xref: /linux/drivers/mtd/nand/raw/nand_base.c (revision 0e7f4b64ea46da6da5d84709d0316df9a7145f76)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45 
46 #include "internals.h"
47 
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50 				 struct mtd_oob_region *oobregion)
51 {
52 	struct nand_chip *chip = mtd_to_nand(mtd);
53 	struct nand_ecc_ctrl *ecc = &chip->ecc;
54 
55 	if (section > 1)
56 		return -ERANGE;
57 
58 	if (!section) {
59 		oobregion->offset = 0;
60 		if (mtd->oobsize == 16)
61 			oobregion->length = 4;
62 		else
63 			oobregion->length = 3;
64 	} else {
65 		if (mtd->oobsize == 8)
66 			return -ERANGE;
67 
68 		oobregion->offset = 6;
69 		oobregion->length = ecc->total - 4;
70 	}
71 
72 	return 0;
73 }
74 
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76 				  struct mtd_oob_region *oobregion)
77 {
78 	if (section > 1)
79 		return -ERANGE;
80 
81 	if (mtd->oobsize == 16) {
82 		if (section)
83 			return -ERANGE;
84 
85 		oobregion->length = 8;
86 		oobregion->offset = 8;
87 	} else {
88 		oobregion->length = 2;
89 		if (!section)
90 			oobregion->offset = 3;
91 		else
92 			oobregion->offset = 6;
93 	}
94 
95 	return 0;
96 }
97 
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99 	.ecc = nand_ooblayout_ecc_sp,
100 	.free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103 
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105 				 struct mtd_oob_region *oobregion)
106 {
107 	struct nand_chip *chip = mtd_to_nand(mtd);
108 	struct nand_ecc_ctrl *ecc = &chip->ecc;
109 
110 	if (section || !ecc->total)
111 		return -ERANGE;
112 
113 	oobregion->length = ecc->total;
114 	oobregion->offset = mtd->oobsize - oobregion->length;
115 
116 	return 0;
117 }
118 
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120 				  struct mtd_oob_region *oobregion)
121 {
122 	struct nand_chip *chip = mtd_to_nand(mtd);
123 	struct nand_ecc_ctrl *ecc = &chip->ecc;
124 
125 	if (section)
126 		return -ERANGE;
127 
128 	oobregion->length = mtd->oobsize - ecc->total - 2;
129 	oobregion->offset = 2;
130 
131 	return 0;
132 }
133 
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135 	.ecc = nand_ooblayout_ecc_lp,
136 	.free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139 
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145 					 struct mtd_oob_region *oobregion)
146 {
147 	struct nand_chip *chip = mtd_to_nand(mtd);
148 	struct nand_ecc_ctrl *ecc = &chip->ecc;
149 
150 	if (section)
151 		return -ERANGE;
152 
153 	switch (mtd->oobsize) {
154 	case 64:
155 		oobregion->offset = 40;
156 		break;
157 	case 128:
158 		oobregion->offset = 80;
159 		break;
160 	default:
161 		return -EINVAL;
162 	}
163 
164 	oobregion->length = ecc->total;
165 	if (oobregion->offset + oobregion->length > mtd->oobsize)
166 		return -ERANGE;
167 
168 	return 0;
169 }
170 
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172 					  struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 	struct nand_ecc_ctrl *ecc = &chip->ecc;
176 	int ecc_offset = 0;
177 
178 	if (section < 0 || section > 1)
179 		return -ERANGE;
180 
181 	switch (mtd->oobsize) {
182 	case 64:
183 		ecc_offset = 40;
184 		break;
185 	case 128:
186 		ecc_offset = 80;
187 		break;
188 	default:
189 		return -EINVAL;
190 	}
191 
192 	if (section == 0) {
193 		oobregion->offset = 2;
194 		oobregion->length = ecc_offset - 2;
195 	} else {
196 		oobregion->offset = ecc_offset + ecc->total;
197 		oobregion->length = mtd->oobsize - oobregion->offset;
198 	}
199 
200 	return 0;
201 }
202 
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204 	.ecc = nand_ooblayout_ecc_lp_hamming,
205 	.free = nand_ooblayout_free_lp_hamming,
206 };
207 
208 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
209 				       struct mtd_pairing_info *info)
210 {
211 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
212 	int dist = 3;
213 
214 	if (page == lastpage)
215 		dist = 2;
216 
217 	if (!page || (page & 1)) {
218 		info->group = 0;
219 		info->pair = (page + 1) / 2;
220 	} else {
221 		info->group = 1;
222 		info->pair = (page + 1 - dist) / 2;
223 	}
224 
225 	return 0;
226 }
227 
228 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
229 					const struct mtd_pairing_info *info)
230 {
231 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
232 	int page = info->pair * 2;
233 	int dist = 3;
234 
235 	if (!info->group && !info->pair)
236 		return 0;
237 
238 	if (info->pair == lastpair && info->group)
239 		dist = 2;
240 
241 	if (!info->group)
242 		page--;
243 	else if (info->pair)
244 		page += dist - 1;
245 
246 	if (page >= mtd->erasesize / mtd->writesize)
247 		return -EINVAL;
248 
249 	return page;
250 }
251 
252 const struct mtd_pairing_scheme dist3_pairing_scheme = {
253 	.ngroups = 2,
254 	.get_info = nand_pairing_dist3_get_info,
255 	.get_wunit = nand_pairing_dist3_get_wunit,
256 };
257 
258 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
259 {
260 	int ret = 0;
261 
262 	/* Start address must align on block boundary */
263 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
264 		pr_debug("%s: unaligned address\n", __func__);
265 		ret = -EINVAL;
266 	}
267 
268 	/* Length must align on block boundary */
269 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
270 		pr_debug("%s: length not block aligned\n", __func__);
271 		ret = -EINVAL;
272 	}
273 
274 	return ret;
275 }
276 
277 /**
278  * nand_select_target() - Select a NAND target (A.K.A. die)
279  * @chip: NAND chip object
280  * @cs: the CS line to select. Note that this CS id is always from the chip
281  *	PoV, not the controller one
282  *
283  * Select a NAND target so that further operations executed on @chip go to the
284  * selected NAND target.
285  */
286 void nand_select_target(struct nand_chip *chip, unsigned int cs)
287 {
288 	/*
289 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
290 	 * not the case it's a bug and the caller should be fixed.
291 	 */
292 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
293 		return;
294 
295 	chip->cur_cs = cs;
296 
297 	if (chip->legacy.select_chip)
298 		chip->legacy.select_chip(chip, cs);
299 }
300 EXPORT_SYMBOL_GPL(nand_select_target);
301 
302 /**
303  * nand_deselect_target() - Deselect the currently selected target
304  * @chip: NAND chip object
305  *
306  * Deselect the currently selected NAND target. The result of operations
307  * executed on @chip after the target has been deselected is undefined.
308  */
309 void nand_deselect_target(struct nand_chip *chip)
310 {
311 	if (chip->legacy.select_chip)
312 		chip->legacy.select_chip(chip, -1);
313 
314 	chip->cur_cs = -1;
315 }
316 EXPORT_SYMBOL_GPL(nand_deselect_target);
317 
318 /**
319  * nand_release_device - [GENERIC] release chip
320  * @chip: NAND chip object
321  *
322  * Release chip lock and wake up anyone waiting on the device.
323  */
324 static void nand_release_device(struct nand_chip *chip)
325 {
326 	/* Release the controller and the chip */
327 	mutex_unlock(&chip->controller->lock);
328 	mutex_unlock(&chip->lock);
329 }
330 
331 /**
332  * nand_bbm_get_next_page - Get the next page for bad block markers
333  * @chip: NAND chip object
334  * @page: First page to start checking for bad block marker usage
335  *
336  * Returns an integer that corresponds to the page offset within a block, for
337  * a page that is used to store bad block markers. If no more pages are
338  * available, -EINVAL is returned.
339  */
340 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
341 {
342 	struct mtd_info *mtd = nand_to_mtd(chip);
343 	int last_page = ((mtd->erasesize - mtd->writesize) >>
344 			 chip->page_shift) & chip->pagemask;
345 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
346 		| NAND_BBM_LASTPAGE;
347 
348 	if (page == 0 && !(chip->options & bbm_flags))
349 		return 0;
350 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
351 		return 0;
352 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
353 		return 1;
354 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
355 		return last_page;
356 
357 	return -EINVAL;
358 }
359 
360 /**
361  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
362  * @chip: NAND chip object
363  * @ofs: offset from device start
364  *
365  * Check, if the block is bad.
366  */
367 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
368 {
369 	int first_page, page_offset;
370 	int res;
371 	u8 bad;
372 
373 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
374 	page_offset = nand_bbm_get_next_page(chip, 0);
375 
376 	while (page_offset >= 0) {
377 		res = chip->ecc.read_oob(chip, first_page + page_offset);
378 		if (res < 0)
379 			return res;
380 
381 		bad = chip->oob_poi[chip->badblockpos];
382 
383 		if (likely(chip->badblockbits == 8))
384 			res = bad != 0xFF;
385 		else
386 			res = hweight8(bad) < chip->badblockbits;
387 		if (res)
388 			return res;
389 
390 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
391 	}
392 
393 	return 0;
394 }
395 
396 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
397 {
398 	if (chip->legacy.block_bad)
399 		return chip->legacy.block_bad(chip, ofs);
400 
401 	return nand_block_bad(chip, ofs);
402 }
403 
404 /**
405  * nand_get_device - [GENERIC] Get chip for selected access
406  * @chip: NAND chip structure
407  *
408  * Lock the device and its controller for exclusive access
409  *
410  * Return: -EBUSY if the chip has been suspended, 0 otherwise
411  */
412 static int nand_get_device(struct nand_chip *chip)
413 {
414 	mutex_lock(&chip->lock);
415 	if (chip->suspended) {
416 		mutex_unlock(&chip->lock);
417 		return -EBUSY;
418 	}
419 	mutex_lock(&chip->controller->lock);
420 
421 	return 0;
422 }
423 
424 /**
425  * nand_check_wp - [GENERIC] check if the chip is write protected
426  * @chip: NAND chip object
427  *
428  * Check, if the device is write protected. The function expects, that the
429  * device is already selected.
430  */
431 static int nand_check_wp(struct nand_chip *chip)
432 {
433 	u8 status;
434 	int ret;
435 
436 	/* Broken xD cards report WP despite being writable */
437 	if (chip->options & NAND_BROKEN_XD)
438 		return 0;
439 
440 	/* Check the WP bit */
441 	ret = nand_status_op(chip, &status);
442 	if (ret)
443 		return ret;
444 
445 	return status & NAND_STATUS_WP ? 0 : 1;
446 }
447 
448 /**
449  * nand_fill_oob - [INTERN] Transfer client buffer to oob
450  * @chip: NAND chip object
451  * @oob: oob data buffer
452  * @len: oob data write length
453  * @ops: oob ops structure
454  */
455 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
456 			      struct mtd_oob_ops *ops)
457 {
458 	struct mtd_info *mtd = nand_to_mtd(chip);
459 	int ret;
460 
461 	/*
462 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
463 	 * data from a previous OOB read.
464 	 */
465 	memset(chip->oob_poi, 0xff, mtd->oobsize);
466 
467 	switch (ops->mode) {
468 
469 	case MTD_OPS_PLACE_OOB:
470 	case MTD_OPS_RAW:
471 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
472 		return oob + len;
473 
474 	case MTD_OPS_AUTO_OOB:
475 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
476 						  ops->ooboffs, len);
477 		BUG_ON(ret);
478 		return oob + len;
479 
480 	default:
481 		BUG();
482 	}
483 	return NULL;
484 }
485 
486 /**
487  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
488  * @chip: NAND chip object
489  * @to: offset to write to
490  * @ops: oob operation description structure
491  *
492  * NAND write out-of-band.
493  */
494 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
495 			     struct mtd_oob_ops *ops)
496 {
497 	struct mtd_info *mtd = nand_to_mtd(chip);
498 	int chipnr, page, status, len, ret;
499 
500 	pr_debug("%s: to = 0x%08x, len = %i\n",
501 			 __func__, (unsigned int)to, (int)ops->ooblen);
502 
503 	len = mtd_oobavail(mtd, ops);
504 
505 	/* Do not allow write past end of page */
506 	if ((ops->ooboffs + ops->ooblen) > len) {
507 		pr_debug("%s: attempt to write past end of page\n",
508 				__func__);
509 		return -EINVAL;
510 	}
511 
512 	chipnr = (int)(to >> chip->chip_shift);
513 
514 	/*
515 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
516 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
517 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
518 	 * it in the doc2000 driver in August 1999.  dwmw2.
519 	 */
520 	ret = nand_reset(chip, chipnr);
521 	if (ret)
522 		return ret;
523 
524 	nand_select_target(chip, chipnr);
525 
526 	/* Shift to get page */
527 	page = (int)(to >> chip->page_shift);
528 
529 	/* Check, if it is write protected */
530 	if (nand_check_wp(chip)) {
531 		nand_deselect_target(chip);
532 		return -EROFS;
533 	}
534 
535 	/* Invalidate the page cache, if we write to the cached page */
536 	if (page == chip->pagecache.page)
537 		chip->pagecache.page = -1;
538 
539 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
540 
541 	if (ops->mode == MTD_OPS_RAW)
542 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
543 	else
544 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
545 
546 	nand_deselect_target(chip);
547 
548 	if (status)
549 		return status;
550 
551 	ops->oobretlen = ops->ooblen;
552 
553 	return 0;
554 }
555 
556 /**
557  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
558  * @chip: NAND chip object
559  * @ofs: offset from device start
560  *
561  * This is the default implementation, which can be overridden by a hardware
562  * specific driver. It provides the details for writing a bad block marker to a
563  * block.
564  */
565 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
566 {
567 	struct mtd_info *mtd = nand_to_mtd(chip);
568 	struct mtd_oob_ops ops;
569 	uint8_t buf[2] = { 0, 0 };
570 	int ret = 0, res, page_offset;
571 
572 	memset(&ops, 0, sizeof(ops));
573 	ops.oobbuf = buf;
574 	ops.ooboffs = chip->badblockpos;
575 	if (chip->options & NAND_BUSWIDTH_16) {
576 		ops.ooboffs &= ~0x01;
577 		ops.len = ops.ooblen = 2;
578 	} else {
579 		ops.len = ops.ooblen = 1;
580 	}
581 	ops.mode = MTD_OPS_PLACE_OOB;
582 
583 	page_offset = nand_bbm_get_next_page(chip, 0);
584 
585 	while (page_offset >= 0) {
586 		res = nand_do_write_oob(chip,
587 					ofs + (page_offset * mtd->writesize),
588 					&ops);
589 
590 		if (!ret)
591 			ret = res;
592 
593 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
594 	}
595 
596 	return ret;
597 }
598 
599 /**
600  * nand_markbad_bbm - mark a block by updating the BBM
601  * @chip: NAND chip object
602  * @ofs: offset of the block to mark bad
603  */
604 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
605 {
606 	if (chip->legacy.block_markbad)
607 		return chip->legacy.block_markbad(chip, ofs);
608 
609 	return nand_default_block_markbad(chip, ofs);
610 }
611 
612 /**
613  * nand_block_markbad_lowlevel - mark a block bad
614  * @chip: NAND chip object
615  * @ofs: offset from device start
616  *
617  * This function performs the generic NAND bad block marking steps (i.e., bad
618  * block table(s) and/or marker(s)). We only allow the hardware driver to
619  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
620  *
621  * We try operations in the following order:
622  *
623  *  (1) erase the affected block, to allow OOB marker to be written cleanly
624  *  (2) write bad block marker to OOB area of affected block (unless flag
625  *      NAND_BBT_NO_OOB_BBM is present)
626  *  (3) update the BBT
627  *
628  * Note that we retain the first error encountered in (2) or (3), finish the
629  * procedures, and dump the error in the end.
630 */
631 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
632 {
633 	struct mtd_info *mtd = nand_to_mtd(chip);
634 	int res, ret = 0;
635 
636 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
637 		struct erase_info einfo;
638 
639 		/* Attempt erase before marking OOB */
640 		memset(&einfo, 0, sizeof(einfo));
641 		einfo.addr = ofs;
642 		einfo.len = 1ULL << chip->phys_erase_shift;
643 		nand_erase_nand(chip, &einfo, 0);
644 
645 		/* Write bad block marker to OOB */
646 		ret = nand_get_device(chip);
647 		if (ret)
648 			return ret;
649 
650 		ret = nand_markbad_bbm(chip, ofs);
651 		nand_release_device(chip);
652 	}
653 
654 	/* Mark block bad in BBT */
655 	if (chip->bbt) {
656 		res = nand_markbad_bbt(chip, ofs);
657 		if (!ret)
658 			ret = res;
659 	}
660 
661 	if (!ret)
662 		mtd->ecc_stats.badblocks++;
663 
664 	return ret;
665 }
666 
667 /**
668  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
669  * @mtd: MTD device structure
670  * @ofs: offset from device start
671  *
672  * Check if the block is marked as reserved.
673  */
674 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
675 {
676 	struct nand_chip *chip = mtd_to_nand(mtd);
677 
678 	if (!chip->bbt)
679 		return 0;
680 	/* Return info from the table */
681 	return nand_isreserved_bbt(chip, ofs);
682 }
683 
684 /**
685  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
686  * @chip: NAND chip object
687  * @ofs: offset from device start
688  * @allowbbt: 1, if its allowed to access the bbt area
689  *
690  * Check, if the block is bad. Either by reading the bad block table or
691  * calling of the scan function.
692  */
693 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
694 {
695 	/* Return info from the table */
696 	if (chip->bbt)
697 		return nand_isbad_bbt(chip, ofs, allowbbt);
698 
699 	return nand_isbad_bbm(chip, ofs);
700 }
701 
702 /**
703  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
704  * @chip: NAND chip structure
705  * @timeout_ms: Timeout in ms
706  *
707  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
708  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
709  * returned.
