecache.page || oob) { 3624 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3625 3626 if (use_bounce_buf && aligned) 3627 pr_debug("%s: using read bounce buffer for buf@%p\n", 3628 __func__, buf); 3629 3630 read_retry: 3631 /* 3632 * Now read the page into the buffer. Absent an error, 3633 * the read methods return max bitflips per ecc step. 3634 */ 3635 if (unlikely(ops->mode == MTD_OPS_RAW)) 3636 ret = chip->ecc.read_page_raw(chip, bufpoi, 3637 oob_required, 3638 page); 3639 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3640 !oob) 3641 ret = chip->ecc.read_subpage(chip, col, bytes, 3642 bufpoi, page); 3643 else 3644 ret = chip->ecc.read_page(chip, bufpoi, 3645 oob_required, page); 3646 if (ret < 0) { 3647 if (use_bounce_buf) 3648 /* Invalidate page cache */ 3649 chip->pagecache.page = -1; 3650 break; 3651 } 3652 3653 /* 3654 * Copy back the data in the initial buffer when reading 3655 * partial pages or when a bounce buffer is required. 3656 */ 3657 if (use_bounce_buf) { 3658 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3659 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3660 (ops->mode != MTD_OPS_RAW)) { 3661 chip->pagecache.page = realpage; 3662 chip->pagecache.bitflips = ret; 3663 } else { 3664 /* Invalidate page cache */ 3665 chip->pagecache.page = -1; 3666 } 3667 memcpy(buf, bufpoi + col, bytes); 3668 } 3669 3670 if (unlikely(oob)) { 3671 int toread = min(oobreadlen, max_oobsize); 3672 3673 if (toread) { 3674 oob = nand_transfer_oob(chip, oob, ops, 3675 toread); 3676 oobreadlen -= toread; 3677 } 3678 } 3679 3680 nand_wait_readrdy(chip); 3681 3682 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3683 if (retry_mode + 1 < chip->read_retries) { 3684 retry_mode++; 3685 ret = nand_setup_read_retry(chip, 3686 retry_mode); 3687 if (ret < 0) 3688 break; 3689 3690 /* Reset ecc_stats; retry */ 3691 mtd->ecc_stats = ecc_stats; 3692 goto read_retry; 3693 } else { 3694 /* No more retry modes; real failure */ 3695 ecc_fail = true; 3696 } 3697 } 3698 3699 buf += bytes; 3700 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3701 } else { 3702 memcpy(buf, chip->data_buf + col, bytes); 3703 buf += bytes; 3704 max_bitflips = max_t(unsigned int, max_bitflips, 3705 chip->pagecache.bitflips); 3706 3707 rawnand_cont_read_skip_first_page(chip, page); 3708 } 3709 3710 readlen -= bytes; 3711 3712 /* Reset to retry mode 0 */ 3713 if (retry_mode) { 3714 ret = nand_setup_read_retry(chip, 0); 3715 if (ret < 0) 3716 break; 3717 retry_mode = 0; 3718 } 3719 3720 if (!readlen) 3721 break; 3722 3723 /* For subsequent reads align to page boundary */ 3724 col = 0; 3725 /* Increment page address */ 3726 realpage++; 3727 3728 page = realpage & chip->pagemask; 3729 /* Check, if we cross a chip boundary */ 3730 if (!page) { 3731 chipnr++; 3732 nand_deselect_target(chip); 3733 nand_select_target(chip, chipnr); 3734 } 3735 } 3736 nand_deselect_target(chip); 3737 3738 if (WARN_ON_ONCE(chip->cont_read.ongoing)) 3739 chip->cont_read.ongoing = false; 3740 3741 ops->retlen = ops->len - (size_t) readlen; 3742 if (oob) 3743 ops->oobretlen = ops->ooblen - oobreadlen; 3744 3745 if (ret < 0) 3746 return ret; 3747 3748 if (ecc_fail) 3749 return -EBADMSG; 3750 3751 return max_bitflips; 3752 } 3753 3754 /** 3755 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3756 * @chip: nand chip info structure 3757 * @page: page number to read 3758 */ 3759 int nand_read_oob_std(struct nand_chip *chip, int page) 3760 { 3761 struct mtd_info *mtd = nand_to_mtd(chip); 3762 3763 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3764 } 3765 EXPORT_SYMBOL(nand_read_oob_std); 3766 3767 /** 3768 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3769 * with syndromes 3770 * @chip: nand chip info structure 3771 * @page: page number to read 3772 */ 3773 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3774 { 3775 struct mtd_info *mtd = nand_to_mtd(chip); 3776 int length = mtd->oobsize; 3777 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3778 int eccsize = chip->ecc.size; 3779 uint8_t *bufpoi = chip->oob_poi; 3780 int i, toread, sndrnd = 0, pos, ret; 3781 3782 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3783 if (ret) 3784 return ret; 3785 3786 for (i = 0; i < chip->ecc.steps; i++) { 3787 if (sndrnd) { 3788 int ret; 3789 3790 pos = eccsize + i * (eccsize + chunk); 3791 if (mtd->writesize > 512) 3792 ret = nand_change_read_column_op(chip, pos, 3793 NULL, 0, 3794 false); 3795 else 3796 ret = nand_read_page_op(chip, page, pos, NULL, 3797 0); 3798 3799 if (ret) 3800 return ret; 3801 } else 3802 sndrnd = 1; 3803 toread = min_t(int, length, chunk); 3804 3805 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3806 if (ret) 3807 return ret; 3808 3809 bufpoi += toread; 3810 length -= toread; 3811 } 3812 if (length > 0) { 3813 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3814 if (ret) 3815 return ret; 3816 } 3817 3818 return 0; 3819 } 3820 3821 /** 3822 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3823 * @chip: nand chip info structure 3824 * @page: page number to write 3825 */ 3826 int nand_write_oob_std(struct nand_chip *chip, int page) 3827 { 3828 struct mtd_info *mtd = nand_to_mtd(chip); 3829 3830 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3831 mtd->oobsize); 3832 } 3833 EXPORT_SYMBOL(nand_write_oob_std); 3834 3835 /** 3836 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3837 * with syndrome - only for large page flash 3838 * @chip: nand chip info structure 3839 * @page: page number to write 3840 */ 3841 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3842 { 3843 struct mtd_info *mtd = nand_to_mtd(chip); 3844 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3845 int eccsize = chip->ecc.size, length = mtd->oobsize; 3846 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3847 const uint8_t *bufpoi = chip->oob_poi; 3848 3849 /* 3850 * data-ecc-data-ecc ... ecc-oob 3851 * or 3852 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3853 */ 3854 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3855 pos = steps * (eccsize + chunk); 3856 steps = 0; 3857 } else 3858 pos = eccsize; 3859 3860 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3861 if (ret) 3862 return ret; 3863 3864 for (i = 0; i < steps; i++) { 3865 if (sndcmd) { 3866 if (mtd->writesize <= 512) { 3867 uint32_t fill = 0xFFFFFFFF; 3868 3869 len = eccsize; 3870 while (len > 0) { 3871 int num = min_t(int, len, 4); 3872 3873 ret = nand_write_data_op(chip, &fill, 3874 num, false); 3875 if (ret) 3876 return ret; 3877 3878 len -= num; 3879 } 3880 } else { 3881 pos = eccsize + i * (eccsize + chunk); 3882 ret = nand_change_write_column_op(chip, pos, 3883 NULL, 0, 3884 false); 3885 if (ret) 3886 return ret; 3887 } 3888 } else 3889 sndcmd = 1; 3890 len = min_t(int, length, chunk); 3891 3892 ret = nand_write_data_op(chip, bufpoi, len, false); 3893 if (ret) 3894 return ret; 3895 3896 bufpoi += len; 3897 length -= len; 3898 } 3899 if (length > 0) { 3900 ret = nand_write_data_op(chip, bufpoi, length, false); 3901 if (ret) 3902 return ret; 3903 } 3904 3905 return nand_prog_page_end_op(chip); 3906 } 3907 3908 /** 3909 * nand_do_read_oob - [INTERN] NAND read out-of-band 3910 * @chip: NAND chip object 3911 * @from: offset to read from 3912 * @ops: oob operations description structure 3913 * 3914 * NAND read out-of-band data from the spare area. 3915 */ 3916 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3917 struct mtd_oob_ops *ops) 3918 { 3919 struct mtd_info *mtd = nand_to_mtd(chip); 3920 unsigned int max_bitflips = 0; 3921 int page, realpage, chipnr; 3922 struct mtd_ecc_stats stats; 3923 int readlen = ops->ooblen; 3924 int len; 3925 uint8_t *buf = ops->oobbuf; 3926 int ret = 0; 3927 3928 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3929 __func__, (unsigned long long)from, readlen); 3930 3931 /* Check if the region is secured */ 3932 if (nand_region_is_secured(chip, from, readlen)) 3933 return -EIO; 3934 3935 stats = mtd->ecc_stats; 3936 3937 len = mtd_oobavail(mtd, ops); 3938 3939 chipnr = (int)(from >> chip->chip_shift); 3940 nand_select_target(chip, chipnr); 3941 3942 /* Shift to get page */ 3943 realpage = (int)(from >> chip->page_shift); 3944 page = realpage & chip->pagemask; 3945 3946 while (1) { 3947 if (ops->mode == MTD_OPS_RAW) 3948 ret = chip->ecc.read_oob_raw(chip, page); 3949 else 3950 ret = chip->ecc.read_oob(chip, page); 3951 3952 if (ret < 0) 3953 break; 3954 3955 len = min(len, readlen); 3956 buf = nand_transfer_oob(chip, buf, ops, len); 3957 3958 nand_wait_readrdy(chip); 3959 3960 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3961 3962 readlen -= len; 3963 if (!readlen) 3964 break; 3965 3966 /* Increment page address */ 3967 realpage++; 3968 3969 page = realpage & chip->pagemask; 3970 /* Check, if we cross a chip boundary */ 3971 if (!page) { 3972 chipnr++; 3973 nand_deselect_target(chip); 3974 nand_select_target(chip, chipnr); 3975 } 3976 } 3977 nand_deselect_target(chip); 3978 3979 ops->oobretlen = ops->ooblen - readlen; 3980 3981 if (ret < 0) 3982 return ret; 3983 3984 if (mtd->ecc_stats.failed - stats.failed) 3985 return -EBADMSG; 3986 3987 return max_bitflips; 3988 } 3989 3990 /** 3991 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3992 * @mtd: MTD device structure 3993 * @from: offset to read from 3994 * @ops: oob operation description structure 3995 * 3996 * NAND read data and/or out-of-band data. 3997 */ 3998 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3999 struct mtd_oob_ops *ops) 4000 { 4001 struct nand_chip *chip = mtd_to_nand(mtd); 4002 struct mtd_ecc_stats old_stats; 4003 int ret; 4004 4005 ops->retlen = 0; 4006 4007 if (ops->mode != MTD_OPS_PLACE_OOB && 4008 ops->mode != MTD_OPS_AUTO_OOB && 4009 ops->mode != MTD_OPS_RAW) 4010 return -ENOTSUPP; 4011 4012 nand_get_device(chip); 4013 4014 old_stats = mtd->ecc_stats; 4015 4016 if (!ops->datbuf) 4017 ret = nand_do_read_oob(chip, from, ops); 4018 else 4019 ret = nand_do_read_ops(chip, from, ops); 4020 4021 if (ops->stats) { 4022 ops->stats->uncorrectable_errors += 4023 mtd->ecc_stats.failed - old_stats.failed; 4024 ops->stats->corrected_bitflips += 4025 mtd->ecc_stats.corrected - old_stats.corrected; 4026 } 4027 4028 nand_release_device(chip); 4029 return ret; 4030 } 4031 4032 /** 4033 * nand_write_page_raw_notsupp - dummy raw page write function 4034 * @chip: nand chip info structure 4035 * @buf: data buffer 4036 * @oob_required: must write chip->oob_poi to OOB 4037 * @page: page number to write 4038 * 4039 * Returns -ENOTSUPP unconditionally. 4040 */ 4041 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 4042 int oob_required, int page) 4043 { 4044 return -ENOTSUPP; 4045 } 4046 4047 /** 4048 * nand_write_page_raw - [INTERN] raw page write function 4049 * @chip: nand chip info structure 4050 * @buf: data buffer 4051 * @oob_required: must write chip->oob_poi to OOB 4052 * @page: page number to write 4053 * 4054 * Not for syndrome calculating ECC controllers, which use a special oob layout. 