xref: /linux/drivers/mtd/nand/raw/nand_base.c (revision 21b5cf3f6467cf608756151066941792f340c986)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45 
46 #include "internals.h"
47 
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50 				 struct mtd_oob_region *oobregion)
51 {
52 	struct nand_chip *chip = mtd_to_nand(mtd);
53 	struct nand_ecc_ctrl *ecc = &chip->ecc;
54 
55 	if (section > 1)
56 		return -ERANGE;
57 
58 	if (!section) {
59 		oobregion->offset = 0;
60 		if (mtd->oobsize == 16)
61 			oobregion->length = 4;
62 		else
63 			oobregion->length = 3;
64 	} else {
65 		if (mtd->oobsize == 8)
66 			return -ERANGE;
67 
68 		oobregion->offset = 6;
69 		oobregion->length = ecc->total - 4;
70 	}
71 
72 	return 0;
73 }
74 
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76 				  struct mtd_oob_region *oobregion)
77 {
78 	if (section > 1)
79 		return -ERANGE;
80 
81 	if (mtd->oobsize == 16) {
82 		if (section)
83 			return -ERANGE;
84 
85 		oobregion->length = 8;
86 		oobregion->offset = 8;
87 	} else {
88 		oobregion->length = 2;
89 		if (!section)
90 			oobregion->offset = 3;
91 		else
92 			oobregion->offset = 6;
93 	}
94 
95 	return 0;
96 }
97 
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99 	.ecc = nand_ooblayout_ecc_sp,
100 	.free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103 
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105 				 struct mtd_oob_region *oobregion)
106 {
107 	struct nand_chip *chip = mtd_to_nand(mtd);
108 	struct nand_ecc_ctrl *ecc = &chip->ecc;
109 
110 	if (section || !ecc->total)
111 		return -ERANGE;
112 
113 	oobregion->length = ecc->total;
114 	oobregion->offset = mtd->oobsize - oobregion->length;
115 
116 	return 0;
117 }
118 
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120 				  struct mtd_oob_region *oobregion)
121 {
122 	struct nand_chip *chip = mtd_to_nand(mtd);
123 	struct nand_ecc_ctrl *ecc = &chip->ecc;
124 
125 	if (section)
126 		return -ERANGE;
127 
128 	oobregion->length = mtd->oobsize - ecc->total - 2;
129 	oobregion->offset = 2;
130 
131 	return 0;
132 }
133 
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135 	.ecc = nand_ooblayout_ecc_lp,
136 	.free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139 
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145 					 struct mtd_oob_region *oobregion)
146 {
147 	struct nand_chip *chip = mtd_to_nand(mtd);
148 	struct nand_ecc_ctrl *ecc = &chip->ecc;
149 
150 	if (section)
151 		return -ERANGE;
152 
153 	switch (mtd->oobsize) {
154 	case 64:
155 		oobregion->offset = 40;
156 		break;
157 	case 128:
158 		oobregion->offset = 80;
159 		break;
160 	default:
161 		return -EINVAL;
162 	}
163 
164 	oobregion->length = ecc->total;
165 	if (oobregion->offset + oobregion->length > mtd->oobsize)
166 		return -ERANGE;
167 
168 	return 0;
169 }
170 
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172 					  struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 	struct nand_ecc_ctrl *ecc = &chip->ecc;
176 	int ecc_offset = 0;
177 
178 	if (section < 0 || section > 1)
179 		return -ERANGE;
180 
181 	switch (mtd->oobsize) {
182 	case 64:
183 		ecc_offset = 40;
184 		break;
185 	case 128:
186 		ecc_offset = 80;
187 		break;
188 	default:
189 		return -EINVAL;
190 	}
191 
192 	if (section == 0) {
193 		oobregion->offset = 2;
194 		oobregion->length = ecc_offset - 2;
195 	} else {
196 		oobregion->offset = ecc_offset + ecc->total;
197 		oobregion->length = mtd->oobsize - oobregion->offset;
198 	}
199 
200 	return 0;
201 }
202 
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204 	.ecc = nand_ooblayout_ecc_lp_hamming,
205 	.free = nand_ooblayout_free_lp_hamming,
206 };
207 
208 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
209 				       struct mtd_pairing_info *info)
210 {
211 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
212 	int dist = 3;
213 
214 	if (page == lastpage)
215 		dist = 2;
216 
217 	if (!page || (page & 1)) {
218 		info->group = 0;
219 		info->pair = (page + 1) / 2;
220 	} else {
221 		info->group = 1;
222 		info->pair = (page + 1 - dist) / 2;
223 	}
224 
225 	return 0;
226 }
227 
228 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
229 					const struct mtd_pairing_info *info)
230 {
231 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
232 	int page = info->pair * 2;
233 	int dist = 3;
234 
235 	if (!info->group && !info->pair)
236 		return 0;
237 
238 	if (info->pair == lastpair && info->group)
239 		dist = 2;
240 
241 	if (!info->group)
242 		page--;
243 	else if (info->pair)
244 		page += dist - 1;
245 
246 	if (page >= mtd->erasesize / mtd->writesize)
247 		return -EINVAL;
248 
249 	return page;
250 }
251 
252 const struct mtd_pairing_scheme dist3_pairing_scheme = {
253 	.ngroups = 2,
254 	.get_info = nand_pairing_dist3_get_info,
255 	.get_wunit = nand_pairing_dist3_get_wunit,
256 };
257 
258 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
259 {
260 	int ret = 0;
261 
262 	/* Start address must align on block boundary */
263 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
264 		pr_debug("%s: unaligned address\n", __func__);
265 		ret = -EINVAL;
266 	}
267 
268 	/* Length must align on block boundary */
269 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
270 		pr_debug("%s: length not block aligned\n", __func__);
271 		ret = -EINVAL;
272 	}
273 
274 	return ret;
275 }
276 
277 /**
278  * nand_select_target() - Select a NAND target (A.K.A. die)
279  * @chip: NAND chip object
280  * @cs: the CS line to select. Note that this CS id is always from the chip
281  *	PoV, not the controller one
282  *
283  * Select a NAND target so that further operations executed on @chip go to the
284  * selected NAND target.
285  */
286 void nand_select_target(struct nand_chip *chip, unsigned int cs)
287 {
288 	/*
289 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
290 	 * not the case it's a bug and the caller should be fixed.
291 	 */
292 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
293 		return;
294 
295 	chip->cur_cs = cs;
296 
297 	if (chip->legacy.select_chip)
298 		chip->legacy.select_chip(chip, cs);
299 }
300 EXPORT_SYMBOL_GPL(nand_select_target);
301 
302 /**
303  * nand_deselect_target() - Deselect the currently selected target
304  * @chip: NAND chip object
305  *
306  * Deselect the currently selected NAND target. The result of operations
307  * executed on @chip after the target has been deselected is undefined.
308  */
309 void nand_deselect_target(struct nand_chip *chip)
310 {
311 	if (chip->legacy.select_chip)
312 		chip->legacy.select_chip(chip, -1);
313 
314 	chip->cur_cs = -1;
315 }
316 EXPORT_SYMBOL_GPL(nand_deselect_target);
317 
318 /**
319  * nand_release_device - [GENERIC] release chip
320  * @chip: NAND chip object
321  *
322  * Release chip lock and wake up anyone waiting on the device.
323  */
324 static void nand_release_device(struct nand_chip *chip)
325 {
326 	/* Release the controller and the chip */
327 	mutex_unlock(&chip->controller->lock);
328 	mutex_unlock(&chip->lock);
329 }
330 
331 /**
332  * nand_bbm_get_next_page - Get the next page for bad block markers
333  * @chip: NAND chip object
334  * @page: First page to start checking for bad block marker usage
335  *
336  * Returns an integer that corresponds to the page offset within a block, for
337  * a page that is used to store bad block markers. If no more pages are
338  * available, -EINVAL is returned.
339  */
340 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
341 {
342 	struct mtd_info *mtd = nand_to_mtd(chip);
343 	int last_page = ((mtd->erasesize - mtd->writesize) >>
344 			 chip->page_shift) & chip->pagemask;
345 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
346 		| NAND_BBM_LASTPAGE;
347 
348 	if (page == 0 && !(chip->options & bbm_flags))
349 		return 0;
350 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
351 		return 0;
352 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
353 		return 1;
354 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
355 		return last_page;
356 
357 	return -EINVAL;
358 }
359 
360 /**
361  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
362  * @chip: NAND chip object
363  * @ofs: offset from device start
364  *
365  * Check, if the block is bad.
366  */
367 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
368 {
369 	int first_page, page_offset;
370 	int res;
371 	u8 bad;
372 
373 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
374 	page_offset = nand_bbm_get_next_page(chip, 0);
375 
376 	while (page_offset >= 0) {
377 		res = chip->ecc.read_oob(chip, first_page + page_offset);
378 		if (res < 0)
379 			return res;
380 
381 		bad = chip->oob_poi[chip->badblockpos];
382 
383 		if (likely(chip->badblockbits == 8))
384 			res = bad != 0xFF;
385 		else
386 			res = hweight8(bad) < chip->badblockbits;
387 		if (res)
388 			return res;
389 
390 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
391 	}
392 
393 	return 0;
394 }
395 
396 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
397 {
398 	if (chip->legacy.block_bad)
399 		return chip->legacy.block_bad(chip, ofs);
400 
401 	return nand_block_bad(chip, ofs);
402 }
403 
404 /**
405  * nand_get_device - [GENERIC] Get chip for selected access
406  * @chip: NAND chip structure
407  *
408  * Lock the device and its controller for exclusive access
409  *
410  * Return: -EBUSY if the chip has been suspended, 0 otherwise
411  */
412 static int nand_get_device(struct nand_chip *chip)
413 {
414 	mutex_lock(&chip->lock);
415 	if (chip->suspended) {
416 		mutex_unlock(&chip->lock);
417 		return -EBUSY;
418 	}
419 	mutex_lock(&chip->controller->lock);
420 
421 	return 0;
422 }
423 
424 /**
425  * nand_check_wp - [GENERIC] check if the chip is write protected
426  * @chip: NAND chip object
427  *
428  * Check, if the device is write protected. The function expects, that the
429  * device is already selected.
430  */
431 static int nand_check_wp(struct nand_chip *chip)
432 {
433 	u8 status;
434 	int ret;
435 
436 	/* Broken xD cards report WP despite being writable */
437 	if (chip->options & NAND_BROKEN_XD)
438 		return 0;
439 
440 	/* Check the WP bit */
441 	ret = nand_status_op(chip, &status);
442 	if (ret)
443 		return ret;
444 
445 	return status & NAND_STATUS_WP ? 0 : 1;
446 }
447 
448 /**
449  * nand_fill_oob - [INTERN] Transfer client buffer to oob
450  * @chip: NAND chip object
451  * @oob: oob data buffer
452  * @len: oob data write length
453  * @ops: oob ops structure
454  */
455 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
456 			      struct mtd_oob_ops *ops)
457 {
458 	struct mtd_info *mtd = nand_to_mtd(chip);
459 	int ret;
460 
461 	/*
462 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
463 	 * data from a previous OOB read.
464 	 */
465 	memset(chip->oob_poi, 0xff, mtd->oobsize);
466 
467 	switch (ops->mode) {
468 
469 	case MTD_OPS_PLACE_OOB:
470 	case MTD_OPS_RAW:
471 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
472 		return oob + len;
473 
474 	case MTD_OPS_AUTO_OOB:
475 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
476 						  ops->ooboffs, len);
477 		BUG_ON(ret);
478 		return oob + len;
479 
480 	default:
481 		BUG();
482 	}
483 	return NULL;
484 }
485 
486 /**
487  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
488  * @chip: NAND chip object
489  * @to: offset to write to
490  * @ops: oob operation description structure
491  *
492  * NAND write out-of-band.
493  */
494 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
495 			     struct mtd_oob_ops *ops)
496 {
497 	struct mtd_info *mtd = nand_to_mtd(chip);
498 	int chipnr, page, status, len, ret;
499 
500 	pr_debug("%s: to = 0x%08x, len = %i\n",
501 			 __func__, (unsigned int)to, (int)ops->ooblen);
502 
503 	len = mtd_oobavail(mtd, ops);
504 
505 	/* Do not allow write past end of page */
506 	if ((ops->ooboffs + ops->ooblen) > len) {
507 		pr_debug("%s: attempt to write past end of page\n",
508 				__func__);
509 		return -EINVAL;
510 	}
511 
512 	chipnr = (int)(to >> chip->chip_shift);
513 
514 	/*
515 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
516 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
517 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
518 	 * it in the doc2000 driver in August 1999.  dwmw2.
519 	 */
520 	ret = nand_reset(chip, chipnr);
521 	if (ret)
522 		return ret;
523 
524 	nand_select_target(chip, chipnr);
525 
526 	/* Shift to get page */
527 	page = (int)(to >> chip->page_shift);
528 
529 	/* Check, if it is write protected */
530 	if (nand_check_wp(chip)) {
531 		nand_deselect_target(chip);
532 		return -EROFS;
533 	}
534 
535 	/* Invalidate the page cache, if we write to the cached page */
536 	if (page == chip->pagecache.page)
537 		chip->pagecache.page = -1;
538 
539 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
540 
541 	if (ops->mode == MTD_OPS_RAW)
542 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
543 	else
544 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
545 
546 	nand_deselect_target(chip);
547 
548 	if (status)
549 		return status;
550 
551 	ops->oobretlen = ops->ooblen;
552 
553 	return 0;
554 }
555 
556 /**
557  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
558  * @chip: NAND chip object
559  * @ofs: offset from device start
560  *
561  * This is the default implementation, which can be overridden by a hardware
562  * specific driver. It provides the details for writing a bad block marker to a
563  * block.
564  */
565 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
566 {
567 	struct mtd_info *mtd = nand_to_mtd(chip);
568 	struct mtd_oob_ops ops;
569 	uint8_t buf[2] = { 0, 0 };
570 	int ret = 0, res, page_offset;
571 
572 	memset(&ops, 0, sizeof(ops));
573 	ops.oobbuf = buf;
574 	ops.ooboffs = chip->badblockpos;
575 	if (chip->options & NAND_BUSWIDTH_16) {
576 		ops.ooboffs &= ~0x01;
577 		ops.len = ops.ooblen = 2;
578 	} else {
579 		ops.len = ops.ooblen = 1;
580 	}
581 	ops.mode = MTD_OPS_PLACE_OOB;
582 
583 	page_offset = nand_bbm_get_next_page(chip, 0);
584 
585 	while (page_offset >= 0) {
586 		res = nand_do_write_oob(chip,
587 					ofs + (page_offset * mtd->writesize),
588 					&ops);
589 
590 		if (!ret)
591 			ret = res;
592 
593 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
594 	}
595 
596 	return ret;
597 }
598 
599 /**
600  * nand_markbad_bbm - mark a block by updating the BBM
601  * @chip: NAND chip object
602  * @ofs: offset of the block to mark bad
603  */
604 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
605 {
606 	if (chip->legacy.block_markbad)
607 		return chip->legacy.block_markbad(chip, ofs);
608 
609 	return nand_default_block_markbad(chip, ofs);
610 }
611 
612 /**
613  * nand_block_markbad_lowlevel - mark a block bad
614  * @chip: NAND chip object
615  * @ofs: offset from device start
616  *
617  * This function performs the generic NAND bad block marking steps (i.e., bad
618  * block table(s) and/or marker(s)). We only allow the hardware driver to
619  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
620  *
621  * We try operations in the following order:
622  *
623  *  (1) erase the affected block, to allow OOB marker to be written cleanly
624  *  (2) write bad block marker to OOB area of affected block (unless flag
625  *      NAND_BBT_NO_OOB_BBM is present)
626  *  (3) update the BBT
627  *
628  * Note that we retain the first error encountered in (2) or (3), finish the
629  * procedures, and dump the error in the end.
630 */
631 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
632 {
633 	struct mtd_info *mtd = nand_to_mtd(chip);
634 	int res, ret = 0;
635 
636 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
637 		struct erase_info einfo;
638 
639 		/* Attempt erase before marking OOB */
640 		memset(&einfo, 0, sizeof(einfo));
641 		einfo.addr = ofs;
642 		einfo.len = 1ULL << chip->phys_erase_shift;
643 		nand_erase_nand(chip, &einfo, 0);
644 
645 		/* Write bad block marker to OOB */
646 		ret = nand_get_device(chip);
647 		if (ret)
648 			return ret;
649 
650 		ret = nand_markbad_bbm(chip, ofs);
651 		nand_release_device(chip);
652 	}
653 
654 	/* Mark block bad in BBT */
655 	if (chip->bbt) {
656 		res = nand_markbad_bbt(chip, ofs);
657 		if (!ret)
658 			ret = res;
659 	}
660 
661 	if (!ret)
662 		mtd->ecc_stats.badblocks++;
663 
664 	return ret;
665 }
666 
667 /**
668  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
669  * @mtd: MTD device structure
670  * @ofs: offset from device start
671  *
672  * Check if the block is marked as reserved.
673  */
674 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
675 {
676 	struct nand_chip *chip = mtd_to_nand(mtd);
677 
678 	if (!chip->bbt)
679 		return 0;
680 	/* Return info from the table */
681 	return nand_isreserved_bbt(chip, ofs);
682 }
683 
684 /**
685  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
686  * @chip: NAND chip object
687  * @ofs: offset from device start
688  * @allowbbt: 1, if its allowed to access the bbt area
689  *
690  * Check, if the block is bad. Either by reading the bad block table or
691  * calling of the scan function.
692  */
693 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
694 {
695 	/* Return info from the table */
696 	if (chip->bbt)
697 		return nand_isbad_bbt(chip, ofs, allowbbt);
698 
699 	return nand_isbad_bbm(chip, ofs);
700 }
701 
702 /**
703  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
704  * @chip: NAND chip structure
705  * @timeout_ms: Timeout in ms
706  *
707  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
708  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
709  * returned.
710  *
711  * This helper is intended to be used when the controller does not have access
712  * to the NAND R/B pin.
713  *
714  * Be aware that calling this helper from an ->exec_op() implementation means
715  * ->exec_op() must be re-entrant.
716  *
717  * Return 0 if the NAND chip is ready, a negative error otherwise.
718  */
719 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
720 {
721 	const struct nand_sdr_timings *timings;
722 	u8 status = 0;
723 	int ret;
724 
725 	if (!nand_has_exec_op(chip))
726 		return -ENOTSUPP;
727 
728 	/* Wait tWB before polling the STATUS reg. */
729 	timings = nand_get_sdr_timings(&chip->data_interface);
730 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
731 
732 	ret = nand_status_op(chip, NULL);
733 	if (ret)
734 		return ret;
735 
736 	/*
737 	 * +1 below is necessary because if we are now in the last fraction
738 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
739 	 * small jiffy fraction - possibly leading to false timeout
740 	 */
741 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
742 	do {
743 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
744 		if (ret)
745 			break;
746 
747 		if (status & NAND_STATUS_READY)
748 			break;
749 
750 		/*
751 		 * Typical lowest execution time for a tR on most NANDs is 10us,
752 		 * use this as polling delay before doing something smarter (ie.
753 		 * deriving a delay from the timeout value, timeout_ms/ratio).
754 		 */
755 		udelay(10);
756 	} while	(time_before(jiffies, timeout_ms));
757 
758 	/*
759 	 * We have to exit READ_STATUS mode in order to read real data on the
760 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
761 	 * instruction.
762 	 */
763 	nand_exit_status_op(chip);
764 
765 	if (ret)
766 		return ret;
767 
768 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
769 };
770 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
771 
772 /**
773  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
774  * @chip: NAND chip structure
775  * @gpiod: GPIO descriptor of R/B pin
776  * @timeout_ms: Timeout in ms
777  *
778  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
779  * whitin the specified timeout, -ETIMEDOUT is returned.
780  *
781  * This helper is intended to be used when the controller has access to the
782  * NAND R/B pin over GPIO.
783  *
784  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
785  */
786 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
787 		      unsigned long timeout_ms)
788 {
789 	/* Wait until R/B pin indicates chip is ready or timeout occurs */
790 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
791 	do {
792 		if (gpiod_get_value_cansleep(gpiod))
793 			return 0;
794 
795 		cond_resched();
796 	} while	(time_before(jiffies, timeout_ms));
797 
798 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
799 };
800 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
801 
802 /**
803  * panic_nand_wait - [GENERIC] wait until the command is done
804  * @chip: NAND chip structure
805  * @timeo: timeout
806  *
807  * Wait for command done. This is a helper function for nand_wait used when
808  * we are in interrupt context. May happen when in panic and trying to write
809  * an oops through mtdoops.
810  */
811 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
812 {
813 	int i;
814 	for (i = 0; i < timeo; i++) {
815 		if (chip->legacy.dev_ready) {
816 			if (chip->legacy.dev_ready(chip))
817 				break;
818 		} else {
819 			int ret;
820 			u8 status;
821 
822 			ret = nand_read_data_op(chip, &status, sizeof(status),
823 						true);
824 			if (ret)
825 				return;
826 
827 			if (status & NAND_STATUS_READY)
828 				break;
829 		}
830 		mdelay(1);
831 	}
832 }
833 
834 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
835 {
836 	return (chip->parameters.supports_set_get_features &&
837 		test_bit(addr, chip->parameters.get_feature_list));
838 }
839 
840 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
841 {
842 	return (chip->parameters.supports_set_get_features &&
843 		test_bit(addr, chip->parameters.set_feature_list));
844 }
845 
846 /**
847  * nand_reset_data_interface - Reset data interface and timings
848  * @chip: The NAND chip
849  * @chipnr: Internal die id
850  *
851  * Reset the Data interface and timings to ONFI mode 0.
852  *
853  * Returns 0 for success or negative error code otherwise.
854  */
855 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
856 {
857 	int ret;
858 
859 	if (!nand_has_setup_data_iface(chip))
860 		return 0;
861 
862 	/*
863 	 * The ONFI specification says:
864 	 * "
865 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
866 	 * interface, the host shall use the Reset (FFh) command
867 	 * using SDR timing mode 0. A device in any timing mode is
868 	 * required to recognize Reset (FFh) command issued in SDR
869 	 * timing mode 0.
870 	 * "
871 	 *
872 	 * Configure the data interface in SDR mode and set the
873 	 * timings to timing mode 0.
874 	 */
875 
876 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
877 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
878 							&chip->data_interface);
879 	if (ret)
880 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
881 
882 	return ret;
883 }
884 
885 /**
886  * nand_setup_data_interface - Setup the best data interface and timings
887  * @chip: The NAND chip
888  * @chipnr: Internal die id
889  *
890  * Find and configure the best data interface and NAND timings supported by
891  * the chip and the driver.