710  *
711  * This helper is intended to be used when the controller does not have access
712  * to the NAND R/B pin.
713  *
714  * Be aware that calling this helper from an ->exec_op() implementation means
715  * ->exec_op() must be re-entrant.
716  *
717  * Return 0 if the NAND chip is ready, a negative error otherwise.
718  */
719 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
720 {
721 	const struct nand_sdr_timings *timings;
722 	u8 status = 0;
723 	int ret;
724 
725 	if (!nand_has_exec_op(chip))
726 		return -ENOTSUPP;
727 
728 	/* Wait tWB before polling the STATUS reg. */
729 	timings = nand_get_sdr_timings(&chip->data_interface);
730 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
731 
732 	ret = nand_status_op(chip, NULL);
733 	if (ret)
734 		return ret;
735 
736 	/*
737 	 * +1 below is necessary because if we are now in the last fraction
738 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
739 	 * small jiffy fraction - possibly leading to false timeout
740 	 */
741 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
742 	do {
743 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
744 					false);
745 		if (ret)
746 			break;
747 
748 		if (status & NAND_STATUS_READY)
749 			break;
750 
751 		/*
752 		 * Typical lowest execution time for a tR on most NANDs is 10us,
753 		 * use this as polling delay before doing something smarter (ie.
754 		 * deriving a delay from the timeout value, timeout_ms/ratio).
755 		 */
756 		udelay(10);
757 	} while	(time_before(jiffies, timeout_ms));
758 
759 	/*
760 	 * We have to exit READ_STATUS mode in order to read real data on the
761 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
762 	 * instruction.
763 	 */
764 	nand_exit_status_op(chip);
765 
766 	if (ret)
767 		return ret;
768 
769 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
770 };
771 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
772 
773 /**
774  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
775  * @chip: NAND chip structure
776  * @gpiod: GPIO descriptor of R/B pin
777  * @timeout_ms: Timeout in ms
778  *
779  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
780  * whitin the specified timeout, -ETIMEDOUT is returned.
781  *
782  * This helper is intended to be used when the controller has access to the
783  * NAND R/B pin over GPIO.
784  *
785  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
786  */
787 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
788 		      unsigned long timeout_ms)
789 {
790 	/* Wait until R/B pin indicates chip is ready or timeout occurs */
791 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
792 	do {
793 		if (gpiod_get_value_cansleep(gpiod))
794 			return 0;
795 
796 		cond_resched();
797 	} while	(time_before(jiffies, timeout_ms));
798 
799 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
800 };
801 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
802 
803 /**
804  * panic_nand_wait - [GENERIC] wait until the command is done
805  * @chip: NAND chip structure
806  * @timeo: timeout
807  *
808  * Wait for command done. This is a helper function for nand_wait used when
809  * we are in interrupt context. May happen when in panic and trying to write
810  * an oops through mtdoops.
811  */
812 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
813 {
814 	int i;
815 	for (i = 0; i < timeo; i++) {
816 		if (chip->legacy.dev_ready) {
817 			if (chip->legacy.dev_ready(chip))
818 				break;
819 		} else {
820 			int ret;
821 			u8 status;
822 
823 			ret = nand_read_data_op(chip, &status, sizeof(status),
824 						true, false);
825 			if (ret)
826 				return;
827 
828 			if (status & NAND_STATUS_READY)
829 				break;
830 		}
831 		mdelay(1);
832 	}
833 }
834 
835 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
836 {
837 	return (chip->parameters.supports_set_get_features &&
838 		test_bit(addr, chip->parameters.get_feature_list));
839 }
840 
841 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
842 {
843 	return (chip->parameters.supports_set_get_features &&
844 		test_bit(addr, chip->parameters.set_feature_list));
845 }
846 
847 /**
848  * nand_reset_data_interface - Reset data interface and timings
849  * @chip: The NAND chip
850  * @chipnr: Internal die id
851  *
852  * Reset the Data interface and timings to ONFI mode 0.
853  *
854  * Returns 0 for success or negative error code otherwise.
855  */
856 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
857 {
858 	int ret;
859 
860 	if (!nand_has_setup_data_iface(chip))
861 		return 0;
862 
863 	/*
864 	 * The ONFI specification says:
865 	 * "
866 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
867 	 * interface, the host shall use the Reset (FFh) command
868 	 * using SDR timing mode 0. A device in any timing mode is
869 	 * required to recognize Reset (FFh) command issued in SDR
870 	 * timing mode 0.
871 	 * "
872 	 *
873 	 * Configure the data interface in SDR mode and set the
874 	 * timings to timing mode 0.
875 	 */
876 
877 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
878 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
879 							&chip->data_interface);
880 	if (ret)
881 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
882 
883 	return ret;
884 }
885 
886 /**
887  * nand_setup_data_interface - Setup the best data interface and timings
888  * @chip: The NAND chip
889  * @chipnr: Internal die id
890  *
891  * Find and configure the best data interface and NAND timings supported by
892  * the chip and the driver.
893  * First tries to retrieve supported timing modes from ONFI information,
894  * and if the NAND chip does not support ONFI, relies on the
895  * ->onfi_timing_mode_default specified in the nand_ids table.
896  *
897  * Returns 0 for success or negative error code otherwise.
898  */
899 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
900 {
901 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
902 		chip->onfi_timing_mode_default,
903 	};
904 	int ret;
905 
906 	if (!nand_has_setup_data_iface(chip))
907 		return 0;
908 
909 	/* Change the mode on the chip side (if supported by the NAND chip) */
910 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
911 		nand_select_target(chip, chipnr);
912 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
913 					tmode_param);
914 		nand_deselect_target(chip);
915 		if (ret)
916 			return ret;
917 	}
918 
919 	/* Change the mode on the controller side */
920 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
921 							&chip->data_interface);
922 	if (ret)
923 		return ret;
924 
925 	/* Check the mode has been accepted by the chip, if supported */
926 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
927 		return 0;
928 
929 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
930 	nand_select_target(chip, chipnr);
931 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
932 				tmode_param);
933 	nand_deselect_target(chip);
934 	if (ret)
935 		goto err_reset_chip;
936 
937 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
938 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
939 			chip->onfi_timing_mode_default);
940 		goto err_reset_chip;
941 	}
942 
943 	return 0;
944 
945 err_reset_chip:
946 	/*
947 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
948 	 * timing mode.
949 	 */
950 	nand_reset_data_interface(chip, chipnr);
951 	nand_select_target(chip, chipnr);
952 	nand_reset_op(chip);
953 	nand_deselect_target(chip);
954 
955 	return ret;
956 }
957 
958 /**
959  * nand_init_data_interface - find the best data interface and timings
960  * @chip: The NAND chip
961  *
962  * Find the best data interface and NAND timings supported by the chip
963  * and the driver.
964  * First tries to retrieve supported timing modes from ONFI information,
965  * and if the NAND chip does not support ONFI, relies on the
966  * ->onfi_timing_mode_default specified in the nand_ids table. After this
967  * function nand_chip->data_interface is initialized with the best timing mode
968  * available.
969  *
970  * Returns 0 for success or negative error code otherwise.
971  */
972 static int nand_init_data_interface(struct nand_chip *chip)
973 {
974 	int modes, mode, ret;
975 
976 	if (!nand_has_setup_data_iface(chip))
977 		return 0;
978 
979 	/*
980 	 * First try to identify the best timings from ONFI parameters and
981 	 * if the NAND does not support ONFI, fallback to the default ONFI
982 	 * timing mode.
983 	 */
984 	if (chip->parameters.onfi) {
985 		modes = chip->parameters.onfi->async_timing_mode;
986 	} else {
987 		if (!chip->onfi_timing_mode_default)
988 			return 0;
989 
990 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
991 	}
992 
993 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
994 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
995 		if (ret)
996 			continue;
997 
998 		/*
999 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
1000 		 * controller supports the requested timings.
1001 		 */
1002 		ret = chip->controller->ops->setup_data_interface(chip,
1003 						 NAND_DATA_IFACE_CHECK_ONLY,
1004 						 &chip->data_interface);
1005 		if (!ret) {
1006 			chip->onfi_timing_mode_default = mode;
1007 			break;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 /**
1015  * nand_fill_column_cycles - fill the column cycles of an address
1016  * @chip: The NAND chip
1017  * @addrs: Array of address cycles to fill
1018  * @offset_in_page: The offset in the page
1019  *
1020  * Fills the first or the first two bytes of the @addrs field depending
1021  * on the NAND bus width and the page size.
1022  *
1023  * Returns the number of cycles needed to encode the column, or a negative
1024  * error code in case one of the arguments is invalid.
1025  */
1026 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1027 				   unsigned int offset_in_page)
1028 {
1029 	struct mtd_info *mtd = nand_to_mtd(chip);
1030 
1031 	/* Make sure the offset is less than the actual page size. */
1032 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1033 		return -EINVAL;
1034 
1035 	/*
1036 	 * On small page NANDs, there's a dedicated command to access the OOB
1037 	 * area, and the column address is relative to the start of the OOB
1038 	 * area, not the start of the page. Asjust the address accordingly.
1039 	 */
1040 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1041 		offset_in_page -= mtd->writesize;
1042 
1043 	/*
1044 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1045 	 * wide, then it must be divided by 2.
1046 	 */
1047 	if (chip->options & NAND_BUSWIDTH_16) {
1048 		if (WARN_ON(offset_in_page % 2))
1049 			return -EINVAL;
1050 
1051 		offset_in_page /= 2;
1052 	}
1053 
1054 	addrs[0] = offset_in_page;
1055 
1056 	/*
1057 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1058 	 * need 2
1059 	 */
1060 	if (mtd->writesize <= 512)
1061 		return 1;
1062 
1063 	addrs[1] = offset_in_page >> 8;
1064 
1065 	return 2;
1066 }
1067 
1068 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1069 				     unsigned int offset_in_page, void *buf,
1070 				     unsigned int len)
1071 {
1072 	struct mtd_info *mtd = nand_to_mtd(chip);
1073 	const struct nand_sdr_timings *sdr =
1074 		nand_get_sdr_timings(&chip->data_interface);
1075 	u8 addrs[4];
1076 	struct nand_op_instr instrs[] = {
1077 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1078 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1079 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1080 				 PSEC_TO_NSEC(sdr->tRR_min)),
1081 		NAND_OP_DATA_IN(len, buf, 0),
1082 	};
1083 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1084 	int ret;
1085 
1086 	/* Drop the DATA_IN instruction if len is set to 0. */
1087 	if (!len)
1088 		op.ninstrs--;
1089 
1090 	if (offset_in_page >= mtd->writesize)
1091 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1092 	else if (offset_in_page >= 256 &&
1093 		 !(chip->options & NAND_BUSWIDTH_16))
1094 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1095 
1096 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1097 	if (ret < 0)
1098 		return ret;
1099 
1100 	addrs[1] = page;
1101 	addrs[2] = page >> 8;
1102 
1103 	if (chip->options & NAND_ROW_ADDR_3) {
1104 		addrs[3] = page >> 16;
1105 		instrs[1].ctx.addr.naddrs++;
1106 	}
1107 
1108 	return nand_exec_op(chip, &op);
1109 }
1110 
1111 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1112 				     unsigned int offset_in_page, void *buf,
1113 				     unsigned int len)
1114 {
1115 	const struct nand_sdr_timings *sdr =
1116 		nand_get_sdr_timings(&chip->data_interface);
1117 	u8 addrs[5];
1118 	struct nand_op_instr instrs[] = {
1119 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1120 		NAND_OP_ADDR(4, addrs, 0),
1121 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1122 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1123 				 PSEC_TO_NSEC(sdr->tRR_min)),
1124 		NAND_OP_DATA_IN(len, buf, 0),
1125 	};
1126 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1127 	int ret;
1128 
1129 	/* Drop the DATA_IN instruction if len is set to 0. */
1130 	if (!len)
1131 		op.ninstrs--;
1132 
1133 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1134 	if (ret < 0)
1135 		return ret;
1136 
1137 	addrs[2] = page;
1138 	addrs[3] = page >> 8;
1139 
1140 	if (chip->options & NAND_ROW_ADDR_3) {
1141 		addrs[4] = page >> 16;
1142 		instrs[1].ctx.addr.naddrs++;
1143 	}
1144 
1145 	return nand_exec_op(chip, &op);
1146 }
1147 
1148 /**
1149  * nand_read_page_op - Do a READ PAGE operation
1150  * @chip: The NAND chip
1151  * @page: page to read
1152  * @offset_in_page: offset within the page
1153  * @buf: buffer used to store the data
1154  * @len: length of the buffer
1155  *
1156  * This function issues a READ PAGE operation.
1157  * This function does not select/unselect the CS line.
1158  *
1159  * Returns 0 on success, a negative error code otherwise.
1160  */
1161 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1162 		      unsigned int offset_in_page, void *buf, unsigned int len)
1163 {
1164 	struct mtd_info *mtd = nand_to_mtd(chip);
1165 
1166 	if (len && !buf)
1167 		return -EINVAL;
1168 
1169 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1170 		return -EINVAL;
1171 
1172 	if (nand_has_exec_op(chip)) {
1173 		if (mtd->writesize > 512)
1174 			return nand_lp_exec_read_page_op(chip, page,
1175 							 offset_in_page, buf,
1176 							 len);
1177 
1178 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1179 						 buf, len);
1180 	}
1181 
1182 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1183 	if (len)
1184 		chip->legacy.read_buf(chip, buf, len);
1185 
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(nand_read_page_op);
1189 
1190 /**
1191  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1192  * @chip: The NAND chip
1193  * @page: parameter page to read
1194  * @buf: buffer used to store the data
1195  * @len: length of the buffer
1196  *
1197  * This function issues a READ PARAMETER PAGE operation.
1198  * This function does not select/unselect the CS line.
1199  *
1200  * Returns 0 on success, a negative error code otherwise.
1201  */
1202 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1203 			    unsigned int len)
1204 {
1205 	unsigned int i;
1206 	u8 *p = buf;
1207 
1208 	if (len && !buf)
1209 		return -EINVAL;
1210 
1211 	if (nand_has_exec_op(chip)) {
1212 		const struct nand_sdr_timings *sdr =
1213 			nand_get_sdr_timings(&chip->data_interface);
1214 		struct nand_op_instr instrs[] = {
1215 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1216 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1217 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1218 					 PSEC_TO_NSEC(sdr->tRR_min)),
1219 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1220 		};
1221 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1222 
1223 		/* Drop the DATA_IN instruction if len is set to 0. */
1224 		if (!len)
1225 			op.ninstrs--;
1226 
1227 		return nand_exec_op(chip, &op);
1228 	}
1229 
1230 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1231 	for (i = 0; i < len; i++)
1232 		p[i] = chip->legacy.read_byte(chip);
1233 
1234 	return 0;
1235 }
1236 
1237 /**
1238  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1239  * @chip: The NAND chip
1240  * @offset_in_page: offset within the page
1241  * @buf: buffer used to store the data
1242  * @len: length of the buffer
1243  * @force_8bit: force 8-bit bus access
1244  *
1245  * This function issues a CHANGE READ COLUMN operation.
1246  * This function does not select/unselect the CS line.
1247  *
1248  * Returns 0 on success, a negative error code otherwise.
1249  */
1250 int nand_change_read_column_op(struct nand_chip *chip,
1251 			       unsigned int offset_in_page, void *buf,
1252 			       unsigned int len, bool force_8bit)
1253 {
1254 	struct mtd_info *mtd = nand_to_mtd(chip);
1255 
1256 	if (len && !buf)
1257 		return -EINVAL;
1258 
1259 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1260 		return -EINVAL;
1261 
1262 	/* Small page NANDs do not support column change. */
1263 	if (mtd->writesize <= 512)
1264 		return -ENOTSUPP;
1265 
1266 	if (nand_has_exec_op(chip)) {
1267 		const struct nand_sdr_timings *sdr =
1268 			nand_get_sdr_timings(&chip->data_interface);
1269 		u8 addrs[2] = {};
1270 		struct nand_op_instr instrs[] = {
1271 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1272 			NAND_OP_ADDR(2, addrs, 0),
1273 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1274 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1275 			NAND_OP_DATA_IN(len, buf, 0),
1276 		};
1277 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1278 		int ret;
1279 
1280 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1281 		if (ret < 0)
1282 			return ret;
1283 
1284 		/* Drop the DATA_IN instruction if len is set to 0. */
1285 		if (!len)
1286 			op.ninstrs--;
1287 
1288 		instrs[3].ctx.data.force_8bit = force_8bit;
1289 
1290 		return nand_exec_op(chip, &op);
1291 	}
1292 
1293 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1294 	if (len)
1295 		chip->legacy.read_buf(chip, buf, len);
1296 
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1300 
1301 /**
1302  * nand_read_oob_op - Do a READ OOB operation
1303  * @chip: The NAND chip
1304  * @page: page to read
1305  * @offset_in_oob: offset within the OOB area
1306  * @buf: buffer used to store the data
1307  * @len: length of the buffer
1308  *
1309  * This function issues a READ OOB operation.
1310  * This function does not select/unselect the CS line.
1311  *
1312  * Returns 0 on success, a negative error code otherwise.