4055 */ 4056 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 4057 int oob_required, int page) 4058 { 4059 struct mtd_info *mtd = nand_to_mtd(chip); 4060 int ret; 4061 4062 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 4063 if (ret) 4064 return ret; 4065 4066 if (oob_required) { 4067 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 4068 false); 4069 if (ret) 4070 return ret; 4071 } 4072 4073 return nand_prog_page_end_op(chip); 4074 } 4075 EXPORT_SYMBOL(nand_write_page_raw); 4076 4077 /** 4078 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 4079 * @chip: NAND chip info structure 4080 * @buf: data buffer to write 4081 * @oob_required: must write chip->oob_poi to OOB 4082 * @page: page number to write 4083 * 4084 * This is a raw page write, ie. without any error detection/correction. 4085 * Monolithic means we are requesting all the relevant data (main plus 4086 * eventually OOB) to be sent over the bus and effectively programmed 4087 * into the NAND chip arrays in a single operation. This is an 4088 * alternative to nand_write_page_raw(), which first sends the main 4089 * data, then eventually send the OOB data by latching more data 4090 * cycles on the NAND bus, and finally sends the program command to 4091 * synchronyze the NAND chip cache. 4092 */ 4093 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 4094 int oob_required, int page) 4095 { 4096 struct mtd_info *mtd = nand_to_mtd(chip); 4097 unsigned int size = mtd->writesize; 4098 u8 *write_buf = (u8 *)buf; 4099 4100 if (oob_required) { 4101 size += mtd->oobsize; 4102 4103 if (buf != chip->data_buf) { 4104 write_buf = nand_get_data_buf(chip); 4105 memcpy(write_buf, buf, mtd->writesize); 4106 } 4107 } 4108 4109 return nand_prog_page_op(chip, page, 0, write_buf, size); 4110 } 4111 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 4112 4113 /** 4114 * nand_write_page_raw_syndrome - [INTERN] raw page write function 4115 * @chip: nand chip info structure 4116 * @buf: data buffer 4117 * @oob_required: must write chip->oob_poi to OOB 4118 * @page: page number to write 4119 * 4120 * We need a special oob layout and handling even when ECC isn't checked. 4121 */ 4122 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 4123 const uint8_t *buf, int oob_required, 4124 int page) 4125 { 4126 struct mtd_info *mtd = nand_to_mtd(chip); 4127 int eccsize = chip->ecc.size; 4128 int eccbytes = chip->ecc.bytes; 4129 uint8_t *oob = chip->oob_poi; 4130 int steps, size, ret; 4131 4132 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4133 if (ret) 4134 return ret; 4135 4136 for (steps = chip->ecc.steps; steps > 0; steps--) { 4137 ret = nand_write_data_op(chip, buf, eccsize, false); 4138 if (ret) 4139 return ret; 4140 4141 buf += eccsize; 4142 4143 if (chip->ecc.prepad) { 4144 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4145 false); 4146 if (ret) 4147 return ret; 4148 4149 oob += chip->ecc.prepad; 4150 } 4151 4152 ret = nand_write_data_op(chip, oob, eccbytes, false); 4153 if (ret) 4154 return ret; 4155 4156 oob += eccbytes; 4157 4158 if (chip->ecc.postpad) { 4159 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4160 false); 4161 if (ret) 4162 return ret; 4163 4164 oob += chip->ecc.postpad; 4165 } 4166 } 4167 4168 size = mtd->oobsize - (oob - chip->oob_poi); 4169 if (size) { 4170 ret = nand_write_data_op(chip, oob, size, false); 4171 if (ret) 4172 return ret; 4173 } 4174 4175 return nand_prog_page_end_op(chip); 4176 } 4177 /** 4178 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 4179 * @chip: nand chip info structure 4180 * @buf: data buffer 4181 * @oob_required: must write chip->oob_poi to OOB 4182 * @page: page number to write 4183 */ 4184 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 4185 int oob_required, int page) 4186 { 4187 struct mtd_info *mtd = nand_to_mtd(chip); 4188 int i, eccsize = chip->ecc.size, ret; 4189 int eccbytes = chip->ecc.bytes; 4190 int eccsteps = chip->ecc.steps; 4191 uint8_t *ecc_calc = chip->ecc.calc_buf; 4192 const uint8_t *p = buf; 4193 4194 /* Software ECC calculation */ 4195 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 4196 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4197 4198 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4199 chip->ecc.total); 4200 if (ret) 4201 return ret; 4202 4203 return chip->ecc.write_page_raw(chip, buf, 1, page); 4204 } 4205 4206 /** 4207 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 4208 * @chip: nand chip info structure 4209 * @buf: data buffer 4210 * @oob_required: must write chip->oob_poi to OOB 4211 * @page: page number to write 4212 */ 4213 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 4214 int oob_required, int page) 4215 { 4216 struct mtd_info *mtd = nand_to_mtd(chip); 4217 int i, eccsize = chip->ecc.size, ret; 4218 int eccbytes = chip->ecc.bytes; 4219 int eccsteps = chip->ecc.steps; 4220 uint8_t *ecc_calc = chip->ecc.calc_buf; 4221 const uint8_t *p = buf; 4222 4223 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4224 if (ret) 4225 return ret; 4226 4227 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4228 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4229 4230 ret = nand_write_data_op(chip, p, eccsize, false); 4231 if (ret) 4232 return ret; 4233 4234 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4235 } 4236 4237 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4238 chip->ecc.total); 4239 if (ret) 4240 return ret; 4241 4242 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4243 if (ret) 4244 return ret; 4245 4246 return nand_prog_page_end_op(chip); 4247 } 4248 4249 4250 /** 4251 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 4252 * @chip: nand chip info structure 4253 * @offset: column address of subpage within the page 4254 * @data_len: data length 4255 * @buf: data buffer 4256 * @oob_required: must write chip->oob_poi to OOB 4257 * @page: page number to write 4258 */ 4259 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 4260 uint32_t data_len, const uint8_t *buf, 4261 int oob_required, int page) 4262 { 4263 struct mtd_info *mtd = nand_to_mtd(chip); 4264 uint8_t *oob_buf = chip->oob_poi; 4265 uint8_t *ecc_calc = chip->ecc.calc_buf; 4266 int ecc_size = chip->ecc.size; 4267 int ecc_bytes = chip->ecc.bytes; 4268 int ecc_steps = chip->ecc.steps; 4269 uint32_t start_step = offset / ecc_size; 4270 uint32_t end_step = (offset + data_len - 1) / ecc_size; 4271 int oob_bytes = mtd->oobsize / ecc_steps; 4272 int step, ret; 4273 4274 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4275 if (ret) 4276 return ret; 4277 4278 for (step = 0; step < ecc_steps; step++) { 4279 /* configure controller for WRITE access */ 4280 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4281 4282 /* write data (untouched subpages already masked by 0xFF) */ 4283 ret = nand_write_data_op(chip, buf, ecc_size, false); 4284 if (ret) 4285 return ret; 4286 4287 /* mask ECC of un-touched subpages by padding 0xFF */ 4288 if ((step < start_step) || (step > end_step)) 4289 memset(ecc_calc, 0xff, ecc_bytes); 4290 else 4291 chip->ecc.calculate(chip, buf, ecc_calc); 4292 4293 /* mask OOB of un-touched subpages by padding 0xFF */ 4294 /* if oob_required, preserve OOB metadata of written subpage */ 4295 if (!oob_required || (step < start_step) || (step > end_step)) 4296 memset(oob_buf, 0xff, oob_bytes); 4297 4298 buf += ecc_size; 4299 ecc_calc += ecc_bytes; 4300 oob_buf += oob_bytes; 4301 } 4302 4303 /* copy calculated ECC for whole page to chip->buffer->oob */ 4304 /* this include masked-value(0xFF) for unwritten subpages */ 4305 ecc_calc = chip->ecc.calc_buf; 4306 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4307 chip->ecc.total); 4308 if (ret) 4309 return ret; 4310 4311 /* write OOB buffer to NAND device */ 4312 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4313 if (ret) 4314 return ret; 4315 4316 return nand_prog_page_end_op(chip); 4317 } 4318 4319 4320 /** 4321 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 4322 * @chip: nand chip info structure 4323 * @buf: data buffer 4324 * @oob_required: must write chip->oob_poi to OOB 4325 * @page: page number to write 4326 * 4327 * The hw generator calculates the error syndrome automatically. Therefore we 4328 * need a special oob layout and handling. 4329 */ 4330 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 4331 int oob_required, int page) 4332 { 4333 struct mtd_info *mtd = nand_to_mtd(chip); 4334 int i, eccsize = chip->ecc.size; 4335 int eccbytes = chip->ecc.bytes; 4336 int eccsteps = chip->ecc.steps; 4337 const uint8_t *p = buf; 4338 uint8_t *oob = chip->oob_poi; 4339 int ret; 4340 4341 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4342 if (ret) 4343 return ret; 4344 4345 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4346 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4347 4348 ret = nand_write_data_op(chip, p, eccsize, false); 4349 if (ret) 4350 return ret; 4351 4352 if (chip->ecc.prepad) { 4353 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4354 false); 4355 if (ret) 4356 return ret; 4357 4358 oob += chip->ecc.prepad; 4359 } 4360 4361 chip->ecc.calculate(chip, p, oob); 4362 4363 ret = nand_write_data_op(chip, oob, eccbytes, false); 4364 if (ret) 4365 return ret; 4366 4367 oob += eccbytes; 4368 4369 if (chip->ecc.postpad) { 4370 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4371 false); 4372 if (ret) 4373 return ret; 4374 4375 oob += chip->ecc.postpad; 4376 } 4377 } 4378 4379 /* Calculate remaining oob bytes */ 4380 i = mtd->oobsize - (oob - chip->oob_poi); 4381 if (i) { 4382 ret = nand_write_data_op(chip, oob, i, false); 4383 if (ret) 4384 return ret; 4385 } 4386 4387 return nand_prog_page_end_op(chip); 4388 } 4389 4390 /** 4391 * nand_write_page - write one page 4392 * @chip: NAND chip descriptor 4393 * @offset: address offset within the page 4394 * @data_len: length of actual data to be written 4395 * @buf: the data to write 4396 * @oob_required: must write chip->oob_poi to OOB 4397 * @page: page number to write 4398 * @raw: use _raw version of write_page 4399 */ 4400 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 4401 int data_len, const uint8_t *buf, int oob_required, 4402 int page, int raw) 4403 { 4404 struct mtd_info *mtd = nand_to_mtd(chip); 4405 int status, subpage; 4406 4407 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4408 chip->ecc.write_subpage) 4409 subpage = offset || (data_len < mtd->writesize); 4410 else 4411 subpage = 0; 4412 4413 if (unlikely(raw)) 4414 status = chip->ecc.write_page_raw(chip, buf, oob_required, 4415 page); 4416 else if (subpage) 4417 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 4418 oob_required, page); 4419 else 4420 status = chip->ecc.write_page(chip, buf, oob_required, page); 4421 4422 if (status < 0) 4423 return status; 4424 4425 return 0; 4426 } 4427 4428 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4429 4430 /** 4431 * nand_do_write_ops - [INTERN] NAND write with ECC 4432 * @chip: NAND chip object 4433 * @to: offset to write to 4434 * @ops: oob operations description structure 4435 * 4436 * NAND write with ECC. 4437 */ 4438 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 4439 struct mtd_oob_ops *ops) 4440 { 4441 struct mtd_info *mtd = nand_to_mtd(chip); 4442 int chipnr, realpage, page, column; 4443 uint32_t writelen = ops->len; 4444 4445 uint32_t oobwritelen = ops->ooblen; 4446 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4447 4448 uint8_t *oob = ops->oobbuf; 4449 uint8_t *buf = ops->datbuf; 4450 int ret; 4451 int oob_required = oob ? 