892  * First tries to retrieve supported timing modes from ONFI information,
893  * and if the NAND chip does not support ONFI, relies on the
894  * ->onfi_timing_mode_default specified in the nand_ids table.
895  *
896  * Returns 0 for success or negative error code otherwise.
897  */
898 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
899 {
900 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
901 		chip->onfi_timing_mode_default,
902 	};
903 	int ret;
904 
905 	if (!nand_has_setup_data_iface(chip))
906 		return 0;
907 
908 	/* Change the mode on the chip side (if supported by the NAND chip) */
909 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
910 		nand_select_target(chip, chipnr);
911 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
912 					tmode_param);
913 		nand_deselect_target(chip);
914 		if (ret)
915 			return ret;
916 	}
917 
918 	/* Change the mode on the controller side */
919 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
920 							&chip->data_interface);
921 	if (ret)
922 		return ret;
923 
924 	/* Check the mode has been accepted by the chip, if supported */
925 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
926 		return 0;
927 
928 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
929 	nand_select_target(chip, chipnr);
930 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
931 				tmode_param);
932 	nand_deselect_target(chip);
933 	if (ret)
934 		goto err_reset_chip;
935 
936 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
937 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
938 			chip->onfi_timing_mode_default);
939 		goto err_reset_chip;
940 	}
941 
942 	return 0;
943 
944 err_reset_chip:
945 	/*
946 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
947 	 * timing mode.
948 	 */
949 	nand_reset_data_interface(chip, chipnr);
950 	nand_select_target(chip, chipnr);
951 	nand_reset_op(chip);
952 	nand_deselect_target(chip);
953 
954 	return ret;
955 }
956 
957 /**
958  * nand_init_data_interface - find the best data interface and timings
959  * @chip: The NAND chip
960  *
961  * Find the best data interface and NAND timings supported by the chip
962  * and the driver.
963  * First tries to retrieve supported timing modes from ONFI information,
964  * and if the NAND chip does not support ONFI, relies on the
965  * ->onfi_timing_mode_default specified in the nand_ids table. After this
966  * function nand_chip->data_interface is initialized with the best timing mode
967  * available.
968  *
969  * Returns 0 for success or negative error code otherwise.
970  */
971 static int nand_init_data_interface(struct nand_chip *chip)
972 {
973 	int modes, mode, ret;
974 
975 	if (!nand_has_setup_data_iface(chip))
976 		return 0;
977 
978 	/*
979 	 * First try to identify the best timings from ONFI parameters and
980 	 * if the NAND does not support ONFI, fallback to the default ONFI
981 	 * timing mode.
982 	 */
983 	if (chip->parameters.onfi) {
984 		modes = chip->parameters.onfi->async_timing_mode;
985 	} else {
986 		if (!chip->onfi_timing_mode_default)
987 			return 0;
988 
989 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
990 	}
991 
992 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
993 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
994 		if (ret)
995 			continue;
996 
997 		/*
998 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
999 		 * controller supports the requested timings.
1000 		 */
1001 		ret = chip->controller->ops->setup_data_interface(chip,
1002 						 NAND_DATA_IFACE_CHECK_ONLY,
1003 						 &chip->data_interface);
1004 		if (!ret) {
1005 			chip->onfi_timing_mode_default = mode;
1006 			break;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 /**
1014  * nand_fill_column_cycles - fill the column cycles of an address
1015  * @chip: The NAND chip
1016  * @addrs: Array of address cycles to fill
1017  * @offset_in_page: The offset in the page
1018  *
1019  * Fills the first or the first two bytes of the @addrs field depending
1020  * on the NAND bus width and the page size.
1021  *
1022  * Returns the number of cycles needed to encode the column, or a negative
1023  * error code in case one of the arguments is invalid.
1024  */
1025 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1026 				   unsigned int offset_in_page)
1027 {
1028 	struct mtd_info *mtd = nand_to_mtd(chip);
1029 
1030 	/* Make sure the offset is less than the actual page size. */
1031 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1032 		return -EINVAL;
1033 
1034 	/*
1035 	 * On small page NANDs, there's a dedicated command to access the OOB
1036 	 * area, and the column address is relative to the start of the OOB
1037 	 * area, not the start of the page. Asjust the address accordingly.
1038 	 */
1039 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1040 		offset_in_page -= mtd->writesize;
1041 
1042 	/*
1043 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1044 	 * wide, then it must be divided by 2.
1045 	 */
1046 	if (chip->options & NAND_BUSWIDTH_16) {
1047 		if (WARN_ON(offset_in_page % 2))
1048 			return -EINVAL;
1049 
1050 		offset_in_page /= 2;
1051 	}
1052 
1053 	addrs[0] = offset_in_page;
1054 
1055 	/*
1056 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1057 	 * need 2
1058 	 */
1059 	if (mtd->writesize <= 512)
1060 		return 1;
1061 
1062 	addrs[1] = offset_in_page >> 8;
1063 
1064 	return 2;
1065 }
1066 
1067 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1068 				     unsigned int offset_in_page, void *buf,
1069 				     unsigned int len)
1070 {
1071 	struct mtd_info *mtd = nand_to_mtd(chip);
1072 	const struct nand_sdr_timings *sdr =
1073 		nand_get_sdr_timings(&chip->data_interface);
1074 	u8 addrs[4];
1075 	struct nand_op_instr instrs[] = {
1076 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1077 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1078 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1079 				 PSEC_TO_NSEC(sdr->tRR_min)),
1080 		NAND_OP_DATA_IN(len, buf, 0),
1081 	};
1082 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1083 	int ret;
1084 
1085 	/* Drop the DATA_IN instruction if len is set to 0. */
1086 	if (!len)
1087 		op.ninstrs--;
1088 
1089 	if (offset_in_page >= mtd->writesize)
1090 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1091 	else if (offset_in_page >= 256 &&
1092 		 !(chip->options & NAND_BUSWIDTH_16))
1093 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1094 
1095 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1096 	if (ret < 0)
1097 		return ret;
1098 
1099 	addrs[1] = page;
1100 	addrs[2] = page >> 8;
1101 
1102 	if (chip->options & NAND_ROW_ADDR_3) {
1103 		addrs[3] = page >> 16;
1104 		instrs[1].ctx.addr.naddrs++;
1105 	}
1106 
1107 	return nand_exec_op(chip, &op);
1108 }
1109 
1110 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1111 				     unsigned int offset_in_page, void *buf,
1112 				     unsigned int len)
1113 {
1114 	const struct nand_sdr_timings *sdr =
1115 		nand_get_sdr_timings(&chip->data_interface);
1116 	u8 addrs[5];
1117 	struct nand_op_instr instrs[] = {
1118 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1119 		NAND_OP_ADDR(4, addrs, 0),
1120 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1121 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1122 				 PSEC_TO_NSEC(sdr->tRR_min)),
1123 		NAND_OP_DATA_IN(len, buf, 0),
1124 	};
1125 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1126 	int ret;
1127 
1128 	/* Drop the DATA_IN instruction if len is set to 0. */
1129 	if (!len)
1130 		op.ninstrs--;
1131 
1132 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1133 	if (ret < 0)
1134 		return ret;
1135 
1136 	addrs[2] = page;
1137 	addrs[3] = page >> 8;
1138 
1139 	if (chip->options & NAND_ROW_ADDR_3) {
1140 		addrs[4] = page >> 16;
1141 		instrs[1].ctx.addr.naddrs++;
1142 	}
1143 
1144 	return nand_exec_op(chip, &op);
1145 }
1146 
1147 /**
1148  * nand_read_page_op - Do a READ PAGE operation
1149  * @chip: The NAND chip
1150  * @page: page to read
1151  * @offset_in_page: offset within the page
1152  * @buf: buffer used to store the data
1153  * @len: length of the buffer
1154  *
1155  * This function issues a READ PAGE operation.
1156  * This function does not select/unselect the CS line.
1157  *
1158  * Returns 0 on success, a negative error code otherwise.
1159  */
1160 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1161 		      unsigned int offset_in_page, void *buf, unsigned int len)
1162 {
1163 	struct mtd_info *mtd = nand_to_mtd(chip);
1164 
1165 	if (len && !buf)
1166 		return -EINVAL;
1167 
1168 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1169 		return -EINVAL;
1170 
1171 	if (nand_has_exec_op(chip)) {
1172 		if (mtd->writesize > 512)
1173 			return nand_lp_exec_read_page_op(chip, page,
1174 							 offset_in_page, buf,
1175 							 len);
1176 
1177 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1178 						 buf, len);
1179 	}
1180 
1181 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1182 	if (len)
1183 		chip->legacy.read_buf(chip, buf, len);
1184 
1185 	return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(nand_read_page_op);
1188 
1189 /**
1190  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1191  * @chip: The NAND chip
1192  * @page: parameter page to read
1193  * @buf: buffer used to store the data
1194  * @len: length of the buffer
1195  *
1196  * This function issues a READ PARAMETER PAGE operation.
1197  * This function does not select/unselect the CS line.
1198  *
1199  * Returns 0 on success, a negative error code otherwise.
1200  */
1201 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1202 			    unsigned int len)
1203 {
1204 	unsigned int i;
1205 	u8 *p = buf;
1206 
1207 	if (len && !buf)
1208 		return -EINVAL;
1209 
1210 	if (nand_has_exec_op(chip)) {
1211 		const struct nand_sdr_timings *sdr =
1212 			nand_get_sdr_timings(&chip->data_interface);
1213 		struct nand_op_instr instrs[] = {
1214 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1215 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1216 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1217 					 PSEC_TO_NSEC(sdr->tRR_min)),
1218 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1219 		};
1220 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1221 
1222 		/* Drop the DATA_IN instruction if len is set to 0. */
1223 		if (!len)
1224 			op.ninstrs--;
1225 
1226 		return nand_exec_op(chip, &op);
1227 	}
1228 
1229 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1230 	for (i = 0; i < len; i++)
1231 		p[i] = chip->legacy.read_byte(chip);
1232 
1233 	return 0;
1234 }
1235 
1236 /**
1237  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1238  * @chip: The NAND chip
1239  * @offset_in_page: offset within the page
1240  * @buf: buffer used to store the data
1241  * @len: length of the buffer
1242  * @force_8bit: force 8-bit bus access
1243  *
1244  * This function issues a CHANGE READ COLUMN operation.
1245  * This function does not select/unselect the CS line.
1246  *
1247  * Returns 0 on success, a negative error code otherwise.
1248  */
1249 int nand_change_read_column_op(struct nand_chip *chip,
1250 			       unsigned int offset_in_page, void *buf,
1251 			       unsigned int len, bool force_8bit)
1252 {
1253 	struct mtd_info *mtd = nand_to_mtd(chip);
1254 
1255 	if (len && !buf)
1256 		return -EINVAL;
1257 
1258 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1259 		return -EINVAL;
1260 
1261 	/* Small page NANDs do not support column change. */
1262 	if (mtd->writesize <= 512)
1263 		return -ENOTSUPP;
1264 
1265 	if (nand_has_exec_op(chip)) {
1266 		const struct nand_sdr_timings *sdr =
1267 			nand_get_sdr_timings(&chip->data_interface);
1268 		u8 addrs[2] = {};
1269 		struct nand_op_instr instrs[] = {
1270 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1271 			NAND_OP_ADDR(2, addrs, 0),
1272 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1273 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1274 			NAND_OP_DATA_IN(len, buf, 0),
1275 		};
1276 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1277 		int ret;
1278 
1279 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1280 		if (ret < 0)
1281 			return ret;
1282 
1283 		/* Drop the DATA_IN instruction if len is set to 0. */
1284 		if (!len)
1285 			op.ninstrs--;
1286 
1287 		instrs[3].ctx.data.force_8bit = force_8bit;
1288 
1289 		return nand_exec_op(chip, &op);
1290 	}
1291 
1292 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1293 	if (len)
1294 		chip->legacy.read_buf(chip, buf, len);
1295 
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1299 
1300 /**
1301  * nand_read_oob_op - Do a READ OOB operation
1302  * @chip: The NAND chip
1303  * @page: page to read
1304  * @offset_in_oob: offset within the OOB area
1305  * @buf: buffer used to store the data
1306  * @len: length of the buffer
1307  *
1308  * This function issues a READ OOB operation.
1309  * This function does not select/unselect the CS line.
1310  *
1311  * Returns 0 on success, a negative error code otherwise.
1312  */
1313 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1314 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1315 {
1316 	struct mtd_info *mtd = nand_to_mtd(chip);
1317 
1318 	if (len && !buf)
1319 		return -EINVAL;
1320 
1321 	if (offset_in_oob + len > mtd->oobsize)
1322 		return -EINVAL;
1323 
1324 	if (nand_has_exec_op(chip))
1325 		return nand_read_page_op(chip, page,
1326 					 mtd->writesize + offset_in_oob,
1327 					 buf, len);
1328 
1329 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1330 	if (len)
1331 		chip->legacy.read_buf(chip, buf, len);
1332 
1333 	return 0;
1334 }
1335 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1336 
1337 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1338 				  unsigned int offset_in_page, const void *buf,
1339 				  unsigned int len, bool prog)
1340 {
1341 	struct mtd_info *mtd = nand_to_mtd(chip);
1342 	const struct nand_sdr_timings *sdr =
1343 		nand_get_sdr_timings(&chip->data_interface);
1344 	u8 addrs[5] = {};
1345 	struct nand_op_instr instrs[] = {
1346 		/*
1347 		 * The first instruction will be dropped if we're dealing
1348 		 * with a large page NAND and adjusted if we're dealing
1349 		 * with a small page NAND and the page offset is > 255.
1350 		 */
1351 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1352 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1353 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1354 		NAND_OP_DATA_OUT(len, buf, 0),
1355 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1356 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1357 	};
1358 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1359 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1360 	int ret;
1361 	u8 status;
1362 
1363 	if (naddrs < 0)
1364 		return naddrs;
1365 
1366 	addrs[naddrs++] = page;
1367 	addrs[naddrs++] = page >> 8;
1368 	if (chip->options & NAND_ROW_ADDR_3)
1369 		addrs[naddrs++] = page >> 16;
1370 
1371 	instrs[2].ctx.addr.naddrs = naddrs;
1372 
1373 	/* Drop the last two instructions if we're not programming the page. */
1374 	if (!prog) {
1375 		op.ninstrs -= 2;
1376 		/* Also drop the DATA_OUT instruction if empty. */
1377 		if (!len)
1378 			op.ninstrs--;
1379 	}
1380 
1381 	if (mtd->writesize <= 512) {
1382 		/*
1383 		 * Small pages need some more tweaking: we have to adjust the
1384 		 * first instruction depending on the page offset we're trying
1385 		 * to access.
1386 		 */
1387 		if (offset_in_page >= mtd->writesize)
1388 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1389 		else if (offset_in_page >= 256 &&
1390 			 !(chip->options & NAND_BUSWIDTH_16))
1391 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1392 	} else {
1393 		/*
1394 		 * Drop the first command if we're dealing with a large page
1395 		 * NAND.
1396 		 */
1397 		op.instrs++;
1398 		op.ninstrs--;
1399 	}
1400 
1401 	ret = nand_exec_op(chip, &op);
1402 	if (!prog || ret)
1403 		return ret;
1404 
1405 	ret = nand_status_op(chip, &status);
1406 	if (ret)
1407 		return ret;
1408 
1409 	return status;
1410 }
1411 
1412 /**
1413  * nand_prog_page_begin_op - starts a PROG PAGE operation
1414  * @chip: The NAND chip
1415  * @page: page to write
1416  * @offset_in_page: offset within the page
1417  * @buf: buffer containing the data to write to the page
1418  * @len: length of the buffer
1419  *
1420  * This function issues the first half of a PROG PAGE operation.
1421  * This function does not select/unselect the CS line.
1422  *
1423  * Returns 0 on success, a negative error code otherwise.
1424  */
1425 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1426 			    unsigned int offset_in_page, const void *buf,
1427 			    unsigned int len)
1428 {
1429 	struct mtd_info *mtd = nand_to_mtd(chip);
1430 
1431 	if (len && !buf)
1432 		return -EINVAL;
1433 
1434 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1435 		return -EINVAL;
1436 
1437 	if (nand_has_exec_op(chip))
1438 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1439 					      len, false);
1440 
1441 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1442 
1443 	if (buf)
1444 		chip->legacy.write_buf(chip, buf, len);
1445 
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1449 
1450 /**
1451  * nand_prog_page_end_op - ends a PROG PAGE operation
1452  * @chip: The NAND chip
1453  *
1454  * This function issues the second half of a PROG PAGE operation.
1455  * This function does not select/unselect the CS line.
1456  *
1457  * Returns 0 on success, a negative error code otherwise.
1458  */
1459 int nand_prog_page_end_op(struct nand_chip *chip)
1460 {
1461 	int ret;
1462 	u8 status;
1463 
1464 	if (nand_has_exec_op(chip)) {
1465 		const struct nand_sdr_timings *sdr =
1466 			nand_get_sdr_timings(&chip->data_interface);
1467 		struct nand_op_instr instrs[] = {
1468 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1469 				    PSEC_TO_NSEC(sdr->tWB_max)),
1470 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1471 		};
1472 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1473 
1474 		ret = nand_exec_op(chip, &op);
1475 		if (ret)
1476 			return ret;
1477 
1478 		ret = nand_status_op(chip, &status);
1479 		if (ret)
1480 			return ret;
1481 	} else {
1482 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1483 		ret = chip->legacy.waitfunc(chip);
1484 		if (ret < 0)
1485 			return ret;
1486 
1487 		status = ret;
1488 	}
1489 
1490 	if (status & NAND_STATUS_FAIL)
1491 		return -EIO;
1492 
1493 	return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1496 
1497 /**
1498  * nand_prog_page_op - Do a full PROG PAGE operation
1499  * @chip: The NAND chip
1500  * @page: page to write
1501  * @offset_in_page: offset within the page
1502  * @buf: buffer containing the data to write to the page
1503  * @len: length of the buffer
1504  *
1505  * This function issues a full PROG PAGE operation.
1506  * This function does not select/unselect the CS line.
1507  *
1508  * Returns 0 on success, a negative error code otherwise.
1509  */
1510 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1511 		      unsigned int offset_in_page, const void *buf,
1512 		      unsigned int len)
1513 {
1514 	struct mtd_info *mtd = nand_to_mtd(chip);
1515 	int status;
1516 
1517 	if (!len || !buf)
1518 		return -EINVAL;
1519 
1520 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1521 		return -EINVAL;
1522 
1523 	if (nand_has_exec_op(chip)) {
1524 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1525 						len, true);
1526 	} else {
1527 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1528 				     page);
1529 		chip->legacy.write_buf(chip, buf, len);
1530 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1531 		status = chip->legacy.waitfunc(chip);
1532 	}
1533 
1534 	if (status & NAND_STATUS_FAIL)
1535 		return -EIO;
1536 
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1540 
1541 /**
1542  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1543  * @chip: The NAND chip
1544  * @offset_in_page: offset within the page
1545  * @buf: buffer containing the data to send to the NAND
1546  * @len: length of the buffer
1547  * @force_8bit: force 8-bit bus access
1548  *
1549  * This function issues a CHANGE WRITE COLUMN operation.
1550  * This function does not select/unselect the CS line.
1551  *
1552  * Returns 0 on success, a negative error code otherwise.
1553  */
1554 int nand_change_write_column_op(struct nand_chip *chip,
1555 				unsigned int offset_in_page,
1556 				const void *buf, unsigned int len,
1557 				bool force_8bit)
1558 {
1559 	struct mtd_info *mtd = nand_to_mtd(chip);
1560 
1561 	if (len && !buf)
1562 		return -EINVAL;
1563 
1564 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1565 		return -EINVAL;
1566 
1567 	/* Small page NANDs do not support column change. */
1568 	if (mtd->writesize <= 512)
1569 		return -ENOTSUPP;
1570 
1571 	if (nand_has_exec_op(chip)) {
1572 		const struct nand_sdr_timings *sdr =
1573 			nand_get_sdr_timings(&chip->data_interface);
1574 		u8 addrs[2];
1575 		struct nand_op_instr instrs[] = {
1576 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1577 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1578 			NAND_OP_DATA_OUT(len, buf, 0),
1579 		};
1580 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1581 		int ret;
1582 
1583 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1584 		if (ret < 0)
1585 			return ret;
1586 
1587 		instrs[2].ctx.data.force_8bit = force_8bit;
1588 
1589 		/* Drop the DATA_OUT instruction if len is set to 0. */
1590 		if (!len)
1591 			op.ninstrs--;
1592 
1593 		return nand_exec_op(chip, &op);
1594 	}
1595 
1596 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1597 	if (len)
1598 		chip->legacy.write_buf(chip, buf, len);
1599 
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1603 
1604 /**
1605  * nand_readid_op - Do a READID operation
1606  * @chip: The NAND chip
1607  * @addr: address cycle to pass after the READID command
1608  * @buf: buffer used to store the ID
1609  * @len: length of the buffer
1610  *
1611  * This function sends a READID command and reads back the ID returned by the
1612  * NAND.
1613  * This function does not select/unselect the CS line.
1614  *
1615  * Returns 0 on success, a negative error code otherwise.
1616  */
1617 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1618 		   unsigned int len)
1619 {
1620 	unsigned int i;
1621 	u8 *id = buf;
1622 
1623 	if (len && !buf)
1624 		return -EINVAL;
1625 
1626 	if (nand_has_exec_op(chip)) {
1627 		const struct nand_sdr_timings *sdr =
1628 			nand_get_sdr_timings(&chip->data_interface);
1629 		struct nand_op_instr instrs[] = {
1630 			NAND_OP_CMD(NAND_CMD_READID, 0),
1631 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1632 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1633 		};
1634 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1635 
1636 		/* Drop the DATA_IN instruction if len is set to 0. */
1637 		if (!len)
1638 			op.ninstrs--;
1639 
1640 		return nand_exec_op(chip, &op);
1641 	}
1642 
1643 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1644 
1645 	for (i = 0; i < len; i++)
1646 		id[i] = chip->legacy.read_byte(chip);
1647 
1648 	return 0;
1649 }
1650 EXPORT_SYMBOL_GPL(nand_readid_op);
1651 
1652 /**
1653  * nand_status_op - Do a STATUS operation
1654  * @chip: The NAND chip
1655  * @status: out variable to store the NAND status
1656  *
1657  * This function sends a STATUS command and reads back the status returned by
1658  * the NAND.