1313  */
1314 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1315 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1316 {
1317 	struct mtd_info *mtd = nand_to_mtd(chip);
1318 
1319 	if (len && !buf)
1320 		return -EINVAL;
1321 
1322 	if (offset_in_oob + len > mtd->oobsize)
1323 		return -EINVAL;
1324 
1325 	if (nand_has_exec_op(chip))
1326 		return nand_read_page_op(chip, page,
1327 					 mtd->writesize + offset_in_oob,
1328 					 buf, len);
1329 
1330 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1331 	if (len)
1332 		chip->legacy.read_buf(chip, buf, len);
1333 
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1337 
1338 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1339 				  unsigned int offset_in_page, const void *buf,
1340 				  unsigned int len, bool prog)
1341 {
1342 	struct mtd_info *mtd = nand_to_mtd(chip);
1343 	const struct nand_sdr_timings *sdr =
1344 		nand_get_sdr_timings(&chip->data_interface);
1345 	u8 addrs[5] = {};
1346 	struct nand_op_instr instrs[] = {
1347 		/*
1348 		 * The first instruction will be dropped if we're dealing
1349 		 * with a large page NAND and adjusted if we're dealing
1350 		 * with a small page NAND and the page offset is > 255.
1351 		 */
1352 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1353 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1354 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1355 		NAND_OP_DATA_OUT(len, buf, 0),
1356 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1357 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1358 	};
1359 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1360 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1361 	int ret;
1362 	u8 status;
1363 
1364 	if (naddrs < 0)
1365 		return naddrs;
1366 
1367 	addrs[naddrs++] = page;
1368 	addrs[naddrs++] = page >> 8;
1369 	if (chip->options & NAND_ROW_ADDR_3)
1370 		addrs[naddrs++] = page >> 16;
1371 
1372 	instrs[2].ctx.addr.naddrs = naddrs;
1373 
1374 	/* Drop the last two instructions if we're not programming the page. */
1375 	if (!prog) {
1376 		op.ninstrs -= 2;
1377 		/* Also drop the DATA_OUT instruction if empty. */
1378 		if (!len)
1379 			op.ninstrs--;
1380 	}
1381 
1382 	if (mtd->writesize <= 512) {
1383 		/*
1384 		 * Small pages need some more tweaking: we have to adjust the
1385 		 * first instruction depending on the page offset we're trying
1386 		 * to access.
1387 		 */
1388 		if (offset_in_page >= mtd->writesize)
1389 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1390 		else if (offset_in_page >= 256 &&
1391 			 !(chip->options & NAND_BUSWIDTH_16))
1392 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1393 	} else {
1394 		/*
1395 		 * Drop the first command if we're dealing with a large page
1396 		 * NAND.
1397 		 */
1398 		op.instrs++;
1399 		op.ninstrs--;
1400 	}
1401 
1402 	ret = nand_exec_op(chip, &op);
1403 	if (!prog || ret)
1404 		return ret;
1405 
1406 	ret = nand_status_op(chip, &status);
1407 	if (ret)
1408 		return ret;
1409 
1410 	return status;
1411 }
1412 
1413 /**
1414  * nand_prog_page_begin_op - starts a PROG PAGE operation
1415  * @chip: The NAND chip
1416  * @page: page to write
1417  * @offset_in_page: offset within the page
1418  * @buf: buffer containing the data to write to the page
1419  * @len: length of the buffer
1420  *
1421  * This function issues the first half of a PROG PAGE operation.
1422  * This function does not select/unselect the CS line.
1423  *
1424  * Returns 0 on success, a negative error code otherwise.
1425  */
1426 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1427 			    unsigned int offset_in_page, const void *buf,
1428 			    unsigned int len)
1429 {
1430 	struct mtd_info *mtd = nand_to_mtd(chip);
1431 
1432 	if (len && !buf)
1433 		return -EINVAL;
1434 
1435 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1436 		return -EINVAL;
1437 
1438 	if (nand_has_exec_op(chip))
1439 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1440 					      len, false);
1441 
1442 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1443 
1444 	if (buf)
1445 		chip->legacy.write_buf(chip, buf, len);
1446 
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1450 
1451 /**
1452  * nand_prog_page_end_op - ends a PROG PAGE operation
1453  * @chip: The NAND chip
1454  *
1455  * This function issues the second half of a PROG PAGE operation.
1456  * This function does not select/unselect the CS line.
1457  *
1458  * Returns 0 on success, a negative error code otherwise.
1459  */
1460 int nand_prog_page_end_op(struct nand_chip *chip)
1461 {
1462 	int ret;
1463 	u8 status;
1464 
1465 	if (nand_has_exec_op(chip)) {
1466 		const struct nand_sdr_timings *sdr =
1467 			nand_get_sdr_timings(&chip->data_interface);
1468 		struct nand_op_instr instrs[] = {
1469 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1470 				    PSEC_TO_NSEC(sdr->tWB_max)),
1471 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1472 		};
1473 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1474 
1475 		ret = nand_exec_op(chip, &op);
1476 		if (ret)
1477 			return ret;
1478 
1479 		ret = nand_status_op(chip, &status);
1480 		if (ret)
1481 			return ret;
1482 	} else {
1483 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1484 		ret = chip->legacy.waitfunc(chip);
1485 		if (ret < 0)
1486 			return ret;
1487 
1488 		status = ret;
1489 	}
1490 
1491 	if (status & NAND_STATUS_FAIL)
1492 		return -EIO;
1493 
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1497 
1498 /**
1499  * nand_prog_page_op - Do a full PROG PAGE operation
1500  * @chip: The NAND chip
1501  * @page: page to write
1502  * @offset_in_page: offset within the page
1503  * @buf: buffer containing the data to write to the page
1504  * @len: length of the buffer
1505  *
1506  * This function issues a full PROG PAGE operation.
1507  * This function does not select/unselect the CS line.
1508  *
1509  * Returns 0 on success, a negative error code otherwise.
1510  */
1511 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1512 		      unsigned int offset_in_page, const void *buf,
1513 		      unsigned int len)
1514 {
1515 	struct mtd_info *mtd = nand_to_mtd(chip);
1516 	int status;
1517 
1518 	if (!len || !buf)
1519 		return -EINVAL;
1520 
1521 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1522 		return -EINVAL;
1523 
1524 	if (nand_has_exec_op(chip)) {
1525 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1526 						len, true);
1527 	} else {
1528 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1529 				     page);
1530 		chip->legacy.write_buf(chip, buf, len);
1531 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1532 		status = chip->legacy.waitfunc(chip);
1533 	}
1534 
1535 	if (status & NAND_STATUS_FAIL)
1536 		return -EIO;
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1541 
1542 /**
1543  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1544  * @chip: The NAND chip
1545  * @offset_in_page: offset within the page
1546  * @buf: buffer containing the data to send to the NAND
1547  * @len: length of the buffer
1548  * @force_8bit: force 8-bit bus access
1549  *
1550  * This function issues a CHANGE WRITE COLUMN operation.
1551  * This function does not select/unselect the CS line.
1552  *
1553  * Returns 0 on success, a negative error code otherwise.
1554  */
1555 int nand_change_write_column_op(struct nand_chip *chip,
1556 				unsigned int offset_in_page,
1557 				const void *buf, unsigned int len,
1558 				bool force_8bit)
1559 {
1560 	struct mtd_info *mtd = nand_to_mtd(chip);
1561 
1562 	if (len && !buf)
1563 		return -EINVAL;
1564 
1565 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1566 		return -EINVAL;
1567 
1568 	/* Small page NANDs do not support column change. */
1569 	if (mtd->writesize <= 512)
1570 		return -ENOTSUPP;
1571 
1572 	if (nand_has_exec_op(chip)) {
1573 		const struct nand_sdr_timings *sdr =
1574 			nand_get_sdr_timings(&chip->data_interface);
1575 		u8 addrs[2];
1576 		struct nand_op_instr instrs[] = {
1577 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1578 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1579 			NAND_OP_DATA_OUT(len, buf, 0),
1580 		};
1581 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1582 		int ret;
1583 
1584 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1585 		if (ret < 0)
1586 			return ret;
1587 
1588 		instrs[2].ctx.data.force_8bit = force_8bit;
1589 
1590 		/* Drop the DATA_OUT instruction if len is set to 0. */
1591 		if (!len)
1592 			op.ninstrs--;
1593 
1594 		return nand_exec_op(chip, &op);
1595 	}
1596 
1597 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1598 	if (len)
1599 		chip->legacy.write_buf(chip, buf, len);
1600 
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1604 
1605 /**
1606  * nand_readid_op - Do a READID operation
1607  * @chip: The NAND chip
1608  * @addr: address cycle to pass after the READID command
1609  * @buf: buffer used to store the ID
1610  * @len: length of the buffer
1611  *
1612  * This function sends a READID command and reads back the ID returned by the
1613  * NAND.
1614  * This function does not select/unselect the CS line.
1615  *
1616  * Returns 0 on success, a negative error code otherwise.
1617  */
1618 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1619 		   unsigned int len)
1620 {
1621 	unsigned int i;
1622 	u8 *id = buf;
1623 
1624 	if (len && !buf)
1625 		return -EINVAL;
1626 
1627 	if (nand_has_exec_op(chip)) {
1628 		const struct nand_sdr_timings *sdr =
1629 			nand_get_sdr_timings(&chip->data_interface);
1630 		struct nand_op_instr instrs[] = {
1631 			NAND_OP_CMD(NAND_CMD_READID, 0),
1632 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1633 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1634 		};
1635 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1636 
1637 		/* Drop the DATA_IN instruction if len is set to 0. */
1638 		if (!len)
1639 			op.ninstrs--;
1640 
1641 		return nand_exec_op(chip, &op);
1642 	}
1643 
1644 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1645 
1646 	for (i = 0; i < len; i++)
1647 		id[i] = chip->legacy.read_byte(chip);
1648 
1649 	return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(nand_readid_op);
1652 
1653 /**
1654  * nand_status_op - Do a STATUS operation
1655  * @chip: The NAND chip
1656  * @status: out variable to store the NAND status
1657  *
1658  * This function sends a STATUS command and reads back the status returned by
1659  * the NAND.
1660  * This function does not select/unselect the CS line.
1661  *
1662  * Returns 0 on success, a negative error code otherwise.
1663  */
1664 int nand_status_op(struct nand_chip *chip, u8 *status)
1665 {
1666 	if (nand_has_exec_op(chip)) {
1667 		const struct nand_sdr_timings *sdr =
1668 			nand_get_sdr_timings(&chip->data_interface);
1669 		struct nand_op_instr instrs[] = {
1670 			NAND_OP_CMD(NAND_CMD_STATUS,
1671 				    PSEC_TO_NSEC(sdr->tADL_min)),
1672 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1673 		};
1674 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1675 
1676 		if (!status)
1677 			op.ninstrs--;
1678 
1679 		return nand_exec_op(chip, &op);
1680 	}
1681 
1682 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1683 	if (status)
1684 		*status = chip->legacy.read_byte(chip);
1685 
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL_GPL(nand_status_op);
1689 
1690 /**
1691  * nand_exit_status_op - Exit a STATUS operation
1692  * @chip: The NAND chip
1693  *
1694  * This function sends a READ0 command to cancel the effect of the STATUS
1695  * command to avoid reading only the status until a new read command is sent.
1696  *
1697  * This function does not select/unselect the CS line.
1698  *
1699  * Returns 0 on success, a negative error code otherwise.
1700  */
1701 int nand_exit_status_op(struct nand_chip *chip)
1702 {
1703 	if (nand_has_exec_op(chip)) {
1704 		struct nand_op_instr instrs[] = {
1705 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1706 		};
1707 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1708 
1709 		return nand_exec_op(chip, &op);
1710 	}
1711 
1712 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1713 
1714 	return 0;
1715 }
1716 
1717 /**
1718  * nand_erase_op - Do an erase operation
1719  * @chip: The NAND chip
1720  * @eraseblock: block to erase
1721  *
1722  * This function sends an ERASE command and waits for the NAND to be ready
1723  * before returning.
1724  * This function does not select/unselect the CS line.
1725  *
1726  * Returns 0 on success, a negative error code otherwise.
1727  */
1728 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1729 {
1730 	unsigned int page = eraseblock <<
1731 			    (chip->phys_erase_shift - chip->page_shift);
1732 	int ret;
1733 	u8 status;
1734 
1735 	if (nand_has_exec_op(chip)) {
1736 		const struct nand_sdr_timings *sdr =
1737 			nand_get_sdr_timings(&chip->data_interface);
1738 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1739 		struct nand_op_instr instrs[] = {
1740 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1741 			NAND_OP_ADDR(2, addrs, 0),
1742 			NAND_OP_CMD(NAND_CMD_ERASE2,
1743 				    PSEC_TO_MSEC(sdr->tWB_max)),
1744 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1745 		};
1746 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1747 
1748 		if (chip->options & NAND_ROW_ADDR_3)
1749 			instrs[1].ctx.addr.naddrs++;
1750 
1751 		ret = nand_exec_op(chip, &op);
1752 		if (ret)
1753 			return ret;
1754 
1755 		ret = nand_status_op(chip, &status);
1756 		if (ret)
1757 			return ret;
1758 	} else {
1759 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1760 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1761 
1762 		ret = chip->legacy.waitfunc(chip);
1763 		if (ret < 0)
1764 			return ret;
1765 
1766 		status = ret;
1767 	}
1768 
1769 	if (status & NAND_STATUS_FAIL)
1770 		return -EIO;
1771 
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(nand_erase_op);
1775 
1776 /**
1777  * nand_set_features_op - Do a SET FEATURES operation
1778  * @chip: The NAND chip
1779  * @feature: feature id
1780  * @data: 4 bytes of data
1781  *
1782  * This function sends a SET FEATURES command and waits for the NAND to be
1783  * ready before returning.
1784  * This function does not select/unselect the CS line.
1785  *
1786  * Returns 0 on success, a negative error code otherwise.
1787  */
1788 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1789 				const void *data)
1790 {
1791 	const u8 *params = data;
1792 	int i, ret;
1793 
1794 	if (nand_has_exec_op(chip)) {
1795 		const struct nand_sdr_timings *sdr =
1796 			nand_get_sdr_timings(&chip->data_interface);
1797 		struct nand_op_instr instrs[] = {
1798 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1799 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1800 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1801 					      PSEC_TO_NSEC(sdr->tWB_max)),
1802 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1803 		};
1804 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1805 
1806 		return nand_exec_op(chip, &op);
1807 	}
1808 
1809 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1810 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1811 		chip->legacy.write_byte(chip, params[i]);
1812 
1813 	ret = chip->legacy.waitfunc(chip);
1814 	if (ret < 0)
1815 		return ret;
1816 
1817 	if (ret & NAND_STATUS_FAIL)
1818 		return -EIO;
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  * nand_get_features_op - Do a GET FEATURES operation
1825  * @chip: The NAND chip
1826  * @feature: feature id
1827  * @data: 4 bytes of data
1828  *
1829  * This function sends a GET FEATURES command and waits for the NAND to be
1830  * ready before returning.
1831  * This function does not select/unselect the CS line.
1832  *
1833  * Returns 0 on success, a negative error code otherwise.
1834  */
1835 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1836 				void *data)
1837 {
1838 	u8 *params = data;
1839 	int i;
1840 
1841 	if (nand_has_exec_op(chip)) {
1842 		const struct nand_sdr_timings *sdr =
1843 			nand_get_sdr_timings(&chip->data_interface);
1844 		struct nand_op_instr instrs[] = {
1845 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1846 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1847 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1848 					 PSEC_TO_NSEC(sdr->tRR_min)),
1849 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1850 					     data, 0),
1851 		};
1852 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1853 
1854 		return nand_exec_op(chip, &op);
1855 	}
1856 
1857 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1858 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1859 		params[i] = chip->legacy.read_byte(chip);
1860 
1861 	return 0;
1862 }
1863 
1864 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1865 			    unsigned int delay_ns)
1866 {
1867 	if (nand_has_exec_op(chip)) {
1868 		struct nand_op_instr instrs[] = {
1869 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1870 					 PSEC_TO_NSEC(delay_ns)),
1871 		};
1872 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1873 
1874 		return nand_exec_op(chip, &op);
1875 	}
1876 
1877 	/* Apply delay or wait for ready/busy pin */
1878 	if (!chip->legacy.dev_ready)
1879 		udelay(chip->legacy.chip_delay);
1880 	else
1881 		nand_wait_ready(chip);
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * nand_reset_op - Do a reset operation
1888  * @chip: The NAND chip
1889  *
1890  * This function sends a RESET command and waits for the NAND to be ready
1891  * before returning.
1892  * This function does not select/unselect the CS line.
1893  *
1894  * Returns 0 on success, a negative error code otherwise.
1895  */
1896 int nand_reset_op(struct nand_chip *chip)
1897 {
1898 	if (nand_has_exec_op(chip)) {
1899 		const struct nand_sdr_timings *sdr =
1900 			nand_get_sdr_timings(&chip->data_interface);
1901 		struct nand_op_instr instrs[] = {
1902 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1903 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1904 		};
1905 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1906 
1907 		return nand_exec_op(chip, &op);
1908 	}
1909 
1910 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1911 
1912 	return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(nand_reset_op);
1915 
1916 /**
1917  * nand_read_data_op - Read data from the NAND
1918  * @chip: The NAND chip
1919  * @buf: buffer used to store the data
1920  * @len: length of the buffer
1921  * @force_8bit: force 8-bit bus access
1922  * @check_only: do not actually run the command, only checks if the
1923  *              controller driver supports it
1924  *
1925  * This function does a raw data read on the bus. Usually used after launching
1926  * another NAND operation like nand_read_page_op().
1927  * This function does not select/unselect the CS line.
1928  *
1929  * Returns 0 on success, a negative error code otherwise.