1 : 0; 4452 4453 ops->retlen = 0; 4454 if (!writelen) 4455 return 0; 4456 4457 /* Reject writes, which are not page aligned */ 4458 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4459 pr_notice("%s: attempt to write non page aligned data\n", 4460 __func__); 4461 return -EINVAL; 4462 } 4463 4464 /* Check if the region is secured */ 4465 if (nand_region_is_secured(chip, to, writelen)) 4466 return -EIO; 4467 4468 column = to & (mtd->writesize - 1); 4469 4470 chipnr = (int)(to >> chip->chip_shift); 4471 nand_select_target(chip, chipnr); 4472 4473 /* Check, if it is write protected */ 4474 if (nand_check_wp(chip)) { 4475 ret = -EIO; 4476 goto err_out; 4477 } 4478 4479 realpage = (int)(to >> chip->page_shift); 4480 page = realpage & chip->pagemask; 4481 4482 /* Invalidate the page cache, when we write to the cached page */ 4483 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 4484 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 4485 chip->pagecache.page = -1; 4486 4487 /* Don't allow multipage oob writes with offset */ 4488 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4489 ret = -EINVAL; 4490 goto err_out; 4491 } 4492 4493 while (1) { 4494 int bytes = mtd->writesize; 4495 uint8_t *wbuf = buf; 4496 int use_bounce_buf; 4497 int part_pagewr = (column || writelen < mtd->writesize); 4498 4499 if (part_pagewr) 4500 use_bounce_buf = 1; 4501 else if (chip->options & NAND_USES_DMA) 4502 use_bounce_buf = !virt_addr_valid(buf) || 4503 !IS_ALIGNED((unsigned long)buf, 4504 chip->buf_align); 4505 else 4506 use_bounce_buf = 0; 4507 4508 /* 4509 * Copy the data from the initial buffer when doing partial page 4510 * writes or when a bounce buffer is required. 4511 */ 4512 if (use_bounce_buf) { 4513 pr_debug("%s: using write bounce buffer for buf@%p\n", 4514 __func__, buf); 4515 if (part_pagewr) 4516 bytes = min_t(int, bytes - column, writelen); 4517 wbuf = nand_get_data_buf(chip); 4518 memset(wbuf, 0xff, mtd->writesize); 4519 memcpy(&wbuf[column], buf, bytes); 4520 } 4521 4522 if (unlikely(oob)) { 4523 size_t len = min(oobwritelen, oobmaxlen); 4524 oob = nand_fill_oob(chip, oob, len, ops); 4525 oobwritelen -= len; 4526 } else { 4527 /* We still need to erase leftover OOB data */ 4528 memset(chip->oob_poi, 0xff, mtd->oobsize); 4529 } 4530 4531 ret = nand_write_page(chip, column, bytes, wbuf, 4532 oob_required, page, 4533 (ops->mode == MTD_OPS_RAW)); 4534 if (ret) 4535 break; 4536 4537 writelen -= bytes; 4538 if (!writelen) 4539 break; 4540 4541 column = 0; 4542 buf += bytes; 4543 realpage++; 4544 4545 page = realpage & chip->pagemask; 4546 /* Check, if we cross a chip boundary */ 4547 if (!page) { 4548 chipnr++; 4549 nand_deselect_target(chip); 4550 nand_select_target(chip, chipnr); 4551 } 4552 } 4553 4554 ops->retlen = ops->len - writelen; 4555 if (unlikely(oob)) 4556 ops->oobretlen = ops->ooblen; 4557 4558 err_out: 4559 nand_deselect_target(chip); 4560 return ret; 4561 } 4562 4563 /** 4564 * panic_nand_write - [MTD Interface] NAND write with ECC 4565 * @mtd: MTD device structure 4566 * @to: offset to write to 4567 * @len: number of bytes to write 4568 * @retlen: pointer to variable to store the number of written bytes 4569 * @buf: the data to write 4570 * 4571 * NAND write with ECC. Used when performing writes in interrupt context, this 4572 * may for example be called by mtdoops when writing an oops while in panic. 4573 */ 4574 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4575 size_t *retlen, const uint8_t *buf) 4576 { 4577 struct nand_chip *chip = mtd_to_nand(mtd); 4578 int chipnr = (int)(to >> chip->chip_shift); 4579 struct mtd_oob_ops ops; 4580 int ret; 4581 4582 nand_select_target(chip, chipnr); 4583 4584 /* Wait for the device to get ready */ 4585 panic_nand_wait(chip, 400); 4586 4587 memset(&ops, 0, sizeof(ops)); 4588 ops.len = len; 4589 ops.datbuf = (uint8_t *)buf; 4590 ops.mode = MTD_OPS_PLACE_OOB; 4591 4592 ret = nand_do_write_ops(chip, to, &ops); 4593 4594 *retlen = ops.retlen; 4595 return ret; 4596 } 4597 4598 /** 4599 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4600 * @mtd: MTD device structure 4601 * @to: offset to write to 4602 * @ops: oob operation description structure 4603 */ 4604 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4605 struct mtd_oob_ops *ops) 4606 { 4607 struct nand_chip *chip = mtd_to_nand(mtd); 4608 int ret = 0; 4609 4610 ops->retlen = 0; 4611 4612 nand_get_device(chip); 4613 4614 switch (ops->mode) { 4615 case MTD_OPS_PLACE_OOB: 4616 case MTD_OPS_AUTO_OOB: 4617 case MTD_OPS_RAW: 4618 break; 4619 4620 default: 4621 goto out; 4622 } 4623 4624 if (!ops->datbuf) 4625 ret = nand_do_write_oob(chip, to, ops); 4626 else 4627 ret = nand_do_write_ops(chip, to, ops); 4628 4629 out: 4630 nand_release_device(chip); 4631 return ret; 4632 } 4633 4634 /** 4635 * nand_erase - [MTD Interface] erase block(s) 4636 * @mtd: MTD device structure 4637 * @instr: erase instruction 4638 * 4639 * Erase one ore more blocks. 4640 */ 4641 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4642 { 4643 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4644 } 4645 4646 /** 4647 * nand_erase_nand - [INTERN] erase block(s) 4648 * @chip: NAND chip object 4649 * @instr: erase instruction 4650 * @allowbbt: allow erasing the bbt area 4651 * 4652 * Erase one ore more blocks. 4653 */ 4654 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4655 int allowbbt) 4656 { 4657 int page, pages_per_block, ret, chipnr; 4658 loff_t len; 4659 4660 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4661 __func__, (unsigned long long)instr->addr, 4662 (unsigned long long)instr->len); 4663 4664 if (check_offs_len(chip, instr->addr, instr->len)) 4665 return -EINVAL; 4666 4667 /* Check if the region is secured */ 4668 if (nand_region_is_secured(chip, instr->addr, instr->len)) 4669 return -EIO; 4670 4671 /* Grab the lock and see if the device is available */ 4672 nand_get_device(chip); 4673 4674 /* Shift to get first page */ 4675 page = (int)(instr->addr >> chip->page_shift); 4676 chipnr = (int)(instr->addr >> chip->chip_shift); 4677 4678 /* Calculate pages in each block */ 4679 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4680 4681 /* Select the NAND device */ 4682 nand_select_target(chip, chipnr); 4683 4684 /* Check, if it is write protected */ 4685 if (nand_check_wp(chip)) { 4686 pr_debug("%s: device is write protected!\n", 4687 __func__); 4688 ret = -EIO; 4689 goto erase_exit; 4690 } 4691 4692 /* Loop through the pages */ 4693 len = instr->len; 4694 4695 while (len) { 4696 loff_t ofs = (loff_t)page << chip->page_shift; 4697 4698 /* Check if we have a bad block, we do not erase bad blocks! */ 4699 if (nand_block_checkbad(chip, ((loff_t) page) << 4700 chip->page_shift, allowbbt)) { 4701 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n", 4702 __func__, (unsigned long long)ofs); 4703 ret = -EIO; 4704 goto erase_exit; 4705 } 4706 4707 /* 4708 * Invalidate the page cache, if we erase the block which 4709 * contains the current cached page. 4710 */ 4711 if (page <= chip->pagecache.page && chip->pagecache.page < 4712 (page + pages_per_block)) 4713 chip->pagecache.page = -1; 4714 4715 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4716 (chip->phys_erase_shift - chip->page_shift)); 4717 if (ret) { 4718 pr_debug("%s: failed erase, page 0x%08x\n", 4719 __func__, page); 4720 instr->fail_addr = ofs; 4721 goto erase_exit; 4722 } 4723 4724 /* Increment page address and decrement length */ 4725 len -= (1ULL << chip->phys_erase_shift); 4726 page += pages_per_block; 4727 4728 /* Check, if we cross a chip boundary */ 4729 if (len && !(page & chip->pagemask)) { 4730 chipnr++; 4731 nand_deselect_target(chip); 4732 nand_select_target(chip, chipnr); 4733 } 4734 } 4735 4736 ret = 0; 4737 erase_exit: 4738 4739 /* Deselect and wake up anyone waiting on the device */ 4740 nand_deselect_target(chip); 4741 nand_release_device(chip); 4742 4743 /* Return more or less happy */ 4744 return ret; 4745 } 4746 4747 /** 4748 * nand_sync - [MTD Interface] sync 4749 * @mtd: MTD device structure 4750 * 4751 * Sync is actually a wait for chip ready function. 4752 */ 4753 static void nand_sync(struct mtd_info *mtd) 4754 { 4755 struct nand_chip *chip = mtd_to_nand(mtd); 4756 4757 pr_debug("%s: called\n", __func__); 4758 4759 /* Grab the lock and see if the device is available */ 4760 nand_get_device(chip); 4761 /* Release it and go back */ 4762 nand_release_device(chip); 4763 } 4764 4765 /** 4766 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4767 * @mtd: MTD device structure 4768 * @offs: offset relative to mtd start 4769 */ 4770 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4771 { 4772 struct nand_chip *chip = mtd_to_nand(mtd); 4773 int chipnr = (int)(offs >> chip->chip_shift); 4774 int ret; 4775 4776 /* Select the NAND device */ 4777 nand_get_device(chip); 4778 4779 nand_select_target(chip, chipnr); 4780 4781 ret = nand_block_checkbad(chip, offs, 0); 4782 4783 nand_deselect_target(chip); 4784 nand_release_device(chip); 4785 4786 return ret; 4787 } 4788 4789 /** 4790 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4791 * @mtd: MTD device structure 4792 * @ofs: offset relative to mtd start 4793 */ 4794 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4795 { 4796 int ret; 4797 4798 ret = nand_block_isbad(mtd, ofs); 4799 if (ret) { 4800 /* If it was bad already, return success and do nothing */ 4801 if (ret > 0) 4802 return 0; 4803 return ret; 4804 } 4805 4806 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4807 } 4808 4809 /** 4810 * nand_suspend - [MTD Interface] Suspend the NAND flash 4811 * @mtd: MTD device structure 4812 * 4813 * Returns 0 for success or negative error code otherwise. 