1659  * This function does not select/unselect the CS line.
1660  *
1661  * Returns 0 on success, a negative error code otherwise.
1662  */
1663 int nand_status_op(struct nand_chip *chip, u8 *status)
1664 {
1665 	if (nand_has_exec_op(chip)) {
1666 		const struct nand_sdr_timings *sdr =
1667 			nand_get_sdr_timings(&chip->data_interface);
1668 		struct nand_op_instr instrs[] = {
1669 			NAND_OP_CMD(NAND_CMD_STATUS,
1670 				    PSEC_TO_NSEC(sdr->tADL_min)),
1671 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1672 		};
1673 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1674 
1675 		if (!status)
1676 			op.ninstrs--;
1677 
1678 		return nand_exec_op(chip, &op);
1679 	}
1680 
1681 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1682 	if (status)
1683 		*status = chip->legacy.read_byte(chip);
1684 
1685 	return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(nand_status_op);
1688 
1689 /**
1690  * nand_exit_status_op - Exit a STATUS operation
1691  * @chip: The NAND chip
1692  *
1693  * This function sends a READ0 command to cancel the effect of the STATUS
1694  * command to avoid reading only the status until a new read command is sent.
1695  *
1696  * This function does not select/unselect the CS line.
1697  *
1698  * Returns 0 on success, a negative error code otherwise.
1699  */
1700 int nand_exit_status_op(struct nand_chip *chip)
1701 {
1702 	if (nand_has_exec_op(chip)) {
1703 		struct nand_op_instr instrs[] = {
1704 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1705 		};
1706 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1707 
1708 		return nand_exec_op(chip, &op);
1709 	}
1710 
1711 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * nand_erase_op - Do an erase operation
1718  * @chip: The NAND chip
1719  * @eraseblock: block to erase
1720  *
1721  * This function sends an ERASE command and waits for the NAND to be ready
1722  * before returning.
1723  * This function does not select/unselect the CS line.
1724  *
1725  * Returns 0 on success, a negative error code otherwise.
1726  */
1727 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1728 {
1729 	unsigned int page = eraseblock <<
1730 			    (chip->phys_erase_shift - chip->page_shift);
1731 	int ret;
1732 	u8 status;
1733 
1734 	if (nand_has_exec_op(chip)) {
1735 		const struct nand_sdr_timings *sdr =
1736 			nand_get_sdr_timings(&chip->data_interface);
1737 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1738 		struct nand_op_instr instrs[] = {
1739 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1740 			NAND_OP_ADDR(2, addrs, 0),
1741 			NAND_OP_CMD(NAND_CMD_ERASE2,
1742 				    PSEC_TO_MSEC(sdr->tWB_max)),
1743 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1744 		};
1745 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1746 
1747 		if (chip->options & NAND_ROW_ADDR_3)
1748 			instrs[1].ctx.addr.naddrs++;
1749 
1750 		ret = nand_exec_op(chip, &op);
1751 		if (ret)
1752 			return ret;
1753 
1754 		ret = nand_status_op(chip, &status);
1755 		if (ret)
1756 			return ret;
1757 	} else {
1758 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1759 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1760 
1761 		ret = chip->legacy.waitfunc(chip);
1762 		if (ret < 0)
1763 			return ret;
1764 
1765 		status = ret;
1766 	}
1767 
1768 	if (status & NAND_STATUS_FAIL)
1769 		return -EIO;
1770 
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(nand_erase_op);
1774 
1775 /**
1776  * nand_set_features_op - Do a SET FEATURES operation
1777  * @chip: The NAND chip
1778  * @feature: feature id
1779  * @data: 4 bytes of data
1780  *
1781  * This function sends a SET FEATURES command and waits for the NAND to be
1782  * ready before returning.
1783  * This function does not select/unselect the CS line.
1784  *
1785  * Returns 0 on success, a negative error code otherwise.
1786  */
1787 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1788 				const void *data)
1789 {
1790 	const u8 *params = data;
1791 	int i, ret;
1792 
1793 	if (nand_has_exec_op(chip)) {
1794 		const struct nand_sdr_timings *sdr =
1795 			nand_get_sdr_timings(&chip->data_interface);
1796 		struct nand_op_instr instrs[] = {
1797 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1798 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1799 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1800 					      PSEC_TO_NSEC(sdr->tWB_max)),
1801 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1802 		};
1803 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1804 
1805 		return nand_exec_op(chip, &op);
1806 	}
1807 
1808 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1809 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1810 		chip->legacy.write_byte(chip, params[i]);
1811 
1812 	ret = chip->legacy.waitfunc(chip);
1813 	if (ret < 0)
1814 		return ret;
1815 
1816 	if (ret & NAND_STATUS_FAIL)
1817 		return -EIO;
1818 
1819 	return 0;
1820 }
1821 
1822 /**
1823  * nand_get_features_op - Do a GET FEATURES operation
1824  * @chip: The NAND chip
1825  * @feature: feature id
1826  * @data: 4 bytes of data
1827  *
1828  * This function sends a GET FEATURES command and waits for the NAND to be
1829  * ready before returning.
1830  * This function does not select/unselect the CS line.
1831  *
1832  * Returns 0 on success, a negative error code otherwise.
1833  */
1834 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1835 				void *data)
1836 {
1837 	u8 *params = data;
1838 	int i;
1839 
1840 	if (nand_has_exec_op(chip)) {
1841 		const struct nand_sdr_timings *sdr =
1842 			nand_get_sdr_timings(&chip->data_interface);
1843 		struct nand_op_instr instrs[] = {
1844 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1845 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1846 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1847 					 PSEC_TO_NSEC(sdr->tRR_min)),
1848 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1849 					     data, 0),
1850 		};
1851 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1852 
1853 		return nand_exec_op(chip, &op);
1854 	}
1855 
1856 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1857 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1858 		params[i] = chip->legacy.read_byte(chip);
1859 
1860 	return 0;
1861 }
1862 
1863 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1864 			    unsigned int delay_ns)
1865 {
1866 	if (nand_has_exec_op(chip)) {
1867 		struct nand_op_instr instrs[] = {
1868 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1869 					 PSEC_TO_NSEC(delay_ns)),
1870 		};
1871 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1872 
1873 		return nand_exec_op(chip, &op);
1874 	}
1875 
1876 	/* Apply delay or wait for ready/busy pin */
1877 	if (!chip->legacy.dev_ready)
1878 		udelay(chip->legacy.chip_delay);
1879 	else
1880 		nand_wait_ready(chip);
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  * nand_reset_op - Do a reset operation
1887  * @chip: The NAND chip
1888  *
1889  * This function sends a RESET command and waits for the NAND to be ready
1890  * before returning.
1891  * This function does not select/unselect the CS line.
1892  *
1893  * Returns 0 on success, a negative error code otherwise.
1894  */
1895 int nand_reset_op(struct nand_chip *chip)
1896 {
1897 	if (nand_has_exec_op(chip)) {
1898 		const struct nand_sdr_timings *sdr =
1899 			nand_get_sdr_timings(&chip->data_interface);
1900 		struct nand_op_instr instrs[] = {
1901 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1902 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1903 		};
1904 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1905 
1906 		return nand_exec_op(chip, &op);
1907 	}
1908 
1909 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1910 
1911 	return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(nand_reset_op);
1914 
1915 /**
1916  * nand_read_data_op - Read data from the NAND
1917  * @chip: The NAND chip
1918  * @buf: buffer used to store the data
1919  * @len: length of the buffer
1920  * @force_8bit: force 8-bit bus access
1921  *
1922  * This function does a raw data read on the bus. Usually used after launching
1923  * another NAND operation like nand_read_page_op().
1924  * This function does not select/unselect the CS line.
1925  *
1926  * Returns 0 on success, a negative error code otherwise.
1927  */
1928 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1929 		      bool force_8bit)
1930 {
1931 	if (!len || !buf)
1932 		return -EINVAL;
1933 
1934 	if (nand_has_exec_op(chip)) {
1935 		struct nand_op_instr instrs[] = {
1936 			NAND_OP_DATA_IN(len, buf, 0),
1937 		};
1938 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1939 
1940 		instrs[0].ctx.data.force_8bit = force_8bit;
1941 
1942 		return nand_exec_op(chip, &op);
1943 	}
1944 
1945 	if (force_8bit) {
1946 		u8 *p = buf;
1947 		unsigned int i;
1948 
1949 		for (i = 0; i < len; i++)
1950 			p[i] = chip->legacy.read_byte(chip);
1951 	} else {
1952 		chip->legacy.read_buf(chip, buf, len);
1953 	}
1954 
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(nand_read_data_op);
1958 
1959 /**
1960  * nand_write_data_op - Write data from the NAND
1961  * @chip: The NAND chip
1962  * @buf: buffer containing the data to send on the bus
1963  * @len: length of the buffer
1964  * @force_8bit: force 8-bit bus access
1965  *
1966  * This function does a raw data write on the bus. Usually used after launching
1967  * another NAND operation like nand_write_page_begin_op().
1968  * This function does not select/unselect the CS line.
1969  *
1970  * Returns 0 on success, a negative error code otherwise.
1971  */
1972 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1973 		       unsigned int len, bool force_8bit)
1974 {
1975 	if (!len || !buf)
1976 		return -EINVAL;
1977 
1978 	if (nand_has_exec_op(chip)) {
1979 		struct nand_op_instr instrs[] = {
1980 			NAND_OP_DATA_OUT(len, buf, 0),
1981 		};
1982 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1983 
1984 		instrs[0].ctx.data.force_8bit = force_8bit;
1985 
1986 		return nand_exec_op(chip, &op);
1987 	}
1988 
1989 	if (force_8bit) {
1990 		const u8 *p = buf;
1991 		unsigned int i;
1992 
1993 		for (i = 0; i < len; i++)
1994 			chip->legacy.write_byte(chip, p[i]);
1995 	} else {
1996 		chip->legacy.write_buf(chip, buf, len);
1997 	}
1998 
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(nand_write_data_op);
2002 
2003 /**
2004  * struct nand_op_parser_ctx - Context used by the parser
2005  * @instrs: array of all the instructions that must be addressed
2006  * @ninstrs: length of the @instrs array
2007  * @subop: Sub-operation to be passed to the NAND controller
2008  *
2009  * This structure is used by the core to split NAND operations into
2010  * sub-operations that can be handled by the NAND controller.
2011  */
2012 struct nand_op_parser_ctx {
2013 	const struct nand_op_instr *instrs;
2014 	unsigned int ninstrs;
2015 	struct nand_subop subop;
2016 };
2017 
2018 /**
2019  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2020  * @pat: the parser pattern element that matches @instr
2021  * @instr: pointer to the instruction to check
2022  * @start_offset: this is an in/out parameter. If @instr has already been
2023  *		  split, then @start_offset is the offset from which to start
2024  *		  (either an address cycle or an offset in the data buffer).
2025  *		  Conversely, if the function returns true (ie. instr must be
2026  *		  split), this parameter is updated to point to the first
2027  *		  data/address cycle that has not been taken care of.
2028  *
2029  * Some NAND controllers are limited and cannot send X address cycles with a
2030  * unique operation, or cannot read/write more than Y bytes at the same time.
2031  * In this case, split the instruction that does not fit in a single
2032  * controller-operation into two or more chunks.
2033  *
2034  * Returns true if the instruction must be split, false otherwise.
2035  * The @start_offset parameter is also updated to the offset at which the next
2036  * bundle of instruction must start (if an address or a data instruction).
2037  */
2038 static bool
2039 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2040 				const struct nand_op_instr *instr,
2041 				unsigned int *start_offset)
2042 {
2043 	switch (pat->type) {
2044 	case NAND_OP_ADDR_INSTR:
2045 		if (!pat->ctx.addr.maxcycles)
2046 			break;
2047 
2048 		if (instr->ctx.addr.naddrs - *start_offset >
2049 		    pat->ctx.addr.maxcycles) {
2050 			*start_offset += pat->ctx.addr.maxcycles;
2051 			return true;
2052 		}
2053 		break;
2054 
2055 	case NAND_OP_DATA_IN_INSTR:
2056 	case NAND_OP_DATA_OUT_INSTR:
2057 		if (!pat->ctx.data.maxlen)
2058 			break;
2059 
2060 		if (instr->ctx.data.len - *start_offset >
2061 		    pat->ctx.data.maxlen) {
2062 			*start_offset += pat->ctx.data.maxlen;
2063 			return true;
2064 		}
2065 		break;
2066 
2067 	default:
2068 		break;
2069 	}
2070 
2071 	return false;
2072 }
2073 
2074 /**
2075  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2076  *			      remaining in the parser context
2077  * @pat: the pattern to test
2078  * @ctx: the parser context structure to match with the pattern @pat
2079  *
2080  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2081  * Returns true if this is the case, false ortherwise. When true is returned,
2082  * @ctx->subop is updated with the set of instructions to be passed to the
2083  * controller driver.
2084  */
2085 static bool
2086 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2087 			 struct nand_op_parser_ctx *ctx)
2088 {
2089 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2090 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2091 	const struct nand_op_instr *instr = ctx->subop.instrs;
2092 	unsigned int i, ninstrs;
2093 
2094 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2095 		/*
2096 		 * The pattern instruction does not match the operation
2097 		 * instruction. If the instruction is marked optional in the
2098 		 * pattern definition, we skip the pattern element and continue
2099 		 * to the next one. If the element is mandatory, there's no
2100 		 * match and we can return false directly.
2101 		 */
2102 		if (instr->type != pat->elems[i].type) {
2103 			if (!pat->elems[i].optional)
2104 				return false;
2105 
2106 			continue;
2107 		}
2108 
2109 		/*
2110 		 * Now check the pattern element constraints. If the pattern is
2111 		 * not able to handle the whole instruction in a single step,
2112 		 * we have to split it.
2113 		 * The last_instr_end_off value comes back updated to point to
2114 		 * the position where we have to split the instruction (the
2115 		 * start of the next subop chunk).
2116 		 */
2117 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2118 						    &instr_offset)) {
2119 			ninstrs++;
2120 			i++;
2121 			break;
2122 		}
2123 
2124 		instr++;
2125 		ninstrs++;
2126 		instr_offset = 0;
2127 	}
2128 
2129 	/*
2130 	 * This can happen if all instructions of a pattern are optional.
2131 	 * Still, if there's not at least one instruction handled by this
2132 	 * pattern, this is not a match, and we should try the next one (if
2133 	 * any).
2134 	 */
2135 	if (!ninstrs)
2136 		return false;
2137 
2138 	/*
2139 	 * We had a match on the pattern head, but the pattern may be longer
2140 	 * than the instructions we're asked to execute. We need to make sure
2141 	 * there's no mandatory elements in the pattern tail.
2142 	 */
2143 	for (; i < pat->nelems; i++) {
2144 		if (!pat->elems[i].optional)
2145 			return false;
2146 	}
2147 
2148 	/*
2149 	 * We have a match: update the subop structure accordingly and return
2150 	 * true.
2151 	 */
2152 	ctx->subop.ninstrs = ninstrs;
2153 	ctx->subop.last_instr_end_off = instr_offset;
2154 
2155 	return true;
2156 }
2157 
2158 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2159 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2160 {
2161 	const struct nand_op_instr *instr;
2162 	char *prefix = "      ";
2163 	unsigned int i;
2164 
2165 	pr_debug("executing subop:\n");
2166 
2167 	for (i = 0; i < ctx->ninstrs; i++) {
2168 		instr = &ctx->instrs[i];
2169 
2170 		if (instr == &ctx->subop.instrs[0])
2171 			prefix = "    ->";
2172 
2173 		nand_op_trace(prefix, instr);
2174 
2175 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2176 			prefix = "      ";
2177 	}
2178 }
2179 #else
2180 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2181 {
2182 	/* NOP */
2183 }
2184 #endif
2185 
2186 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2187 				  const struct nand_op_parser_ctx *b)
2188 {
2189 	if (a->subop.ninstrs < b->subop.ninstrs)
2190 		return -1;
2191 	else if (a->subop.ninstrs > b->subop.ninstrs)
2192 		return 1;
2193 
2194 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2195 		return -1;
2196 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2197 		return 1;
2198 
2199 	return 0;
2200 }
2201 
2202 /**
2203  * nand_op_parser_exec_op - exec_op parser
2204  * @chip: the NAND chip
2205  * @parser: patterns description provided by the controller driver
2206  * @op: the NAND operation to address
2207  * @check_only: when true, the function only checks if @op can be handled but
2208  *		does not execute the operation
2209  *
2210  * Helper function designed to ease integration of NAND controller drivers that
2211  * only support a limited set of instruction sequences. The supported sequences
2212  * are described in @parser, and the framework takes care of splitting @op into
2213  * multiple sub-operations (if required) and pass them back to the ->exec()
2214  * callback of the matching pattern if @check_only is set to false.
2215  *
2216  * NAND controller drivers should call this function from their own ->exec_op()
2217  * implementation.
2218  *
2219  * Returns 0 on success, a negative error code otherwise. A failure can be
2220  * caused by an unsupported operation (none of the supported patterns is able
2221  * to handle the requested operation), or an error returned by one of the
2222  * matching pattern->exec() hook.
2223  */
2224 int nand_op_parser_exec_op(struct nand_chip *chip,
2225 			   const struct nand_op_parser *parser,
2226 			   const struct nand_operation *op, bool check_only)
2227 {
2228 	struct nand_op_parser_ctx ctx = {
2229 		.subop.instrs = op->instrs,
2230 		.instrs = op->instrs,
2231 		.ninstrs = op->ninstrs,
2232 	};
2233 	unsigned int i;
2234 
2235 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2236 		const struct nand_op_parser_pattern *pattern;
2237 		struct nand_op_parser_ctx best_ctx;
2238 		int ret, best_pattern = -1;
2239 
2240 		for (i = 0; i < parser->npatterns; i++) {
2241 			struct nand_op_parser_ctx test_ctx = ctx;
2242 
2243 			pattern = &parser->patterns[i];
2244 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2245 				continue;
2246 
2247 			if (best_pattern >= 0 &&
2248 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2249 				continue;
2250 
2251 			best_pattern = i;
2252 			best_ctx = test_ctx;
2253 		}
2254 
2255 		if (best_pattern < 0) {
2256 			pr_debug("->exec_op() parser: pattern not found!\n");
2257 			return -ENOTSUPP;
2258 		}
2259 
2260 		ctx = best_ctx;
2261 		nand_op_parser_trace(&ctx);
2262 
2263 		if (!check_only) {
2264 			pattern = &parser->patterns[best_pattern];
2265 			ret = pattern->exec(chip, &ctx.subop);
2266 			if (ret)
2267 				return ret;
2268 		}
2269 
2270 		/*
2271 		 * Update the context structure by pointing to the start of the
2272 		 * next subop.
2273 		 */
2274 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2275 		if (ctx.subop.last_instr_end_off)
2276 			ctx.subop.instrs -= 1;
2277 
2278 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2279 	}
2280 
2281 	return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2284 
2285 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2286 {
2287 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2288 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2289 }
2290 
2291 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2292 				      unsigned int instr_idx)
2293 {
2294 	return subop && instr_idx < subop->ninstrs;
2295 }
2296 
2297 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2298 					     unsigned int instr_idx)
2299 {
2300 	if (instr_idx)
2301 		return 0;
2302 
2303 	return subop->first_instr_start_off;
2304 }
2305 
2306 /**
2307  * nand_subop_get_addr_start_off - Get the start offset in an address array
2308  * @subop: The entire sub-operation
2309  * @instr_idx: Index of the instruction inside the sub-operation
2310  *
2311  * During driver development, one could be tempted to directly use the
2312  * ->addr.addrs field of address instructions. This is wrong as address
2313  * instructions might be split.
2314  *
2315  * Given an address instruction, returns the offset of the first cycle to issue.
2316  */
2317 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2318 					   unsigned int instr_idx)
2319 {
2320 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2321 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2322 		return 0;
2323 
2324 	return nand_subop_get_start_off(subop, instr_idx);
2325 }
2326 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2327 
2328 /**
2329  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2330  * @subop: The entire sub-operation
2331  * @instr_idx: Index of the instruction inside the sub-operation
2332  *
2333  * During driver development, one could be tempted to directly use the
2334  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2335  * might be split.
2336  *
2337  * Given an address instruction, returns the number of address cycle to issue.
2338  */
2339 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2340 					 unsigned int instr_idx)
2341 {
2342 	int start_off, end_off;
2343 
2344 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2345 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2346 		return 0;
2347 
2348 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2349 
2350 	if (instr_idx == subop->ninstrs - 1 &&
2351 	    subop->last_instr_end_off)
2352 		end_off = subop->last_instr_end_off;
2353 	else
2354 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2355 
2356 	return end_off - start_off;
2357 }
2358 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2359 
2360 /**
2361  * nand_subop_get_data_start_off - Get the start offset in a data array
2362  * @subop: The entire sub-operation
2363  * @instr_idx: Index of the instruction inside the sub-operation
2364  *
2365  * During driver development, one could be tempted to directly use the
2366  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2367  * instructions might be split.
2368  *
2369  * Given a data instruction, returns the offset to start from.
2370  */
2371 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2372 					   unsigned int instr_idx)
2373 {
2374 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2375 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2376 		return 0;
2377 
2378 	return nand_subop_get_start_off(subop, instr_idx);
2379 }
2380 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2381 
2382 /**
2383  * nand_subop_get_data_len - Get the number of bytes to retrieve
2384  * @subop: The entire sub-operation
2385  * @instr_idx: Index of the instruction inside the sub-operation
2386  *
2387  * During driver development, one could be tempted to directly use the
2388  * ->data->len field of a data instruction. This is wrong as data instructions
2389  * might be split.
2390  *
2391  * Returns the length of the chunk of data to send/receive.
2392  */
2393 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2394 				     unsigned int instr_idx)
2395 {
2396 	int start_off = 0, end_off;
2397 
2398 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2399 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2400 		return 0;
2401 
2402 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2403 
2404 	if (instr_idx == subop->ninstrs - 1 &&
2405 	    subop->last_instr_end_off)
2406 		end_off = subop->last_instr_end_off;
2407 	else
2408 		end_off = subop->instrs[instr_idx].ctx.data.len;
2409 
2410 	return end_off - start_off;
2411 }
2412 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2413 
2414 /**
2415  * nand_reset - Reset and initialize a NAND device
2416  * @chip: The NAND chip
2417  * @chipnr: Internal die id
2418  *
2419  * Save the timings data structure, then apply SDR timings mode 0 (see
2420  * nand_reset_data_interface for details), do the reset operation, and
2421  * apply back the previous timings.