1930  */
1931 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1932 		      bool force_8bit, bool check_only)
1933 {
1934 	if (!len || !buf)
1935 		return -EINVAL;
1936 
1937 	if (nand_has_exec_op(chip)) {
1938 		struct nand_op_instr instrs[] = {
1939 			NAND_OP_DATA_IN(len, buf, 0),
1940 		};
1941 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1942 
1943 		instrs[0].ctx.data.force_8bit = force_8bit;
1944 
1945 		if (check_only)
1946 			return nand_check_op(chip, &op);
1947 
1948 		return nand_exec_op(chip, &op);
1949 	}
1950 
1951 	if (check_only)
1952 		return 0;
1953 
1954 	if (force_8bit) {
1955 		u8 *p = buf;
1956 		unsigned int i;
1957 
1958 		for (i = 0; i < len; i++)
1959 			p[i] = chip->legacy.read_byte(chip);
1960 	} else {
1961 		chip->legacy.read_buf(chip, buf, len);
1962 	}
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(nand_read_data_op);
1967 
1968 /**
1969  * nand_write_data_op - Write data from the NAND
1970  * @chip: The NAND chip
1971  * @buf: buffer containing the data to send on the bus
1972  * @len: length of the buffer
1973  * @force_8bit: force 8-bit bus access
1974  *
1975  * This function does a raw data write on the bus. Usually used after launching
1976  * another NAND operation like nand_write_page_begin_op().
1977  * This function does not select/unselect the CS line.
1978  *
1979  * Returns 0 on success, a negative error code otherwise.
1980  */
1981 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1982 		       unsigned int len, bool force_8bit)
1983 {
1984 	if (!len || !buf)
1985 		return -EINVAL;
1986 
1987 	if (nand_has_exec_op(chip)) {
1988 		struct nand_op_instr instrs[] = {
1989 			NAND_OP_DATA_OUT(len, buf, 0),
1990 		};
1991 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1992 
1993 		instrs[0].ctx.data.force_8bit = force_8bit;
1994 
1995 		return nand_exec_op(chip, &op);
1996 	}
1997 
1998 	if (force_8bit) {
1999 		const u8 *p = buf;
2000 		unsigned int i;
2001 
2002 		for (i = 0; i < len; i++)
2003 			chip->legacy.write_byte(chip, p[i]);
2004 	} else {
2005 		chip->legacy.write_buf(chip, buf, len);
2006 	}
2007 
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(nand_write_data_op);
2011 
2012 /**
2013  * struct nand_op_parser_ctx - Context used by the parser
2014  * @instrs: array of all the instructions that must be addressed
2015  * @ninstrs: length of the @instrs array
2016  * @subop: Sub-operation to be passed to the NAND controller
2017  *
2018  * This structure is used by the core to split NAND operations into
2019  * sub-operations that can be handled by the NAND controller.
2020  */
2021 struct nand_op_parser_ctx {
2022 	const struct nand_op_instr *instrs;
2023 	unsigned int ninstrs;
2024 	struct nand_subop subop;
2025 };
2026 
2027 /**
2028  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2029  * @pat: the parser pattern element that matches @instr
2030  * @instr: pointer to the instruction to check
2031  * @start_offset: this is an in/out parameter. If @instr has already been
2032  *		  split, then @start_offset is the offset from which to start
2033  *		  (either an address cycle or an offset in the data buffer).
2034  *		  Conversely, if the function returns true (ie. instr must be
2035  *		  split), this parameter is updated to point to the first
2036  *		  data/address cycle that has not been taken care of.
2037  *
2038  * Some NAND controllers are limited and cannot send X address cycles with a
2039  * unique operation, or cannot read/write more than Y bytes at the same time.
2040  * In this case, split the instruction that does not fit in a single
2041  * controller-operation into two or more chunks.
2042  *
2043  * Returns true if the instruction must be split, false otherwise.
2044  * The @start_offset parameter is also updated to the offset at which the next
2045  * bundle of instruction must start (if an address or a data instruction).
2046  */
2047 static bool
2048 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2049 				const struct nand_op_instr *instr,
2050 				unsigned int *start_offset)
2051 {
2052 	switch (pat->type) {
2053 	case NAND_OP_ADDR_INSTR:
2054 		if (!pat->ctx.addr.maxcycles)
2055 			break;
2056 
2057 		if (instr->ctx.addr.naddrs - *start_offset >
2058 		    pat->ctx.addr.maxcycles) {
2059 			*start_offset += pat->ctx.addr.maxcycles;
2060 			return true;
2061 		}
2062 		break;
2063 
2064 	case NAND_OP_DATA_IN_INSTR:
2065 	case NAND_OP_DATA_OUT_INSTR:
2066 		if (!pat->ctx.data.maxlen)
2067 			break;
2068 
2069 		if (instr->ctx.data.len - *start_offset >
2070 		    pat->ctx.data.maxlen) {
2071 			*start_offset += pat->ctx.data.maxlen;
2072 			return true;
2073 		}
2074 		break;
2075 
2076 	default:
2077 		break;
2078 	}
2079 
2080 	return false;
2081 }
2082 
2083 /**
2084  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2085  *			      remaining in the parser context
2086  * @pat: the pattern to test
2087  * @ctx: the parser context structure to match with the pattern @pat
2088  *
2089  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2090  * Returns true if this is the case, false ortherwise. When true is returned,
2091  * @ctx->subop is updated with the set of instructions to be passed to the
2092  * controller driver.
2093  */
2094 static bool
2095 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2096 			 struct nand_op_parser_ctx *ctx)
2097 {
2098 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2099 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2100 	const struct nand_op_instr *instr = ctx->subop.instrs;
2101 	unsigned int i, ninstrs;
2102 
2103 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2104 		/*
2105 		 * The pattern instruction does not match the operation
2106 		 * instruction. If the instruction is marked optional in the
2107 		 * pattern definition, we skip the pattern element and continue
2108 		 * to the next one. If the element is mandatory, there's no
2109 		 * match and we can return false directly.
2110 		 */
2111 		if (instr->type != pat->elems[i].type) {
2112 			if (!pat->elems[i].optional)
2113 				return false;
2114 
2115 			continue;
2116 		}
2117 
2118 		/*
2119 		 * Now check the pattern element constraints. If the pattern is
2120 		 * not able to handle the whole instruction in a single step,
2121 		 * we have to split it.
2122 		 * The last_instr_end_off value comes back updated to point to
2123 		 * the position where we have to split the instruction (the
2124 		 * start of the next subop chunk).
2125 		 */
2126 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2127 						    &instr_offset)) {
2128 			ninstrs++;
2129 			i++;
2130 			break;
2131 		}
2132 
2133 		instr++;
2134 		ninstrs++;
2135 		instr_offset = 0;
2136 	}
2137 
2138 	/*
2139 	 * This can happen if all instructions of a pattern are optional.
2140 	 * Still, if there's not at least one instruction handled by this
2141 	 * pattern, this is not a match, and we should try the next one (if
2142 	 * any).
2143 	 */
2144 	if (!ninstrs)
2145 		return false;
2146 
2147 	/*
2148 	 * We had a match on the pattern head, but the pattern may be longer
2149 	 * than the instructions we're asked to execute. We need to make sure
2150 	 * there's no mandatory elements in the pattern tail.
2151 	 */
2152 	for (; i < pat->nelems; i++) {
2153 		if (!pat->elems[i].optional)
2154 			return false;
2155 	}
2156 
2157 	/*
2158 	 * We have a match: update the subop structure accordingly and return
2159 	 * true.
2160 	 */
2161 	ctx->subop.ninstrs = ninstrs;
2162 	ctx->subop.last_instr_end_off = instr_offset;
2163 
2164 	return true;
2165 }
2166 
2167 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2168 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2169 {
2170 	const struct nand_op_instr *instr;
2171 	char *prefix = "      ";
2172 	unsigned int i;
2173 
2174 	pr_debug("executing subop:\n");
2175 
2176 	for (i = 0; i < ctx->ninstrs; i++) {
2177 		instr = &ctx->instrs[i];
2178 
2179 		if (instr == &ctx->subop.instrs[0])
2180 			prefix = "    ->";
2181 
2182 		nand_op_trace(prefix, instr);
2183 
2184 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2185 			prefix = "      ";
2186 	}
2187 }
2188 #else
2189 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2190 {
2191 	/* NOP */
2192 }
2193 #endif
2194 
2195 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2196 				  const struct nand_op_parser_ctx *b)
2197 {
2198 	if (a->subop.ninstrs < b->subop.ninstrs)
2199 		return -1;
2200 	else if (a->subop.ninstrs > b->subop.ninstrs)
2201 		return 1;
2202 
2203 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2204 		return -1;
2205 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2206 		return 1;
2207 
2208 	return 0;
2209 }
2210 
2211 /**
2212  * nand_op_parser_exec_op - exec_op parser
2213  * @chip: the NAND chip
2214  * @parser: patterns description provided by the controller driver
2215  * @op: the NAND operation to address
2216  * @check_only: when true, the function only checks if @op can be handled but
2217  *		does not execute the operation
2218  *
2219  * Helper function designed to ease integration of NAND controller drivers that
2220  * only support a limited set of instruction sequences. The supported sequences
2221  * are described in @parser, and the framework takes care of splitting @op into
2222  * multiple sub-operations (if required) and pass them back to the ->exec()
2223  * callback of the matching pattern if @check_only is set to false.
2224  *
2225  * NAND controller drivers should call this function from their own ->exec_op()
2226  * implementation.
2227  *
2228  * Returns 0 on success, a negative error code otherwise. A failure can be
2229  * caused by an unsupported operation (none of the supported patterns is able
2230  * to handle the requested operation), or an error returned by one of the
2231  * matching pattern->exec() hook.
2232  */
2233 int nand_op_parser_exec_op(struct nand_chip *chip,
2234 			   const struct nand_op_parser *parser,
2235 			   const struct nand_operation *op, bool check_only)
2236 {
2237 	struct nand_op_parser_ctx ctx = {
2238 		.subop.instrs = op->instrs,
2239 		.instrs = op->instrs,
2240 		.ninstrs = op->ninstrs,
2241 	};
2242 	unsigned int i;
2243 
2244 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2245 		const struct nand_op_parser_pattern *pattern;
2246 		struct nand_op_parser_ctx best_ctx;
2247 		int ret, best_pattern = -1;
2248 
2249 		for (i = 0; i < parser->npatterns; i++) {
2250 			struct nand_op_parser_ctx test_ctx = ctx;
2251 
2252 			pattern = &parser->patterns[i];
2253 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2254 				continue;
2255 
2256 			if (best_pattern >= 0 &&
2257 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2258 				continue;
2259 
2260 			best_pattern = i;
2261 			best_ctx = test_ctx;
2262 		}
2263 
2264 		if (best_pattern < 0) {
2265 			pr_debug("->exec_op() parser: pattern not found!\n");
2266 			return -ENOTSUPP;
2267 		}
2268 
2269 		ctx = best_ctx;
2270 		nand_op_parser_trace(&ctx);
2271 
2272 		if (!check_only) {
2273 			pattern = &parser->patterns[best_pattern];
2274 			ret = pattern->exec(chip, &ctx.subop);
2275 			if (ret)
2276 				return ret;
2277 		}
2278 
2279 		/*
2280 		 * Update the context structure by pointing to the start of the
2281 		 * next subop.
2282 		 */
2283 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2284 		if (ctx.subop.last_instr_end_off)
2285 			ctx.subop.instrs -= 1;
2286 
2287 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2288 	}
2289 
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2293 
2294 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2295 {
2296 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2297 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2298 }
2299 
2300 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2301 				      unsigned int instr_idx)
2302 {
2303 	return subop && instr_idx < subop->ninstrs;
2304 }
2305 
2306 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2307 					     unsigned int instr_idx)
2308 {
2309 	if (instr_idx)
2310 		return 0;
2311 
2312 	return subop->first_instr_start_off;
2313 }
2314 
2315 /**
2316  * nand_subop_get_addr_start_off - Get the start offset in an address array
2317  * @subop: The entire sub-operation
2318  * @instr_idx: Index of the instruction inside the sub-operation
2319  *
2320  * During driver development, one could be tempted to directly use the
2321  * ->addr.addrs field of address instructions. This is wrong as address
2322  * instructions might be split.
2323  *
2324  * Given an address instruction, returns the offset of the first cycle to issue.
2325  */
2326 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2327 					   unsigned int instr_idx)
2328 {
2329 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2330 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2331 		return 0;
2332 
2333 	return nand_subop_get_start_off(subop, instr_idx);
2334 }
2335 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2336 
2337 /**
2338  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2339  * @subop: The entire sub-operation
2340  * @instr_idx: Index of the instruction inside the sub-operation
2341  *
2342  * During driver development, one could be tempted to directly use the
2343  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2344  * might be split.
2345  *
2346  * Given an address instruction, returns the number of address cycle to issue.
2347  */
2348 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2349 					 unsigned int instr_idx)
2350 {
2351 	int start_off, end_off;
2352 
2353 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2354 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2355 		return 0;
2356 
2357 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2358 
2359 	if (instr_idx == subop->ninstrs - 1 &&
2360 	    subop->last_instr_end_off)
2361 		end_off = subop->last_instr_end_off;
2362 	else
2363 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2364 
2365 	return end_off - start_off;
2366 }
2367 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2368 
2369 /**
2370  * nand_subop_get_data_start_off - Get the start offset in a data array
2371  * @subop: The entire sub-operation
2372  * @instr_idx: Index of the instruction inside the sub-operation
2373  *
2374  * During driver development, one could be tempted to directly use the
2375  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2376  * instructions might be split.
2377  *
2378  * Given a data instruction, returns the offset to start from.
2379  */
2380 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2381 					   unsigned int instr_idx)
2382 {
2383 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2384 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2385 		return 0;
2386 
2387 	return nand_subop_get_start_off(subop, instr_idx);
2388 }
2389 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2390 
2391 /**
2392  * nand_subop_get_data_len - Get the number of bytes to retrieve
2393  * @subop: The entire sub-operation
2394  * @instr_idx: Index of the instruction inside the sub-operation
2395  *
2396  * During driver development, one could be tempted to directly use the
2397  * ->data->len field of a data instruction. This is wrong as data instructions
2398  * might be split.
2399  *
2400  * Returns the length of the chunk of data to send/receive.
2401  */
2402 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2403 				     unsigned int instr_idx)
2404 {
2405 	int start_off = 0, end_off;
2406 
2407 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2408 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2409 		return 0;
2410 
2411 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2412 
2413 	if (instr_idx == subop->ninstrs - 1 &&
2414 	    subop->last_instr_end_off)
2415 		end_off = subop->last_instr_end_off;
2416 	else
2417 		end_off = subop->instrs[instr_idx].ctx.data.len;
2418 
2419 	return end_off - start_off;
2420 }
2421 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2422 
2423 /**
2424  * nand_reset - Reset and initialize a NAND device
2425  * @chip: The NAND chip
2426  * @chipnr: Internal die id
2427  *
2428  * Save the timings data structure, then apply SDR timings mode 0 (see
2429  * nand_reset_data_interface for details), do the reset operation, and
2430  * apply back the previous timings.
2431  *
2432  * Returns 0 on success, a negative error code otherwise.
2433  */
2434 int nand_reset(struct nand_chip *chip, int chipnr)
2435 {
2436 	struct nand_data_interface saved_data_intf = chip->data_interface;
2437 	int ret;
2438 
2439 	ret = nand_reset_data_interface(chip, chipnr);
2440 	if (ret)
2441 		return ret;
2442 
2443 	/*
2444 	 * The CS line has to be released before we can apply the new NAND
2445 	 * interface settings, hence this weird nand_select_target()
2446 	 * nand_deselect_target() dance.
2447 	 */
2448 	nand_select_target(chip, chipnr);
2449 	ret = nand_reset_op(chip);
2450 	nand_deselect_target(chip);
2451 	if (ret)
2452 		return ret;
2453 
2454 	/*
2455 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2456 	 * controller in timings mode 0. If the default mode for this chip is
2457 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2458 	 * nand_setup_data_interface() uses ->set/get_features() which would
2459 	 * fail anyway as the parameter page is not available yet.
2460 	 */
2461 	if (!chip->onfi_timing_mode_default)
2462 		return 0;
2463 
2464 	chip->data_interface = saved_data_intf;
2465 	ret = nand_setup_data_interface(chip, chipnr);
2466 	if (ret)
2467 		return ret;
2468 
2469 	return 0;
2470 }
2471 EXPORT_SYMBOL_GPL(nand_reset);
2472 
2473 /**
2474  * nand_get_features - wrapper to perform a GET_FEATURE
2475  * @chip: NAND chip info structure
2476  * @addr: feature address
2477  * @subfeature_param: the subfeature parameters, a four bytes array
2478  *
2479  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2480  * operation cannot be handled.
2481  */
2482 int nand_get_features(struct nand_chip *chip, int addr,
2483 		      u8 *subfeature_param)
2484 {
2485 	if (!nand_supports_get_features(chip, addr))
2486 		return -ENOTSUPP;
2487 
2488 	if (chip->legacy.get_features)
2489 		return chip->legacy.get_features(chip, addr, subfeature_param);
2490 
2491 	return nand_get_features_op(chip, addr, subfeature_param);
2492 }
2493 
2494 /**
2495  * nand_set_features - wrapper to perform a SET_FEATURE
2496  * @chip: NAND chip info structure
2497  * @addr: feature address
2498  * @subfeature_param: the subfeature parameters, a four bytes array
2499  *
2500  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2501  * operation cannot be handled.
2502  */
2503 int nand_set_features(struct nand_chip *chip, int addr,
2504 		      u8 *subfeature_param)
2505 {
2506 	if (!nand_supports_set_features(chip, addr))
2507 		return -ENOTSUPP;
2508 
2509 	if (chip->legacy.set_features)
2510 		return chip->legacy.set_features(chip, addr, subfeature_param);
2511 
2512 	return nand_set_features_op(chip, addr, subfeature_param);
2513 }
2514 
2515 /**
2516  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2517  * @buf: buffer to test
2518  * @len: buffer length
2519  * @bitflips_threshold: maximum number of bitflips
2520  *
2521  * Check if a buffer contains only 0xff, which means the underlying region
2522  * has been erased and is ready to be programmed.