4814 */ 4815 static int nand_suspend(struct mtd_info *mtd) 4816 { 4817 struct nand_chip *chip = mtd_to_nand(mtd); 4818 int ret = 0; 4819 4820 mutex_lock(&chip->lock); 4821 if (chip->ops.suspend) 4822 ret = chip->ops.suspend(chip); 4823 if (!ret) 4824 chip->suspended = 1; 4825 mutex_unlock(&chip->lock); 4826 4827 return ret; 4828 } 4829 4830 /** 4831 * nand_resume - [MTD Interface] Resume the NAND flash 4832 * @mtd: MTD device structure 4833 */ 4834 static void nand_resume(struct mtd_info *mtd) 4835 { 4836 struct nand_chip *chip = mtd_to_nand(mtd); 4837 4838 mutex_lock(&chip->lock); 4839 if (chip->suspended) { 4840 if (chip->ops.resume) 4841 chip->ops.resume(chip); 4842 chip->suspended = 0; 4843 } else { 4844 pr_err("%s called for a chip which is not in suspended state\n", 4845 __func__); 4846 } 4847 mutex_unlock(&chip->lock); 4848 4849 wake_up_all(&chip->resume_wq); 4850 } 4851 4852 /** 4853 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4854 * prevent further operations 4855 * @mtd: MTD device structure 4856 */ 4857 static void nand_shutdown(struct mtd_info *mtd) 4858 { 4859 nand_suspend(mtd); 4860 } 4861 4862 /** 4863 * nand_lock - [MTD Interface] Lock the NAND flash 4864 * @mtd: MTD device structure 4865 * @ofs: offset byte address 4866 * @len: number of bytes to lock (must be a multiple of block/page size) 4867 */ 4868 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4869 { 4870 struct nand_chip *chip = mtd_to_nand(mtd); 4871 4872 if (!chip->ops.lock_area) 4873 return -ENOTSUPP; 4874 4875 return chip->ops.lock_area(chip, ofs, len); 4876 } 4877 4878 /** 4879 * nand_unlock - [MTD Interface] Unlock the NAND flash 4880 * @mtd: MTD device structure 4881 * @ofs: offset byte address 4882 * @len: number of bytes to unlock (must be a multiple of block/page size) 4883 */ 4884 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4885 { 4886 struct nand_chip *chip = mtd_to_nand(mtd); 4887 4888 if (!chip->ops.unlock_area) 4889 return -ENOTSUPP; 4890 4891 return chip->ops.unlock_area(chip, ofs, len); 4892 } 4893 4894 /* Set default functions */ 4895 static void nand_set_defaults(struct nand_chip *chip) 4896 { 4897 /* If no controller is provided, use the dummy, legacy one. */ 4898 if (!chip->controller) { 4899 chip->controller = &chip->legacy.dummy_controller; 4900 nand_controller_init(chip->controller); 4901 } 4902 4903 nand_legacy_set_defaults(chip); 4904 4905 if (!chip->buf_align) 4906 chip->buf_align = 1; 4907 } 4908 4909 /* Sanitize ONFI strings so we can safely print them */ 4910 void sanitize_string(uint8_t *s, size_t len) 4911 { 4912 ssize_t i; 4913 4914 /* Null terminate */ 4915 s[len - 1] = 0; 4916 4917 /* Remove non printable chars */ 4918 for (i = 0; i < len - 1; i++) { 4919 if (s[i] < ' ' || s[i] > 127) 4920 s[i] = '?'; 4921 } 4922 4923 /* Remove trailing spaces */ 4924 strim(s); 4925 } 4926 4927 /* 4928 * nand_id_has_period - Check if an ID string has a given wraparound period 4929 * @id_data: the ID string 4930 * @arrlen: the length of the @id_data array 4931 * @period: the period of repitition 4932 * 4933 * Check if an ID string is repeated within a given sequence of bytes at 4934 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4935 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4936 * if the repetition has a period of @period; otherwise, returns zero. 4937 */ 4938 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4939 { 4940 int i, j; 4941 for (i = 0; i < period; i++) 4942 for (j = i + period; j < arrlen; j += period) 4943 if (id_data[i] != id_data[j]) 4944 return 0; 4945 return 1; 4946 } 4947 4948 /* 4949 * nand_id_len - Get the length of an ID string returned by CMD_READID 4950 * @id_data: the ID string 4951 * @arrlen: the length of the @id_data array 4952 4953 * Returns the length of the ID string, according to known wraparound/trailing 4954 * zero patterns. If no pattern exists, returns the length of the array. 4955 */ 4956 static int nand_id_len(u8 *id_data, int arrlen) 4957 { 4958 int last_nonzero, period; 4959 4960 /* Find last non-zero byte */ 4961 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4962 if (id_data[last_nonzero]) 4963 break; 4964 4965 /* All zeros */ 4966 if (last_nonzero < 0) 4967 return 0; 4968 4969 /* Calculate wraparound period */ 4970 for (period = 1; period < arrlen; period++) 4971 if (nand_id_has_period(id_data, arrlen, period)) 4972 break; 4973 4974 /* There's a repeated pattern */ 4975 if (period < arrlen) 4976 return period; 4977 4978 /* There are trailing zeros */ 4979 if (last_nonzero < arrlen - 1) 4980 return last_nonzero + 1; 4981 4982 /* No pattern detected */ 4983 return arrlen; 4984 } 4985 4986 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4987 static int nand_get_bits_per_cell(u8 cellinfo) 4988 { 4989 int bits; 4990 4991 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4992 bits >>= NAND_CI_CELLTYPE_SHIFT; 4993 return bits + 1; 4994 } 4995 4996 /* 4997 * Many new NAND share similar device ID codes, which represent the size of the 4998 * chip. The rest of the parameters must be decoded according to generic or 4999 * manufacturer-specific "extended ID" decoding patterns. 5000 */ 5001 void nand_decode_ext_id(struct nand_chip *chip) 5002 { 5003 struct nand_memory_organization *memorg; 5004 struct mtd_info *mtd = nand_to_mtd(chip); 5005 int extid; 5006 u8 *id_data = chip->id.data; 5007 5008 memorg = nanddev_get_memorg(&chip->base); 5009 5010 /* The 3rd id byte holds MLC / multichip data */ 5011 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5012 /* The 4th id byte is the important one */ 5013 extid = id_data[3]; 5014 5015 /* Calc pagesize */ 5016 memorg->pagesize = 1024 << (extid & 0x03); 5017 mtd->writesize = memorg->pagesize; 5018 extid >>= 2; 5019 /* Calc oobsize */ 5020 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 5021 mtd->oobsize = memorg->oobsize; 5022 extid >>= 2; 5023 /* Calc blocksize. Blocksize is multiples of 64KiB */ 5024 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 5025 memorg->pagesize; 5026 mtd->erasesize = (64 * 1024) << (extid & 0x03); 5027 extid >>= 2; 5028 /* Get buswidth information */ 5029 if (extid & 0x1) 5030 chip->options |= NAND_BUSWIDTH_16; 5031 } 5032 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 5033 5034 /* 5035 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 5036 * decodes a matching ID table entry and assigns the MTD size parameters for 5037 * the chip. 5038 */ 5039 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 5040 { 5041 struct mtd_info *mtd = nand_to_mtd(chip); 5042 struct nand_memory_organization *memorg; 5043 5044 memorg = nanddev_get_memorg(&chip->base); 5045 5046 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 5047 mtd->erasesize = type->erasesize; 5048 memorg->pagesize = type->pagesize; 5049 mtd->writesize = memorg->pagesize; 5050 memorg->oobsize = memorg->pagesize / 32; 5051 mtd->oobsize = memorg->oobsize; 5052 5053 /* All legacy ID NAND are small-page, SLC */ 5054 memorg->bits_per_cell = 1; 5055 } 5056 5057 /* 5058 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 5059 * heuristic patterns using various detected parameters (e.g., manufacturer, 5060 * page size, cell-type information). 5061 */ 5062 static void nand_decode_bbm_options(struct nand_chip *chip) 5063 { 5064 struct mtd_info *mtd = nand_to_mtd(chip); 5065 5066 /* Set the bad block position */ 5067 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 5068 chip->badblockpos = NAND_BBM_POS_LARGE; 5069 else 5070 chip->badblockpos = NAND_BBM_POS_SMALL; 5071 } 5072 5073 static inline bool is_full_id_nand(struct nand_flash_dev *type) 5074 { 5075 return type->id_len; 5076 } 5077 5078 static bool find_full_id_nand(struct nand_chip *chip, 5079 struct nand_flash_dev *type) 5080 { 5081 struct nand_device *base = &chip->base; 5082 struct nand_ecc_props requirements; 5083 struct mtd_info *mtd = nand_to_mtd(chip); 5084 struct nand_memory_organization *memorg; 5085 u8 *id_data = chip->id.data; 5086 5087 memorg = nanddev_get_memorg(&chip->base); 5088 5089 if (!strncmp(type->id, id_data, type->id_len)) { 5090 memorg->pagesize = type->pagesize; 5091 mtd->writesize = memorg->pagesize; 5092 memorg->pages_per_eraseblock = type->erasesize / 5093 type->pagesize; 5094 mtd->erasesize = type->erasesize; 5095 memorg->oobsize = type->oobsize; 5096 mtd->oobsize = memorg->oobsize; 5097 5098 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5099 memorg->eraseblocks_per_lun = 5100 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5101 memorg->pagesize * 5102 memorg->pages_per_eraseblock); 5103 chip->options |= type->options; 5104 requirements.strength = NAND_ECC_STRENGTH(type); 5105 requirements.step_size = NAND_ECC_STEP(type); 5106 nanddev_set_ecc_requirements(base, &requirements); 5107 5108 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5109 if (!chip->parameters.model) 5110 return false; 5111 5112 return true; 5113 } 5114 return false; 5115 } 5116 5117 /* 5118 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 5119 * compliant and does not have a full-id or legacy-id entry in the nand_ids 5120 * table. 5121 */ 5122 static void nand_manufacturer_detect(struct nand_chip *chip) 5123 { 5124 /* 5125 * Try manufacturer detection if available and use 5126 * nand_decode_ext_id() otherwise. 5127 */ 5128 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5129 chip->manufacturer.desc->ops->detect) { 5130 struct nand_memory_organization *memorg; 5131 5132 memorg = nanddev_get_memorg(&chip->base); 5133 5134 /* The 3rd id byte holds MLC / multichip data */ 5135 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 5136 chip->manufacturer.desc->ops->detect(chip); 5137 } else { 5138 nand_decode_ext_id(chip); 5139 } 5140 } 5141 5142 /* 5143 * Manufacturer initialization. This function is called for all NANDs including 5144 * ONFI and JEDEC compliant ones. 5145 * Manufacturer drivers should put all their specific initialization code in 5146 * their ->init() hook. 5147 */ 5148 static int nand_manufacturer_init(struct nand_chip *chip) 5149 { 5150 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 5151 !chip->manufacturer.desc->ops->init) 5152 return 0; 5153 5154 return chip->manufacturer.desc->ops->init(chip); 5155 } 5156 5157 /* 5158 * Manufacturer cleanup. This function is called for all NANDs including 5159 * ONFI and JEDEC compliant ones. 5160 * Manufacturer drivers should put all their specific cleanup code in their 5161 * ->cleanup() hook. 5162 */ 5163 static void nand_manufacturer_cleanup(struct nand_chip *chip) 5164 { 5165 /* Release manufacturer private data */ 5166 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5167 chip->manufacturer.desc->ops->cleanup) 5168 chip->manufacturer.desc->ops->cleanup(chip); 5169 } 5170 5171 static const char * 5172 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 5173 { 5174 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 5175 } 5176 5177 static void rawnand_check_data_only_read_support(struct nand_chip *chip) 5178 { 5179 /* Use an arbitrary size for the check */ 5180 if (!nand_read_data_op(chip, NULL, SZ_512, true, true)) 5181 chip->controller->supported_op.data_only_read = 1; 5182 } 5183 5184 static void rawnand_early_check_supported_ops(struct nand_chip *chip) 5185 { 5186 /* The supported_op fields should not be set by individual drivers */ 5187 WARN_ON_ONCE(chip->controller->supported_op.data_only_read); 5188 5189 if (!nand_has_exec_op(chip)) 5190 return; 5191 5192 rawnand_check_data_only_read_support(chip); 5193 } 5194 5195 static void rawnand_check_cont_read_support(struct nand_chip *chip) 5196 { 5197 struct mtd_info *mtd = nand_to_mtd(chip); 5198 5199 if (!chip->parameters.supports_read_cache) 5200 return; 5201 5202 if (chip->read_retries) 5203 return; 5204 5205 if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL, 5206 mtd->writesize, true)) 5207 chip->controller->supported_op.cont_read = 1; 5208 } 5209 5210 static void rawnand_late_check_supported_ops(struct nand_chip *chip) 5211 { 5212 /* The supported_op fields should not be set by individual drivers */ 5213 WARN_ON_ONCE(chip->controller->supported_op.cont_read); 5214 5215 /* 5216 * Too many devices do not support sequential cached reads with on-die 5217 * ECC correction enabled, so in this case refuse to perform the 5218 * automation. 5219 */ 5220 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) 5221 return; 5222 5223 if (!nand_has_exec_op(chip)) 5224 return; 5225 5226 /* 5227 * For now, continuous reads can only be used with the core page helpers. 5228 * This can be extended later. 5229 */ 5230 if (!