2422  *
2423  * Returns 0 on success, a negative error code otherwise.
2424  */
2425 int nand_reset(struct nand_chip *chip, int chipnr)
2426 {
2427 	struct nand_data_interface saved_data_intf = chip->data_interface;
2428 	int ret;
2429 
2430 	ret = nand_reset_data_interface(chip, chipnr);
2431 	if (ret)
2432 		return ret;
2433 
2434 	/*
2435 	 * The CS line has to be released before we can apply the new NAND
2436 	 * interface settings, hence this weird nand_select_target()
2437 	 * nand_deselect_target() dance.
2438 	 */
2439 	nand_select_target(chip, chipnr);
2440 	ret = nand_reset_op(chip);
2441 	nand_deselect_target(chip);
2442 	if (ret)
2443 		return ret;
2444 
2445 	/*
2446 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2447 	 * controller in timings mode 0. If the default mode for this chip is
2448 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2449 	 * nand_setup_data_interface() uses ->set/get_features() which would
2450 	 * fail anyway as the parameter page is not available yet.
2451 	 */
2452 	if (!chip->onfi_timing_mode_default)
2453 		return 0;
2454 
2455 	chip->data_interface = saved_data_intf;
2456 	ret = nand_setup_data_interface(chip, chipnr);
2457 	if (ret)
2458 		return ret;
2459 
2460 	return 0;
2461 }
2462 EXPORT_SYMBOL_GPL(nand_reset);
2463 
2464 /**
2465  * nand_get_features - wrapper to perform a GET_FEATURE
2466  * @chip: NAND chip info structure
2467  * @addr: feature address
2468  * @subfeature_param: the subfeature parameters, a four bytes array
2469  *
2470  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2471  * operation cannot be handled.
2472  */
2473 int nand_get_features(struct nand_chip *chip, int addr,
2474 		      u8 *subfeature_param)
2475 {
2476 	if (!nand_supports_get_features(chip, addr))
2477 		return -ENOTSUPP;
2478 
2479 	if (chip->legacy.get_features)
2480 		return chip->legacy.get_features(chip, addr, subfeature_param);
2481 
2482 	return nand_get_features_op(chip, addr, subfeature_param);
2483 }
2484 
2485 /**
2486  * nand_set_features - wrapper to perform a SET_FEATURE
2487  * @chip: NAND chip info structure
2488  * @addr: feature address
2489  * @subfeature_param: the subfeature parameters, a four bytes array
2490  *
2491  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2492  * operation cannot be handled.
2493  */
2494 int nand_set_features(struct nand_chip *chip, int addr,
2495 		      u8 *subfeature_param)
2496 {
2497 	if (!nand_supports_set_features(chip, addr))
2498 		return -ENOTSUPP;
2499 
2500 	if (chip->legacy.set_features)
2501 		return chip->legacy.set_features(chip, addr, subfeature_param);
2502 
2503 	return nand_set_features_op(chip, addr, subfeature_param);
2504 }
2505 
2506 /**
2507  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2508  * @buf: buffer to test
2509  * @len: buffer length
2510  * @bitflips_threshold: maximum number of bitflips
2511  *
2512  * Check if a buffer contains only 0xff, which means the underlying region
2513  * has been erased and is ready to be programmed.
2514  * The bitflips_threshold specify the maximum number of bitflips before
2515  * considering the region is not erased.
2516  * Note: The logic of this function has been extracted from the memweight
2517  * implementation, except that nand_check_erased_buf function exit before
2518  * testing the whole buffer if the number of bitflips exceed the
2519  * bitflips_threshold value.
2520  *
2521  * Returns a positive number of bitflips less than or equal to
2522  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2523  * threshold.
2524  */
2525 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2526 {
2527 	const unsigned char *bitmap = buf;
2528 	int bitflips = 0;
2529 	int weight;
2530 
2531 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2532 	     len--, bitmap++) {
2533 		weight = hweight8(*bitmap);
2534 		bitflips += BITS_PER_BYTE - weight;
2535 		if (unlikely(bitflips > bitflips_threshold))
2536 			return -EBADMSG;
2537 	}
2538 
2539 	for (; len >= sizeof(long);
2540 	     len -= sizeof(long), bitmap += sizeof(long)) {
2541 		unsigned long d = *((unsigned long *)bitmap);
2542 		if (d == ~0UL)
2543 			continue;
2544 		weight = hweight_long(d);
2545 		bitflips += BITS_PER_LONG - weight;
2546 		if (unlikely(bitflips > bitflips_threshold))
2547 			return -EBADMSG;
2548 	}
2549 
2550 	for (; len > 0; len--, bitmap++) {
2551 		weight = hweight8(*bitmap);
2552 		bitflips += BITS_PER_BYTE - weight;
2553 		if (unlikely(bitflips > bitflips_threshold))
2554 			return -EBADMSG;
2555 	}
2556 
2557 	return bitflips;
2558 }
2559 
2560 /**
2561  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2562  *				 0xff data
2563  * @data: data buffer to test
2564  * @datalen: data length
2565  * @ecc: ECC buffer
2566  * @ecclen: ECC length
2567  * @extraoob: extra OOB buffer
2568  * @extraooblen: extra OOB length
2569  * @bitflips_threshold: maximum number of bitflips
2570  *
2571  * Check if a data buffer and its associated ECC and OOB data contains only
2572  * 0xff pattern, which means the underlying region has been erased and is
2573  * ready to be programmed.
2574  * The bitflips_threshold specify the maximum number of bitflips before
2575  * considering the region as not erased.
2576  *
2577  * Note:
2578  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2579  *    different from the NAND page size. When fixing bitflips, ECC engines will
2580  *    report the number of errors per chunk, and the NAND core infrastructure
2581  *    expect you to return the maximum number of bitflips for the whole page.
2582  *    This is why you should always use this function on a single chunk and
2583  *    not on the whole page. After checking each chunk you should update your
2584  *    max_bitflips value accordingly.
2585  * 2/ When checking for bitflips in erased pages you should not only check
2586  *    the payload data but also their associated ECC data, because a user might
2587  *    have programmed almost all bits to 1 but a few. In this case, we
2588  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2589  *    this case.
2590  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2591  *    data are protected by the ECC engine.
2592  *    It could also be used if you support subpages and want to attach some
2593  *    extra OOB data to an ECC chunk.
2594  *
2595  * Returns a positive number of bitflips less than or equal to
2596  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2597  * threshold. In case of success, the passed buffers are filled with 0xff.
2598  */
2599 int nand_check_erased_ecc_chunk(void *data, int datalen,
2600 				void *ecc, int ecclen,
2601 				void *extraoob, int extraooblen,
2602 				int bitflips_threshold)
2603 {
2604 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2605 
2606 	data_bitflips = nand_check_erased_buf(data, datalen,
2607 					      bitflips_threshold);
2608 	if (data_bitflips < 0)
2609 		return data_bitflips;
2610 
2611 	bitflips_threshold -= data_bitflips;
2612 
2613 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2614 	if (ecc_bitflips < 0)
2615 		return ecc_bitflips;
2616 
2617 	bitflips_threshold -= ecc_bitflips;
2618 
2619 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2620 						  bitflips_threshold);
2621 	if (extraoob_bitflips < 0)
2622 		return extraoob_bitflips;
2623 
2624 	if (data_bitflips)
2625 		memset(data, 0xff, datalen);
2626 
2627 	if (ecc_bitflips)
2628 		memset(ecc, 0xff, ecclen);
2629 
2630 	if (extraoob_bitflips)
2631 		memset(extraoob, 0xff, extraooblen);
2632 
2633 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2634 }
2635 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2636 
2637 /**
2638  * nand_read_page_raw_notsupp - dummy read raw page function
2639  * @chip: nand chip info structure
2640  * @buf: buffer to store read data
2641  * @oob_required: caller requires OOB data read to chip->oob_poi
2642  * @page: page number to read
2643  *
2644  * Returns -ENOTSUPP unconditionally.
2645  */
2646 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2647 			       int oob_required, int page)
2648 {
2649 	return -ENOTSUPP;
2650 }
2651 
2652 /**
2653  * nand_read_page_raw - [INTERN] read raw page data without ecc
2654  * @chip: nand chip info structure
2655  * @buf: buffer to store read data
2656  * @oob_required: caller requires OOB data read to chip->oob_poi
2657  * @page: page number to read
2658  *
2659  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2660  */
2661 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2662 		       int page)
2663 {
2664 	struct mtd_info *mtd = nand_to_mtd(chip);
2665 	int ret;
2666 
2667 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2668 	if (ret)
2669 		return ret;
2670 
2671 	if (oob_required) {
2672 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2673 					false);
2674 		if (ret)
2675 			return ret;
2676 	}
2677 
2678 	return 0;
2679 }
2680 EXPORT_SYMBOL(nand_read_page_raw);
2681 
2682 /**
2683  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2684  * @chip: nand chip info structure
2685  * @buf: buffer to store read data
2686  * @oob_required: caller requires OOB data read to chip->oob_poi
2687  * @page: page number to read
2688  *
2689  * We need a special oob layout and handling even when OOB isn't used.
2690  */
2691 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2692 				       int oob_required, int page)
2693 {
2694 	struct mtd_info *mtd = nand_to_mtd(chip);
2695 	int eccsize = chip->ecc.size;
2696 	int eccbytes = chip->ecc.bytes;
2697 	uint8_t *oob = chip->oob_poi;
2698 	int steps, size, ret;
2699 
2700 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2701 	if (ret)
2702 		return ret;
2703 
2704 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2705 		ret = nand_read_data_op(chip, buf, eccsize, false);
2706 		if (ret)
2707 			return ret;
2708 
2709 		buf += eccsize;
2710 
2711 		if (chip->ecc.prepad) {
2712 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2713 						false);
2714 			if (ret)
2715 				return ret;
2716 
2717 			oob += chip->ecc.prepad;
2718 		}
2719 
2720 		ret = nand_read_data_op(chip, oob, eccbytes, false);
2721 		if (ret)
2722 			return ret;
2723 
2724 		oob += eccbytes;
2725 
2726 		if (chip->ecc.postpad) {
2727 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2728 						false);
2729 			if (ret)
2730 				return ret;
2731 
2732 			oob += chip->ecc.postpad;
2733 		}
2734 	}
2735 
2736 	size = mtd->oobsize - (oob - chip->oob_poi);
2737 	if (size) {
2738 		ret = nand_read_data_op(chip, oob, size, false);
2739 		if (ret)
2740 			return ret;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /**
2747  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2748  * @chip: nand chip info structure
2749  * @buf: buffer to store read data
2750  * @oob_required: caller requires OOB data read to chip->oob_poi
2751  * @page: page number to read
2752  */
2753 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2754 				int oob_required, int page)
2755 {
2756 	struct mtd_info *mtd = nand_to_mtd(chip);
2757 	int i, eccsize = chip->ecc.size, ret;
2758 	int eccbytes = chip->ecc.bytes;
2759 	int eccsteps = chip->ecc.steps;
2760 	uint8_t *p = buf;
2761 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2762 	uint8_t *ecc_code = chip->ecc.code_buf;
2763 	unsigned int max_bitflips = 0;
2764 
2765 	chip->ecc.read_page_raw(chip, buf, 1, page);
2766 
2767 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2768 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2769 
2770 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2771 					 chip->ecc.total);
2772 	if (ret)
2773 		return ret;
2774 
2775 	eccsteps = chip->ecc.steps;
2776 	p = buf;
2777 
2778 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2779 		int stat;
2780 
2781 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2782 		if (stat < 0) {
2783 			mtd->ecc_stats.failed++;
2784 		} else {
2785 			mtd->ecc_stats.corrected += stat;
2786 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2787 		}
2788 	}
2789 	return max_bitflips;
2790 }
2791 
2792 /**
2793  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2794  * @chip: nand chip info structure
2795  * @data_offs: offset of requested data within the page
2796  * @readlen: data length
2797  * @bufpoi: buffer to store read data
2798  * @page: page number to read
2799  */
2800 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2801 			     uint32_t readlen, uint8_t *bufpoi, int page)
2802 {
2803 	struct mtd_info *mtd = nand_to_mtd(chip);
2804 	int start_step, end_step, num_steps, ret;
2805 	uint8_t *p;
2806 	int data_col_addr, i, gaps = 0;
2807 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2808 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2809 	int index, section = 0;
2810 	unsigned int max_bitflips = 0;
2811 	struct mtd_oob_region oobregion = { };
2812 
2813 	/* Column address within the page aligned to ECC size (256bytes) */
2814 	start_step = data_offs / chip->ecc.size;
2815 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2816 	num_steps = end_step - start_step + 1;
2817 	index = start_step * chip->ecc.bytes;
2818 
2819 	/* Data size aligned to ECC ecc.size */
2820 	datafrag_len = num_steps * chip->ecc.size;
2821 	eccfrag_len = num_steps * chip->ecc.bytes;
2822 
2823 	data_col_addr = start_step * chip->ecc.size;
2824 	/* If we read not a page aligned data */
2825 	p = bufpoi + data_col_addr;
2826 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2827 	if (ret)
2828 		return ret;
2829 
2830 	/* Calculate ECC */
2831 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2832 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2833 
2834 	/*
2835 	 * The performance is faster if we position offsets according to
2836 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2837 	 */
2838 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2839 	if (ret)
2840 		return ret;
2841 
2842 	if (oobregion.length < eccfrag_len)
2843 		gaps = 1;
2844 
2845 	if (gaps) {
2846 		ret = nand_change_read_column_op(chip, mtd->writesize,
2847 						 chip->oob_poi, mtd->oobsize,
2848 						 false);
2849 		if (ret)
2850 			return ret;
2851 	} else {
2852 		/*
2853 		 * Send the command to read the particular ECC bytes take care
2854 		 * about buswidth alignment in read_buf.
2855 		 */
2856 		aligned_pos = oobregion.offset & ~(busw - 1);
2857 		aligned_len = eccfrag_len;
2858 		if (oobregion.offset & (busw - 1))
2859 			aligned_len++;
2860 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2861 		    (busw - 1))
2862 			aligned_len++;
2863 
2864 		ret = nand_change_read_column_op(chip,
2865 						 mtd->writesize + aligned_pos,
2866 						 &chip->oob_poi[aligned_pos],
2867 						 aligned_len, false);
2868 		if (ret)
2869 			return ret;
2870 	}
2871 
2872 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2873 					 chip->oob_poi, index, eccfrag_len);
2874 	if (ret)
2875 		return ret;
2876 
2877 	p = bufpoi + data_col_addr;
2878 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2879 		int stat;
2880 
2881 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2882 					 &chip->ecc.calc_buf[i]);
2883 		if (stat == -EBADMSG &&
2884 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2885 			/* check for empty pages with bitflips */
2886 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2887 						&chip->ecc.code_buf[i],
2888 						chip->ecc.bytes,
2889 						NULL, 0,
2890 						chip->ecc.strength);
2891 		}
2892 
2893 		if (stat < 0) {
2894 			mtd->ecc_stats.failed++;
2895 		} else {
2896 			mtd->ecc_stats.corrected += stat;
2897 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2898 		}
2899 	}
2900 	return max_bitflips;
2901 }
2902 
2903 /**
2904  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2905  * @chip: nand chip info structure
2906  * @buf: buffer to store read data
2907  * @oob_required: caller requires OOB data read to chip->oob_poi
2908  * @page: page number to read
2909  *
2910  * Not for syndrome calculating ECC controllers which need a special oob layout.
2911  */
2912 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2913 				int oob_required, int page)
2914 {
2915 	struct mtd_info *mtd = nand_to_mtd(chip);
2916 	int i, eccsize = chip->ecc.size, ret;
2917 	int eccbytes = chip->ecc.bytes;
2918 	int eccsteps = chip->ecc.steps;
2919 	uint8_t *p = buf;
2920 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2921 	uint8_t *ecc_code = chip->ecc.code_buf;
2922 	unsigned int max_bitflips = 0;
2923 
2924 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2925 	if (ret)
2926 		return ret;
2927 
2928 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2929 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2930 
2931 		ret = nand_read_data_op(chip, p, eccsize, false);
2932 		if (ret)
2933 			return ret;
2934 
2935 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2936 	}
2937 
2938 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2939 	if (ret)
2940 		return ret;
2941 
2942 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2943 					 chip->ecc.total);
2944 	if (ret)
2945 		return ret;
2946 
2947 	eccsteps = chip->ecc.steps;
2948 	p = buf;
2949 
2950 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2951 		int stat;
2952 
2953 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2954 		if (stat == -EBADMSG &&
2955 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2956 			/* check for empty pages with bitflips */
2957 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2958 						&ecc_code[i], eccbytes,
2959 						NULL, 0,
2960 						chip->ecc.strength);
2961 		}
2962 
2963 		if (stat < 0) {
2964 			mtd->ecc_stats.failed++;
2965 		} else {
2966 			mtd->ecc_stats.corrected += stat;
2967 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2968 		}
2969 	}
2970 	return max_bitflips;
2971 }
2972 
2973 /**
2974  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2975  * @chip: nand chip info structure
2976  * @buf: buffer to store read data
2977  * @oob_required: caller requires OOB data read to chip->oob_poi
2978  * @page: page number to read
2979  *
2980  * Hardware ECC for large page chips, require OOB to be read first. For this
2981  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2982  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2983  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2984  * the data area, by overwriting the NAND manufacturer bad block markings.
2985  */
2986 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2987 					  int oob_required, int page)
2988 {
2989 	struct mtd_info *mtd = nand_to_mtd(chip);
2990 	int i, eccsize = chip->ecc.size, ret;
2991 	int eccbytes = chip->ecc.bytes;
2992 	int eccsteps = chip->ecc.steps;
2993 	uint8_t *p = buf;
2994 	uint8_t *ecc_code = chip->ecc.code_buf;
2995 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2996 	unsigned int max_bitflips = 0;
2997 
2998 	/* Read the OOB area first */
2999 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3000 	if (ret)
3001 		return ret;
3002 
3003 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3004 	if (ret)
3005 		return ret;
3006 
3007 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3008 					 chip->ecc.total);
3009 	if (ret)
3010 		return ret;
3011 
3012 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3013 		int stat;
3014 
3015 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3016 
3017 		ret = nand_read_data_op(chip, p, eccsize, false);
3018 		if (ret)
3019 			return ret;
3020 
3021 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3022 
3023 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3024 		if (stat == -EBADMSG &&
3025 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3026 			/* check for empty pages with bitflips */
3027 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3028 						&ecc_code[i], eccbytes,
3029 						NULL, 0,
3030 						chip->ecc.strength);
3031 		}
3032 
3033 		if (stat < 0) {
3034 			mtd->ecc_stats.failed++;
3035 		} else {
3036 			mtd->ecc_stats.corrected += stat;
3037 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3038 		}
3039 	}
3040 	return max_bitflips;
3041 }
3042 
3043 /**
3044  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3045  * @chip: nand chip info structure
3046  * @buf: buffer to store read data
3047  * @oob_required: caller requires OOB data read to chip->oob_poi
3048  * @page: page number to read
3049  *
3050  * The hw generator calculates the error syndrome automatically. Therefore we
3051  * need a special oob layout and handling.
3052  */
3053 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3054 				   int oob_required, int page)
3055 {
3056 	struct mtd_info *mtd = nand_to_mtd(chip);
3057 	int ret, i, eccsize = chip->ecc.size;
3058 	int eccbytes = chip->ecc.bytes;
3059 	int eccsteps = chip->ecc.steps;
3060 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3061 	uint8_t *p = buf;
3062 	uint8_t *oob = chip->oob_poi;
3063 	unsigned int max_bitflips = 0;
3064 
3065 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3066 	if (ret)
3067 		return ret;
3068 
3069 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3070 		int stat;
3071 
3072 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3073 
3074 		ret = nand_read_data_op(chip, p, eccsize, false);
3075 		if (ret)
3076 			return ret;
3077 
3078 		if (chip->ecc.prepad) {
3079 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3080 						false);
3081 			if (ret)
3082 				return ret;
3083 
3084 			oob += chip->ecc.prepad;
3085 		}
3086 
3087 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3088 
3089 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3090 		if (ret)
3091 			return ret;
3092 
3093 		stat = chip->ecc.correct(chip, p, oob, NULL);
3094 
3095 		oob += eccbytes;
3096 
3097 		if (chip->ecc.postpad) {
3098 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3099 						false);
3100 			if (ret)
3101 				return ret;
3102 
3103 			oob += chip->ecc.postpad;
3104 		}
3105 
3106 		if (stat == -EBADMSG &&
3107 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3108 			/* check for empty pages with bitflips */
3109 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3110 							   oob - eccpadbytes,
3111 							   eccpadbytes,
3112 							   NULL, 0,
3113 							   chip->ecc.strength);
3114 		}
3115 
3116 		if (stat < 0) {
3117 			mtd->ecc_stats.failed++;
3118 		} else {
3119 			mtd->ecc_stats.corrected += stat;
3120 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3121 		}
3122 	}
3123 
3124 	/* Calculate remaining oob bytes */
3125 	i = mtd->oobsize - (oob - chip->oob_poi);
3126 	if (i) {
3127 		ret = nand_read_data_op(chip, oob, i, false);
3128 		if (ret)
3129 			return ret;
3130 	}
3131 
3132 	return max_bitflips;
3133 }
3134 
3135 /**
3136  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3137  * @chip: NAND chip object
3138  * @oob: oob destination address
3139  * @ops: oob ops structure
3140  * @len: size of oob to transfer
3141  */
3142 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3143 				  struct mtd_oob_ops *ops, size_t len)
3144 {
3145 	struct mtd_info *mtd = nand_to_mtd(chip);
3146 	int ret;
3147 
3148 	switch (ops->mode) {
3149 
3150 	case MTD_OPS_PLACE_OOB:
3151 	case MTD_OPS_RAW:
3152 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3153 		return oob + len;
3154 
3155 	case MTD_OPS_AUTO_OOB:
3156 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3157 						  ops->ooboffs, len);
3158 		BUG_ON(ret);
3159 		return oob + len;
3160 
3161 	default:
3162 		BUG();
3163 	}
3164 	return NULL;
3165 }
3166 
3167 /**
3168  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3169  * @chip: NAND chip object
3170  * @retry_mode: the retry mode to use
3171  *
3172  * Some vendors supply a special command to shift the Vt threshold, to be used
3173  * when there are too many bitflips in a page (i.e., ECC error). After setting
3174  * a new threshold, the host should retry reading the page.