2523  * The bitflips_threshold specify the maximum number of bitflips before
2524  * considering the region is not erased.
2525  * Note: The logic of this function has been extracted from the memweight
2526  * implementation, except that nand_check_erased_buf function exit before
2527  * testing the whole buffer if the number of bitflips exceed the
2528  * bitflips_threshold value.
2529  *
2530  * Returns a positive number of bitflips less than or equal to
2531  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2532  * threshold.
2533  */
2534 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2535 {
2536 	const unsigned char *bitmap = buf;
2537 	int bitflips = 0;
2538 	int weight;
2539 
2540 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2541 	     len--, bitmap++) {
2542 		weight = hweight8(*bitmap);
2543 		bitflips += BITS_PER_BYTE - weight;
2544 		if (unlikely(bitflips > bitflips_threshold))
2545 			return -EBADMSG;
2546 	}
2547 
2548 	for (; len >= sizeof(long);
2549 	     len -= sizeof(long), bitmap += sizeof(long)) {
2550 		unsigned long d = *((unsigned long *)bitmap);
2551 		if (d == ~0UL)
2552 			continue;
2553 		weight = hweight_long(d);
2554 		bitflips += BITS_PER_LONG - weight;
2555 		if (unlikely(bitflips > bitflips_threshold))
2556 			return -EBADMSG;
2557 	}
2558 
2559 	for (; len > 0; len--, bitmap++) {
2560 		weight = hweight8(*bitmap);
2561 		bitflips += BITS_PER_BYTE - weight;
2562 		if (unlikely(bitflips > bitflips_threshold))
2563 			return -EBADMSG;
2564 	}
2565 
2566 	return bitflips;
2567 }
2568 
2569 /**
2570  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2571  *				 0xff data
2572  * @data: data buffer to test
2573  * @datalen: data length
2574  * @ecc: ECC buffer
2575  * @ecclen: ECC length
2576  * @extraoob: extra OOB buffer
2577  * @extraooblen: extra OOB length
2578  * @bitflips_threshold: maximum number of bitflips
2579  *
2580  * Check if a data buffer and its associated ECC and OOB data contains only
2581  * 0xff pattern, which means the underlying region has been erased and is
2582  * ready to be programmed.
2583  * The bitflips_threshold specify the maximum number of bitflips before
2584  * considering the region as not erased.
2585  *
2586  * Note:
2587  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2588  *    different from the NAND page size. When fixing bitflips, ECC engines will
2589  *    report the number of errors per chunk, and the NAND core infrastructure
2590  *    expect you to return the maximum number of bitflips for the whole page.
2591  *    This is why you should always use this function on a single chunk and
2592  *    not on the whole page. After checking each chunk you should update your
2593  *    max_bitflips value accordingly.
2594  * 2/ When checking for bitflips in erased pages you should not only check
2595  *    the payload data but also their associated ECC data, because a user might
2596  *    have programmed almost all bits to 1 but a few. In this case, we
2597  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2598  *    this case.
2599  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2600  *    data are protected by the ECC engine.
2601  *    It could also be used if you support subpages and want to attach some
2602  *    extra OOB data to an ECC chunk.
2603  *
2604  * Returns a positive number of bitflips less than or equal to
2605  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2606  * threshold. In case of success, the passed buffers are filled with 0xff.
2607  */
2608 int nand_check_erased_ecc_chunk(void *data, int datalen,
2609 				void *ecc, int ecclen,
2610 				void *extraoob, int extraooblen,
2611 				int bitflips_threshold)
2612 {
2613 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2614 
2615 	data_bitflips = nand_check_erased_buf(data, datalen,
2616 					      bitflips_threshold);
2617 	if (data_bitflips < 0)
2618 		return data_bitflips;
2619 
2620 	bitflips_threshold -= data_bitflips;
2621 
2622 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2623 	if (ecc_bitflips < 0)
2624 		return ecc_bitflips;
2625 
2626 	bitflips_threshold -= ecc_bitflips;
2627 
2628 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2629 						  bitflips_threshold);
2630 	if (extraoob_bitflips < 0)
2631 		return extraoob_bitflips;
2632 
2633 	if (data_bitflips)
2634 		memset(data, 0xff, datalen);
2635 
2636 	if (ecc_bitflips)
2637 		memset(ecc, 0xff, ecclen);
2638 
2639 	if (extraoob_bitflips)
2640 		memset(extraoob, 0xff, extraooblen);
2641 
2642 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2643 }
2644 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2645 
2646 /**
2647  * nand_read_page_raw_notsupp - dummy read raw page function
2648  * @chip: nand chip info structure
2649  * @buf: buffer to store read data
2650  * @oob_required: caller requires OOB data read to chip->oob_poi
2651  * @page: page number to read
2652  *
2653  * Returns -ENOTSUPP unconditionally.
2654  */
2655 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2656 			       int oob_required, int page)
2657 {
2658 	return -ENOTSUPP;
2659 }
2660 
2661 /**
2662  * nand_read_page_raw - [INTERN] read raw page data without ecc
2663  * @chip: nand chip info structure
2664  * @buf: buffer to store read data
2665  * @oob_required: caller requires OOB data read to chip->oob_poi
2666  * @page: page number to read
2667  *
2668  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2669  */
2670 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2671 		       int page)
2672 {
2673 	struct mtd_info *mtd = nand_to_mtd(chip);
2674 	int ret;
2675 
2676 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2677 	if (ret)
2678 		return ret;
2679 
2680 	if (oob_required) {
2681 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2682 					false, false);
2683 		if (ret)
2684 			return ret;
2685 	}
2686 
2687 	return 0;
2688 }
2689 EXPORT_SYMBOL(nand_read_page_raw);
2690 
2691 /**
2692  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2693  * @chip: NAND chip info structure
2694  * @buf: buffer to store read data
2695  * @oob_required: caller requires OOB data read to chip->oob_poi
2696  * @page: page number to read
2697  *
2698  * This is a raw page read, ie. without any error detection/correction.
2699  * Monolithic means we are requesting all the relevant data (main plus
2700  * eventually OOB) to be loaded in the NAND cache and sent over the
2701  * bus (from the NAND chip to the NAND controller) in a single
2702  * operation. This is an alternative to nand_read_page_raw(), which
2703  * first reads the main data, and if the OOB data is requested too,
2704  * then reads more data on the bus.
2705  */
2706 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2707 				  int oob_required, int page)
2708 {
2709 	struct mtd_info *mtd = nand_to_mtd(chip);
2710 	unsigned int size = mtd->writesize;
2711 	u8 *read_buf = buf;
2712 	int ret;
2713 
2714 	if (oob_required) {
2715 		size += mtd->oobsize;
2716 
2717 		if (buf != chip->data_buf)
2718 			read_buf = nand_get_data_buf(chip);
2719 	}
2720 
2721 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2722 	if (ret)
2723 		return ret;
2724 
2725 	if (buf != chip->data_buf)
2726 		memcpy(buf, read_buf, mtd->writesize);
2727 
2728 	return 0;
2729 }
2730 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2731 
2732 /**
2733  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2734  * @chip: nand chip info structure
2735  * @buf: buffer to store read data
2736  * @oob_required: caller requires OOB data read to chip->oob_poi
2737  * @page: page number to read
2738  *
2739  * We need a special oob layout and handling even when OOB isn't used.
2740  */
2741 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2742 				       int oob_required, int page)
2743 {
2744 	struct mtd_info *mtd = nand_to_mtd(chip);
2745 	int eccsize = chip->ecc.size;
2746 	int eccbytes = chip->ecc.bytes;
2747 	uint8_t *oob = chip->oob_poi;
2748 	int steps, size, ret;
2749 
2750 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2751 	if (ret)
2752 		return ret;
2753 
2754 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2755 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
2756 		if (ret)
2757 			return ret;
2758 
2759 		buf += eccsize;
2760 
2761 		if (chip->ecc.prepad) {
2762 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2763 						false, false);
2764 			if (ret)
2765 				return ret;
2766 
2767 			oob += chip->ecc.prepad;
2768 		}
2769 
2770 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2771 		if (ret)
2772 			return ret;
2773 
2774 		oob += eccbytes;
2775 
2776 		if (chip->ecc.postpad) {
2777 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2778 						false, false);
2779 			if (ret)
2780 				return ret;
2781 
2782 			oob += chip->ecc.postpad;
2783 		}
2784 	}
2785 
2786 	size = mtd->oobsize - (oob - chip->oob_poi);
2787 	if (size) {
2788 		ret = nand_read_data_op(chip, oob, size, false, false);
2789 		if (ret)
2790 			return ret;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 /**
2797  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2798  * @chip: nand chip info structure
2799  * @buf: buffer to store read data
2800  * @oob_required: caller requires OOB data read to chip->oob_poi
2801  * @page: page number to read
2802  */
2803 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2804 				int oob_required, int page)
2805 {
2806 	struct mtd_info *mtd = nand_to_mtd(chip);
2807 	int i, eccsize = chip->ecc.size, ret;
2808 	int eccbytes = chip->ecc.bytes;
2809 	int eccsteps = chip->ecc.steps;
2810 	uint8_t *p = buf;
2811 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2812 	uint8_t *ecc_code = chip->ecc.code_buf;
2813 	unsigned int max_bitflips = 0;
2814 
2815 	chip->ecc.read_page_raw(chip, buf, 1, page);
2816 
2817 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2818 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2819 
2820 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2821 					 chip->ecc.total);
2822 	if (ret)
2823 		return ret;
2824 
2825 	eccsteps = chip->ecc.steps;
2826 	p = buf;
2827 
2828 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2829 		int stat;
2830 
2831 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2832 		if (stat < 0) {
2833 			mtd->ecc_stats.failed++;
2834 		} else {
2835 			mtd->ecc_stats.corrected += stat;
2836 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2837 		}
2838 	}
2839 	return max_bitflips;
2840 }
2841 
2842 /**
2843  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2844  * @chip: nand chip info structure
2845  * @data_offs: offset of requested data within the page
2846  * @readlen: data length
2847  * @bufpoi: buffer to store read data
2848  * @page: page number to read
2849  */
2850 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2851 			     uint32_t readlen, uint8_t *bufpoi, int page)
2852 {
2853 	struct mtd_info *mtd = nand_to_mtd(chip);
2854 	int start_step, end_step, num_steps, ret;
2855 	uint8_t *p;
2856 	int data_col_addr, i, gaps = 0;
2857 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2858 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2859 	int index, section = 0;
2860 	unsigned int max_bitflips = 0;
2861 	struct mtd_oob_region oobregion = { };
2862 
2863 	/* Column address within the page aligned to ECC size (256bytes) */
2864 	start_step = data_offs / chip->ecc.size;
2865 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2866 	num_steps = end_step - start_step + 1;
2867 	index = start_step * chip->ecc.bytes;
2868 
2869 	/* Data size aligned to ECC ecc.size */
2870 	datafrag_len = num_steps * chip->ecc.size;
2871 	eccfrag_len = num_steps * chip->ecc.bytes;
2872 
2873 	data_col_addr = start_step * chip->ecc.size;
2874 	/* If we read not a page aligned data */
2875 	p = bufpoi + data_col_addr;
2876 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2877 	if (ret)
2878 		return ret;
2879 
2880 	/* Calculate ECC */
2881 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2882 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2883 
2884 	/*
2885 	 * The performance is faster if we position offsets according to
2886 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2887 	 */
2888 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2889 	if (ret)
2890 		return ret;
2891 
2892 	if (oobregion.length < eccfrag_len)
2893 		gaps = 1;
2894 
2895 	if (gaps) {
2896 		ret = nand_change_read_column_op(chip, mtd->writesize,
2897 						 chip->oob_poi, mtd->oobsize,
2898 						 false);
2899 		if (ret)
2900 			return ret;
2901 	} else {
2902 		/*
2903 		 * Send the command to read the particular ECC bytes take care
2904 		 * about buswidth alignment in read_buf.
2905 		 */
2906 		aligned_pos = oobregion.offset & ~(busw - 1);
2907 		aligned_len = eccfrag_len;
2908 		if (oobregion.offset & (busw - 1))
2909 			aligned_len++;
2910 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2911 		    (busw - 1))
2912 			aligned_len++;
2913 
2914 		ret = nand_change_read_column_op(chip,
2915 						 mtd->writesize + aligned_pos,
2916 						 &chip->oob_poi[aligned_pos],
2917 						 aligned_len, false);
2918 		if (ret)
2919 			return ret;
2920 	}
2921 
2922 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2923 					 chip->oob_poi, index, eccfrag_len);
2924 	if (ret)
2925 		return ret;
2926 
2927 	p = bufpoi + data_col_addr;
2928 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2929 		int stat;
2930 
2931 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2932 					 &chip->ecc.calc_buf[i]);
2933 		if (stat == -EBADMSG &&
2934 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2935 			/* check for empty pages with bitflips */
2936 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2937 						&chip->ecc.code_buf[i],
2938 						chip->ecc.bytes,
2939 						NULL, 0,
2940 						chip->ecc.strength);
2941 		}
2942 
2943 		if (stat < 0) {
2944 			mtd->ecc_stats.failed++;
2945 		} else {
2946 			mtd->ecc_stats.corrected += stat;
2947 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2948 		}
2949 	}
2950 	return max_bitflips;
2951 }
2952 
2953 /**
2954  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2955  * @chip: nand chip info structure
2956  * @buf: buffer to store read data
2957  * @oob_required: caller requires OOB data read to chip->oob_poi
2958  * @page: page number to read
2959  *
2960  * Not for syndrome calculating ECC controllers which need a special oob layout.
2961  */
2962 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2963 				int oob_required, int page)
2964 {
2965 	struct mtd_info *mtd = nand_to_mtd(chip);
2966 	int i, eccsize = chip->ecc.size, ret;
2967 	int eccbytes = chip->ecc.bytes;
2968 	int eccsteps = chip->ecc.steps;
2969 	uint8_t *p = buf;
2970 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2971 	uint8_t *ecc_code = chip->ecc.code_buf;
2972 	unsigned int max_bitflips = 0;
2973 
2974 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2975 	if (ret)
2976 		return ret;
2977 
2978 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2979 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2980 
2981 		ret = nand_read_data_op(chip, p, eccsize, false, false);
2982 		if (ret)
2983 			return ret;
2984 
2985 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2986 	}
2987 
2988 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
2989 				false);
2990 	if (ret)
2991 		return ret;
2992 
2993 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2994 					 chip->ecc.total);
2995 	if (ret)
2996 		return ret;
2997 
2998 	eccsteps = chip->ecc.steps;
2999 	p = buf;
3000 
3001 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3002 		int stat;
3003 
3004 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3005 		if (stat == -EBADMSG &&
3006 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3007 			/* check for empty pages with bitflips */
3008 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3009 						&ecc_code[i], eccbytes,
3010 						NULL, 0,
3011 						chip->ecc.strength);
3012 		}
3013 
3014 		if (stat < 0) {
3015 			mtd->ecc_stats.failed++;
3016 		} else {
3017 			mtd->ecc_stats.corrected += stat;
3018 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3019 		}
3020 	}
3021 	return max_bitflips;
3022 }
3023 
3024 /**
3025  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
3026  * @chip: nand chip info structure
3027  * @buf: buffer to store read data
3028  * @oob_required: caller requires OOB data read to chip->oob_poi
3029  * @page: page number to read
3030  *
3031  * Hardware ECC for large page chips, require OOB to be read first. For this
3032  * ECC mode, the write_page method is re-used from ECC_HW. These methods
3033  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
3034  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
3035  * the data area, by overwriting the NAND manufacturer bad block markings.
3036  */
3037 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3038 					  int oob_required, int page)
3039 {
3040 	struct mtd_info *mtd = nand_to_mtd(chip);
3041 	int i, eccsize = chip->ecc.size, ret;
3042 	int eccbytes = chip->ecc.bytes;
3043 	int eccsteps = chip->ecc.steps;
3044 	uint8_t *p = buf;
3045 	uint8_t *ecc_code = chip->ecc.code_buf;
3046 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3047 	unsigned int max_bitflips = 0;
3048 
3049 	/* Read the OOB area first */
3050 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3051 	if (ret)
3052 		return ret;
3053 
3054 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3055 	if (ret)
3056 		return ret;
3057 
3058 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3059 					 chip->ecc.total);
3060 	if (ret)
3061 		return ret;
3062 
3063 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3064 		int stat;
3065 
3066 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3067 
3068 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3069 		if (ret)
3070 			return ret;
3071 
3072 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3073 
3074 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3075 		if (stat == -EBADMSG &&
3076 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3077 			/* check for empty pages with bitflips */
3078 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3079 						&ecc_code[i], eccbytes,
3080 						NULL, 0,
3081 						chip->ecc.strength);
3082 		}
3083 
3084 		if (stat < 0) {
3085 			mtd->ecc_stats.failed++;
3086 		} else {
3087 			mtd->ecc_stats.corrected += stat;
3088 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3089 		}
3090 	}
3091 	return max_bitflips;
3092 }
3093 
3094 /**
3095  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3096  * @chip: nand chip info structure
3097  * @buf: buffer to store read data
3098  * @oob_required: caller requires OOB data read to chip->oob_poi
3099  * @page: page number to read
3100  *
3101  * The hw generator calculates the error syndrome automatically. Therefore we
3102  * need a special oob layout and handling.