(chip->ecc.read_page == nand_read_page_hwecc || 5231 chip->ecc.read_page == nand_read_page_syndrome || 5232 chip->ecc.read_page == nand_read_page_swecc)) 5233 return; 5234 5235 rawnand_check_cont_read_support(chip); 5236 } 5237 5238 /* 5239 * Get the flash and manufacturer id and lookup if the type is supported. 5240 */ 5241 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 5242 { 5243 const struct nand_manufacturer_desc *manufacturer_desc; 5244 struct mtd_info *mtd = nand_to_mtd(chip); 5245 struct nand_memory_organization *memorg; 5246 int busw, ret; 5247 u8 *id_data = chip->id.data; 5248 u8 maf_id, dev_id; 5249 u64 targetsize; 5250 5251 /* 5252 * Let's start by initializing memorg fields that might be left 5253 * unassigned by the ID-based detection logic. 5254 */ 5255 memorg = nanddev_get_memorg(&chip->base); 5256 memorg->planes_per_lun = 1; 5257 memorg->luns_per_target = 1; 5258 5259 /* 5260 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 5261 * after power-up. 5262 */ 5263 ret = nand_reset(chip, 0); 5264 if (ret) 5265 return ret; 5266 5267 /* Select the device */ 5268 nand_select_target(chip, 0); 5269 5270 rawnand_early_check_supported_ops(chip); 5271 5272 /* Send the command for reading device ID */ 5273 ret = nand_readid_op(chip, 0, id_data, 2); 5274 if (ret) 5275 return ret; 5276 5277 /* Read manufacturer and device IDs */ 5278 maf_id = id_data[0]; 5279 dev_id = id_data[1]; 5280 5281 /* 5282 * Try again to make sure, as some systems the bus-hold or other 5283 * interface concerns can cause random data which looks like a 5284 * possibly credible NAND flash to appear. If the two results do 5285 * not match, ignore the device completely. 5286 */ 5287 5288 /* Read entire ID string */ 5289 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 5290 if (ret) 5291 return ret; 5292 5293 if (id_data[0] != maf_id || id_data[1] != dev_id) { 5294 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 5295 maf_id, dev_id, id_data[0], id_data[1]); 5296 return -ENODEV; 5297 } 5298 5299 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 5300 5301 /* Try to identify manufacturer */ 5302 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 5303 chip->manufacturer.desc = manufacturer_desc; 5304 5305 if (!type) 5306 type = nand_flash_ids; 5307 5308 /* 5309 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 5310 * override it. 5311 * This is required to make sure initial NAND bus width set by the 5312 * NAND controller driver is coherent with the real NAND bus width 5313 * (extracted by auto-detection code). 5314 */ 5315 busw = chip->options & NAND_BUSWIDTH_16; 5316 5317 /* 5318 * The flag is only set (never cleared), reset it to its default value 5319 * before starting auto-detection. 5320 */ 5321 chip->options &= ~NAND_BUSWIDTH_16; 5322 5323 for (; type->name != NULL; type++) { 5324 if (is_full_id_nand(type)) { 5325 if (find_full_id_nand(chip, type)) 5326 goto ident_done; 5327 } else if (dev_id == type->dev_id) { 5328 break; 5329 } 5330 } 5331 5332 if (!type->name || !type->pagesize) { 5333 /* Check if the chip is ONFI compliant */ 5334 ret = nand_onfi_detect(chip); 5335 if (ret < 0) 5336 return ret; 5337 else if (ret) 5338 goto ident_done; 5339 5340 /* Check if the chip is JEDEC compliant */ 5341 ret = nand_jedec_detect(chip); 5342 if (ret < 0) 5343 return ret; 5344 else if (ret) 5345 goto ident_done; 5346 } 5347 5348 if (!type->name) 5349 return -ENODEV; 5350 5351 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5352 if (!chip->parameters.model) 5353 return -ENOMEM; 5354 5355 if (!type->pagesize) 5356 nand_manufacturer_detect(chip); 5357 else 5358 nand_decode_id(chip, type); 5359 5360 /* Get chip options */ 5361 chip->options |= type->options; 5362 5363 memorg->eraseblocks_per_lun = 5364 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5365 memorg->pagesize * 5366 memorg->pages_per_eraseblock); 5367 5368 ident_done: 5369 if (!mtd->name) 5370 mtd->name = chip->parameters.model; 5371 5372 if (chip->options & NAND_BUSWIDTH_AUTO) { 5373 WARN_ON(busw & NAND_BUSWIDTH_16); 5374 nand_set_defaults(chip); 5375 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 5376 /* 5377 * Check, if buswidth is correct. Hardware drivers should set 5378 * chip correct! 5379 */ 5380 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5381 maf_id, dev_id); 5382 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5383 mtd->name); 5384 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 5385 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 5386 ret = -EINVAL; 5387 5388 goto free_detect_allocation; 5389 } 5390 5391 nand_decode_bbm_options(chip); 5392 5393 /* Calculate the address shift from the page size */ 5394 chip->page_shift = ffs(mtd->writesize) - 1; 5395 /* Convert chipsize to number of pages per chip -1 */ 5396 targetsize = nanddev_target_size(&chip->base); 5397 chip->pagemask = (targetsize >> chip->page_shift) - 1; 5398 5399 chip->bbt_erase_shift = chip->phys_erase_shift = 5400 ffs(mtd->erasesize) - 1; 5401 if (targetsize & 0xffffffff) 5402 chip->chip_shift = ffs((unsigned)targetsize) - 1; 5403 else { 5404 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 5405 chip->chip_shift += 32 - 1; 5406 } 5407 5408 if (chip->chip_shift - chip->page_shift > 16) 5409 chip->options |= NAND_ROW_ADDR_3; 5410 5411 chip->badblockbits = 8; 5412 5413 nand_legacy_adjust_cmdfunc(chip); 5414 5415 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5416 maf_id, dev_id); 5417 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5418 chip->parameters.model); 5419 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5420 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5421 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5422 return 0; 5423 5424 free_detect_allocation: 5425 kfree(chip->parameters.model); 5426 5427 return ret; 5428 } 5429 5430 static enum nand_ecc_engine_type 5431 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) 5432 { 5433 enum nand_ecc_legacy_mode { 5434 NAND_ECC_INVALID, 5435 NAND_ECC_NONE, 5436 NAND_ECC_SOFT, 5437 NAND_ECC_SOFT_BCH, 5438 NAND_ECC_HW, 5439 NAND_ECC_HW_SYNDROME, 5440 NAND_ECC_ON_DIE, 5441 }; 5442 const char * const nand_ecc_legacy_modes[] = { 5443 [NAND_ECC_NONE] = "none", 5444 [NAND_ECC_SOFT] = "soft", 5445 [NAND_ECC_SOFT_BCH] = "soft_bch", 5446 [NAND_ECC_HW] = "hw", 5447 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5448 [NAND_ECC_ON_DIE] = "on-die", 5449 }; 5450 enum nand_ecc_legacy_mode eng_type; 5451 const char *pm; 5452 int err; 5453 5454 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5455 if (err) 5456 return NAND_ECC_ENGINE_TYPE_INVALID; 5457 5458 for (eng_type = NAND_ECC_NONE; 5459 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { 5460 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { 5461 switch (eng_type) { 5462 case NAND_ECC_NONE: 5463 return NAND_ECC_ENGINE_TYPE_NONE; 5464 case NAND_ECC_SOFT: 5465 case NAND_ECC_SOFT_BCH: 5466 return NAND_ECC_ENGINE_TYPE_SOFT; 5467 case NAND_ECC_HW: 5468 case NAND_ECC_HW_SYNDROME: 5469 return NAND_ECC_ENGINE_TYPE_ON_HOST; 5470 case NAND_ECC_ON_DIE: 5471 return NAND_ECC_ENGINE_TYPE_ON_DIE; 5472 default: 5473 break; 5474 } 5475 } 5476 } 5477 5478 return NAND_ECC_ENGINE_TYPE_INVALID; 5479 } 5480 5481 static enum nand_ecc_placement 5482 of_get_rawnand_ecc_placement_legacy(struct device_node *np) 5483 { 5484 const char *pm; 5485 int err; 5486 5487 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5488 if (!err) { 5489 if (!strcasecmp(pm, "hw_syndrome")) 5490 return NAND_ECC_PLACEMENT_INTERLEAVED; 5491 } 5492 5493 return NAND_ECC_PLACEMENT_UNKNOWN; 5494 } 5495 5496 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) 5497 { 5498 const char *pm; 5499 int err; 5500 5501 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5502 if (!err) { 5503 if (!strcasecmp(pm, "soft")) 5504 return NAND_ECC_ALGO_HAMMING; 5505 else if (!strcasecmp(pm, "soft_bch")) 5506 return NAND_ECC_ALGO_BCH; 5507 } 5508 5509 return NAND_ECC_ALGO_UNKNOWN; 5510 } 5511 5512 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) 5513 { 5514 struct device_node *dn = nand_get_flash_node(chip); 5515 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; 5516 5517 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5518 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); 5519 5520 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) 5521 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); 5522 5523 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) 5524 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); 5525 } 5526 5527 static int of_get_nand_bus_width(struct nand_chip *chip) 5528 { 5529 struct device_node *dn = nand_get_flash_node(chip); 5530 u32 val; 5531 int ret; 5532 5533 ret = of_property_read_u32(dn, "nand-bus-width", &val); 5534 if (ret == -EINVAL) 5535 /* Buswidth defaults to 8 if the property does not exist .*/ 5536 return 0; 5537 else if (ret) 5538 return ret; 5539 5540 if (val == 16) 5541 chip->options |= NAND_BUSWIDTH_16; 5542 else if (val != 8) 5543 return -EINVAL; 5544 return 0; 5545 } 5546 5547 static int of_get_nand_secure_regions(struct nand_chip *chip) 5548 { 5549 struct device_node *dn = nand_get_flash_node(chip); 5550 struct property *prop; 5551 int nr_elem, i, j; 5552 5553 /* Only proceed if the "secure-regions" property is present in DT */ 5554 prop = of_find_property(dn, "secure-regions", NULL); 5555 if (!prop) 5556 return 0; 5557 5558 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); 5559 if (nr_elem <= 0) 5560 return nr_elem; 5561 5562 chip->nr_secure_regions = nr_elem / 2; 5563 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), 5564 GFP_KERNEL); 5565 if (!chip->secure_regions) 5566 return -ENOMEM; 5567 5568 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { 5569 of_property_read_u64_index(dn, "secure-regions", j, 5570 &chip->secure_regions[i].offset); 5571 of_property_read_u64_index(dn, "secure-regions", j + 1, 5572 &chip->secure_regions[i].size); 5573 } 5574 5575 return 0; 5576 } 5577 5578 /** 5579 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller 5580 * @dev: Device that will be parsed. Also used for managed allocations. 5581 * @cs_array: Array of GPIO desc pointers allocated on success 5582 * @ncs_array: Number of entries in @cs_array updated on success. 5583 * @return 0 on success, an error otherwise. 5584 */ 5585 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 5586 unsigned int *ncs_array) 5587 { 5588 struct gpio_desc **descs; 5589 int ndescs, i; 5590 5591 ndescs = gpiod_count(dev, "cs"); 5592 if (ndescs < 0) { 5593 dev_dbg(dev, "No valid cs-gpios property\n"); 5594 return 0; 5595 } 5596 5597 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL); 5598 if (!descs) 5599 return -ENOMEM; 5600 5601 for (i = 0; i < ndescs; i++) { 5602 descs[i] = gpiod_get_index_optional(dev, "cs", i, 5603 GPIOD_OUT_HIGH); 5604 if (IS_ERR(descs[i])) 5605 return PTR_ERR(descs[i]); 5606 } 5607 5608 *ncs_array = ndescs; 5609 *cs_array = descs; 5610 5611 return 0; 5612 } 5613 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs); 5614 5615 static int rawnand_dt_init(struct nand_chip *chip) 5616 { 5617 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); 5618 struct device_node *dn = nand_get_flash_node(chip); 5619 int ret; 5620 5621 if (!dn) 5622 return 0; 5623 5624 ret = of_get_nand_bus_width(chip); 5625 if (ret) 5626 return ret; 5627 5628 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5629 chip->options |= NAND_IS_BOOT_MEDIUM; 5630 5631 if (of_property_read_bool(dn, "nand-on-flash-bbt")) 5632 chip->bbt_options |= NAND_BBT_USE_FLASH; 5633 5634 of_get_nand_ecc_user_config(nand); 5635 of_get_nand_ecc_legacy_user_config(chip); 5636 5637 /* 5638 * If neither the user nor the NAND controller have requested a specific 5639 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. 