3175  */
3176 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3177 {
3178 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3179 
3180 	if (retry_mode >= chip->read_retries)
3181 		return -EINVAL;
3182 
3183 	if (!chip->setup_read_retry)
3184 		return -EOPNOTSUPP;
3185 
3186 	return chip->setup_read_retry(chip, retry_mode);
3187 }
3188 
3189 static void nand_wait_readrdy(struct nand_chip *chip)
3190 {
3191 	const struct nand_sdr_timings *sdr;
3192 
3193 	if (!(chip->options & NAND_NEED_READRDY))
3194 		return;
3195 
3196 	sdr = nand_get_sdr_timings(&chip->data_interface);
3197 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3198 }
3199 
3200 /**
3201  * nand_do_read_ops - [INTERN] Read data with ECC
3202  * @chip: NAND chip object
3203  * @from: offset to read from
3204  * @ops: oob ops structure
3205  *
3206  * Internal function. Called with chip held.
3207  */
3208 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3209 			    struct mtd_oob_ops *ops)
3210 {
3211 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3212 	struct mtd_info *mtd = nand_to_mtd(chip);
3213 	int ret = 0;
3214 	uint32_t readlen = ops->len;
3215 	uint32_t oobreadlen = ops->ooblen;
3216 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3217 
3218 	uint8_t *bufpoi, *oob, *buf;
3219 	int use_bounce_buf;
3220 	unsigned int max_bitflips = 0;
3221 	int retry_mode = 0;
3222 	bool ecc_fail = false;
3223 
3224 	chipnr = (int)(from >> chip->chip_shift);
3225 	nand_select_target(chip, chipnr);
3226 
3227 	realpage = (int)(from >> chip->page_shift);
3228 	page = realpage & chip->pagemask;
3229 
3230 	col = (int)(from & (mtd->writesize - 1));
3231 
3232 	buf = ops->datbuf;
3233 	oob = ops->oobbuf;
3234 	oob_required = oob ? 1 : 0;
3235 
3236 	while (1) {
3237 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3238 
3239 		bytes = min(mtd->writesize - col, readlen);
3240 		aligned = (bytes == mtd->writesize);
3241 
3242 		if (!aligned)
3243 			use_bounce_buf = 1;
3244 		else if (chip->options & NAND_USES_DMA)
3245 			use_bounce_buf = !virt_addr_valid(buf) ||
3246 					 !IS_ALIGNED((unsigned long)buf,
3247 						     chip->buf_align);
3248 		else
3249 			use_bounce_buf = 0;
3250 
3251 		/* Is the current page in the buffer? */
3252 		if (realpage != chip->pagecache.page || oob) {
3253 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3254 
3255 			if (use_bounce_buf && aligned)
3256 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3257 						 __func__, buf);
3258 
3259 read_retry:
3260 			/*
3261 			 * Now read the page into the buffer.  Absent an error,
3262 			 * the read methods return max bitflips per ecc step.
3263 			 */
3264 			if (unlikely(ops->mode == MTD_OPS_RAW))
3265 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3266 							      oob_required,
3267 							      page);
3268 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3269 				 !oob)
3270 				ret = chip->ecc.read_subpage(chip, col, bytes,
3271 							     bufpoi, page);
3272 			else
3273 				ret = chip->ecc.read_page(chip, bufpoi,
3274 							  oob_required, page);
3275 			if (ret < 0) {
3276 				if (use_bounce_buf)
3277 					/* Invalidate page cache */
3278 					chip->pagecache.page = -1;
3279 				break;
3280 			}
3281 
3282 			/*
3283 			 * Copy back the data in the initial buffer when reading
3284 			 * partial pages or when a bounce buffer is required.
3285 			 */
3286 			if (use_bounce_buf) {
3287 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3288 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3289 				    (ops->mode != MTD_OPS_RAW)) {
3290 					chip->pagecache.page = realpage;
3291 					chip->pagecache.bitflips = ret;
3292 				} else {
3293 					/* Invalidate page cache */
3294 					chip->pagecache.page = -1;
3295 				}
3296 				memcpy(buf, bufpoi + col, bytes);
3297 			}
3298 
3299 			if (unlikely(oob)) {
3300 				int toread = min(oobreadlen, max_oobsize);
3301 
3302 				if (toread) {
3303 					oob = nand_transfer_oob(chip, oob, ops,
3304 								toread);
3305 					oobreadlen -= toread;
3306 				}
3307 			}
3308 
3309 			nand_wait_readrdy(chip);
3310 
3311 			if (mtd->ecc_stats.failed - ecc_failures) {
3312 				if (retry_mode + 1 < chip->read_retries) {
3313 					retry_mode++;
3314 					ret = nand_setup_read_retry(chip,
3315 							retry_mode);
3316 					if (ret < 0)
3317 						break;
3318 
3319 					/* Reset failures; retry */
3320 					mtd->ecc_stats.failed = ecc_failures;
3321 					goto read_retry;
3322 				} else {
3323 					/* No more retry modes; real failure */
3324 					ecc_fail = true;
3325 				}
3326 			}
3327 
3328 			buf += bytes;
3329 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3330 		} else {
3331 			memcpy(buf, chip->data_buf + col, bytes);
3332 			buf += bytes;
3333 			max_bitflips = max_t(unsigned int, max_bitflips,
3334 					     chip->pagecache.bitflips);
3335 		}
3336 
3337 		readlen -= bytes;
3338 
3339 		/* Reset to retry mode 0 */
3340 		if (retry_mode) {
3341 			ret = nand_setup_read_retry(chip, 0);
3342 			if (ret < 0)
3343 				break;
3344 			retry_mode = 0;
3345 		}
3346 
3347 		if (!readlen)
3348 			break;
3349 
3350 		/* For subsequent reads align to page boundary */
3351 		col = 0;
3352 		/* Increment page address */
3353 		realpage++;
3354 
3355 		page = realpage & chip->pagemask;
3356 		/* Check, if we cross a chip boundary */
3357 		if (!page) {
3358 			chipnr++;
3359 			nand_deselect_target(chip);
3360 			nand_select_target(chip, chipnr);
3361 		}
3362 	}
3363 	nand_deselect_target(chip);
3364 
3365 	ops->retlen = ops->len - (size_t) readlen;
3366 	if (oob)
3367 		ops->oobretlen = ops->ooblen - oobreadlen;
3368 
3369 	if (ret < 0)
3370 		return ret;
3371 
3372 	if (ecc_fail)
3373 		return -EBADMSG;
3374 
3375 	return max_bitflips;
3376 }
3377 
3378 /**
3379  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3380  * @chip: nand chip info structure
3381  * @page: page number to read
3382  */
3383 int nand_read_oob_std(struct nand_chip *chip, int page)
3384 {
3385 	struct mtd_info *mtd = nand_to_mtd(chip);
3386 
3387 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3388 }
3389 EXPORT_SYMBOL(nand_read_oob_std);
3390 
3391 /**
3392  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3393  *			    with syndromes
3394  * @chip: nand chip info structure
3395  * @page: page number to read
3396  */
3397 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3398 {
3399 	struct mtd_info *mtd = nand_to_mtd(chip);
3400 	int length = mtd->oobsize;
3401 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3402 	int eccsize = chip->ecc.size;
3403 	uint8_t *bufpoi = chip->oob_poi;
3404 	int i, toread, sndrnd = 0, pos, ret;
3405 
3406 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3407 	if (ret)
3408 		return ret;
3409 
3410 	for (i = 0; i < chip->ecc.steps; i++) {
3411 		if (sndrnd) {
3412 			int ret;
3413 
3414 			pos = eccsize + i * (eccsize + chunk);
3415 			if (mtd->writesize > 512)
3416 				ret = nand_change_read_column_op(chip, pos,
3417 								 NULL, 0,
3418 								 false);
3419 			else
3420 				ret = nand_read_page_op(chip, page, pos, NULL,
3421 							0);
3422 
3423 			if (ret)
3424 				return ret;
3425 		} else
3426 			sndrnd = 1;
3427 		toread = min_t(int, length, chunk);
3428 
3429 		ret = nand_read_data_op(chip, bufpoi, toread, false);
3430 		if (ret)
3431 			return ret;
3432 
3433 		bufpoi += toread;
3434 		length -= toread;
3435 	}
3436 	if (length > 0) {
3437 		ret = nand_read_data_op(chip, bufpoi, length, false);
3438 		if (ret)
3439 			return ret;
3440 	}
3441 
3442 	return 0;
3443 }
3444 
3445 /**
3446  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3447  * @chip: nand chip info structure
3448  * @page: page number to write
3449  */
3450 int nand_write_oob_std(struct nand_chip *chip, int page)
3451 {
3452 	struct mtd_info *mtd = nand_to_mtd(chip);
3453 
3454 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3455 				 mtd->oobsize);
3456 }
3457 EXPORT_SYMBOL(nand_write_oob_std);
3458 
3459 /**
3460  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3461  *			     with syndrome - only for large page flash
3462  * @chip: nand chip info structure
3463  * @page: page number to write
3464  */
3465 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3466 {
3467 	struct mtd_info *mtd = nand_to_mtd(chip);
3468 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3469 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3470 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3471 	const uint8_t *bufpoi = chip->oob_poi;
3472 
3473 	/*
3474 	 * data-ecc-data-ecc ... ecc-oob
3475 	 * or
3476 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3477 	 */
3478 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3479 		pos = steps * (eccsize + chunk);
3480 		steps = 0;
3481 	} else
3482 		pos = eccsize;
3483 
3484 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3485 	if (ret)
3486 		return ret;
3487 
3488 	for (i = 0; i < steps; i++) {
3489 		if (sndcmd) {
3490 			if (mtd->writesize <= 512) {
3491 				uint32_t fill = 0xFFFFFFFF;
3492 
3493 				len = eccsize;
3494 				while (len > 0) {
3495 					int num = min_t(int, len, 4);
3496 
3497 					ret = nand_write_data_op(chip, &fill,
3498 								 num, false);
3499 					if (ret)
3500 						return ret;
3501 
3502 					len -= num;
3503 				}
3504 			} else {
3505 				pos = eccsize + i * (eccsize + chunk);
3506 				ret = nand_change_write_column_op(chip, pos,
3507 								  NULL, 0,
3508 								  false);
3509 				if (ret)
3510 					return ret;
3511 			}
3512 		} else
3513 			sndcmd = 1;
3514 		len = min_t(int, length, chunk);
3515 
3516 		ret = nand_write_data_op(chip, bufpoi, len, false);
3517 		if (ret)
3518 			return ret;
3519 
3520 		bufpoi += len;
3521 		length -= len;
3522 	}
3523 	if (length > 0) {
3524 		ret = nand_write_data_op(chip, bufpoi, length, false);
3525 		if (ret)
3526 			return ret;
3527 	}
3528 
3529 	return nand_prog_page_end_op(chip);
3530 }
3531 
3532 /**
3533  * nand_do_read_oob - [INTERN] NAND read out-of-band
3534  * @chip: NAND chip object
3535  * @from: offset to read from
3536  * @ops: oob operations description structure
3537  *
3538  * NAND read out-of-band data from the spare area.
3539  */
3540 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3541 			    struct mtd_oob_ops *ops)
3542 {
3543 	struct mtd_info *mtd = nand_to_mtd(chip);
3544 	unsigned int max_bitflips = 0;
3545 	int page, realpage, chipnr;
3546 	struct mtd_ecc_stats stats;
3547 	int readlen = ops->ooblen;
3548 	int len;
3549 	uint8_t *buf = ops->oobbuf;
3550 	int ret = 0;
3551 
3552 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3553 			__func__, (unsigned long long)from, readlen);
3554 
3555 	stats = mtd->ecc_stats;
3556 
3557 	len = mtd_oobavail(mtd, ops);
3558 
3559 	chipnr = (int)(from >> chip->chip_shift);
3560 	nand_select_target(chip, chipnr);
3561 
3562 	/* Shift to get page */
3563 	realpage = (int)(from >> chip->page_shift);
3564 	page = realpage & chip->pagemask;
3565 
3566 	while (1) {
3567 		if (ops->mode == MTD_OPS_RAW)
3568 			ret = chip->ecc.read_oob_raw(chip, page);
3569 		else
3570 			ret = chip->ecc.read_oob(chip, page);
3571 
3572 		if (ret < 0)
3573 			break;
3574 
3575 		len = min(len, readlen);
3576 		buf = nand_transfer_oob(chip, buf, ops, len);
3577 
3578 		nand_wait_readrdy(chip);
3579 
3580 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3581 
3582 		readlen -= len;
3583 		if (!readlen)
3584 			break;
3585 
3586 		/* Increment page address */
3587 		realpage++;
3588 
3589 		page = realpage & chip->pagemask;
3590 		/* Check, if we cross a chip boundary */
3591 		if (!page) {
3592 			chipnr++;
3593 			nand_deselect_target(chip);
3594 			nand_select_target(chip, chipnr);
3595 		}
3596 	}
3597 	nand_deselect_target(chip);
3598 
3599 	ops->oobretlen = ops->ooblen - readlen;
3600 
3601 	if (ret < 0)
3602 		return ret;
3603 
3604 	if (mtd->ecc_stats.failed - stats.failed)
3605 		return -EBADMSG;
3606 
3607 	return max_bitflips;
3608 }
3609 
3610 /**
3611  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3612  * @mtd: MTD device structure
3613  * @from: offset to read from
3614  * @ops: oob operation description structure
3615  *
3616  * NAND read data and/or out-of-band data.
3617  */
3618 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3619 			 struct mtd_oob_ops *ops)
3620 {
3621 	struct nand_chip *chip = mtd_to_nand(mtd);
3622 	int ret;
3623 
3624 	ops->retlen = 0;
3625 
3626 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3627 	    ops->mode != MTD_OPS_AUTO_OOB &&
3628 	    ops->mode != MTD_OPS_RAW)
3629 		return -ENOTSUPP;
3630 
3631 	ret = nand_get_device(chip);
3632 	if (ret)
3633 		return ret;
3634 
3635 	if (!ops->datbuf)
3636 		ret = nand_do_read_oob(chip, from, ops);
3637 	else
3638 		ret = nand_do_read_ops(chip, from, ops);
3639 
3640 	nand_release_device(chip);
3641 	return ret;
3642 }
3643 
3644 /**
3645  * nand_write_page_raw_notsupp - dummy raw page write function
3646  * @chip: nand chip info structure
3647  * @buf: data buffer
3648  * @oob_required: must write chip->oob_poi to OOB
3649  * @page: page number to write
3650  *
3651  * Returns -ENOTSUPP unconditionally.
3652  */
3653 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3654 				int oob_required, int page)
3655 {
3656 	return -ENOTSUPP;
3657 }
3658 
3659 /**
3660  * nand_write_page_raw - [INTERN] raw page write function
3661  * @chip: nand chip info structure
3662  * @buf: data buffer
3663  * @oob_required: must write chip->oob_poi to OOB
3664  * @page: page number to write
3665  *
3666  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3667  */
3668 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3669 			int oob_required, int page)
3670 {
3671 	struct mtd_info *mtd = nand_to_mtd(chip);
3672 	int ret;
3673 
3674 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3675 	if (ret)
3676 		return ret;
3677 
3678 	if (oob_required) {
3679 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3680 					 false);
3681 		if (ret)
3682 			return ret;
3683 	}
3684 
3685 	return nand_prog_page_end_op(chip);
3686 }
3687 EXPORT_SYMBOL(nand_write_page_raw);
3688 
3689 /**
3690  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3691  * @chip: nand chip info structure
3692  * @buf: data buffer
3693  * @oob_required: must write chip->oob_poi to OOB
3694  * @page: page number to write
3695  *
3696  * We need a special oob layout and handling even when ECC isn't checked.
3697  */
3698 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3699 					const uint8_t *buf, int oob_required,
3700 					int page)
3701 {
3702 	struct mtd_info *mtd = nand_to_mtd(chip);
3703 	int eccsize = chip->ecc.size;
3704 	int eccbytes = chip->ecc.bytes;
3705 	uint8_t *oob = chip->oob_poi;
3706 	int steps, size, ret;
3707 
3708 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3709 	if (ret)
3710 		return ret;
3711 
3712 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3713 		ret = nand_write_data_op(chip, buf, eccsize, false);
3714 		if (ret)
3715 			return ret;
3716 
3717 		buf += eccsize;
3718 
3719 		if (chip->ecc.prepad) {
3720 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3721 						 false);
3722 			if (ret)
3723 				return ret;
3724 
3725 			oob += chip->ecc.prepad;
3726 		}
3727 
3728 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3729 		if (ret)
3730 			return ret;
3731 
3732 		oob += eccbytes;
3733 
3734 		if (chip->ecc.postpad) {
3735 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3736 						 false);
3737 			if (ret)
3738 				return ret;
3739 
3740 			oob += chip->ecc.postpad;
3741 		}
3742 	}
3743 
3744 	size = mtd->oobsize - (oob - chip->oob_poi);
3745 	if (size) {
3746 		ret = nand_write_data_op(chip, oob, size, false);
3747 		if (ret)
3748 			return ret;
3749 	}
3750 
3751 	return nand_prog_page_end_op(chip);
3752 }
3753 /**
3754  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3755  * @chip: nand chip info structure
3756  * @buf: data buffer
3757  * @oob_required: must write chip->oob_poi to OOB
3758  * @page: page number to write
3759  */
3760 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3761 				 int oob_required, int page)
3762 {
3763 	struct mtd_info *mtd = nand_to_mtd(chip);
3764 	int i, eccsize = chip->ecc.size, ret;
3765 	int eccbytes = chip->ecc.bytes;
3766 	int eccsteps = chip->ecc.steps;
3767 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3768 	const uint8_t *p = buf;
3769 
3770 	/* Software ECC calculation */
3771 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3772 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3773 
3774 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3775 					 chip->ecc.total);
3776 	if (ret)
3777 		return ret;
3778 
3779 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3780 }
3781 
3782 /**
3783  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3784  * @chip: nand chip info structure
3785  * @buf: data buffer
3786  * @oob_required: must write chip->oob_poi to OOB
3787  * @page: page number to write
3788  */
3789 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3790 				 int oob_required, int page)
3791 {
3792 	struct mtd_info *mtd = nand_to_mtd(chip);
3793 	int i, eccsize = chip->ecc.size, ret;
3794 	int eccbytes = chip->ecc.bytes;
3795 	int eccsteps = chip->ecc.steps;
3796 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3797 	const uint8_t *p = buf;
3798 
3799 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3800 	if (ret)
3801 		return ret;
3802 
3803 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3804 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3805 
3806 		ret = nand_write_data_op(chip, p, eccsize, false);
3807 		if (ret)
3808 			return ret;
3809 
3810 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3811 	}
3812 
3813 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3814 					 chip->ecc.total);
3815 	if (ret)
3816 		return ret;
3817 
3818 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3819 	if (ret)
3820 		return ret;
3821 
3822 	return nand_prog_page_end_op(chip);
3823 }
3824 
3825 
3826 /**
3827  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3828  * @chip:	nand chip info structure
3829  * @offset:	column address of subpage within the page
3830  * @data_len:	data length
3831  * @buf:	data buffer
3832  * @oob_required: must write chip->oob_poi to OOB
3833  * @page: page number to write
3834  */
3835 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3836 				    uint32_t data_len, const uint8_t *buf,
3837 				    int oob_required, int page)
3838 {
3839 	struct mtd_info *mtd = nand_to_mtd(chip);
3840 	uint8_t *oob_buf  = chip->oob_poi;
3841 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3842 	int ecc_size      = chip->ecc.size;
3843 	int ecc_bytes     = chip->ecc.bytes;
3844 	int ecc_steps     = chip->ecc.steps;
3845 	uint32_t start_step = offset / ecc_size;
3846 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3847 	int oob_bytes       = mtd->oobsize / ecc_steps;
3848 	int step, ret;
3849 
3850 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3851 	if (ret)
3852 		return ret;
3853 
3854 	for (step = 0; step < ecc_steps; step++) {
3855 		/* configure controller for WRITE access */
3856 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3857 
3858 		/* write data (untouched subpages already masked by 0xFF) */
3859 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3860 		if (ret)
3861 			return ret;
3862 
3863 		/* mask ECC of un-touched subpages by padding 0xFF */
3864 		if ((step < start_step) || (step > end_step))
3865 			memset(ecc_calc, 0xff, ecc_bytes);
3866 		else
3867 			chip->ecc.calculate(chip, buf, ecc_calc);
3868 
3869 		/* mask OOB of un-touched subpages by padding 0xFF */
3870 		/* if oob_required, preserve OOB metadata of written subpage */
3871 		if (!oob_required || (step < start_step) || (step > end_step))
3872 			memset(oob_buf, 0xff, oob_bytes);
3873 
3874 		buf += ecc_size;
3875 		ecc_calc += ecc_bytes;
3876 		oob_buf  += oob_bytes;
3877 	}
3878 
3879 	/* copy calculated ECC for whole page to chip->buffer->oob */
3880 	/* this include masked-value(0xFF) for unwritten subpages */
3881 	ecc_calc = chip->ecc.calc_buf;
3882 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3883 					 chip->ecc.total);
3884 	if (ret)
3885 		return ret;
3886 
3887 	/* write OOB buffer to NAND device */
3888 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3889 	if (ret)
3890 		return ret;
3891 
3892 	return nand_prog_page_end_op(chip);
3893 }
3894 
3895 
3896 /**
3897  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3898  * @chip: nand chip info structure
3899  * @buf: data buffer
3900  * @oob_required: must write chip->oob_poi to OOB
3901  * @page: page number to write
3902  *
3903  * The hw generator calculates the error syndrome automatically. Therefore we
3904  * need a special oob layout and handling.