3103  */
3104 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3105 				   int oob_required, int page)
3106 {
3107 	struct mtd_info *mtd = nand_to_mtd(chip);
3108 	int ret, i, eccsize = chip->ecc.size;
3109 	int eccbytes = chip->ecc.bytes;
3110 	int eccsteps = chip->ecc.steps;
3111 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3112 	uint8_t *p = buf;
3113 	uint8_t *oob = chip->oob_poi;
3114 	unsigned int max_bitflips = 0;
3115 
3116 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3117 	if (ret)
3118 		return ret;
3119 
3120 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3121 		int stat;
3122 
3123 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3124 
3125 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3126 		if (ret)
3127 			return ret;
3128 
3129 		if (chip->ecc.prepad) {
3130 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3131 						false, false);
3132 			if (ret)
3133 				return ret;
3134 
3135 			oob += chip->ecc.prepad;
3136 		}
3137 
3138 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3139 
3140 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3141 		if (ret)
3142 			return ret;
3143 
3144 		stat = chip->ecc.correct(chip, p, oob, NULL);
3145 
3146 		oob += eccbytes;
3147 
3148 		if (chip->ecc.postpad) {
3149 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3150 						false, false);
3151 			if (ret)
3152 				return ret;
3153 
3154 			oob += chip->ecc.postpad;
3155 		}
3156 
3157 		if (stat == -EBADMSG &&
3158 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3159 			/* check for empty pages with bitflips */
3160 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3161 							   oob - eccpadbytes,
3162 							   eccpadbytes,
3163 							   NULL, 0,
3164 							   chip->ecc.strength);
3165 		}
3166 
3167 		if (stat < 0) {
3168 			mtd->ecc_stats.failed++;
3169 		} else {
3170 			mtd->ecc_stats.corrected += stat;
3171 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3172 		}
3173 	}
3174 
3175 	/* Calculate remaining oob bytes */
3176 	i = mtd->oobsize - (oob - chip->oob_poi);
3177 	if (i) {
3178 		ret = nand_read_data_op(chip, oob, i, false, false);
3179 		if (ret)
3180 			return ret;
3181 	}
3182 
3183 	return max_bitflips;
3184 }
3185 
3186 /**
3187  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3188  * @chip: NAND chip object
3189  * @oob: oob destination address
3190  * @ops: oob ops structure
3191  * @len: size of oob to transfer
3192  */
3193 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3194 				  struct mtd_oob_ops *ops, size_t len)
3195 {
3196 	struct mtd_info *mtd = nand_to_mtd(chip);
3197 	int ret;
3198 
3199 	switch (ops->mode) {
3200 
3201 	case MTD_OPS_PLACE_OOB:
3202 	case MTD_OPS_RAW:
3203 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3204 		return oob + len;
3205 
3206 	case MTD_OPS_AUTO_OOB:
3207 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3208 						  ops->ooboffs, len);
3209 		BUG_ON(ret);
3210 		return oob + len;
3211 
3212 	default:
3213 		BUG();
3214 	}
3215 	return NULL;
3216 }
3217 
3218 /**
3219  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3220  * @chip: NAND chip object
3221  * @retry_mode: the retry mode to use
3222  *
3223  * Some vendors supply a special command to shift the Vt threshold, to be used
3224  * when there are too many bitflips in a page (i.e., ECC error). After setting
3225  * a new threshold, the host should retry reading the page.
3226  */
3227 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3228 {
3229 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3230 
3231 	if (retry_mode >= chip->read_retries)
3232 		return -EINVAL;
3233 
3234 	if (!chip->setup_read_retry)
3235 		return -EOPNOTSUPP;
3236 
3237 	return chip->setup_read_retry(chip, retry_mode);
3238 }
3239 
3240 static void nand_wait_readrdy(struct nand_chip *chip)
3241 {
3242 	const struct nand_sdr_timings *sdr;
3243 
3244 	if (!(chip->options & NAND_NEED_READRDY))
3245 		return;
3246 
3247 	sdr = nand_get_sdr_timings(&chip->data_interface);
3248 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3249 }
3250 
3251 /**
3252  * nand_do_read_ops - [INTERN] Read data with ECC
3253  * @chip: NAND chip object
3254  * @from: offset to read from
3255  * @ops: oob ops structure
3256  *
3257  * Internal function. Called with chip held.
3258  */
3259 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3260 			    struct mtd_oob_ops *ops)
3261 {
3262 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3263 	struct mtd_info *mtd = nand_to_mtd(chip);
3264 	int ret = 0;
3265 	uint32_t readlen = ops->len;
3266 	uint32_t oobreadlen = ops->ooblen;
3267 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3268 
3269 	uint8_t *bufpoi, *oob, *buf;
3270 	int use_bounce_buf;
3271 	unsigned int max_bitflips = 0;
3272 	int retry_mode = 0;
3273 	bool ecc_fail = false;
3274 
3275 	chipnr = (int)(from >> chip->chip_shift);
3276 	nand_select_target(chip, chipnr);
3277 
3278 	realpage = (int)(from >> chip->page_shift);
3279 	page = realpage & chip->pagemask;
3280 
3281 	col = (int)(from & (mtd->writesize - 1));
3282 
3283 	buf = ops->datbuf;
3284 	oob = ops->oobbuf;
3285 	oob_required = oob ? 1 : 0;
3286 
3287 	while (1) {
3288 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3289 
3290 		bytes = min(mtd->writesize - col, readlen);
3291 		aligned = (bytes == mtd->writesize);
3292 
3293 		if (!aligned)
3294 			use_bounce_buf = 1;
3295 		else if (chip->options & NAND_USES_DMA)
3296 			use_bounce_buf = !virt_addr_valid(buf) ||
3297 					 !IS_ALIGNED((unsigned long)buf,
3298 						     chip->buf_align);
3299 		else
3300 			use_bounce_buf = 0;
3301 
3302 		/* Is the current page in the buffer? */
3303 		if (realpage != chip->pagecache.page || oob) {
3304 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3305 
3306 			if (use_bounce_buf && aligned)
3307 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3308 						 __func__, buf);
3309 
3310 read_retry:
3311 			/*
3312 			 * Now read the page into the buffer.  Absent an error,
3313 			 * the read methods return max bitflips per ecc step.
3314 			 */
3315 			if (unlikely(ops->mode == MTD_OPS_RAW))
3316 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3317 							      oob_required,
3318 							      page);
3319 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3320 				 !oob)
3321 				ret = chip->ecc.read_subpage(chip, col, bytes,
3322 							     bufpoi, page);
3323 			else
3324 				ret = chip->ecc.read_page(chip, bufpoi,
3325 							  oob_required, page);
3326 			if (ret < 0) {
3327 				if (use_bounce_buf)
3328 					/* Invalidate page cache */
3329 					chip->pagecache.page = -1;
3330 				break;
3331 			}
3332 
3333 			/*
3334 			 * Copy back the data in the initial buffer when reading
3335 			 * partial pages or when a bounce buffer is required.
3336 			 */
3337 			if (use_bounce_buf) {
3338 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3339 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3340 				    (ops->mode != MTD_OPS_RAW)) {
3341 					chip->pagecache.page = realpage;
3342 					chip->pagecache.bitflips = ret;
3343 				} else {
3344 					/* Invalidate page cache */
3345 					chip->pagecache.page = -1;
3346 				}
3347 				memcpy(buf, bufpoi + col, bytes);
3348 			}
3349 
3350 			if (unlikely(oob)) {
3351 				int toread = min(oobreadlen, max_oobsize);
3352 
3353 				if (toread) {
3354 					oob = nand_transfer_oob(chip, oob, ops,
3355 								toread);
3356 					oobreadlen -= toread;
3357 				}
3358 			}
3359 
3360 			nand_wait_readrdy(chip);
3361 
3362 			if (mtd->ecc_stats.failed - ecc_failures) {
3363 				if (retry_mode + 1 < chip->read_retries) {
3364 					retry_mode++;
3365 					ret = nand_setup_read_retry(chip,
3366 							retry_mode);
3367 					if (ret < 0)
3368 						break;
3369 
3370 					/* Reset failures; retry */
3371 					mtd->ecc_stats.failed = ecc_failures;
3372 					goto read_retry;
3373 				} else {
3374 					/* No more retry modes; real failure */
3375 					ecc_fail = true;
3376 				}
3377 			}
3378 
3379 			buf += bytes;
3380 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3381 		} else {
3382 			memcpy(buf, chip->data_buf + col, bytes);
3383 			buf += bytes;
3384 			max_bitflips = max_t(unsigned int, max_bitflips,
3385 					     chip->pagecache.bitflips);
3386 		}
3387 
3388 		readlen -= bytes;
3389 
3390 		/* Reset to retry mode 0 */
3391 		if (retry_mode) {
3392 			ret = nand_setup_read_retry(chip, 0);
3393 			if (ret < 0)
3394 				break;
3395 			retry_mode = 0;
3396 		}
3397 
3398 		if (!readlen)
3399 			break;
3400 
3401 		/* For subsequent reads align to page boundary */
3402 		col = 0;
3403 		/* Increment page address */
3404 		realpage++;
3405 
3406 		page = realpage & chip->pagemask;
3407 		/* Check, if we cross a chip boundary */
3408 		if (!page) {
3409 			chipnr++;
3410 			nand_deselect_target(chip);
3411 			nand_select_target(chip, chipnr);
3412 		}
3413 	}
3414 	nand_deselect_target(chip);
3415 
3416 	ops->retlen = ops->len - (size_t) readlen;
3417 	if (oob)
3418 		ops->oobretlen = ops->ooblen - oobreadlen;
3419 
3420 	if (ret < 0)
3421 		return ret;
3422 
3423 	if (ecc_fail)
3424 		return -EBADMSG;
3425 
3426 	return max_bitflips;
3427 }
3428 
3429 /**
3430  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3431  * @chip: nand chip info structure
3432  * @page: page number to read
3433  */
3434 int nand_read_oob_std(struct nand_chip *chip, int page)
3435 {
3436 	struct mtd_info *mtd = nand_to_mtd(chip);
3437 
3438 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3439 }
3440 EXPORT_SYMBOL(nand_read_oob_std);
3441 
3442 /**
3443  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3444  *			    with syndromes
3445  * @chip: nand chip info structure
3446  * @page: page number to read
3447  */
3448 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3449 {
3450 	struct mtd_info *mtd = nand_to_mtd(chip);
3451 	int length = mtd->oobsize;
3452 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3453 	int eccsize = chip->ecc.size;
3454 	uint8_t *bufpoi = chip->oob_poi;
3455 	int i, toread, sndrnd = 0, pos, ret;
3456 
3457 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3458 	if (ret)
3459 		return ret;
3460 
3461 	for (i = 0; i < chip->ecc.steps; i++) {
3462 		if (sndrnd) {
3463 			int ret;
3464 
3465 			pos = eccsize + i * (eccsize + chunk);
3466 			if (mtd->writesize > 512)
3467 				ret = nand_change_read_column_op(chip, pos,
3468 								 NULL, 0,
3469 								 false);
3470 			else
3471 				ret = nand_read_page_op(chip, page, pos, NULL,
3472 							0);
3473 
3474 			if (ret)
3475 				return ret;
3476 		} else
3477 			sndrnd = 1;
3478 		toread = min_t(int, length, chunk);
3479 
3480 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3481 		if (ret)
3482 			return ret;
3483 
3484 		bufpoi += toread;
3485 		length -= toread;
3486 	}
3487 	if (length > 0) {
3488 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3489 		if (ret)
3490 			return ret;
3491 	}
3492 
3493 	return 0;
3494 }
3495 
3496 /**
3497  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3498  * @chip: nand chip info structure
3499  * @page: page number to write
3500  */
3501 int nand_write_oob_std(struct nand_chip *chip, int page)
3502 {
3503 	struct mtd_info *mtd = nand_to_mtd(chip);
3504 
3505 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3506 				 mtd->oobsize);
3507 }
3508 EXPORT_SYMBOL(nand_write_oob_std);
3509 
3510 /**
3511  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3512  *			     with syndrome - only for large page flash
3513  * @chip: nand chip info structure
3514  * @page: page number to write
3515  */
3516 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3517 {
3518 	struct mtd_info *mtd = nand_to_mtd(chip);
3519 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3520 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3521 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3522 	const uint8_t *bufpoi = chip->oob_poi;
3523 
3524 	/*
3525 	 * data-ecc-data-ecc ... ecc-oob
3526 	 * or
3527 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3528 	 */
3529 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3530 		pos = steps * (eccsize + chunk);
3531 		steps = 0;
3532 	} else
3533 		pos = eccsize;
3534 
3535 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3536 	if (ret)
3537 		return ret;
3538 
3539 	for (i = 0; i < steps; i++) {
3540 		if (sndcmd) {
3541 			if (mtd->writesize <= 512) {
3542 				uint32_t fill = 0xFFFFFFFF;
3543 
3544 				len = eccsize;
3545 				while (len > 0) {
3546 					int num = min_t(int, len, 4);
3547 
3548 					ret = nand_write_data_op(chip, &fill,
3549 								 num, false);
3550 					if (ret)
3551 						return ret;
3552 
3553 					len -= num;
3554 				}
3555 			} else {
3556 				pos = eccsize + i * (eccsize + chunk);
3557 				ret = nand_change_write_column_op(chip, pos,
3558 								  NULL, 0,
3559 								  false);
3560 				if (ret)
3561 					return ret;
3562 			}
3563 		} else
3564 			sndcmd = 1;
3565 		len = min_t(int, length, chunk);
3566 
3567 		ret = nand_write_data_op(chip, bufpoi, len, false);
3568 		if (ret)
3569 			return ret;
3570 
3571 		bufpoi += len;
3572 		length -= len;
3573 	}
3574 	if (length > 0) {
3575 		ret = nand_write_data_op(chip, bufpoi, length, false);
3576 		if (ret)
3577 			return ret;
3578 	}
3579 
3580 	return nand_prog_page_end_op(chip);
3581 }
3582 
3583 /**
3584  * nand_do_read_oob - [INTERN] NAND read out-of-band
3585  * @chip: NAND chip object
3586  * @from: offset to read from
3587  * @ops: oob operations description structure
3588  *
3589  * NAND read out-of-band data from the spare area.
3590  */
3591 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3592 			    struct mtd_oob_ops *ops)
3593 {
3594 	struct mtd_info *mtd = nand_to_mtd(chip);
3595 	unsigned int max_bitflips = 0;
3596 	int page, realpage, chipnr;
3597 	struct mtd_ecc_stats stats;
3598 	int readlen = ops->ooblen;
3599 	int len;
3600 	uint8_t *buf = ops->oobbuf;
3601 	int ret = 0;
3602 
3603 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3604 			__func__, (unsigned long long)from, readlen);
3605 
3606 	stats = mtd->ecc_stats;
3607 
3608 	len = mtd_oobavail(mtd, ops);
3609 
3610 	chipnr = (int)(from >> chip->chip_shift);
3611 	nand_select_target(chip, chipnr);
3612 
3613 	/* Shift to get page */
3614 	realpage = (int)(from >> chip->page_shift);
3615 	page = realpage & chip->pagemask;
3616 
3617 	while (1) {
3618 		if (ops->mode == MTD_OPS_RAW)
3619 			ret = chip->ecc.read_oob_raw(chip, page);
3620 		else
3621 			ret = chip->ecc.read_oob(chip, page);
3622 
3623 		if (ret < 0)
3624 			break;
3625 
3626 		len = min(len, readlen);
3627 		buf = nand_transfer_oob(chip, buf, ops, len);
3628 
3629 		nand_wait_readrdy(chip);
3630 
3631 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3632 
3633 		readlen -= len;
3634 		if (!readlen)
3635 			break;
3636 
3637 		/* Increment page address */
3638 		realpage++;
3639 
3640 		page = realpage & chip->pagemask;
3641 		/* Check, if we cross a chip boundary */
3642 		if (!page) {
3643 			chipnr++;
3644 			nand_deselect_target(chip);
3645 			nand_select_target(chip, chipnr);
3646 		}
3647 	}
3648 	nand_deselect_target(chip);
3649 
3650 	ops->oobretlen = ops->ooblen - readlen;
3651 
3652 	if (ret < 0)
3653 		return ret;
3654 
3655 	if (mtd->ecc_stats.failed - stats.failed)
3656 		return -EBADMSG;
3657 
3658 	return max_bitflips;
3659 }
3660 
3661 /**
3662  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3663  * @mtd: MTD device structure
3664  * @from: offset to read from
3665  * @ops: oob operation description structure
3666  *
3667  * NAND read data and/or out-of-band data.
3668  */
3669 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3670 			 struct mtd_oob_ops *ops)
3671 {
3672 	struct nand_chip *chip = mtd_to_nand(mtd);
3673 	int ret;
3674 
3675 	ops->retlen = 0;
3676 
3677 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3678 	    ops->mode != MTD_OPS_AUTO_OOB &&
3679 	    ops->mode != MTD_OPS_RAW)
3680 		return -ENOTSUPP;
3681 
3682 	ret = nand_get_device(chip);
3683 	if (ret)
3684 		return ret;
3685 
3686 	if (!ops->datbuf)
3687 		ret = nand_do_read_oob(chip, from, ops);
3688 	else
3689 		ret = nand_do_read_ops(chip, from, ops);
3690 
3691 	nand_release_device(chip);
3692 	return ret;
3693 }
3694 
3695 /**
3696  * nand_write_page_raw_notsupp - dummy raw page write function
3697  * @chip: nand chip info structure
3698  * @buf: data buffer
3699  * @oob_required: must write chip->oob_poi to OOB
3700  * @page: page number to write
3701  *
3702  * Returns -ENOTSUPP unconditionally.