5640 */ 5641 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 5642 5643 /* 5644 * Use the user requested engine type, unless there is none, in this 5645 * case default to the NAND controller choice, otherwise fallback to 5646 * the raw NAND default one. 5647 */ 5648 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) 5649 chip->ecc.engine_type = nand->ecc.user_conf.engine_type; 5650 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5651 chip->ecc.engine_type = nand->ecc.defaults.engine_type; 5652 5653 chip->ecc.placement = nand->ecc.user_conf.placement; 5654 chip->ecc.algo = nand->ecc.user_conf.algo; 5655 chip->ecc.strength = nand->ecc.user_conf.strength; 5656 chip->ecc.size = nand->ecc.user_conf.step_size; 5657 5658 return 0; 5659 } 5660 5661 /** 5662 * nand_scan_ident - Scan for the NAND device 5663 * @chip: NAND chip object 5664 * @maxchips: number of chips to scan for 5665 * @table: alternative NAND ID table 5666 * 5667 * This is the first phase of the normal nand_scan() function. It reads the 5668 * flash ID and sets up MTD fields accordingly. 5669 * 5670 * This helper used to be called directly from controller drivers that needed 5671 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5672 * prevented dynamic allocations during this phase which was unconvenient and 5673 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5674 */ 5675 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5676 struct nand_flash_dev *table) 5677 { 5678 struct mtd_info *mtd = nand_to_mtd(chip); 5679 struct nand_memory_organization *memorg; 5680 int nand_maf_id, nand_dev_id; 5681 unsigned int i; 5682 int ret; 5683 5684 memorg = nanddev_get_memorg(&chip->base); 5685 5686 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5687 chip->cur_cs = -1; 5688 5689 mutex_init(&chip->lock); 5690 init_waitqueue_head(&chip->resume_wq); 5691 5692 /* Enforce the right timings for reset/detection */ 5693 chip->current_interface_config = nand_get_reset_interface_config(); 5694 5695 ret = rawnand_dt_init(chip); 5696 if (ret) 5697 return ret; 5698 5699 if (!mtd->name && mtd->dev.parent) 5700 mtd->name = dev_name(mtd->dev.parent); 5701 5702 /* Set the default functions */ 5703 nand_set_defaults(chip); 5704 5705 ret = nand_legacy_check_hooks(chip); 5706 if (ret) 5707 return ret; 5708 5709 memorg->ntargets = maxchips; 5710 5711 /* Read the flash type */ 5712 ret = nand_detect(chip, table); 5713 if (ret) { 5714 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5715 pr_warn("No NAND device found\n"); 5716 nand_deselect_target(chip); 5717 return ret; 5718 } 5719 5720 nand_maf_id = chip->id.data[0]; 5721 nand_dev_id = chip->id.data[1]; 5722 5723 nand_deselect_target(chip); 5724 5725 /* Check for a chip array */ 5726 for (i = 1; i < maxchips; i++) { 5727 u8 id[2]; 5728 5729 /* See comment in nand_get_flash_type for reset */ 5730 ret = nand_reset(chip, i); 5731 if (ret) 5732 break; 5733 5734 nand_select_target(chip, i); 5735 /* Send the command for reading device ID */ 5736 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5737 if (ret) 5738 break; 5739 /* Read manufacturer and device IDs */ 5740 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5741 nand_deselect_target(chip); 5742 break; 5743 } 5744 nand_deselect_target(chip); 5745 } 5746 if (i > 1) 5747 pr_info("%d chips detected\n", i); 5748 5749 /* Store the number of chips and calc total size for mtd */ 5750 memorg->ntargets = i; 5751 mtd->size = i * nanddev_target_size(&chip->base); 5752 5753 return 0; 5754 } 5755 5756 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5757 { 5758 kfree(chip->parameters.model); 5759 kfree(chip->parameters.onfi); 5760 } 5761 5762 int rawnand_sw_hamming_init(struct nand_chip *chip) 5763 { 5764 struct nand_ecc_sw_hamming_conf *engine_conf; 5765 struct nand_device *base = &chip->base; 5766 int ret; 5767 5768 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5769 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; 5770 base->ecc.user_conf.strength = chip->ecc.strength; 5771 base->ecc.user_conf.step_size = chip->ecc.size; 5772 5773 ret = nand_ecc_sw_hamming_init_ctx(base); 5774 if (ret) 5775 return ret; 5776 5777 engine_conf = base->ecc.ctx.priv; 5778 5779 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) 5780 engine_conf->sm_order = true; 5781 5782 chip->ecc.size = base->ecc.ctx.conf.step_size; 5783 chip->ecc.strength = base->ecc.ctx.conf.strength; 5784 chip->ecc.total = base->ecc.ctx.total; 5785 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5786 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5787 5788 return 0; 5789 } 5790 EXPORT_SYMBOL(rawnand_sw_hamming_init); 5791 5792 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 5793 const unsigned char *buf, 5794 unsigned char *code) 5795 { 5796 struct nand_device *base = &chip->base; 5797 5798 return nand_ecc_sw_hamming_calculate(base, buf, code); 5799 } 5800 EXPORT_SYMBOL(rawnand_sw_hamming_calculate); 5801 5802 int rawnand_sw_hamming_correct(struct nand_chip *chip, 5803 unsigned char *buf, 5804 unsigned char *read_ecc, 5805 unsigned char *calc_ecc) 5806 { 5807 struct nand_device *base = &chip->base; 5808 5809 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); 5810 } 5811 EXPORT_SYMBOL(rawnand_sw_hamming_correct); 5812 5813 void rawnand_sw_hamming_cleanup(struct nand_chip *chip) 5814 { 5815 struct nand_device *base = &chip->base; 5816 5817 nand_ecc_sw_hamming_cleanup_ctx(base); 5818 } 5819 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); 5820 5821 int rawnand_sw_bch_init(struct nand_chip *chip) 5822 { 5823 struct nand_device *base = &chip->base; 5824 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); 5825 int ret; 5826 5827 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5828 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; 5829 base->ecc.user_conf.step_size = chip->ecc.size; 5830 base->ecc.user_conf.strength = chip->ecc.strength; 5831 5832 ret = nand_ecc_sw_bch_init_ctx(base); 5833 if (ret) 5834 return ret; 5835 5836 chip->ecc.size = ecc_conf->step_size; 5837 chip->ecc.strength = ecc_conf->strength; 5838 chip->ecc.total = base->ecc.ctx.total; 5839 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5840 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5841 5842 return 0; 5843 } 5844 EXPORT_SYMBOL(rawnand_sw_bch_init); 5845 5846 static int rawnand_sw_bch_calculate(struct nand_chip *chip, 5847 const unsigned char *buf, 5848 unsigned char *code) 5849 { 5850 struct nand_device *base = &chip->base; 5851 5852 return nand_ecc_sw_bch_calculate(base, buf, code); 5853 } 5854 5855 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 5856 unsigned char *read_ecc, unsigned char *calc_ecc) 5857 { 5858 struct nand_device *base = &chip->base; 5859 5860 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); 5861 } 5862 EXPORT_SYMBOL(rawnand_sw_bch_correct); 5863 5864 void rawnand_sw_bch_cleanup(struct nand_chip *chip) 5865 { 5866 struct nand_device *base = &chip->base; 5867 5868 nand_ecc_sw_bch_cleanup_ctx(base); 5869 } 5870 EXPORT_SYMBOL(rawnand_sw_bch_cleanup); 5871 5872 static int nand_set_ecc_on_host_ops(struct nand_chip *chip) 5873 { 5874 struct nand_ecc_ctrl *ecc = &chip->ecc; 5875 5876 switch (ecc->placement) { 5877 case NAND_ECC_PLACEMENT_UNKNOWN: 5878 case NAND_ECC_PLACEMENT_OOB: 5879 /* Use standard hwecc read page function? */ 5880 if (!ecc->read_page) 5881 ecc->read_page = nand_read_page_hwecc; 5882 if (!ecc->write_page) 5883 ecc->write_page = nand_write_page_hwecc; 5884 if (!ecc->read_page_raw) 5885 ecc->read_page_raw = nand_read_page_raw; 5886 if (!ecc->write_page_raw) 5887 ecc->write_page_raw = nand_write_page_raw; 5888 if (!ecc->read_oob) 5889 ecc->read_oob = nand_read_oob_std; 5890 if (!ecc->write_oob) 5891 ecc->write_oob = nand_write_oob_std; 5892 if (!ecc->read_subpage) 5893 ecc->read_subpage = nand_read_subpage; 5894 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5895 ecc->write_subpage = nand_write_subpage_hwecc; 5896 fallthrough; 5897 5898 case NAND_ECC_PLACEMENT_INTERLEAVED: 5899 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5900 (!ecc->read_page || 5901 ecc->read_page == nand_read_page_hwecc || 5902 !ecc->write_page || 5903 ecc->write_page == nand_write_page_hwecc)) { 5904 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5905 return -EINVAL; 5906 } 5907 /* Use standard syndrome read/write page function? */ 5908 if (!ecc->read_page) 5909 ecc->read_page = nand_read_page_syndrome; 5910 if (!ecc->write_page) 5911 ecc->write_page = nand_write_page_syndrome; 5912 if (!ecc->read_page_raw) 5913 ecc->read_page_raw = nand_read_page_raw_syndrome; 5914 if (!ecc->write_page_raw) 5915 ecc->write_page_raw = nand_write_page_raw_syndrome; 5916 if (!ecc->read_oob) 5917 ecc->read_oob = nand_read_oob_syndrome; 5918 if (!ecc->write_oob) 5919 ecc->write_oob = nand_write_oob_syndrome; 5920 break; 5921 5922 default: 5923 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", 5924 ecc->placement); 5925 return -EINVAL; 5926 } 5927 5928 return 0; 5929 } 5930 5931 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5932 { 5933 struct mtd_info *mtd = nand_to_mtd(chip); 5934 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5935 struct nand_ecc_ctrl *ecc = &chip->ecc; 5936 int ret; 5937 5938 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) 5939 return -EINVAL; 5940 5941 switch (ecc->algo) { 5942 case NAND_ECC_ALGO_HAMMING: 5943 ecc->calculate = rawnand_sw_hamming_calculate; 5944 ecc->correct = rawnand_sw_hamming_correct; 5945 ecc->read_page = nand_read_page_swecc; 5946 ecc->read_subpage = nand_read_subpage; 5947 ecc->write_page = nand_write_page_swecc; 5948 if (!ecc->read_page_raw) 5949 ecc->read_page_raw = nand_read_page_raw; 5950 if (!ecc->write_page_raw) 5951 ecc->write_page_raw = nand_write_page_raw; 5952 ecc->read_oob = nand_read_oob_std; 5953 ecc->write_oob = nand_write_oob_std; 5954 if (!ecc->size) 5955 ecc->size = 256; 5956 ecc->bytes = 3; 5957 ecc->strength = 1; 5958 5959 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5960 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5961 5962 ret = rawnand_sw_hamming_init(chip); 5963 if (ret) { 5964 WARN(1, "Hamming ECC initialization failed!