3905  */
3906 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3907 				    int oob_required, int page)
3908 {
3909 	struct mtd_info *mtd = nand_to_mtd(chip);
3910 	int i, eccsize = chip->ecc.size;
3911 	int eccbytes = chip->ecc.bytes;
3912 	int eccsteps = chip->ecc.steps;
3913 	const uint8_t *p = buf;
3914 	uint8_t *oob = chip->oob_poi;
3915 	int ret;
3916 
3917 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3918 	if (ret)
3919 		return ret;
3920 
3921 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3922 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3923 
3924 		ret = nand_write_data_op(chip, p, eccsize, false);
3925 		if (ret)
3926 			return ret;
3927 
3928 		if (chip->ecc.prepad) {
3929 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3930 						 false);
3931 			if (ret)
3932 				return ret;
3933 
3934 			oob += chip->ecc.prepad;
3935 		}
3936 
3937 		chip->ecc.calculate(chip, p, oob);
3938 
3939 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3940 		if (ret)
3941 			return ret;
3942 
3943 		oob += eccbytes;
3944 
3945 		if (chip->ecc.postpad) {
3946 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3947 						 false);
3948 			if (ret)
3949 				return ret;
3950 
3951 			oob += chip->ecc.postpad;
3952 		}
3953 	}
3954 
3955 	/* Calculate remaining oob bytes */
3956 	i = mtd->oobsize - (oob - chip->oob_poi);
3957 	if (i) {
3958 		ret = nand_write_data_op(chip, oob, i, false);
3959 		if (ret)
3960 			return ret;
3961 	}
3962 
3963 	return nand_prog_page_end_op(chip);
3964 }
3965 
3966 /**
3967  * nand_write_page - write one page
3968  * @chip: NAND chip descriptor
3969  * @offset: address offset within the page
3970  * @data_len: length of actual data to be written
3971  * @buf: the data to write
3972  * @oob_required: must write chip->oob_poi to OOB
3973  * @page: page number to write
3974  * @raw: use _raw version of write_page
3975  */
3976 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3977 			   int data_len, const uint8_t *buf, int oob_required,
3978 			   int page, int raw)
3979 {
3980 	struct mtd_info *mtd = nand_to_mtd(chip);
3981 	int status, subpage;
3982 
3983 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3984 		chip->ecc.write_subpage)
3985 		subpage = offset || (data_len < mtd->writesize);
3986 	else
3987 		subpage = 0;
3988 
3989 	if (unlikely(raw))
3990 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
3991 						  page);
3992 	else if (subpage)
3993 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3994 						 oob_required, page);
3995 	else
3996 		status = chip->ecc.write_page(chip, buf, oob_required, page);
3997 
3998 	if (status < 0)
3999 		return status;
4000 
4001 	return 0;
4002 }
4003 
4004 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4005 
4006 /**
4007  * nand_do_write_ops - [INTERN] NAND write with ECC
4008  * @chip: NAND chip object
4009  * @to: offset to write to
4010  * @ops: oob operations description structure
4011  *
4012  * NAND write with ECC.
4013  */
4014 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4015 			     struct mtd_oob_ops *ops)
4016 {
4017 	struct mtd_info *mtd = nand_to_mtd(chip);
4018 	int chipnr, realpage, page, column;
4019 	uint32_t writelen = ops->len;
4020 
4021 	uint32_t oobwritelen = ops->ooblen;
4022 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4023 
4024 	uint8_t *oob = ops->oobbuf;
4025 	uint8_t *buf = ops->datbuf;
4026 	int ret;
4027 	int oob_required = oob ? 1 : 0;
4028 
4029 	ops->retlen = 0;
4030 	if (!writelen)
4031 		return 0;
4032 
4033 	/* Reject writes, which are not page aligned */
4034 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4035 		pr_notice("%s: attempt to write non page aligned data\n",
4036 			   __func__);
4037 		return -EINVAL;
4038 	}
4039 
4040 	column = to & (mtd->writesize - 1);
4041 
4042 	chipnr = (int)(to >> chip->chip_shift);
4043 	nand_select_target(chip, chipnr);
4044 
4045 	/* Check, if it is write protected */
4046 	if (nand_check_wp(chip)) {
4047 		ret = -EIO;
4048 		goto err_out;
4049 	}
4050 
4051 	realpage = (int)(to >> chip->page_shift);
4052 	page = realpage & chip->pagemask;
4053 
4054 	/* Invalidate the page cache, when we write to the cached page */
4055 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4056 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4057 		chip->pagecache.page = -1;
4058 
4059 	/* Don't allow multipage oob writes with offset */
4060 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4061 		ret = -EINVAL;
4062 		goto err_out;
4063 	}
4064 
4065 	while (1) {
4066 		int bytes = mtd->writesize;
4067 		uint8_t *wbuf = buf;
4068 		int use_bounce_buf;
4069 		int part_pagewr = (column || writelen < mtd->writesize);
4070 
4071 		if (part_pagewr)
4072 			use_bounce_buf = 1;
4073 		else if (chip->options & NAND_USES_DMA)
4074 			use_bounce_buf = !virt_addr_valid(buf) ||
4075 					 !IS_ALIGNED((unsigned long)buf,
4076 						     chip->buf_align);
4077 		else
4078 			use_bounce_buf = 0;
4079 
4080 		/*
4081 		 * Copy the data from the initial buffer when doing partial page
4082 		 * writes or when a bounce buffer is required.
4083 		 */
4084 		if (use_bounce_buf) {
4085 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4086 					 __func__, buf);
4087 			if (part_pagewr)
4088 				bytes = min_t(int, bytes - column, writelen);
4089 			wbuf = nand_get_data_buf(chip);
4090 			memset(wbuf, 0xff, mtd->writesize);
4091 			memcpy(&wbuf[column], buf, bytes);
4092 		}
4093 
4094 		if (unlikely(oob)) {
4095 			size_t len = min(oobwritelen, oobmaxlen);
4096 			oob = nand_fill_oob(chip, oob, len, ops);
4097 			oobwritelen -= len;
4098 		} else {
4099 			/* We still need to erase leftover OOB data */
4100 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4101 		}
4102 
4103 		ret = nand_write_page(chip, column, bytes, wbuf,
4104 				      oob_required, page,
4105 				      (ops->mode == MTD_OPS_RAW));
4106 		if (ret)
4107 			break;
4108 
4109 		writelen -= bytes;
4110 		if (!writelen)
4111 			break;
4112 
4113 		column = 0;
4114 		buf += bytes;
4115 		realpage++;
4116 
4117 		page = realpage & chip->pagemask;
4118 		/* Check, if we cross a chip boundary */
4119 		if (!page) {
4120 			chipnr++;
4121 			nand_deselect_target(chip);
4122 			nand_select_target(chip, chipnr);
4123 		}
4124 	}
4125 
4126 	ops->retlen = ops->len - writelen;
4127 	if (unlikely(oob))
4128 		ops->oobretlen = ops->ooblen;
4129 
4130 err_out:
4131 	nand_deselect_target(chip);
4132 	return ret;
4133 }
4134 
4135 /**
4136  * panic_nand_write - [MTD Interface] NAND write with ECC
4137  * @mtd: MTD device structure
4138  * @to: offset to write to
4139  * @len: number of bytes to write
4140  * @retlen: pointer to variable to store the number of written bytes
4141  * @buf: the data to write
4142  *
4143  * NAND write with ECC. Used when performing writes in interrupt context, this
4144  * may for example be called by mtdoops when writing an oops while in panic.
4145  */
4146 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4147 			    size_t *retlen, const uint8_t *buf)
4148 {
4149 	struct nand_chip *chip = mtd_to_nand(mtd);
4150 	int chipnr = (int)(to >> chip->chip_shift);
4151 	struct mtd_oob_ops ops;
4152 	int ret;
4153 
4154 	nand_select_target(chip, chipnr);
4155 
4156 	/* Wait for the device to get ready */
4157 	panic_nand_wait(chip, 400);
4158 
4159 	memset(&ops, 0, sizeof(ops));
4160 	ops.len = len;
4161 	ops.datbuf = (uint8_t *)buf;
4162 	ops.mode = MTD_OPS_PLACE_OOB;
4163 
4164 	ret = nand_do_write_ops(chip, to, &ops);
4165 
4166 	*retlen = ops.retlen;
4167 	return ret;
4168 }
4169 
4170 /**
4171  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4172  * @mtd: MTD device structure
4173  * @to: offset to write to
4174  * @ops: oob operation description structure
4175  */
4176 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4177 			  struct mtd_oob_ops *ops)
4178 {
4179 	struct nand_chip *chip = mtd_to_nand(mtd);
4180 	int ret;
4181 
4182 	ops->retlen = 0;
4183 
4184 	ret = nand_get_device(chip);
4185 	if (ret)
4186 		return ret;
4187 
4188 	switch (ops->mode) {
4189 	case MTD_OPS_PLACE_OOB:
4190 	case MTD_OPS_AUTO_OOB:
4191 	case MTD_OPS_RAW:
4192 		break;
4193 
4194 	default:
4195 		goto out;
4196 	}
4197 
4198 	if (!ops->datbuf)
4199 		ret = nand_do_write_oob(chip, to, ops);
4200 	else
4201 		ret = nand_do_write_ops(chip, to, ops);
4202 
4203 out:
4204 	nand_release_device(chip);
4205 	return ret;
4206 }
4207 
4208 /**
4209  * nand_erase - [MTD Interface] erase block(s)
4210  * @mtd: MTD device structure
4211  * @instr: erase instruction
4212  *
4213  * Erase one ore more blocks.
4214  */
4215 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4216 {
4217 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4218 }
4219 
4220 /**
4221  * nand_erase_nand - [INTERN] erase block(s)
4222  * @chip: NAND chip object
4223  * @instr: erase instruction
4224  * @allowbbt: allow erasing the bbt area
4225  *
4226  * Erase one ore more blocks.
4227  */
4228 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4229 		    int allowbbt)
4230 {
4231 	int page, pages_per_block, ret, chipnr;
4232 	loff_t len;
4233 
4234 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4235 			__func__, (unsigned long long)instr->addr,
4236 			(unsigned long long)instr->len);
4237 
4238 	if (check_offs_len(chip, instr->addr, instr->len))
4239 		return -EINVAL;
4240 
4241 	/* Grab the lock and see if the device is available */
4242 	ret = nand_get_device(chip);
4243 	if (ret)
4244 		return ret;
4245 
4246 	/* Shift to get first page */
4247 	page = (int)(instr->addr >> chip->page_shift);
4248 	chipnr = (int)(instr->addr >> chip->chip_shift);
4249 
4250 	/* Calculate pages in each block */
4251 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4252 
4253 	/* Select the NAND device */
4254 	nand_select_target(chip, chipnr);
4255 
4256 	/* Check, if it is write protected */
4257 	if (nand_check_wp(chip)) {
4258 		pr_debug("%s: device is write protected!\n",
4259 				__func__);
4260 		ret = -EIO;
4261 		goto erase_exit;
4262 	}
4263 
4264 	/* Loop through the pages */
4265 	len = instr->len;
4266 
4267 	while (len) {
4268 		/* Check if we have a bad block, we do not erase bad blocks! */
4269 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4270 					chip->page_shift, allowbbt)) {
4271 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4272 				    __func__, page);
4273 			ret = -EIO;
4274 			goto erase_exit;
4275 		}
4276 
4277 		/*
4278 		 * Invalidate the page cache, if we erase the block which
4279 		 * contains the current cached page.
4280 		 */
4281 		if (page <= chip->pagecache.page && chip->pagecache.page <
4282 		    (page + pages_per_block))
4283 			chip->pagecache.page = -1;
4284 
4285 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4286 				    (chip->phys_erase_shift - chip->page_shift));
4287 		if (ret) {
4288 			pr_debug("%s: failed erase, page 0x%08x\n",
4289 					__func__, page);
4290 			instr->fail_addr =
4291 				((loff_t)page << chip->page_shift);
4292 			goto erase_exit;
4293 		}
4294 
4295 		/* Increment page address and decrement length */
4296 		len -= (1ULL << chip->phys_erase_shift);
4297 		page += pages_per_block;
4298 
4299 		/* Check, if we cross a chip boundary */
4300 		if (len && !(page & chip->pagemask)) {
4301 			chipnr++;
4302 			nand_deselect_target(chip);
4303 			nand_select_target(chip, chipnr);
4304 		}
4305 	}
4306 
4307 	ret = 0;
4308 erase_exit:
4309 
4310 	/* Deselect and wake up anyone waiting on the device */
4311 	nand_deselect_target(chip);
4312 	nand_release_device(chip);
4313 
4314 	/* Return more or less happy */
4315 	return ret;
4316 }
4317 
4318 /**
4319  * nand_sync - [MTD Interface] sync
4320  * @mtd: MTD device structure
4321  *
4322  * Sync is actually a wait for chip ready function.
4323  */
4324 static void nand_sync(struct mtd_info *mtd)
4325 {
4326 	struct nand_chip *chip = mtd_to_nand(mtd);
4327 
4328 	pr_debug("%s: called\n", __func__);
4329 
4330 	/* Grab the lock and see if the device is available */
4331 	WARN_ON(nand_get_device(chip));
4332 	/* Release it and go back */
4333 	nand_release_device(chip);
4334 }
4335 
4336 /**
4337  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4338  * @mtd: MTD device structure
4339  * @offs: offset relative to mtd start
4340  */
4341 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4342 {
4343 	struct nand_chip *chip = mtd_to_nand(mtd);
4344 	int chipnr = (int)(offs >> chip->chip_shift);
4345 	int ret;
4346 
4347 	/* Select the NAND device */
4348 	ret = nand_get_device(chip);
4349 	if (ret)
4350 		return ret;
4351 
4352 	nand_select_target(chip, chipnr);
4353 
4354 	ret = nand_block_checkbad(chip, offs, 0);
4355 
4356 	nand_deselect_target(chip);
4357 	nand_release_device(chip);
4358 
4359 	return ret;
4360 }
4361 
4362 /**
4363  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4364  * @mtd: MTD device structure
4365  * @ofs: offset relative to mtd start
4366  */
4367 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4368 {
4369 	int ret;
4370 
4371 	ret = nand_block_isbad(mtd, ofs);
4372 	if (ret) {
4373 		/* If it was bad already, return success and do nothing */
4374 		if (ret > 0)
4375 			return 0;
4376 		return ret;
4377 	}
4378 
4379 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4380 }
4381 
4382 /**
4383  * nand_suspend - [MTD Interface] Suspend the NAND flash
4384  * @mtd: MTD device structure
4385  *
4386  * Returns 0 for success or negative error code otherwise.
4387  */
4388 static int nand_suspend(struct mtd_info *mtd)
4389 {
4390 	struct nand_chip *chip = mtd_to_nand(mtd);
4391 	int ret = 0;
4392 
4393 	mutex_lock(&chip->lock);
4394 	if (chip->suspend)
4395 		ret = chip->suspend(chip);
4396 	if (!ret)
4397 		chip->suspended = 1;
4398 	mutex_unlock(&chip->lock);
4399 
4400 	return ret;
4401 }
4402 
4403 /**
4404  * nand_resume - [MTD Interface] Resume the NAND flash
4405  * @mtd: MTD device structure
4406  */
4407 static void nand_resume(struct mtd_info *mtd)
4408 {
4409 	struct nand_chip *chip = mtd_to_nand(mtd);
4410 
4411 	mutex_lock(&chip->lock);
4412 	if (chip->suspended) {
4413 		if (chip->resume)
4414 			chip->resume(chip);
4415 		chip->suspended = 0;
4416 	} else {
4417 		pr_err("%s called for a chip which is not in suspended state\n",
4418 			__func__);
4419 	}
4420 	mutex_unlock(&chip->lock);
4421 }
4422 
4423 /**
4424  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4425  *                 prevent further operations
4426  * @mtd: MTD device structure
4427  */
4428 static void nand_shutdown(struct mtd_info *mtd)
4429 {
4430 	nand_suspend(mtd);
4431 }
4432 
4433 /**
4434  * nand_lock - [MTD Interface] Lock the NAND flash
4435  * @mtd: MTD device structure
4436  * @ofs: offset byte address
4437  * @len: number of bytes to lock (must be a multiple of block/page size)
4438  */
4439 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4440 {
4441 	struct nand_chip *chip = mtd_to_nand(mtd);
4442 
4443 	if (!chip->lock_area)
4444 		return -ENOTSUPP;
4445 
4446 	return chip->lock_area(chip, ofs, len);
4447 }
4448 
4449 /**
4450  * nand_unlock - [MTD Interface] Unlock the NAND flash
4451  * @mtd: MTD device structure
4452  * @ofs: offset byte address
4453  * @len: number of bytes to unlock (must be a multiple of block/page size)
4454  */
4455 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4456 {
4457 	struct nand_chip *chip = mtd_to_nand(mtd);
4458 
4459 	if (!chip->unlock_area)
4460 		return -ENOTSUPP;
4461 
4462 	return chip->unlock_area(chip, ofs, len);
4463 }
4464 
4465 /* Set default functions */
4466 static void nand_set_defaults(struct nand_chip *chip)
4467 {
4468 	/* If no controller is provided, use the dummy, legacy one. */
4469 	if (!chip->controller) {
4470 		chip->controller = &chip->legacy.dummy_controller;
4471 		nand_controller_init(chip->controller);
4472 	}
4473 
4474 	nand_legacy_set_defaults(chip);
4475 
4476 	if (!chip->buf_align)
4477 		chip->buf_align = 1;
4478 }
4479 
4480 /* Sanitize ONFI strings so we can safely print them */
4481 void sanitize_string(uint8_t *s, size_t len)
4482 {
4483 	ssize_t i;
4484 
4485 	/* Null terminate */
4486 	s[len - 1] = 0;
4487 
4488 	/* Remove non printable chars */
4489 	for (i = 0; i < len - 1; i++) {
4490 		if (s[i] < ' ' || s[i] > 127)
4491 			s[i] = '?';
4492 	}
4493 
4494 	/* Remove trailing spaces */
4495 	strim(s);
4496 }
4497 
4498 /*
4499  * nand_id_has_period - Check if an ID string has a given wraparound period
4500  * @id_data: the ID string
4501  * @arrlen: the length of the @id_data array
4502  * @period: the period of repitition
4503  *
4504  * Check if an ID string is repeated within a given sequence of bytes at
4505  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4506  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4507  * if the repetition has a period of @period; otherwise, returns zero.
4508  */
4509 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4510 {
4511 	int i, j;
4512 	for (i = 0; i < period; i++)
4513 		for (j = i + period; j < arrlen; j += period)
4514 			if (id_data[i] != id_data[j])
4515 				return 0;
4516 	return 1;
4517 }
4518 
4519 /*
4520  * nand_id_len - Get the length of an ID string returned by CMD_READID
4521  * @id_data: the ID string
4522  * @arrlen: the length of the @id_data array
4523 
4524  * Returns the length of the ID string, according to known wraparound/trailing
4525  * zero patterns. If no pattern exists, returns the length of the array.
4526  */
4527 static int nand_id_len(u8 *id_data, int arrlen)
4528 {
4529 	int last_nonzero, period;
4530 
4531 	/* Find last non-zero byte */
4532 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4533 		if (id_data[last_nonzero])
4534 			break;
4535 
4536 	/* All zeros */
4537 	if (last_nonzero < 0)
4538 		return 0;
4539 
4540 	/* Calculate wraparound period */
4541 	for (period = 1; period < arrlen; period++)
4542 		if (nand_id_has_period(id_data, arrlen, period))
4543 			break;
4544 
4545 	/* There's a repeated pattern */
4546 	if (period < arrlen)
4547 		return period;
4548 
4549 	/* There are trailing zeros */
4550 	if (last_nonzero < arrlen - 1)
4551 		return last_nonzero + 1;
4552 
4553 	/* No pattern detected */
4554 	return arrlen;
4555 }
4556 
4557 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4558 static int nand_get_bits_per_cell(u8 cellinfo)
4559 {
4560 	int bits;
4561 
4562 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4563 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4564 	return bits + 1;
4565 }
4566 
4567 /*
4568  * Many new NAND share similar device ID codes, which represent the size of the
4569  * chip. The rest of the parameters must be decoded according to generic or
4570  * manufacturer-specific "extended ID" decoding patterns.
4571  */
4572 void nand_decode_ext_id(struct nand_chip *chip)
4573 {
4574 	struct nand_memory_organization *memorg;
4575 	struct mtd_info *mtd = nand_to_mtd(chip);
4576 	int extid;
4577 	u8 *id_data = chip->id.data;
4578 
4579 	memorg = nanddev_get_memorg(&chip->base);
4580 
4581 	/* The 3rd id byte holds MLC / multichip data */
4582 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4583 	/* The 4th id byte is the important one */
4584 	extid = id_data[3];
4585 
4586 	/* Calc pagesize */
4587 	memorg->pagesize = 1024 << (extid & 0x03);
4588 	mtd->writesize = memorg->pagesize;
4589 	extid >>= 2;
4590 	/* Calc oobsize */
4591 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4592 	mtd->oobsize = memorg->oobsize;
4593 	extid >>= 2;
4594 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4595 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4596 				       memorg->pagesize;
4597 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4598 	extid >>= 2;
4599 	/* Get buswidth information */
4600 	if (extid & 0x1)
4601 		chip->options |= NAND_BUSWIDTH_16;
4602 }
4603 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4604 
4605 /*
4606  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4607  * decodes a matching ID table entry and assigns the MTD size parameters for
4608  * the chip.
4609  */
4610 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4611 {
4612 	struct mtd_info *mtd = nand_to_mtd(chip);
4613 	struct nand_memory_organization *memorg;
4614 
4615 	memorg = nanddev_get_memorg(&chip->base);
4616 
4617 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4618 	mtd->erasesize = type->erasesize;
4619 	memorg->pagesize = type->pagesize;
4620 	mtd->writesize = memorg->pagesize;
4621 	memorg->oobsize = memorg->pagesize / 32;
4622 	mtd->oobsize = memorg->oobsize;
4623 
4624 	/* All legacy ID NAND are small-page, SLC */
4625 	memorg->bits_per_cell = 1;
4626 }
4627 
4628 /*
4629  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4630  * heuristic patterns using various detected parameters (e.g., manufacturer,
4631  * page size, cell-type information).
4632  */
4633 static void nand_decode_bbm_options(struct nand_chip *chip)
4634 {
4635 	struct mtd_info *mtd = nand_to_mtd(chip);
4636 
4637 	/* Set the bad block position */
4638 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4639 		chip->badblockpos = NAND_BBM_POS_LARGE;
4640 	else
4641 		chip->badblockpos = NAND_BBM_POS_SMALL;
4642 }
4643 
4644 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4645 {
4646 	return type->id_len;
4647 }
4648 
4649 static bool find_full_id_nand(struct nand_chip *chip,
4650 			      struct nand_flash_dev *type)
4651 {
4652 	struct mtd_info *mtd = nand_to_mtd(chip);
4653 	struct nand_memory_organization *memorg;
4654 	u8 *id_data = chip->id.data;
4655 
4656 	memorg = nanddev_get_memorg(&chip->base);
4657 
4658 	if (!strncmp(type->id, id_data, type->id_len)) {
4659 		memorg->pagesize = type->pagesize;
4660 		mtd->writesize = memorg->pagesize;
4661 		memorg->pages_per_eraseblock = type->erasesize /
4662 					       type->pagesize;
4663 		mtd->erasesize = type->erasesize;
4664 		memorg->oobsize = type->oobsize;
4665 		mtd->oobsize = memorg->oobsize;
4666 
4667 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4668 		memorg->eraseblocks_per_lun =
4669 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4670 					   memorg->pagesize *
4671 					   memorg->pages_per_eraseblock);
4672 		chip->options |= type->options;
4673 		chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4674 		chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4675 		chip->onfi_timing_mode_default =
4676 					type->onfi_timing_mode_default;
4677 
4678 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4679 		if (!chip->parameters.model)
4680 			return false;
4681 
4682 		return true;
4683 	}
4684 	return false;
4685 }
4686 
4687 /*
4688  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4689  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4690  * table.