3703  */
3704 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3705 				int oob_required, int page)
3706 {
3707 	return -ENOTSUPP;
3708 }
3709 
3710 /**
3711  * nand_write_page_raw - [INTERN] raw page write function
3712  * @chip: nand chip info structure
3713  * @buf: data buffer
3714  * @oob_required: must write chip->oob_poi to OOB
3715  * @page: page number to write
3716  *
3717  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3718  */
3719 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3720 			int oob_required, int page)
3721 {
3722 	struct mtd_info *mtd = nand_to_mtd(chip);
3723 	int ret;
3724 
3725 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3726 	if (ret)
3727 		return ret;
3728 
3729 	if (oob_required) {
3730 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3731 					 false);
3732 		if (ret)
3733 			return ret;
3734 	}
3735 
3736 	return nand_prog_page_end_op(chip);
3737 }
3738 EXPORT_SYMBOL(nand_write_page_raw);
3739 
3740 /**
3741  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3742  * @chip: NAND chip info structure
3743  * @buf: data buffer to write
3744  * @oob_required: must write chip->oob_poi to OOB
3745  * @page: page number to write
3746  *
3747  * This is a raw page write, ie. without any error detection/correction.
3748  * Monolithic means we are requesting all the relevant data (main plus
3749  * eventually OOB) to be sent over the bus and effectively programmed
3750  * into the NAND chip arrays in a single operation. This is an
3751  * alternative to nand_write_page_raw(), which first sends the main
3752  * data, then eventually send the OOB data by latching more data
3753  * cycles on the NAND bus, and finally sends the program command to
3754  * synchronyze the NAND chip cache.
3755  */
3756 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3757 				   int oob_required, int page)
3758 {
3759 	struct mtd_info *mtd = nand_to_mtd(chip);
3760 	unsigned int size = mtd->writesize;
3761 	u8 *write_buf = (u8 *)buf;
3762 
3763 	if (oob_required) {
3764 		size += mtd->oobsize;
3765 
3766 		if (buf != chip->data_buf) {
3767 			write_buf = nand_get_data_buf(chip);
3768 			memcpy(write_buf, buf, mtd->writesize);
3769 		}
3770 	}
3771 
3772 	return nand_prog_page_op(chip, page, 0, write_buf, size);
3773 }
3774 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3775 
3776 /**
3777  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3778  * @chip: nand chip info structure
3779  * @buf: data buffer
3780  * @oob_required: must write chip->oob_poi to OOB
3781  * @page: page number to write
3782  *
3783  * We need a special oob layout and handling even when ECC isn't checked.
3784  */
3785 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3786 					const uint8_t *buf, int oob_required,
3787 					int page)
3788 {
3789 	struct mtd_info *mtd = nand_to_mtd(chip);
3790 	int eccsize = chip->ecc.size;
3791 	int eccbytes = chip->ecc.bytes;
3792 	uint8_t *oob = chip->oob_poi;
3793 	int steps, size, ret;
3794 
3795 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3796 	if (ret)
3797 		return ret;
3798 
3799 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3800 		ret = nand_write_data_op(chip, buf, eccsize, false);
3801 		if (ret)
3802 			return ret;
3803 
3804 		buf += eccsize;
3805 
3806 		if (chip->ecc.prepad) {
3807 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3808 						 false);
3809 			if (ret)
3810 				return ret;
3811 
3812 			oob += chip->ecc.prepad;
3813 		}
3814 
3815 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3816 		if (ret)
3817 			return ret;
3818 
3819 		oob += eccbytes;
3820 
3821 		if (chip->ecc.postpad) {
3822 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3823 						 false);
3824 			if (ret)
3825 				return ret;
3826 
3827 			oob += chip->ecc.postpad;
3828 		}
3829 	}
3830 
3831 	size = mtd->oobsize - (oob - chip->oob_poi);
3832 	if (size) {
3833 		ret = nand_write_data_op(chip, oob, size, false);
3834 		if (ret)
3835 			return ret;
3836 	}
3837 
3838 	return nand_prog_page_end_op(chip);
3839 }
3840 /**
3841  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3842  * @chip: nand chip info structure
3843  * @buf: data buffer
3844  * @oob_required: must write chip->oob_poi to OOB
3845  * @page: page number to write
3846  */
3847 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3848 				 int oob_required, int page)
3849 {
3850 	struct mtd_info *mtd = nand_to_mtd(chip);
3851 	int i, eccsize = chip->ecc.size, ret;
3852 	int eccbytes = chip->ecc.bytes;
3853 	int eccsteps = chip->ecc.steps;
3854 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3855 	const uint8_t *p = buf;
3856 
3857 	/* Software ECC calculation */
3858 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3859 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3860 
3861 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3862 					 chip->ecc.total);
3863 	if (ret)
3864 		return ret;
3865 
3866 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3867 }
3868 
3869 /**
3870  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3871  * @chip: nand chip info structure
3872  * @buf: data buffer
3873  * @oob_required: must write chip->oob_poi to OOB
3874  * @page: page number to write
3875  */
3876 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3877 				 int oob_required, int page)
3878 {
3879 	struct mtd_info *mtd = nand_to_mtd(chip);
3880 	int i, eccsize = chip->ecc.size, ret;
3881 	int eccbytes = chip->ecc.bytes;
3882 	int eccsteps = chip->ecc.steps;
3883 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3884 	const uint8_t *p = buf;
3885 
3886 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3887 	if (ret)
3888 		return ret;
3889 
3890 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3891 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3892 
3893 		ret = nand_write_data_op(chip, p, eccsize, false);
3894 		if (ret)
3895 			return ret;
3896 
3897 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3898 	}
3899 
3900 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3901 					 chip->ecc.total);
3902 	if (ret)
3903 		return ret;
3904 
3905 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3906 	if (ret)
3907 		return ret;
3908 
3909 	return nand_prog_page_end_op(chip);
3910 }
3911 
3912 
3913 /**
3914  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3915  * @chip:	nand chip info structure
3916  * @offset:	column address of subpage within the page
3917  * @data_len:	data length
3918  * @buf:	data buffer
3919  * @oob_required: must write chip->oob_poi to OOB
3920  * @page: page number to write
3921  */
3922 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3923 				    uint32_t data_len, const uint8_t *buf,
3924 				    int oob_required, int page)
3925 {
3926 	struct mtd_info *mtd = nand_to_mtd(chip);
3927 	uint8_t *oob_buf  = chip->oob_poi;
3928 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3929 	int ecc_size      = chip->ecc.size;
3930 	int ecc_bytes     = chip->ecc.bytes;
3931 	int ecc_steps     = chip->ecc.steps;
3932 	uint32_t start_step = offset / ecc_size;
3933 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3934 	int oob_bytes       = mtd->oobsize / ecc_steps;
3935 	int step, ret;
3936 
3937 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3938 	if (ret)
3939 		return ret;
3940 
3941 	for (step = 0; step < ecc_steps; step++) {
3942 		/* configure controller for WRITE access */
3943 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3944 
3945 		/* write data (untouched subpages already masked by 0xFF) */
3946 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3947 		if (ret)
3948 			return ret;
3949 
3950 		/* mask ECC of un-touched subpages by padding 0xFF */
3951 		if ((step < start_step) || (step > end_step))
3952 			memset(ecc_calc, 0xff, ecc_bytes);
3953 		else
3954 			chip->ecc.calculate(chip, buf, ecc_calc);
3955 
3956 		/* mask OOB of un-touched subpages by padding 0xFF */
3957 		/* if oob_required, preserve OOB metadata of written subpage */
3958 		if (!oob_required || (step < start_step) || (step > end_step))
3959 			memset(oob_buf, 0xff, oob_bytes);
3960 
3961 		buf += ecc_size;
3962 		ecc_calc += ecc_bytes;
3963 		oob_buf  += oob_bytes;
3964 	}
3965 
3966 	/* copy calculated ECC for whole page to chip->buffer->oob */
3967 	/* this include masked-value(0xFF) for unwritten subpages */
3968 	ecc_calc = chip->ecc.calc_buf;
3969 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3970 					 chip->ecc.total);
3971 	if (ret)
3972 		return ret;
3973 
3974 	/* write OOB buffer to NAND device */
3975 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3976 	if (ret)
3977 		return ret;
3978 
3979 	return nand_prog_page_end_op(chip);
3980 }
3981 
3982 
3983 /**
3984  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3985  * @chip: nand chip info structure
3986  * @buf: data buffer
3987  * @oob_required: must write chip->oob_poi to OOB
3988  * @page: page number to write
3989  *
3990  * The hw generator calculates the error syndrome automatically. Therefore we
3991  * need a special oob layout and handling.
3992  */
3993 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3994 				    int oob_required, int page)
3995 {
3996 	struct mtd_info *mtd = nand_to_mtd(chip);
3997 	int i, eccsize = chip->ecc.size;
3998 	int eccbytes = chip->ecc.bytes;
3999 	int eccsteps = chip->ecc.steps;
4000 	const uint8_t *p = buf;
4001 	uint8_t *oob = chip->oob_poi;
4002 	int ret;
4003 
4004 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4005 	if (ret)
4006 		return ret;
4007 
4008 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4009 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4010 
4011 		ret = nand_write_data_op(chip, p, eccsize, false);
4012 		if (ret)
4013 			return ret;
4014 
4015 		if (chip->ecc.prepad) {
4016 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4017 						 false);
4018 			if (ret)
4019 				return ret;
4020 
4021 			oob += chip->ecc.prepad;
4022 		}
4023 
4024 		chip->ecc.calculate(chip, p, oob);
4025 
4026 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4027 		if (ret)
4028 			return ret;
4029 
4030 		oob += eccbytes;
4031 
4032 		if (chip->ecc.postpad) {
4033 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4034 						 false);
4035 			if (ret)
4036 				return ret;
4037 
4038 			oob += chip->ecc.postpad;
4039 		}
4040 	}
4041 
4042 	/* Calculate remaining oob bytes */
4043 	i = mtd->oobsize - (oob - chip->oob_poi);
4044 	if (i) {
4045 		ret = nand_write_data_op(chip, oob, i, false);
4046 		if (ret)
4047 			return ret;
4048 	}
4049 
4050 	return nand_prog_page_end_op(chip);
4051 }
4052 
4053 /**
4054  * nand_write_page - write one page
4055  * @chip: NAND chip descriptor
4056  * @offset: address offset within the page
4057  * @data_len: length of actual data to be written
4058  * @buf: the data to write
4059  * @oob_required: must write chip->oob_poi to OOB
4060  * @page: page number to write
4061  * @raw: use _raw version of write_page
4062  */
4063 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4064 			   int data_len, const uint8_t *buf, int oob_required,
4065 			   int page, int raw)
4066 {
4067 	struct mtd_info *mtd = nand_to_mtd(chip);
4068 	int status, subpage;
4069 
4070 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4071 		chip->ecc.write_subpage)
4072 		subpage = offset || (data_len < mtd->writesize);
4073 	else
4074 		subpage = 0;
4075 
4076 	if (unlikely(raw))
4077 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4078 						  page);
4079 	else if (subpage)
4080 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4081 						 oob_required, page);
4082 	else
4083 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4084 
4085 	if (status < 0)
4086 		return status;
4087 
4088 	return 0;
4089 }
4090 
4091 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4092 
4093 /**
4094  * nand_do_write_ops - [INTERN] NAND write with ECC
4095  * @chip: NAND chip object
4096  * @to: offset to write to
4097  * @ops: oob operations description structure
4098  *
4099  * NAND write with ECC.
4100  */
4101 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4102 			     struct mtd_oob_ops *ops)
4103 {
4104 	struct mtd_info *mtd = nand_to_mtd(chip);
4105 	int chipnr, realpage, page, column;
4106 	uint32_t writelen = ops->len;
4107 
4108 	uint32_t oobwritelen = ops->ooblen;
4109 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4110 
4111 	uint8_t *oob = ops->oobbuf;
4112 	uint8_t *buf = ops->datbuf;
4113 	int ret;
4114 	int oob_required = oob ? 1 : 0;
4115 
4116 	ops->retlen = 0;
4117 	if (!writelen)
4118 		return 0;
4119 
4120 	/* Reject writes, which are not page aligned */
4121 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4122 		pr_notice("%s: attempt to write non page aligned data\n",
4123 			   __func__);
4124 		return -EINVAL;
4125 	}
4126 
4127 	column = to & (mtd->writesize - 1);
4128 
4129 	chipnr = (int)(to >> chip->chip_shift);
4130 	nand_select_target(chip, chipnr);
4131 
4132 	/* Check, if it is write protected */
4133 	if (nand_check_wp(chip)) {
4134 		ret = -EIO;
4135 		goto err_out;
4136 	}
4137 
4138 	realpage = (int)(to >> chip->page_shift);
4139 	page = realpage & chip->pagemask;
4140 
4141 	/* Invalidate the page cache, when we write to the cached page */
4142 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4143 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4144 		chip->pagecache.page = -1;
4145 
4146 	/* Don't allow multipage oob writes with offset */
4147 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4148 		ret = -EINVAL;
4149 		goto err_out;
4150 	}
4151 
4152 	while (1) {
4153 		int bytes = mtd->writesize;
4154 		uint8_t *wbuf = buf;
4155 		int use_bounce_buf;
4156 		int part_pagewr = (column || writelen < mtd->writesize);
4157 
4158 		if (part_pagewr)
4159 			use_bounce_buf = 1;
4160 		else if (chip->options & NAND_USES_DMA)
4161 			use_bounce_buf = !virt_addr_valid(buf) ||
4162 					 !IS_ALIGNED((unsigned long)buf,
4163 						     chip->buf_align);
4164 		else
4165 			use_bounce_buf = 0;
4166 
4167 		/*
4168 		 * Copy the data from the initial buffer when doing partial page
4169 		 * writes or when a bounce buffer is required.
4170 		 */
4171 		if (use_bounce_buf) {
4172 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4173 					 __func__, buf);
4174 			if (part_pagewr)
4175 				bytes = min_t(int, bytes - column, writelen);
4176 			wbuf = nand_get_data_buf(chip);
4177 			memset(wbuf, 0xff, mtd->writesize);
4178 			memcpy(&wbuf[column], buf, bytes);
4179 		}
4180 
4181 		if (unlikely(oob)) {
4182 			size_t len = min(oobwritelen, oobmaxlen);
4183 			oob = nand_fill_oob(chip, oob, len, ops);
4184 			oobwritelen -= len;
4185 		} else {
4186 			/* We still need to erase leftover OOB data */
4187 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4188 		}
4189 
4190 		ret = nand_write_page(chip, column, bytes, wbuf,
4191 				      oob_required, page,
4192 				      (ops->mode == MTD_OPS_RAW));
4193 		if (ret)
4194 			break;
4195 
4196 		writelen -= bytes;
4197 		if (!writelen)
4198 			break;
4199 
4200 		column = 0;
4201 		buf += bytes;
4202 		realpage++;
4203 
4204 		page = realpage & chip->pagemask;
4205 		/* Check, if we cross a chip boundary */
4206 		if (!page) {
4207 			chipnr++;
4208 			nand_deselect_target(chip);
4209 			nand_select_target(chip, chipnr);
4210 		}
4211 	}
4212 
4213 	ops->retlen = ops->len - writelen;
4214 	if (unlikely(oob))
4215 		ops->oobretlen = ops->ooblen;
4216 
4217 err_out:
4218 	nand_deselect_target(chip);
4219 	return ret;
4220 }
4221 
4222 /**
4223  * panic_nand_write - [MTD Interface] NAND write with ECC
4224  * @mtd: MTD device structure
4225  * @to: offset to write to
4226  * @len: number of bytes to write
4227  * @retlen: pointer to variable to store the number of written bytes
4228  * @buf: the data to write
4229  *
4230  * NAND write with ECC. Used when performing writes in interrupt context, this
4231  * may for example be called by mtdoops when writing an oops while in panic.
4232  */
4233 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4234 			    size_t *retlen, const uint8_t *buf)
4235 {
4236 	struct nand_chip *chip = mtd_to_nand(mtd);
4237 	int chipnr = (int)(to >> chip->chip_shift);
4238 	struct mtd_oob_ops ops;
4239 	int ret;
4240 
4241 	nand_select_target(chip, chipnr);
4242 
4243 	/* Wait for the device to get ready */
4244 	panic_nand_wait(chip, 400);
4245 
4246 	memset(&ops, 0, sizeof(ops));
4247 	ops.len = len;
4248 	ops.datbuf = (uint8_t *)buf;
4249 	ops.mode = MTD_OPS_PLACE_OOB;
4250 
4251 	ret = nand_do_write_ops(chip, to, &ops);
4252 
4253 	*retlen = ops.retlen;
4254 	return ret;
4255 }
4256 
4257 /**
4258  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4259  * @mtd: MTD device structure
4260  * @to: offset to write to
4261  * @ops: oob operation description structure
4262  */
4263 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4264 			  struct mtd_oob_ops *ops)
4265 {
4266 	struct nand_chip *chip = mtd_to_nand(mtd);
4267 	int ret;
4268 
4269 	ops->retlen = 0;
4270 
4271 	ret = nand_get_device(chip);
4272 	if (ret)
4273 		return ret;
4274 
4275 	switch (ops->mode) {
4276 	case MTD_OPS_PLACE_OOB:
4277 	case MTD_OPS_AUTO_OOB:
4278 	case MTD_OPS_RAW:
4279 		break;
4280 
4281 	default:
4282 		goto out;
4283 	}
4284 
4285 	if (!ops->datbuf)
4286 		ret = nand_do_write_oob(chip, to, ops);
4287 	else
4288 		ret = nand_do_write_ops(chip, to, ops);
4289 
4290 out:
4291 	nand_release_device(chip);
4292 	return ret;
4293 }
4294 
4295 /**
4296  * nand_erase - [MTD Interface] erase block(s)
4297  * @mtd: MTD device structure
4298  * @instr: erase instruction
4299  *
4300  * Erase one ore more blocks.