\n"); 5965 return ret; 5966 } 5967 5968 return 0; 5969 case NAND_ECC_ALGO_BCH: 5970 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 5971 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5972 return -EINVAL; 5973 } 5974 ecc->calculate = rawnand_sw_bch_calculate; 5975 ecc->correct = rawnand_sw_bch_correct; 5976 ecc->read_page = nand_read_page_swecc; 5977 ecc->read_subpage = nand_read_subpage; 5978 ecc->write_page = nand_write_page_swecc; 5979 if (!ecc->read_page_raw) 5980 ecc->read_page_raw = nand_read_page_raw; 5981 if (!ecc->write_page_raw) 5982 ecc->write_page_raw = nand_write_page_raw; 5983 ecc->read_oob = nand_read_oob_std; 5984 ecc->write_oob = nand_write_oob_std; 5985 5986 /* 5987 * We can only maximize ECC config when the default layout is 5988 * used, otherwise we don't know how many bytes can really be 5989 * used. 5990 */ 5991 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && 5992 mtd->ooblayout != nand_get_large_page_ooblayout()) 5993 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; 5994 5995 ret = rawnand_sw_bch_init(chip); 5996 if (ret) { 5997 WARN(1, "BCH ECC initialization failed!\n"); 5998 return ret; 5999 } 6000 6001 return 0; 6002 default: 6003 WARN(1, "Unsupported ECC algorithm!\n"); 6004 return -EINVAL; 6005 } 6006 } 6007 6008 /** 6009 * nand_check_ecc_caps - check the sanity of preset ECC settings 6010 * @chip: nand chip info structure 6011 * @caps: ECC caps info structure 6012 * @oobavail: OOB size that the ECC engine can use 6013 * 6014 * When ECC step size and strength are already set, check if they are supported 6015 * by the controller and the calculated ECC bytes fit within the chip's OOB. 6016 * On success, the calculated ECC bytes is set. 6017 */ 6018 static int 6019 nand_check_ecc_caps(struct nand_chip *chip, 6020 const struct nand_ecc_caps *caps, int oobavail) 6021 { 6022 struct mtd_info *mtd = nand_to_mtd(chip); 6023 const struct nand_ecc_step_info *stepinfo; 6024 int preset_step = chip->ecc.size; 6025 int preset_strength = chip->ecc.strength; 6026 int ecc_bytes, nsteps = mtd->writesize / preset_step; 6027 int i, j; 6028 6029 for (i = 0; i < caps->nstepinfos; i++) { 6030 stepinfo = &caps->stepinfos[i]; 6031 6032 if (stepinfo->stepsize != preset_step) 6033 continue; 6034 6035 for (j = 0; j < stepinfo->nstrengths; j++) { 6036 if (stepinfo->strengths[j] != preset_strength) 6037 continue; 6038 6039 ecc_bytes = caps->calc_ecc_bytes(preset_step, 6040 preset_strength); 6041 if (WARN_ON_ONCE(ecc_bytes < 0)) 6042 return ecc_bytes; 6043 6044 if (ecc_bytes * nsteps > oobavail) { 6045 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 6046 preset_step, preset_strength); 6047 return -ENOSPC; 6048 } 6049 6050 chip->ecc.bytes = ecc_bytes; 6051 6052 return 0; 6053 } 6054 } 6055 6056 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 6057 preset_step, preset_strength); 6058 6059 return -ENOTSUPP; 6060 } 6061 6062 /** 6063 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 6064 * @chip: nand chip info structure 6065 * @caps: ECC engine caps info structure 6066 * @oobavail: OOB size that the ECC engine can use 6067 * 6068 * If a chip's ECC requirement is provided, try to meet it with the least 6069 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 6070 * On success, the chosen ECC settings are set. 6071 */ 6072 static int 6073 nand_match_ecc_req(struct nand_chip *chip, 6074 const struct nand_ecc_caps *caps, int oobavail) 6075 { 6076 const struct nand_ecc_props *requirements = 6077 nanddev_get_ecc_requirements(&chip->base); 6078 struct mtd_info *mtd = nand_to_mtd(chip); 6079 const struct nand_ecc_step_info *stepinfo; 6080 int req_step = requirements->step_size; 6081 int req_strength = requirements->strength; 6082 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 6083 int best_step = 0, best_strength = 0, best_ecc_bytes = 0; 6084 int best_ecc_bytes_total = INT_MAX; 6085 int i, j; 6086 6087 /* No information provided by the NAND chip */ 6088 if (!req_step || !req_strength) 6089 return -ENOTSUPP; 6090 6091 /* number of correctable bits the chip requires in a page */ 6092 req_corr = mtd->writesize / req_step * req_strength; 6093 6094 for (i = 0; i < caps->nstepinfos; i++) { 6095 stepinfo = &caps->stepinfos[i]; 6096 step_size = stepinfo->stepsize; 6097 6098 for (j = 0; j < stepinfo->nstrengths; j++) { 6099 strength = stepinfo->strengths[j]; 6100 6101 /* 6102 * If both step size and strength are smaller than the 6103 * chip's requirement, it is not easy to compare the 6104 * resulted reliability. 6105 */ 6106 if (step_size < req_step && strength < req_strength) 6107 continue; 6108 6109 if (mtd->writesize % step_size) 6110 continue; 6111 6112 nsteps = mtd->writesize / step_size; 6113 6114 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6115 if (WARN_ON_ONCE(ecc_bytes < 0)) 6116 continue; 6117 ecc_bytes_total = ecc_bytes * nsteps; 6118 6119 if (ecc_bytes_total > oobavail || 6120 strength * nsteps < req_corr) 6121 continue; 6122 6123 /* 6124 * We assume the best is to meet the chip's requrement 6125 * with the least number of ECC bytes. 6126 */ 6127 if (ecc_bytes_total < best_ecc_bytes_total) { 6128 best_ecc_bytes_total = ecc_bytes_total; 6129 best_step = step_size; 6130 best_strength = strength; 6131 best_ecc_bytes = ecc_bytes; 6132 } 6133 } 6134 } 6135 6136 if (best_ecc_bytes_total == INT_MAX) 6137 return -ENOTSUPP; 6138 6139 chip->ecc.size = best_step; 6140 chip->ecc.strength = best_strength; 6141 chip->ecc.bytes = best_ecc_bytes; 6142 6143 return 0; 6144 } 6145 6146 /** 6147 * nand_maximize_ecc - choose the max ECC strength available 6148 * @chip: nand chip info structure 6149 * @caps: ECC engine caps info structure 6150 * @oobavail: OOB size that the ECC engine can use 6151 * 6152 * Choose the max ECC strength that is supported on the controller, and can fit 6153 * within the chip's OOB. On success, the chosen ECC settings are set. 6154 */ 6155 static int 6156 nand_maximize_ecc(struct nand_chip *chip, 6157 const struct nand_ecc_caps *caps, int oobavail) 6158 { 6159 struct mtd_info *mtd = nand_to_mtd(chip); 6160 const struct nand_ecc_step_info *stepinfo; 6161 int step_size, strength, nsteps, ecc_bytes, corr; 6162 int best_corr = 0; 6163 int best_step = 0; 6164 int best_strength = 0, best_ecc_bytes = 0; 6165 int i, j; 6166 6167 for (i = 0; i < caps->nstepinfos; i++) { 6168 stepinfo = &caps->stepinfos[i]; 6169 step_size = stepinfo->stepsize; 6170 6171 /* If chip->ecc.size is already set, respect it */ 6172 if (chip->ecc.size && step_size != chip->ecc.size) 6173 continue; 6174 6175 for (j = 0; j < stepinfo->nstrengths; j++) { 6176 strength = stepinfo->strengths[j]; 6177 6178 if (mtd->writesize % step_size) 6179 continue; 6180 6181 nsteps = mtd->writesize / step_size; 6182 6183 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6184 if (WARN_ON_ONCE(ecc_bytes < 0)) 6185 continue; 6186 6187 if (ecc_bytes * nsteps > oobavail) 6188 continue; 6189 6190 corr = strength * nsteps; 6191 6192 /* 6193 * If the number of correctable bits is the same, 6194 * bigger step_size has more reliability. 6195 */ 6196 if (corr > best_corr || 6197 (corr == best_corr && step_size > best_step)) { 6198 best_corr = corr; 6199 best_step = step_size; 6200 best_strength = strength; 6201 best_ecc_bytes = ecc_bytes; 6202 } 6203 } 6204 } 6205 6206 if (!best_corr) 6207 return -ENOTSUPP; 6208 6209 chip->ecc.size = best_step; 6210 chip->ecc.strength = best_strength; 6211 chip->ecc.bytes = best_ecc_bytes; 6212 6213 return 0; 6214 } 6215 6216 /** 6217 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 6218 * @chip: nand chip info structure 6219 * @caps: ECC engine caps info structure 6220 * @oobavail: OOB size that the ECC engine can use 6221 * 6222 * Choose the ECC configuration according to following logic. 6223 * 6224 * 1. If both ECC step size and ECC strength are already set (usually by DT) 6225 * then check if it is supported by this controller. 6226 * 2. If the user provided the nand-ecc-maximize property, then select maximum 6227 * ECC strength. 6228 * 3. Otherwise, try to match the ECC step size and ECC strength closest 6229 * to the chip's requirement. If available OOB size can't fit the chip 6230 * requirement then fallback to the maximum ECC step size and ECC strength. 6231 * 6232 * On success, the chosen ECC settings are set. 6233 */ 6234 int nand_ecc_choose_conf(struct nand_chip *chip, 6235 const struct nand_ecc_caps *caps, int oobavail) 6236 { 6237 struct mtd_info *mtd = nand_to_mtd(chip); 6238 struct nand_device *nanddev = mtd_to_nanddev(mtd); 6239 6240 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 6241 return -EINVAL; 6242 6243 if (chip->ecc.size && chip->ecc.strength) 6244 return nand_check_ecc_caps(chip, caps, oobavail); 6245 6246 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 6247 return nand_maximize_ecc(chip, caps, oobavail); 6248 6249 if (!nand_match_ecc_req(chip, caps, oobavail)) 6250 return 0; 6251 6252 return nand_maximize_ecc(chip, caps, oobavail); 6253 } 6254 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 6255 6256 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 6257 { 6258 struct nand_chip *chip = container_of(nand, struct nand_chip, 6259 base); 6260 unsigned int eb = nanddev_pos_to_row(nand, pos); 6261 int ret; 6262 6263 eb >>= nand->rowconv.eraseblock_addr_shift; 6264 6265 nand_select_target(chip, pos->target); 6266 ret = nand_erase_op(chip, eb); 6267 nand_deselect_target(chip); 6268 6269 return ret; 6270 } 6271 6272 static int rawnand_markbad(struct nand_device *nand, 6273 const struct nand_pos *pos) 6274 { 6275 struct nand_chip *chip = container_of(nand, struct nand_chip, 6276 base); 6277 6278 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6279 } 6280 6281 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 6282 { 6283 struct nand_chip *chip = container_of(nand, struct nand_chip, 6284 base); 6285 int ret; 6286 6287 nand_select_target(chip, pos->target); 6288 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6289 nand_deselect_target(chip); 6290 6291 return ret; 6292 } 6293 6294 static const struct nand_ops rawnand_ops = { 6295 .erase = rawnand_erase, 6296 .markbad = rawnand_markbad, 6297 .isbad = rawnand_isbad, 6298 }; 6299 6300 /** 6301 * nand_scan_tail - Scan for the NAND device 6302 * @chip: NAND chip object 6303 * 6304 * This is the second phase of the normal nand_scan() function. It fills out 6305 * all the uninitialized function pointers with the defaults and scans for a 6306 * bad block table if appropriate. 6307 */ 6308 static int nand_scan_tail(struct nand_chip *chip) 6309 { 6310 struct mtd_info *mtd = nand_to_mtd(chip); 6311 struct nand_device *base = &chip->base; 6312 struct nand_ecc_ctrl *ecc = &chip->ecc; 6313 int ret, i; 6314 6315 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 6316 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 6317 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 6318 return -EINVAL; 6319 } 6320 6321 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 6322 if (!chip->data_buf) 6323 return -ENOMEM; 6324 6325 /* 6326 * FIXME: some NAND manufacturer drivers expect the first die to be 6327 * selected when manufacturer->init() is called. They should be fixed 6328 * to explictly select the relevant die when interacting with the NAND 6329 * chip. 6330 */ 6331 nand_select_target(chip, 0); 6332 ret = nand_manufacturer_init(chip); 6333 nand_deselect_target(chip); 6334 if (ret) 6335 goto err_free_buf; 6336 6337 /* Set the internal oob buffer location, just after the page data */ 6338 chip->oob_poi = chip->data_buf + mtd->writesize; 6339 6340 /* 6341 * If no default placement scheme is given, select an appropriate one. 6342 */ 6343 if (!mtd->ooblayout && 6344 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6345 ecc->algo == NAND_ECC_ALGO_BCH) && 6346 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6347 ecc->algo == NAND_ECC_ALGO_HAMMING)) { 6348 switch (mtd->oobsize) { 6349 case 8: 6350 case 16: 6351 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); 6352 break; 6353 case 64: 6354 case 128: 6355 mtd_set_ooblayout(mtd, 6356 nand_get_large_page_hamming_ooblayout()); 6357 break; 6358 default: 6359 /* 6360 * Expose the whole OOB area to users if ECC_NONE 6361 * is passed. We could do that for all kind of 6362 * ->oobsize, but we must keep the old large/small 6363 * page with ECC layout when ->oobsize <= 128 for 6364 * compatibility reasons. 