4691  */
4692 static void nand_manufacturer_detect(struct nand_chip *chip)
4693 {
4694 	/*
4695 	 * Try manufacturer detection if available and use
4696 	 * nand_decode_ext_id() otherwise.
4697 	 */
4698 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4699 	    chip->manufacturer.desc->ops->detect) {
4700 		struct nand_memory_organization *memorg;
4701 
4702 		memorg = nanddev_get_memorg(&chip->base);
4703 
4704 		/* The 3rd id byte holds MLC / multichip data */
4705 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4706 		chip->manufacturer.desc->ops->detect(chip);
4707 	} else {
4708 		nand_decode_ext_id(chip);
4709 	}
4710 }
4711 
4712 /*
4713  * Manufacturer initialization. This function is called for all NANDs including
4714  * ONFI and JEDEC compliant ones.
4715  * Manufacturer drivers should put all their specific initialization code in
4716  * their ->init() hook.
4717  */
4718 static int nand_manufacturer_init(struct nand_chip *chip)
4719 {
4720 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4721 	    !chip->manufacturer.desc->ops->init)
4722 		return 0;
4723 
4724 	return chip->manufacturer.desc->ops->init(chip);
4725 }
4726 
4727 /*
4728  * Manufacturer cleanup. This function is called for all NANDs including
4729  * ONFI and JEDEC compliant ones.
4730  * Manufacturer drivers should put all their specific cleanup code in their
4731  * ->cleanup() hook.
4732  */
4733 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4734 {
4735 	/* Release manufacturer private data */
4736 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4737 	    chip->manufacturer.desc->ops->cleanup)
4738 		chip->manufacturer.desc->ops->cleanup(chip);
4739 }
4740 
4741 static const char *
4742 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4743 {
4744 	return manufacturer ? manufacturer->name : "Unknown";
4745 }
4746 
4747 /*
4748  * Get the flash and manufacturer id and lookup if the type is supported.
4749  */
4750 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4751 {
4752 	const struct nand_manufacturer *manufacturer;
4753 	struct mtd_info *mtd = nand_to_mtd(chip);
4754 	struct nand_memory_organization *memorg;
4755 	int busw, ret;
4756 	u8 *id_data = chip->id.data;
4757 	u8 maf_id, dev_id;
4758 	u64 targetsize;
4759 
4760 	/*
4761 	 * Let's start by initializing memorg fields that might be left
4762 	 * unassigned by the ID-based detection logic.
4763 	 */
4764 	memorg = nanddev_get_memorg(&chip->base);
4765 	memorg->planes_per_lun = 1;
4766 	memorg->luns_per_target = 1;
4767 
4768 	/*
4769 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4770 	 * after power-up.
4771 	 */
4772 	ret = nand_reset(chip, 0);
4773 	if (ret)
4774 		return ret;
4775 
4776 	/* Select the device */
4777 	nand_select_target(chip, 0);
4778 
4779 	/* Send the command for reading device ID */
4780 	ret = nand_readid_op(chip, 0, id_data, 2);
4781 	if (ret)
4782 		return ret;
4783 
4784 	/* Read manufacturer and device IDs */
4785 	maf_id = id_data[0];
4786 	dev_id = id_data[1];
4787 
4788 	/*
4789 	 * Try again to make sure, as some systems the bus-hold or other
4790 	 * interface concerns can cause random data which looks like a
4791 	 * possibly credible NAND flash to appear. If the two results do
4792 	 * not match, ignore the device completely.
4793 	 */
4794 
4795 	/* Read entire ID string */
4796 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4797 	if (ret)
4798 		return ret;
4799 
4800 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4801 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4802 			maf_id, dev_id, id_data[0], id_data[1]);
4803 		return -ENODEV;
4804 	}
4805 
4806 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4807 
4808 	/* Try to identify manufacturer */
4809 	manufacturer = nand_get_manufacturer(maf_id);
4810 	chip->manufacturer.desc = manufacturer;
4811 
4812 	if (!type)
4813 		type = nand_flash_ids;
4814 
4815 	/*
4816 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4817 	 * override it.
4818 	 * This is required to make sure initial NAND bus width set by the
4819 	 * NAND controller driver is coherent with the real NAND bus width
4820 	 * (extracted by auto-detection code).
4821 	 */
4822 	busw = chip->options & NAND_BUSWIDTH_16;
4823 
4824 	/*
4825 	 * The flag is only set (never cleared), reset it to its default value
4826 	 * before starting auto-detection.
4827 	 */
4828 	chip->options &= ~NAND_BUSWIDTH_16;
4829 
4830 	for (; type->name != NULL; type++) {
4831 		if (is_full_id_nand(type)) {
4832 			if (find_full_id_nand(chip, type))
4833 				goto ident_done;
4834 		} else if (dev_id == type->dev_id) {
4835 			break;
4836 		}
4837 	}
4838 
4839 	if (!type->name || !type->pagesize) {
4840 		/* Check if the chip is ONFI compliant */
4841 		ret = nand_onfi_detect(chip);
4842 		if (ret < 0)
4843 			return ret;
4844 		else if (ret)
4845 			goto ident_done;
4846 
4847 		/* Check if the chip is JEDEC compliant */
4848 		ret = nand_jedec_detect(chip);
4849 		if (ret < 0)
4850 			return ret;
4851 		else if (ret)
4852 			goto ident_done;
4853 	}
4854 
4855 	if (!type->name)
4856 		return -ENODEV;
4857 
4858 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4859 	if (!chip->parameters.model)
4860 		return -ENOMEM;
4861 
4862 	if (!type->pagesize)
4863 		nand_manufacturer_detect(chip);
4864 	else
4865 		nand_decode_id(chip, type);
4866 
4867 	/* Get chip options */
4868 	chip->options |= type->options;
4869 
4870 	memorg->eraseblocks_per_lun =
4871 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4872 					   memorg->pagesize *
4873 					   memorg->pages_per_eraseblock);
4874 
4875 ident_done:
4876 	if (!mtd->name)
4877 		mtd->name = chip->parameters.model;
4878 
4879 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4880 		WARN_ON(busw & NAND_BUSWIDTH_16);
4881 		nand_set_defaults(chip);
4882 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4883 		/*
4884 		 * Check, if buswidth is correct. Hardware drivers should set
4885 		 * chip correct!
4886 		 */
4887 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4888 			maf_id, dev_id);
4889 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4890 			mtd->name);
4891 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4892 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4893 		ret = -EINVAL;
4894 
4895 		goto free_detect_allocation;
4896 	}
4897 
4898 	nand_decode_bbm_options(chip);
4899 
4900 	/* Calculate the address shift from the page size */
4901 	chip->page_shift = ffs(mtd->writesize) - 1;
4902 	/* Convert chipsize to number of pages per chip -1 */
4903 	targetsize = nanddev_target_size(&chip->base);
4904 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
4905 
4906 	chip->bbt_erase_shift = chip->phys_erase_shift =
4907 		ffs(mtd->erasesize) - 1;
4908 	if (targetsize & 0xffffffff)
4909 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
4910 	else {
4911 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4912 		chip->chip_shift += 32 - 1;
4913 	}
4914 
4915 	if (chip->chip_shift - chip->page_shift > 16)
4916 		chip->options |= NAND_ROW_ADDR_3;
4917 
4918 	chip->badblockbits = 8;
4919 
4920 	nand_legacy_adjust_cmdfunc(chip);
4921 
4922 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4923 		maf_id, dev_id);
4924 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4925 		chip->parameters.model);
4926 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4927 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4928 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4929 	return 0;
4930 
4931 free_detect_allocation:
4932 	kfree(chip->parameters.model);
4933 
4934 	return ret;
4935 }
4936 
4937 static const char * const nand_ecc_modes[] = {
4938 	[NAND_ECC_NONE]		= "none",
4939 	[NAND_ECC_SOFT]		= "soft",
4940 	[NAND_ECC_HW]		= "hw",
4941 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
4942 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
4943 	[NAND_ECC_ON_DIE]	= "on-die",
4944 };
4945 
4946 static int of_get_nand_ecc_mode(struct device_node *np)
4947 {
4948 	const char *pm;
4949 	int err, i;
4950 
4951 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4952 	if (err < 0)
4953 		return err;
4954 
4955 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4956 		if (!strcasecmp(pm, nand_ecc_modes[i]))
4957 			return i;
4958 
4959 	/*
4960 	 * For backward compatibility we support few obsoleted values that don't
4961 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
4962 	 * with other enums).
4963 	 */
4964 	if (!strcasecmp(pm, "soft_bch"))
4965 		return NAND_ECC_SOFT;
4966 
4967 	return -ENODEV;
4968 }
4969 
4970 static const char * const nand_ecc_algos[] = {
4971 	[NAND_ECC_HAMMING]	= "hamming",
4972 	[NAND_ECC_BCH]		= "bch",
4973 	[NAND_ECC_RS]		= "rs",
4974 };
4975 
4976 static int of_get_nand_ecc_algo(struct device_node *np)
4977 {
4978 	const char *pm;
4979 	int err, i;
4980 
4981 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
4982 	if (!err) {
4983 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4984 			if (!strcasecmp(pm, nand_ecc_algos[i]))
4985 				return i;
4986 		return -ENODEV;
4987 	}
4988 
4989 	/*
4990 	 * For backward compatibility we also read "nand-ecc-mode" checking
4991 	 * for some obsoleted values that were specifying ECC algorithm.
4992 	 */
4993 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4994 	if (err < 0)
4995 		return err;
4996 
4997 	if (!strcasecmp(pm, "soft"))
4998 		return NAND_ECC_HAMMING;
4999 	else if (!strcasecmp(pm, "soft_bch"))
5000 		return NAND_ECC_BCH;
5001 
5002 	return -ENODEV;
5003 }
5004 
5005 static int of_get_nand_ecc_step_size(struct device_node *np)
5006 {
5007 	int ret;
5008 	u32 val;
5009 
5010 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5011 	return ret ? ret : val;
5012 }
5013 
5014 static int of_get_nand_ecc_strength(struct device_node *np)
5015 {
5016 	int ret;
5017 	u32 val;
5018 
5019 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5020 	return ret ? ret : val;
5021 }
5022 
5023 static int of_get_nand_bus_width(struct device_node *np)
5024 {
5025 	u32 val;
5026 
5027 	if (of_property_read_u32(np, "nand-bus-width", &val))
5028 		return 8;
5029 
5030 	switch (val) {
5031 	case 8:
5032 	case 16:
5033 		return val;
5034 	default:
5035 		return -EIO;
5036 	}
5037 }
5038 
5039 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5040 {
5041 	return of_property_read_bool(np, "nand-on-flash-bbt");
5042 }
5043 
5044 static int nand_dt_init(struct nand_chip *chip)
5045 {
5046 	struct device_node *dn = nand_get_flash_node(chip);
5047 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5048 
5049 	if (!dn)
5050 		return 0;
5051 
5052 	if (of_get_nand_bus_width(dn) == 16)
5053 		chip->options |= NAND_BUSWIDTH_16;
5054 
5055 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5056 		chip->options |= NAND_IS_BOOT_MEDIUM;
5057 
5058 	if (of_get_nand_on_flash_bbt(dn))
5059 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5060 
5061 	ecc_mode = of_get_nand_ecc_mode(dn);
5062 	ecc_algo = of_get_nand_ecc_algo(dn);
5063 	ecc_strength = of_get_nand_ecc_strength(dn);
5064 	ecc_step = of_get_nand_ecc_step_size(dn);
5065 
5066 	if (ecc_mode >= 0)
5067 		chip->ecc.mode = ecc_mode;
5068 
5069 	if (ecc_algo >= 0)
5070 		chip->ecc.algo = ecc_algo;
5071 
5072 	if (ecc_strength >= 0)
5073 		chip->ecc.strength = ecc_strength;
5074 
5075 	if (ecc_step > 0)
5076 		chip->ecc.size = ecc_step;
5077 
5078 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
5079 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
5080 
5081 	return 0;
5082 }
5083 
5084 /**
5085  * nand_scan_ident - Scan for the NAND device
5086  * @chip: NAND chip object
5087  * @maxchips: number of chips to scan for
5088  * @table: alternative NAND ID table
5089  *
5090  * This is the first phase of the normal nand_scan() function. It reads the
5091  * flash ID and sets up MTD fields accordingly.
5092  *
5093  * This helper used to be called directly from controller drivers that needed
5094  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5095  * prevented dynamic allocations during this phase which was unconvenient and
5096  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5097  */
5098 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5099 			   struct nand_flash_dev *table)
5100 {
5101 	struct mtd_info *mtd = nand_to_mtd(chip);
5102 	struct nand_memory_organization *memorg;
5103 	int nand_maf_id, nand_dev_id;
5104 	unsigned int i;
5105 	int ret;
5106 
5107 	memorg = nanddev_get_memorg(&chip->base);
5108 
5109 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5110 	chip->cur_cs = -1;
5111 
5112 	mutex_init(&chip->lock);
5113 
5114 	/* Enforce the right timings for reset/detection */
5115 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5116 
5117 	ret = nand_dt_init(chip);
5118 	if (ret)
5119 		return ret;
5120 
5121 	if (!mtd->name && mtd->dev.parent)
5122 		mtd->name = dev_name(mtd->dev.parent);
5123 
5124 	/* Set the default functions */
5125 	nand_set_defaults(chip);
5126 
5127 	ret = nand_legacy_check_hooks(chip);
5128 	if (ret)
5129 		return ret;
5130 
5131 	memorg->ntargets = maxchips;
5132 
5133 	/* Read the flash type */
5134 	ret = nand_detect(chip, table);
5135 	if (ret) {
5136 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5137 			pr_warn("No NAND device found\n");
5138 		nand_deselect_target(chip);
5139 		return ret;
5140 	}
5141 
5142 	nand_maf_id = chip->id.data[0];
5143 	nand_dev_id = chip->id.data[1];
5144 
5145 	nand_deselect_target(chip);
5146 
5147 	/* Check for a chip array */
5148 	for (i = 1; i < maxchips; i++) {
5149 		u8 id[2];
5150 
5151 		/* See comment in nand_get_flash_type for reset */
5152 		ret = nand_reset(chip, i);
5153 		if (ret)
5154 			break;
5155 
5156 		nand_select_target(chip, i);
5157 		/* Send the command for reading device ID */
5158 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5159 		if (ret)
5160 			break;
5161 		/* Read manufacturer and device IDs */
5162 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5163 			nand_deselect_target(chip);
5164 			break;
5165 		}
5166 		nand_deselect_target(chip);
5167 	}
5168 	if (i > 1)
5169 		pr_info("%d chips detected\n", i);
5170 
5171 	/* Store the number of chips and calc total size for mtd */
5172 	memorg->ntargets = i;
5173 	mtd->size = i * nanddev_target_size(&chip->base);
5174 
5175 	return 0;
5176 }
5177 
5178 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5179 {
5180 	kfree(chip->parameters.model);
5181 	kfree(chip->parameters.onfi);
5182 }
5183 
5184 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5185 {
5186 	struct mtd_info *mtd = nand_to_mtd(chip);
5187 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5188 
5189 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5190 		return -EINVAL;
5191 
5192 	switch (ecc->algo) {
5193 	case NAND_ECC_HAMMING:
5194 		ecc->calculate = nand_calculate_ecc;
5195 		ecc->correct = nand_correct_data;
5196 		ecc->read_page = nand_read_page_swecc;
5197 		ecc->read_subpage = nand_read_subpage;
5198 		ecc->write_page = nand_write_page_swecc;
5199 		ecc->read_page_raw = nand_read_page_raw;
5200 		ecc->write_page_raw = nand_write_page_raw;
5201 		ecc->read_oob = nand_read_oob_std;
5202 		ecc->write_oob = nand_write_oob_std;
5203 		if (!ecc->size)
5204 			ecc->size = 256;
5205 		ecc->bytes = 3;
5206 		ecc->strength = 1;
5207 
5208 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5209 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5210 
5211 		return 0;
5212 	case NAND_ECC_BCH:
5213 		if (!mtd_nand_has_bch()) {
5214 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5215 			return -EINVAL;
5216 		}
5217 		ecc->calculate = nand_bch_calculate_ecc;
5218 		ecc->correct = nand_bch_correct_data;
5219 		ecc->read_page = nand_read_page_swecc;
5220 		ecc->read_subpage = nand_read_subpage;
5221 		ecc->write_page = nand_write_page_swecc;
5222 		ecc->read_page_raw = nand_read_page_raw;
5223 		ecc->write_page_raw = nand_write_page_raw;
5224 		ecc->read_oob = nand_read_oob_std;
5225 		ecc->write_oob = nand_write_oob_std;
5226 
5227 		/*
5228 		* Board driver should supply ecc.size and ecc.strength
5229 		* values to select how many bits are correctable.
5230 		* Otherwise, default to 4 bits for large page devices.
5231 		*/
5232 		if (!ecc->size && (mtd->oobsize >= 64)) {
5233 			ecc->size = 512;
5234 			ecc->strength = 4;
5235 		}
5236 
5237 		/*
5238 		 * if no ecc placement scheme was provided pickup the default
5239 		 * large page one.
5240 		 */
5241 		if (!mtd->ooblayout) {
5242 			/* handle large page devices only */
5243 			if (mtd->oobsize < 64) {
5244 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5245 				return -EINVAL;
5246 			}
5247 
5248 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5249 
5250 		}
5251 
5252 		/*
5253 		 * We can only maximize ECC config when the default layout is
5254 		 * used, otherwise we don't know how many bytes can really be
5255 		 * used.
5256 		 */
5257 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5258 		    ecc->options & NAND_ECC_MAXIMIZE) {
5259 			int steps, bytes;
5260 
5261 			/* Always prefer 1k blocks over 512bytes ones */
5262 			ecc->size = 1024;
5263 			steps = mtd->writesize / ecc->size;
5264 
5265 			/* Reserve 2 bytes for the BBM */
5266 			bytes = (mtd->oobsize - 2) / steps;
5267 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5268 		}
5269 
5270 		/* See nand_bch_init() for details. */
5271 		ecc->bytes = 0;
5272 		ecc->priv = nand_bch_init(mtd);
5273 		if (!ecc->priv) {
5274 			WARN(1, "BCH ECC initialization failed!\n");
5275 			return -EINVAL;
5276 		}
5277 		return 0;
5278 	default:
5279 		WARN(1, "Unsupported ECC algorithm!\n");
5280 		return -EINVAL;
5281 	}
5282 }
5283 
5284 /**
5285  * nand_check_ecc_caps - check the sanity of preset ECC settings
5286  * @chip: nand chip info structure
5287  * @caps: ECC caps info structure
5288  * @oobavail: OOB size that the ECC engine can use
5289  *
5290  * When ECC step size and strength are already set, check if they are supported
5291  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5292  * On success, the calculated ECC bytes is set.
5293  */
5294 static int
5295 nand_check_ecc_caps(struct nand_chip *chip,
5296 		    const struct nand_ecc_caps *caps, int oobavail)
5297 {
5298 	struct mtd_info *mtd = nand_to_mtd(chip);
5299 	const struct nand_ecc_step_info *stepinfo;
5300 	int preset_step = chip->ecc.size;
5301 	int preset_strength = chip->ecc.strength;
5302 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5303 	int i, j;
5304 
5305 	for (i = 0; i < caps->nstepinfos; i++) {
5306 		stepinfo = &caps->stepinfos[i];
5307 
5308 		if (stepinfo->stepsize != preset_step)
5309 			continue;
5310 
5311 		for (j = 0; j < stepinfo->nstrengths; j++) {
5312 			if (stepinfo->strengths[j] != preset_strength)
5313 				continue;
5314 
5315 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5316 							 preset_strength);
5317 			if (WARN_ON_ONCE(ecc_bytes < 0))
5318 				return ecc_bytes;
5319 
5320 			if (ecc_bytes * nsteps > oobavail) {
5321 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5322 				       preset_step, preset_strength);
5323 				return -ENOSPC;
5324 			}
5325 
5326 			chip->ecc.bytes = ecc_bytes;
5327 
5328 			return 0;
5329 		}
5330 	}
5331 
5332 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5333 	       preset_step, preset_strength);
5334 
5335 	return -ENOTSUPP;
5336 }
5337 
5338 /**
5339  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5340  * @chip: nand chip info structure
5341  * @caps: ECC engine caps info structure
5342  * @oobavail: OOB size that the ECC engine can use
5343  *
5344  * If a chip's ECC requirement is provided, try to meet it with the least
5345  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5346  * On success, the chosen ECC settings are set.
5347  */
5348 static int
5349 nand_match_ecc_req(struct nand_chip *chip,
5350 		   const struct nand_ecc_caps *caps, int oobavail)
5351 {
5352 	struct mtd_info *mtd = nand_to_mtd(chip);
5353 	const struct nand_ecc_step_info *stepinfo;
5354 	int req_step = chip->base.eccreq.step_size;
5355 	int req_strength = chip->base.eccreq.strength;
5356 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5357 	int best_step, best_strength, best_ecc_bytes;
5358 	int best_ecc_bytes_total = INT_MAX;
5359 	int i, j;
5360 
5361 	/* No information provided by the NAND chip */
5362 	if (!req_step || !req_strength)
5363 		return -ENOTSUPP;
5364 
5365 	/* number of correctable bits the chip requires in a page */
5366 	req_corr = mtd->writesize / req_step * req_strength;
5367 
5368 	for (i = 0; i < caps->nstepinfos; i++) {
5369 		stepinfo = &caps->stepinfos[i];
5370 		step_size = stepinfo->stepsize;
5371 
5372 		for (j = 0; j < stepinfo->nstrengths; j++) {
5373 			strength = stepinfo->strengths[j];
5374 
5375 			/*
5376 			 * If both step size and strength are smaller than the
5377 			 * chip's requirement, it is not easy to compare the
5378 			 * resulted reliability.
5379 			 */
5380 			if (step_size < req_step && strength < req_strength)
5381 				continue;
5382 
5383 			if (mtd->writesize % step_size)
5384 				continue;
5385 
5386 			nsteps = mtd->writesize / step_size;
5387 
5388 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5389 			if (WARN_ON_ONCE(ecc_bytes < 0))
5390 				continue;
5391 			ecc_bytes_total = ecc_bytes * nsteps;
5392 
5393 			if (ecc_bytes_total > oobavail ||
5394 			    strength * nsteps < req_corr)
5395 				continue;
5396 
5397 			/*
5398 			 * We assume the best is to meet the chip's requrement
5399 			 * with the least number of ECC bytes.
5400 			 */
5401 			if (ecc_bytes_total < best_ecc_bytes_total) {
5402 				best_ecc_bytes_total = ecc_bytes_total;
5403 				best_step = step_size;
5404 				best_strength = strength;
5405 				best_ecc_bytes = ecc_bytes;
5406 			}
5407 		}
5408 	}
5409 
5410 	if (best_ecc_bytes_total == INT_MAX)
5411 		return -ENOTSUPP;
5412 
5413 	chip->ecc.size = best_step;
5414 	chip->ecc.strength = best_strength;
5415 	chip->ecc.bytes = best_ecc_bytes;
5416 
5417 	return 0;
5418 }
5419 
5420 /**
5421  * nand_maximize_ecc - choose the max ECC strength available
5422  * @chip: nand chip info structure
5423  * @caps: ECC engine caps info structure
5424  * @oobavail: OOB size that the ECC engine can use
5425  *
5426  * Choose the max ECC strength that is supported on the controller, and can fit
5427  * within the chip's OOB.  On success, the chosen ECC settings are set.
5428  */
5429 static int
5430 nand_maximize_ecc(struct nand_chip *chip,
5431 		  const struct nand_ecc_caps *caps, int oobavail)
5432 {
5433 	struct mtd_info *mtd = nand_to_mtd(chip);
5434 	const struct nand_ecc_step_info *stepinfo;
5435 	int step_size, strength, nsteps, ecc_bytes, corr;
5436 	int best_corr = 0;
5437 	int best_step = 0;
5438 	int best_strength, best_ecc_bytes;
5439 	int i, j;
5440 
5441 	for (i = 0; i < caps->nstepinfos; i++) {
5442 		stepinfo = &caps->stepinfos[i];
5443 		step_size = stepinfo->stepsize;
5444 
5445 		/* If chip->ecc.size is already set, respect it */
5446 		if (chip->ecc.size && step_size != chip->ecc.size)
5447 			continue;
5448 
5449 		for (j = 0; j < stepinfo->nstrengths; j++) {
5450 			strength = stepinfo->strengths[j];
5451 
5452 			if (mtd->writesize % step_size)
5453 				continue;
5454 
5455 			nsteps = mtd->writesize / step_size;
5456 
5457 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5458 			if (WARN_ON_ONCE(ecc_bytes < 0))
5459 				continue;
5460 
5461 			if (ecc_bytes * nsteps > oobavail)
5462 				continue;
5463 
5464 			corr = strength * nsteps;
5465 
5466 			/*
5467 			 * If the number of correctable bits is the same,
5468 			 * bigger step_size has more reliability.
5469 			 */
5470 			if (corr > best_corr ||
5471 			    (corr == best_corr && step_size > best_step)) {
5472 				best_corr = corr;
5473 				best_step = step_size;
5474 				best_strength = strength;
5475 				best_ecc_bytes = ecc_bytes;
5476 			}
5477 		}
5478 	}
5479 
5480 	if (!best_corr)
5481 		return -ENOTSUPP;
5482 
5483 	chip->ecc.size = best_step;
5484 	chip->ecc.strength = best_strength;
5485 	chip->ecc.bytes = best_ecc_bytes;
5486 
5487 	return 0;
5488 }
5489 
5490 /**
5491  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5492  * @chip: nand chip info structure
5493  * @caps: ECC engine caps info structure
5494  * @oobavail: OOB size that the ECC engine can use
5495  *
5496  * Choose the ECC configuration according to following logic
5497  *
5498  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5499  *    then check if it is supported by this controller.
5500  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5501  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5502  *    to the chip's requirement. If available OOB size can't fit the chip
5503  *    requirement then fallback to the maximum ECC step size and ECC strength.
5504  *
5505  * On success, the chosen ECC settings are set.
5506  */
5507 int nand_ecc_choose_conf(struct nand_chip *chip,
5508 			 const struct nand_ecc_caps *caps, int oobavail)
5509 {
5510 	struct mtd_info *mtd = nand_to_mtd(chip);
5511 
5512 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5513 		return -EINVAL;
5514 
5515 	if (chip->ecc.size && chip->ecc.strength)
5516 		return nand_check_ecc_caps(chip, caps, oobavail);
5517 
5518 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5519 		return nand_maximize_ecc(chip, caps, oobavail);
5520 
5521 	if (!nand_match_ecc_req(chip, caps, oobavail))
5522 		return 0;
5523 
5524 	return nand_maximize_ecc(chip, caps, oobavail);
5525 }
5526 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5527 
5528 /*
5529  * Check if the chip configuration meet the datasheet requirements.
5530 
5531  * If our configuration corrects A bits per B bytes and the minimum
5532  * required correction level is X bits per Y bytes, then we must ensure
5533  * both of the following are true:
5534  *
5535  * (1) A / B >= X / Y
5536  * (2) A >= X
5537  *
5538  * Requirement (1) ensures we can correct for the required bitflip density.
5539  * Requirement (2) ensures we can correct even when all bitflips are clumped
5540  * in the same sector.
5541  */
5542 static bool nand_ecc_strength_good(struct nand_chip *chip)
5543 {
5544 	struct mtd_info *mtd = nand_to_mtd(chip);
5545 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5546 	int corr, ds_corr;
5547 
5548 	if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5549 		/* Not enough information */
5550 		return true;
5551 
5552 	/*
5553 	 * We get the number of corrected bits per page to compare
5554 	 * the correction density.
5555 	 */
5556 	corr = (mtd->writesize * ecc->strength) / ecc->size;
5557 	ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5558 		  chip->base.eccreq.step_size;
5559 
5560 	return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5561 }
5562 
5563 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5564 {
5565 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5566 					      base);
5567 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5568 	int ret;
5569 
5570 	eb >>= nand->rowconv.eraseblock_addr_shift;
5571 
5572 	nand_select_target(chip, pos->target);
5573 	ret = nand_erase_op(chip, eb);
5574 	nand_deselect_target(chip);
5575 
5576 	return ret;
5577 }
5578 
5579 static int rawnand_markbad(struct nand_device *nand,
5580 			   const struct nand_pos *pos)
5581 {
5582 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5583 					      base);
5584 
5585 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5586 }
5587 
5588 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5589 {
5590 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5591 					      base);
5592 	int ret;
5593 
5594 	nand_select_target(chip, pos->target);
5595 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5596 	nand_deselect_target(chip);
5597 
5598 	return ret;
5599 }
5600 
5601 static const struct nand_ops rawnand_ops = {
5602 	.erase = rawnand_erase,
5603 	.markbad = rawnand_markbad,
5604 	.isbad = rawnand_isbad,
5605 };
5606 
5607 /**
5608  * nand_scan_tail - Scan for the NAND device
5609  * @chip: NAND chip object
5610  *
5611  * This is the second phase of the normal nand_scan() function. It fills out
5612  * all the uninitialized function pointers with the defaults and scans for a
5613  * bad block table if appropriate.
5614  */
5615 static int nand_scan_tail(struct nand_chip *chip)
5616 {
5617 	struct mtd_info *mtd = nand_to_mtd(chip);
5618 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5619 	int ret, i;
5620 
5621 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5622 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5623 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5624 		return -EINVAL;
5625 	}
5626 
5627 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5628 	if (!chip->data_buf)
5629 		return -ENOMEM;
5630 
5631 	/*
5632 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5633 	 * selected when manufacturer->init() is called. They should be fixed
5634 	 * to explictly select the relevant die when interacting with the NAND
5635 	 * chip.
5636 	 */
5637 	nand_select_target(chip, 0);
5638 	ret = nand_manufacturer_init(chip);
5639 	nand_deselect_target(chip);
5640 	if (ret)
5641 		goto err_free_buf;
5642 
5643 	/* Set the internal oob buffer location, just after the page data */
5644 	chip->oob_poi = chip->data_buf + mtd->writesize;
5645 
5646 	/*
5647 	 * If no default placement scheme is given, select an appropriate one.
5648 	 */
5649 	if (!mtd->ooblayout &&
5650 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5651 		switch (mtd->oobsize) {
5652 		case 8:
5653 		case 16:
5654 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5655 			break;
5656 		case 64:
5657 		case 128:
5658 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5659 			break;
5660 		default:
5661 			/*
5662 			 * Expose the whole OOB area to users if ECC_NONE
5663 			 * is passed. We could do that for all kind of
5664 			 * ->oobsize, but we must keep the old large/small
5665 			 * page with ECC layout when ->oobsize <= 128 for
5666 			 * compatibility reasons.
5667 			 */
5668 			if (ecc->mode == NAND_ECC_NONE) {
5669 				mtd_set_ooblayout(mtd,
5670 						&nand_ooblayout_lp_ops);
5671 				break;
5672 			}
5673 
5674 			WARN(1, "No oob scheme defined for oobsize %d\n",
5675 				mtd->oobsize);
5676 			ret = -EINVAL;
5677 			goto err_nand_manuf_cleanup;
5678 		}
5679 	}
5680 
5681 	/*
5682 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5683 	 * selected and we have 256 byte pagesize fallback to software ECC
5684 	 */
5685 
5686 	switch (ecc->mode) {
5687 	case NAND_ECC_HW_OOB_FIRST:
5688 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
5689 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5690 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5691 			ret = -EINVAL;
5692 			goto err_nand_manuf_cleanup;
5693 		}
5694 		if (!ecc->read_page)
5695 			ecc->read_page = nand_read_page_hwecc_oob_first;
5696 		fallthrough;
5697 	case NAND_ECC_HW:
5698 		/* Use standard hwecc read page function? */
5699 		if (!ecc->read_page)
5700 			ecc->read_page = nand_read_page_hwecc;
5701 		if (!ecc->write_page)
5702 			ecc->write_page = nand_write_page_hwecc;
5703 		if (!ecc->read_page_raw)
5704 			ecc->read_page_raw = nand_read_page_raw;
5705 		if (!ecc->write_page_raw)
5706 			ecc->write_page_raw = nand_write_page_raw;
5707 		if (!ecc->read_oob)
5708 			ecc->read_oob = nand_read_oob_std;
5709 		if (!ecc->write_oob)
5710 			ecc->write_oob = nand_write_oob_std;
5711 		if (!ecc->read_subpage)
5712 			ecc->read_subpage = nand_read_subpage;
5713 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5714 			ecc->write_subpage = nand_write_subpage_hwecc;
5715 		fallthrough;
5716 	case NAND_ECC_HW_SYNDROME:
5717 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5718 		    (!ecc->read_page ||
5719 		     ecc->read_page == nand_read_page_hwecc ||
5720 		     !ecc->write_page ||
5721 		     ecc->write_page == nand_write_page_hwecc)) {
5722 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5723 			ret = -EINVAL;
5724 			goto err_nand_manuf_cleanup;
5725 		}
5726 		/* Use standard syndrome read/write page function? */
5727 		if (!ecc->read_page)
5728 			ecc->read_page = nand_read_page_syndrome;
5729 		if (!ecc->write_page)
5730 			ecc->write_page = nand_write_page_syndrome;
5731 		if (!ecc->read_page_raw)
5732 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5733 		if (!ecc->write_page_raw)
5734 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5735 		if (!ecc->read_oob)
5736 			ecc->read_oob = nand_read_oob_syndrome;
5737 		if (!ecc->write_oob)
5738 			ecc->write_oob = nand_write_oob_syndrome;
5739 
5740 		if (mtd->writesize >= ecc->size) {
5741 			if (!ecc->strength) {
5742 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5743 				ret = -EINVAL;
5744 				goto err_nand_manuf_cleanup;
5745 			}
5746 			break;
5747 		}
5748 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5749 			ecc->size, mtd->writesize);
5750 		ecc->mode = NAND_ECC_SOFT;
5751 		ecc->algo = NAND_ECC_HAMMING;
5752 		fallthrough;
5753 	case NAND_ECC_SOFT:
5754 		ret = nand_set_ecc_soft_ops(chip);
5755 		if (ret) {
5756 			ret = -EINVAL;
5757 			goto err_nand_manuf_cleanup;
5758 		}
5759 		break;
5760 
5761 	case NAND_ECC_ON_DIE:
5762 		if (!ecc->read_page || !ecc->write_page) {
5763 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5764 			ret = -EINVAL;
5765 			goto err_nand_manuf_cleanup;
5766 		}
5767 		if (!ecc->read_oob)
5768 			ecc->read_oob = nand_read_oob_std;
5769 		if (!ecc->write_oob)
5770 			ecc->write_oob = nand_write_oob_std;
5771 		break;
5772 
5773 	case NAND_ECC_NONE:
5774 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5775 		ecc->read_page = nand_read_page_raw;
5776 		ecc->write_page = nand_write_page_raw;
5777 		ecc->read_oob = nand_read_oob_std;
5778 		ecc->read_page_raw = nand_read_page_raw;
5779 		ecc->write_page_raw = nand_write_page_raw;
5780 		ecc->write_oob = nand_write_oob_std;
5781 		ecc->size = mtd->writesize;
5782 		ecc->bytes = 0;
5783 		ecc->strength = 0;
5784 		break;
5785 
5786 	default:
5787 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5788 		ret = -EINVAL;
5789 		goto err_nand_manuf_cleanup;
5790 	}
5791 
5792 	if (ecc->correct || ecc->calculate) {
5793 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5794 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5795 		if (!ecc->calc_buf || !ecc->code_buf) {
5796 			ret = -ENOMEM;
5797 			goto err_nand_manuf_cleanup;
5798 		}
5799 	}
5800 
5801 	/* For many systems, the standard OOB write also works for raw */
5802 	if (!ecc->read_oob_raw)
5803 		ecc->read_oob_raw = ecc->read_oob;
5804 	if (!ecc->write_oob_raw)
5805 		ecc->write_oob_raw = ecc->write_oob;
5806 
5807 	/* propagate ecc info to mtd_info */
5808 	mtd->ecc_strength = ecc->strength;
5809 	mtd->ecc_step_size = ecc->size;
5810 
5811 	/*
5812 	 * Set the number of read / write steps for one page depending on ECC
5813 	 * mode.
5814 	 */
5815 	ecc->steps = mtd->writesize / ecc->size;
5816 	if (ecc->steps * ecc->size != mtd->writesize) {
5817 		WARN(1, "Invalid ECC parameters\n");
5818 		ret = -EINVAL;
5819 		goto err_nand_manuf_cleanup;
5820 	}
5821 	ecc->total = ecc->steps * ecc->bytes;
5822 	if (ecc->total > mtd->oobsize) {
5823 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5824 		ret = -EINVAL;
5825 		goto err_nand_manuf_cleanup;
5826 	}
5827 
5828 	/*
5829 	 * The number of bytes available for a client to place data into
5830 	 * the out of band area.
5831 	 */
5832 	ret = mtd_ooblayout_count_freebytes(mtd);
5833 	if (ret < 0)
5834 		ret = 0;
5835 
5836 	mtd->oobavail = ret;
5837 
5838 	/* ECC sanity check: warn if it's too weak */
5839 	if (!nand_ecc_strength_good(chip))
5840 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
5841 			mtd->name, chip->ecc.strength, chip->ecc.size,
5842 			chip->base.eccreq.strength,
5843 			chip->base.eccreq.step_size);
5844 
5845 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5846 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5847 		switch (ecc->steps) {
5848 		case 2:
5849 			mtd->subpage_sft = 1;
5850 			break;
5851 		case 4:
5852 		case 8:
5853 		case 16:
5854 			mtd->subpage_sft = 2;
5855 			break;
5856 		}
5857 	}
5858 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5859 
5860 	/* Invalidate the pagebuffer reference */
5861 	chip->pagecache.page = -1;
5862 
5863 	/* Large page NAND with SOFT_ECC should support subpage reads */
5864 	switch (ecc->mode) {
5865 	case NAND_ECC_SOFT:
5866 		if (chip->page_shift > 9)
5867 			chip->options |= NAND_SUBPAGE_READ;
5868 		break;
5869 
5870 	default:
5871 		break;
5872 	}
5873 
5874 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5875 	if (ret)
5876 		goto err_nand_manuf_cleanup;
5877 
5878 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5879 	if (chip->options & NAND_ROM)
5880 		mtd->flags = MTD_CAP_ROM;
5881 
5882 	/* Fill in remaining MTD driver data */
5883 	mtd->_erase = nand_erase;
5884 	mtd->_point = NULL;
5885 	mtd->_unpoint = NULL;
5886 	mtd->_panic_write = panic_nand_write;
5887 	mtd->_read_oob = nand_read_oob;
5888 	mtd->_write_oob = nand_write_oob;
5889 	mtd->_sync = nand_sync;
5890 	mtd->_lock = nand_lock;
5891 	mtd->_unlock = nand_unlock;
5892 	mtd->_suspend = nand_suspend;
5893 	mtd->_resume = nand_resume;
5894 	mtd->_reboot = nand_shutdown;
5895 	mtd->_block_isreserved = nand_block_isreserved;
5896 	mtd->_block_isbad = nand_block_isbad;
5897 	mtd->_block_markbad = nand_block_markbad;
5898 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5899 
5900 	/*
5901 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5902 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5903 	 * properly set.
5904 	 */
5905 	if (!mtd->bitflip_threshold)
5906 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5907 
5908 	/* Initialize the ->data_interface field. */
5909 	ret = nand_init_data_interface(chip);
5910 	if (ret)
5911 		goto err_nanddev_cleanup;
5912 
5913 	/* Enter fastest possible mode on all dies. */
5914 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
5915 		ret = nand_setup_data_interface(chip, i);
5916 		if (ret)
5917 			goto err_nanddev_cleanup;
5918 	}
5919 
5920 	/* Check, if we should skip the bad block table scan */
5921 	if (chip->options & NAND_SKIP_BBTSCAN)
5922 		return 0;
5923 
5924 	/* Build bad block table */
5925 	ret = nand_create_bbt(chip);
5926 	if (ret)
5927 		goto err_nanddev_cleanup;
5928 
5929 	return 0;
5930 
5931 
5932 err_nanddev_cleanup:
5933 	nanddev_cleanup(&chip->base);
5934 
5935 err_nand_manuf_cleanup:
5936 	nand_manufacturer_cleanup(chip);
5937 
5938 err_free_buf:
5939 	kfree(chip->data_buf);
5940 	kfree(ecc->code_buf);
5941 	kfree(ecc->calc_buf);
5942 
5943 	return ret;
5944 }
5945 
5946 static int nand_attach(struct nand_chip *chip)
5947 {
5948 	if (chip->controller->ops && chip->controller->ops->attach_chip)
5949 		return chip->controller->ops->attach_chip(chip);
5950 
5951 	return 0;
5952 }
5953 
5954 static void nand_detach(struct nand_chip *chip)
5955 {
5956 	if (chip->controller->ops && chip->controller->ops->detach_chip)
5957 		chip->controller->ops->detach_chip(chip);
5958 }
5959 
5960 /**
5961  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5962  * @chip: NAND chip object
5963  * @maxchips: number of chips to scan for.
5964  * @ids: optional flash IDs table
5965  *
5966  * This fills out all the uninitialized function pointers with the defaults.
5967  * The flash ID is read and the mtd/chip structures are filled with the
5968  * appropriate values.
5969  */
5970 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5971 		       struct nand_flash_dev *ids)
5972 {
5973 	int ret;
5974 
5975 	if (!maxchips)
5976 		return -EINVAL;
5977 
5978 	ret = nand_scan_ident(chip, maxchips, ids);
5979 	if (ret)
5980 		return ret;
5981 
5982 	ret = nand_attach(chip);
5983 	if (ret)
5984 		goto cleanup_ident;
5985 
5986 	ret = nand_scan_tail(chip);
5987 	if (ret)
5988 		goto detach_chip;
5989 
5990 	return 0;
5991 
5992 detach_chip:
5993 	nand_detach(chip);
5994 cleanup_ident:
5995 	nand_scan_ident_cleanup(chip);
5996 
5997 	return ret;
5998 }
5999 EXPORT_SYMBOL(nand_scan_with_ids);
6000 
6001 /**
6002  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6003  * @chip: NAND chip object
6004  */
6005 void nand_cleanup(struct nand_chip *chip)
6006 {
6007 	if (chip->ecc.mode == NAND_ECC_SOFT &&
6008 	    chip->ecc.algo == NAND_ECC_BCH)
6009 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6010 
6011 	nanddev_cleanup(&chip->base);
6012 
6013 	/* Free bad block table memory */
6014 	kfree(chip->bbt);
6015 	kfree(chip->data_buf);
6016 	kfree(chip->ecc.code_buf);
6017 	kfree(chip->ecc.calc_buf);
6018 
6019 	/* Free bad block descriptor memory */
6020 	if (chip->badblock_pattern && chip->badblock_pattern->options
6021 			& NAND_BBT_DYNAMICSTRUCT)
6022 		kfree(chip->badblock_pattern);
6023 
6024 	/* Free manufacturer priv data. */
6025 	nand_manufacturer_cleanup(chip);
6026 
6027 	/* Free controller specific allocations after chip identification */
6028 	nand_detach(chip);
6029 
6030 	/* Free identification phase allocations */
6031 	nand_scan_ident_cleanup(chip);
6032 }
6033 
6034 EXPORT_SYMBOL_GPL(nand_cleanup);
6035 
6036 /**
6037  * nand_release - [NAND Interface] Unregister the MTD device and free resources
6038  *		  held by the NAND device
6039  * @chip: NAND chip object
6040  */
6041 void nand_release(struct nand_chip *chip)
6042 {
6043 	mtd_device_unregister(nand_to_mtd(chip));
6044 	nand_cleanup(chip);
6045 }
6046 EXPORT_SYMBOL_GPL(nand_release);
6047 
6048 MODULE_LICENSE("GPL");
6049 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6050 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6051 MODULE_DESCRIPTION("Generic NAND flash driver code");
6052