6365 */ 6366 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { 6367 mtd_set_ooblayout(mtd, 6368 nand_get_large_page_ooblayout()); 6369 break; 6370 } 6371 6372 WARN(1, "No oob scheme defined for oobsize %d\n", 6373 mtd->oobsize); 6374 ret = -EINVAL; 6375 goto err_nand_manuf_cleanup; 6376 } 6377 } 6378 6379 /* 6380 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 6381 * selected and we have 256 byte pagesize fallback to software ECC 6382 */ 6383 6384 switch (ecc->engine_type) { 6385 case NAND_ECC_ENGINE_TYPE_ON_HOST: 6386 ret = nand_set_ecc_on_host_ops(chip); 6387 if (ret) 6388 goto err_nand_manuf_cleanup; 6389 6390 if (mtd->writesize >= ecc->size) { 6391 if (!ecc->strength) { 6392 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 6393 ret = -EINVAL; 6394 goto err_nand_manuf_cleanup; 6395 } 6396 break; 6397 } 6398 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 6399 ecc->size, mtd->writesize); 6400 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 6401 ecc->algo = NAND_ECC_ALGO_HAMMING; 6402 fallthrough; 6403 6404 case NAND_ECC_ENGINE_TYPE_SOFT: 6405 ret = nand_set_ecc_soft_ops(chip); 6406 if (ret) 6407 goto err_nand_manuf_cleanup; 6408 break; 6409 6410 case NAND_ECC_ENGINE_TYPE_ON_DIE: 6411 if (!ecc->read_page || !ecc->write_page) { 6412 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 6413 ret = -EINVAL; 6414 goto err_nand_manuf_cleanup; 6415 } 6416 if (!ecc->read_oob) 6417 ecc->read_oob = nand_read_oob_std; 6418 if (!ecc->write_oob) 6419 ecc->write_oob = nand_write_oob_std; 6420 break; 6421 6422 case NAND_ECC_ENGINE_TYPE_NONE: 6423 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); 6424 ecc->read_page = nand_read_page_raw; 6425 ecc->write_page = nand_write_page_raw; 6426 ecc->read_oob = nand_read_oob_std; 6427 ecc->read_page_raw = nand_read_page_raw; 6428 ecc->write_page_raw = nand_write_page_raw; 6429 ecc->write_oob = nand_write_oob_std; 6430 ecc->size = mtd->writesize; 6431 ecc->bytes = 0; 6432 ecc->strength = 0; 6433 break; 6434 6435 default: 6436 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); 6437 ret = -EINVAL; 6438 goto err_nand_manuf_cleanup; 6439 } 6440 6441 if (ecc->correct || ecc->calculate) { 6442 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6443 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6444 if (!ecc->calc_buf || !ecc->code_buf) { 6445 ret = -ENOMEM; 6446 goto err_nand_manuf_cleanup; 6447 } 6448 } 6449 6450 /* For many systems, the standard OOB write also works for raw */ 6451 if (!ecc->read_oob_raw) 6452 ecc->read_oob_raw = ecc->read_oob; 6453 if (!ecc->write_oob_raw) 6454 ecc->write_oob_raw = ecc->write_oob; 6455 6456 /* Propagate ECC info to the generic NAND and MTD layers */ 6457 mtd->ecc_strength = ecc->strength; 6458 if (!base->ecc.ctx.conf.strength) 6459 base->ecc.ctx.conf.strength = ecc->strength; 6460 mtd->ecc_step_size = ecc->size; 6461 if (!base->ecc.ctx.conf.step_size) 6462 base->ecc.ctx.conf.step_size = ecc->size; 6463 6464 /* 6465 * Set the number of read / write steps for one page depending on ECC 6466 * mode. 6467 */ 6468 if (!ecc->steps) 6469 ecc->steps = mtd->writesize / ecc->size; 6470 if (!base->ecc.ctx.nsteps) 6471 base->ecc.ctx.nsteps = ecc->steps; 6472 if (ecc->steps * ecc->size != mtd->writesize) { 6473 WARN(1, "Invalid ECC parameters\n"); 6474 ret = -EINVAL; 6475 goto err_nand_manuf_cleanup; 6476 } 6477 6478 if (!ecc->total) { 6479 ecc->total = ecc->steps * ecc->bytes; 6480 chip->base.ecc.ctx.total = ecc->total; 6481 } 6482 6483 if (ecc->total > mtd->oobsize) { 6484 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 6485 ret = -EINVAL; 6486 goto err_nand_manuf_cleanup; 6487 } 6488 6489 /* 6490 * The number of bytes available for a client to place data into 6491 * the out of band area. 6492 */ 6493 ret = mtd_ooblayout_count_freebytes(mtd); 6494 if (ret < 0) 6495 ret = 0; 6496 6497 mtd->oobavail = ret; 6498 6499 /* ECC sanity check: warn if it's too weak */ 6500 if (!nand_ecc_is_strong_enough(&chip->base)) 6501 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 6502 mtd->name, chip->ecc.strength, chip->ecc.size, 6503 nanddev_get_ecc_requirements(&chip->base)->strength, 6504 nanddev_get_ecc_requirements(&chip->base)->step_size); 6505 6506 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 6507 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 6508 switch (ecc->steps) { 6509 case 2: 6510 mtd->subpage_sft = 1; 6511 break; 6512 case 4: 6513 case 8: 6514 case 16: 6515 mtd->subpage_sft = 2; 6516 break; 6517 } 6518 } 6519 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 6520 6521 /* Invalidate the pagebuffer reference */ 6522 chip->pagecache.page = -1; 6523 6524 /* Large page NAND with SOFT_ECC should support subpage reads */ 6525 switch (ecc->engine_type) { 6526 case NAND_ECC_ENGINE_TYPE_SOFT: 6527 if (chip->page_shift > 9) 6528 chip->options |= NAND_SUBPAGE_READ; 6529 break; 6530 6531 default: 6532 break; 6533 } 6534 6535 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 6536 if (ret) 6537 goto err_nand_manuf_cleanup; 6538 6539 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 6540 if (chip->options & NAND_ROM) 6541 mtd->flags = MTD_CAP_ROM; 6542 6543 /* Fill in remaining MTD driver data */ 6544 mtd->_erase = nand_erase; 6545 mtd->_point = NULL; 6546 mtd->_unpoint = NULL; 6547 mtd->_panic_write = panic_nand_write; 6548 mtd->_read_oob = nand_read_oob; 6549 mtd->_write_oob = nand_write_oob; 6550 mtd->_sync = nand_sync; 6551 mtd->_lock = nand_lock; 6552 mtd->_unlock = nand_unlock; 6553 mtd->_suspend = nand_suspend; 6554 mtd->_resume = nand_resume; 6555 mtd->_reboot = nand_shutdown; 6556 mtd->_block_isreserved = nand_block_isreserved; 6557 mtd->_block_isbad = nand_block_isbad; 6558 mtd->_block_markbad = nand_block_markbad; 6559 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 6560 6561 /* 6562 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6563 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6564 * properly set. 6565 */ 6566 if (!mtd->bitflip_threshold) 6567 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6568 6569 /* Find the fastest data interface for this chip */ 6570 ret = nand_choose_interface_config(chip); 6571 if (ret) 6572 goto err_nanddev_cleanup; 6573 6574 /* Enter fastest possible mode on all dies. */ 6575 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 6576 ret = nand_setup_interface(chip, i); 6577 if (ret) 6578 goto err_free_interface_config; 6579 } 6580 6581 rawnand_late_check_supported_ops(chip); 6582 6583 /* 6584 * Look for secure regions in the NAND chip. These regions are supposed 6585 * to be protected by a secure element like Trustzone. So the read/write 6586 * accesses to these regions will be blocked in the runtime by this 6587 * driver. 6588 */ 6589 ret = of_get_nand_secure_regions(chip); 6590 if (ret) 6591 goto err_free_interface_config; 6592 6593 /* Check, if we should skip the bad block table scan */ 6594 if (chip->options & NAND_SKIP_BBTSCAN) 6595 return 0; 6596 6597 /* Build bad block table */ 6598 ret = nand_create_bbt(chip); 6599 if (ret) 6600 goto err_free_secure_regions; 6601 6602 return 0; 6603 6604 err_free_secure_regions: 6605 kfree(chip->secure_regions); 6606 6607 err_free_interface_config: 6608 kfree(chip->best_interface_config); 6609 6610 err_nanddev_cleanup: 6611 nanddev_cleanup(&chip->base); 6612 6613 err_nand_manuf_cleanup: 6614 nand_manufacturer_cleanup(chip); 6615 6616 err_free_buf: 6617 kfree(chip->data_buf); 6618 kfree(ecc->code_buf); 6619 kfree(ecc->calc_buf); 6620 6621 return ret; 6622 } 6623 6624 static int nand_attach(struct nand_chip *chip) 6625 { 6626 if (chip->controller->ops && chip->controller->ops->attach_chip) 6627 return chip->controller->ops->attach_chip(chip); 6628 6629 return 0; 6630 } 6631 6632 static void nand_detach(struct nand_chip *chip) 6633 { 6634 if (chip->controller->ops && chip->controller->ops->detach_chip) 6635 chip->controller->ops->detach_chip(chip); 6636 } 6637 6638 /** 6639 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6640 * @chip: NAND chip object 6641 * @maxchips: number of chips to scan for. 6642 * @ids: optional flash IDs table 6643 * 6644 * This fills out all the uninitialized function pointers with the defaults. 6645 * The flash ID is read and the mtd/chip structures are filled with the 6646 * appropriate values. 6647 */ 6648 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6649 struct nand_flash_dev *ids) 6650 { 6651 int ret; 6652 6653 if (!maxchips) 6654 return -EINVAL; 6655 6656 ret = nand_scan_ident(chip, maxchips, ids); 6657 if (ret) 6658 return ret; 6659 6660 ret = nand_attach(chip); 6661 if (ret) 6662 goto cleanup_ident; 6663 6664 ret = nand_scan_tail(chip); 6665 if (ret) 6666 goto detach_chip; 6667 6668 return 0; 6669 6670 detach_chip: 6671 nand_detach(chip); 6672 cleanup_ident: 6673 nand_scan_ident_cleanup(chip); 6674 6675 return ret; 6676 } 6677 EXPORT_SYMBOL(nand_scan_with_ids); 6678 6679 /** 6680 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6681 * @chip: NAND chip object 6682 */ 6683 void nand_cleanup(struct nand_chip *chip) 6684 { 6685 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { 6686 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 6687 rawnand_sw_hamming_cleanup(chip); 6688 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 6689 rawnand_sw_bch_cleanup(chip); 6690 } 6691 6692 nanddev_cleanup(&chip->base); 6693 6694 /* Free secure regions data */ 6695 kfree(chip->secure_regions); 6696 6697 /* Free bad block table memory */ 6698 kfree(chip->bbt); 6699 kfree(chip->data_buf); 6700 kfree(chip->ecc.code_buf); 6701 kfree(chip->ecc.calc_buf); 6702 6703 /* Free bad block descriptor memory */ 6704 if (chip->badblock_pattern && chip->badblock_pattern->options 6705 & NAND_BBT_DYNAMICSTRUCT) 6706 kfree(chip->badblock_pattern); 6707 6708 /* Free the data interface */ 6709 kfree(chip->best_interface_config); 6710 6711 /* Free manufacturer priv data. */ 6712 nand_manufacturer_cleanup(chip); 6713 6714 /* Free controller specific allocations after chip identification */ 6715 nand_detach(chip); 6716 6717 /* Free identification phase allocations */ 6718 nand_scan_ident_cleanup(chip); 6719 } 6720 6721 EXPORT_SYMBOL_GPL(nand_cleanup); 6722 6723 MODULE_LICENSE("GPL"); 6724 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6725 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6726 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6727