4301  */
4302 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4303 {
4304 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4305 }
4306 
4307 /**
4308  * nand_erase_nand - [INTERN] erase block(s)
4309  * @chip: NAND chip object
4310  * @instr: erase instruction
4311  * @allowbbt: allow erasing the bbt area
4312  *
4313  * Erase one ore more blocks.
4314  */
4315 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4316 		    int allowbbt)
4317 {
4318 	int page, pages_per_block, ret, chipnr;
4319 	loff_t len;
4320 
4321 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4322 			__func__, (unsigned long long)instr->addr,
4323 			(unsigned long long)instr->len);
4324 
4325 	if (check_offs_len(chip, instr->addr, instr->len))
4326 		return -EINVAL;
4327 
4328 	/* Grab the lock and see if the device is available */
4329 	ret = nand_get_device(chip);
4330 	if (ret)
4331 		return ret;
4332 
4333 	/* Shift to get first page */
4334 	page = (int)(instr->addr >> chip->page_shift);
4335 	chipnr = (int)(instr->addr >> chip->chip_shift);
4336 
4337 	/* Calculate pages in each block */
4338 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4339 
4340 	/* Select the NAND device */
4341 	nand_select_target(chip, chipnr);
4342 
4343 	/* Check, if it is write protected */
4344 	if (nand_check_wp(chip)) {
4345 		pr_debug("%s: device is write protected!\n",
4346 				__func__);
4347 		ret = -EIO;
4348 		goto erase_exit;
4349 	}
4350 
4351 	/* Loop through the pages */
4352 	len = instr->len;
4353 
4354 	while (len) {
4355 		/* Check if we have a bad block, we do not erase bad blocks! */
4356 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4357 					chip->page_shift, allowbbt)) {
4358 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4359 				    __func__, page);
4360 			ret = -EIO;
4361 			goto erase_exit;
4362 		}
4363 
4364 		/*
4365 		 * Invalidate the page cache, if we erase the block which
4366 		 * contains the current cached page.
4367 		 */
4368 		if (page <= chip->pagecache.page && chip->pagecache.page <
4369 		    (page + pages_per_block))
4370 			chip->pagecache.page = -1;
4371 
4372 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4373 				    (chip->phys_erase_shift - chip->page_shift));
4374 		if (ret) {
4375 			pr_debug("%s: failed erase, page 0x%08x\n",
4376 					__func__, page);
4377 			instr->fail_addr =
4378 				((loff_t)page << chip->page_shift);
4379 			goto erase_exit;
4380 		}
4381 
4382 		/* Increment page address and decrement length */
4383 		len -= (1ULL << chip->phys_erase_shift);
4384 		page += pages_per_block;
4385 
4386 		/* Check, if we cross a chip boundary */
4387 		if (len && !(page & chip->pagemask)) {
4388 			chipnr++;
4389 			nand_deselect_target(chip);
4390 			nand_select_target(chip, chipnr);
4391 		}
4392 	}
4393 
4394 	ret = 0;
4395 erase_exit:
4396 
4397 	/* Deselect and wake up anyone waiting on the device */
4398 	nand_deselect_target(chip);
4399 	nand_release_device(chip);
4400 
4401 	/* Return more or less happy */
4402 	return ret;
4403 }
4404 
4405 /**
4406  * nand_sync - [MTD Interface] sync
4407  * @mtd: MTD device structure
4408  *
4409  * Sync is actually a wait for chip ready function.
4410  */
4411 static void nand_sync(struct mtd_info *mtd)
4412 {
4413 	struct nand_chip *chip = mtd_to_nand(mtd);
4414 
4415 	pr_debug("%s: called\n", __func__);
4416 
4417 	/* Grab the lock and see if the device is available */
4418 	WARN_ON(nand_get_device(chip));
4419 	/* Release it and go back */
4420 	nand_release_device(chip);
4421 }
4422 
4423 /**
4424  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4425  * @mtd: MTD device structure
4426  * @offs: offset relative to mtd start
4427  */
4428 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4429 {
4430 	struct nand_chip *chip = mtd_to_nand(mtd);
4431 	int chipnr = (int)(offs >> chip->chip_shift);
4432 	int ret;
4433 
4434 	/* Select the NAND device */
4435 	ret = nand_get_device(chip);
4436 	if (ret)
4437 		return ret;
4438 
4439 	nand_select_target(chip, chipnr);
4440 
4441 	ret = nand_block_checkbad(chip, offs, 0);
4442 
4443 	nand_deselect_target(chip);
4444 	nand_release_device(chip);
4445 
4446 	return ret;
4447 }
4448 
4449 /**
4450  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4451  * @mtd: MTD device structure
4452  * @ofs: offset relative to mtd start
4453  */
4454 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4455 {
4456 	int ret;
4457 
4458 	ret = nand_block_isbad(mtd, ofs);
4459 	if (ret) {
4460 		/* If it was bad already, return success and do nothing */
4461 		if (ret > 0)
4462 			return 0;
4463 		return ret;
4464 	}
4465 
4466 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4467 }
4468 
4469 /**
4470  * nand_suspend - [MTD Interface] Suspend the NAND flash
4471  * @mtd: MTD device structure
4472  *
4473  * Returns 0 for success or negative error code otherwise.
4474  */
4475 static int nand_suspend(struct mtd_info *mtd)
4476 {
4477 	struct nand_chip *chip = mtd_to_nand(mtd);
4478 	int ret = 0;
4479 
4480 	mutex_lock(&chip->lock);
4481 	if (chip->suspend)
4482 		ret = chip->suspend(chip);
4483 	if (!ret)
4484 		chip->suspended = 1;
4485 	mutex_unlock(&chip->lock);
4486 
4487 	return ret;
4488 }
4489 
4490 /**
4491  * nand_resume - [MTD Interface] Resume the NAND flash
4492  * @mtd: MTD device structure
4493  */
4494 static void nand_resume(struct mtd_info *mtd)
4495 {
4496 	struct nand_chip *chip = mtd_to_nand(mtd);
4497 
4498 	mutex_lock(&chip->lock);
4499 	if (chip->suspended) {
4500 		if (chip->resume)
4501 			chip->resume(chip);
4502 		chip->suspended = 0;
4503 	} else {
4504 		pr_err("%s called for a chip which is not in suspended state\n",
4505 			__func__);
4506 	}
4507 	mutex_unlock(&chip->lock);
4508 }
4509 
4510 /**
4511  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4512  *                 prevent further operations
4513  * @mtd: MTD device structure
4514  */
4515 static void nand_shutdown(struct mtd_info *mtd)
4516 {
4517 	nand_suspend(mtd);
4518 }
4519 
4520 /**
4521  * nand_lock - [MTD Interface] Lock the NAND flash
4522  * @mtd: MTD device structure
4523  * @ofs: offset byte address
4524  * @len: number of bytes to lock (must be a multiple of block/page size)
4525  */
4526 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4527 {
4528 	struct nand_chip *chip = mtd_to_nand(mtd);
4529 
4530 	if (!chip->lock_area)
4531 		return -ENOTSUPP;
4532 
4533 	return chip->lock_area(chip, ofs, len);
4534 }
4535 
4536 /**
4537  * nand_unlock - [MTD Interface] Unlock the NAND flash
4538  * @mtd: MTD device structure
4539  * @ofs: offset byte address
4540  * @len: number of bytes to unlock (must be a multiple of block/page size)
4541  */
4542 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4543 {
4544 	struct nand_chip *chip = mtd_to_nand(mtd);
4545 
4546 	if (!chip->unlock_area)
4547 		return -ENOTSUPP;
4548 
4549 	return chip->unlock_area(chip, ofs, len);
4550 }
4551 
4552 /* Set default functions */
4553 static void nand_set_defaults(struct nand_chip *chip)
4554 {
4555 	/* If no controller is provided, use the dummy, legacy one. */
4556 	if (!chip->controller) {
4557 		chip->controller = &chip->legacy.dummy_controller;
4558 		nand_controller_init(chip->controller);
4559 	}
4560 
4561 	nand_legacy_set_defaults(chip);
4562 
4563 	if (!chip->buf_align)
4564 		chip->buf_align = 1;
4565 }
4566 
4567 /* Sanitize ONFI strings so we can safely print them */
4568 void sanitize_string(uint8_t *s, size_t len)
4569 {
4570 	ssize_t i;
4571 
4572 	/* Null terminate */
4573 	s[len - 1] = 0;
4574 
4575 	/* Remove non printable chars */
4576 	for (i = 0; i < len - 1; i++) {
4577 		if (s[i] < ' ' || s[i] > 127)
4578 			s[i] = '?';
4579 	}
4580 
4581 	/* Remove trailing spaces */
4582 	strim(s);
4583 }
4584 
4585 /*
4586  * nand_id_has_period - Check if an ID string has a given wraparound period
4587  * @id_data: the ID string
4588  * @arrlen: the length of the @id_data array
4589  * @period: the period of repitition
4590  *
4591  * Check if an ID string is repeated within a given sequence of bytes at
4592  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4593  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4594  * if the repetition has a period of @period; otherwise, returns zero.
4595  */
4596 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4597 {
4598 	int i, j;
4599 	for (i = 0; i < period; i++)
4600 		for (j = i + period; j < arrlen; j += period)
4601 			if (id_data[i] != id_data[j])
4602 				return 0;
4603 	return 1;
4604 }
4605 
4606 /*
4607  * nand_id_len - Get the length of an ID string returned by CMD_READID
4608  * @id_data: the ID string
4609  * @arrlen: the length of the @id_data array
4610 
4611  * Returns the length of the ID string, according to known wraparound/trailing
4612  * zero patterns. If no pattern exists, returns the length of the array.
4613  */
4614 static int nand_id_len(u8 *id_data, int arrlen)
4615 {
4616 	int last_nonzero, period;
4617 
4618 	/* Find last non-zero byte */
4619 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4620 		if (id_data[last_nonzero])
4621 			break;
4622 
4623 	/* All zeros */
4624 	if (last_nonzero < 0)
4625 		return 0;
4626 
4627 	/* Calculate wraparound period */
4628 	for (period = 1; period < arrlen; period++)
4629 		if (nand_id_has_period(id_data, arrlen, period))
4630 			break;
4631 
4632 	/* There's a repeated pattern */
4633 	if (period < arrlen)
4634 		return period;
4635 
4636 	/* There are trailing zeros */
4637 	if (last_nonzero < arrlen - 1)
4638 		return last_nonzero + 1;
4639 
4640 	/* No pattern detected */
4641 	return arrlen;
4642 }
4643 
4644 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4645 static int nand_get_bits_per_cell(u8 cellinfo)
4646 {
4647 	int bits;
4648 
4649 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4650 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4651 	return bits + 1;
4652 }
4653 
4654 /*
4655  * Many new NAND share similar device ID codes, which represent the size of the
4656  * chip. The rest of the parameters must be decoded according to generic or
4657  * manufacturer-specific "extended ID" decoding patterns.
4658  */
4659 void nand_decode_ext_id(struct nand_chip *chip)
4660 {
4661 	struct nand_memory_organization *memorg;
4662 	struct mtd_info *mtd = nand_to_mtd(chip);
4663 	int extid;
4664 	u8 *id_data = chip->id.data;
4665 
4666 	memorg = nanddev_get_memorg(&chip->base);
4667 
4668 	/* The 3rd id byte holds MLC / multichip data */
4669 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4670 	/* The 4th id byte is the important one */
4671 	extid = id_data[3];
4672 
4673 	/* Calc pagesize */
4674 	memorg->pagesize = 1024 << (extid & 0x03);
4675 	mtd->writesize = memorg->pagesize;
4676 	extid >>= 2;
4677 	/* Calc oobsize */
4678 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4679 	mtd->oobsize = memorg->oobsize;
4680 	extid >>= 2;
4681 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4682 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4683 				       memorg->pagesize;
4684 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4685 	extid >>= 2;
4686 	/* Get buswidth information */
4687 	if (extid & 0x1)
4688 		chip->options |= NAND_BUSWIDTH_16;
4689 }
4690 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4691 
4692 /*
4693  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4694  * decodes a matching ID table entry and assigns the MTD size parameters for
4695  * the chip.
4696  */
4697 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4698 {
4699 	struct mtd_info *mtd = nand_to_mtd(chip);
4700 	struct nand_memory_organization *memorg;
4701 
4702 	memorg = nanddev_get_memorg(&chip->base);
4703 
4704 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4705 	mtd->erasesize = type->erasesize;
4706 	memorg->pagesize = type->pagesize;
4707 	mtd->writesize = memorg->pagesize;
4708 	memorg->oobsize = memorg->pagesize / 32;
4709 	mtd->oobsize = memorg->oobsize;
4710 
4711 	/* All legacy ID NAND are small-page, SLC */
4712 	memorg->bits_per_cell = 1;
4713 }
4714 
4715 /*
4716  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4717  * heuristic patterns using various detected parameters (e.g., manufacturer,
4718  * page size, cell-type information).
4719  */
4720 static void nand_decode_bbm_options(struct nand_chip *chip)
4721 {
4722 	struct mtd_info *mtd = nand_to_mtd(chip);
4723 
4724 	/* Set the bad block position */
4725 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4726 		chip->badblockpos = NAND_BBM_POS_LARGE;
4727 	else
4728 		chip->badblockpos = NAND_BBM_POS_SMALL;
4729 }
4730 
4731 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4732 {
4733 	return type->id_len;
4734 }
4735 
4736 static bool find_full_id_nand(struct nand_chip *chip,
4737 			      struct nand_flash_dev *type)
4738 {
4739 	struct mtd_info *mtd = nand_to_mtd(chip);
4740 	struct nand_memory_organization *memorg;
4741 	u8 *id_data = chip->id.data;
4742 
4743 	memorg = nanddev_get_memorg(&chip->base);
4744 
4745 	if (!strncmp(type->id, id_data, type->id_len)) {
4746 		memorg->pagesize = type->pagesize;
4747 		mtd->writesize = memorg->pagesize;
4748 		memorg->pages_per_eraseblock = type->erasesize /
4749 					       type->pagesize;
4750 		mtd->erasesize = type->erasesize;
4751 		memorg->oobsize = type->oobsize;
4752 		mtd->oobsize = memorg->oobsize;
4753 
4754 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4755 		memorg->eraseblocks_per_lun =
4756 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4757 					   memorg->pagesize *
4758 					   memorg->pages_per_eraseblock);
4759 		chip->options |= type->options;
4760 		chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4761 		chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4762 		chip->onfi_timing_mode_default =
4763 					type->onfi_timing_mode_default;
4764 
4765 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4766 		if (!chip->parameters.model)
4767 			return false;
4768 
4769 		return true;
4770 	}
4771 	return false;
4772 }
4773 
4774 /*
4775  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4776  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4777  * table.
4778  */
4779 static void nand_manufacturer_detect(struct nand_chip *chip)
4780 {
4781 	/*
4782 	 * Try manufacturer detection if available and use
4783 	 * nand_decode_ext_id() otherwise.
4784 	 */
4785 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4786 	    chip->manufacturer.desc->ops->detect) {
4787 		struct nand_memory_organization *memorg;
4788 
4789 		memorg = nanddev_get_memorg(&chip->base);
4790 
4791 		/* The 3rd id byte holds MLC / multichip data */
4792 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4793 		chip->manufacturer.desc->ops->detect(chip);
4794 	} else {
4795 		nand_decode_ext_id(chip);
4796 	}
4797 }
4798 
4799 /*
4800  * Manufacturer initialization. This function is called for all NANDs including
4801  * ONFI and JEDEC compliant ones.
4802  * Manufacturer drivers should put all their specific initialization code in
4803  * their ->init() hook.
4804  */
4805 static int nand_manufacturer_init(struct nand_chip *chip)
4806 {
4807 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4808 	    !chip->manufacturer.desc->ops->init)
4809 		return 0;
4810 
4811 	return chip->manufacturer.desc->ops->init(chip);
4812 }
4813 
4814 /*
4815  * Manufacturer cleanup. This function is called for all NANDs including
4816  * ONFI and JEDEC compliant ones.
4817  * Manufacturer drivers should put all their specific cleanup code in their
4818  * ->cleanup() hook.
4819  */
4820 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4821 {
4822 	/* Release manufacturer private data */
4823 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4824 	    chip->manufacturer.desc->ops->cleanup)
4825 		chip->manufacturer.desc->ops->cleanup(chip);
4826 }
4827 
4828 static const char *
4829 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4830 {
4831 	return manufacturer ? manufacturer->name : "Unknown";
4832 }
4833 
4834 /*
4835  * Get the flash and manufacturer id and lookup if the type is supported.
4836  */
4837 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4838 {
4839 	const struct nand_manufacturer *manufacturer;
4840 	struct mtd_info *mtd = nand_to_mtd(chip);
4841 	struct nand_memory_organization *memorg;
4842 	int busw, ret;
4843 	u8 *id_data = chip->id.data;
4844 	u8 maf_id, dev_id;
4845 	u64 targetsize;
4846 
4847 	/*
4848 	 * Let's start by initializing memorg fields that might be left
4849 	 * unassigned by the ID-based detection logic.
4850 	 */
4851 	memorg = nanddev_get_memorg(&chip->base);
4852 	memorg->planes_per_lun = 1;
4853 	memorg->luns_per_target = 1;
4854 
4855 	/*
4856 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4857 	 * after power-up.
4858 	 */
4859 	ret = nand_reset(chip, 0);
4860 	if (ret)
4861 		return ret;
4862 
4863 	/* Select the device */
4864 	nand_select_target(chip, 0);
4865 
4866 	/* Send the command for reading device ID */
4867 	ret = nand_readid_op(chip, 0, id_data, 2);
4868 	if (ret)
4869 		return ret;
4870 
4871 	/* Read manufacturer and device IDs */
4872 	maf_id = id_data[0];
4873 	dev_id = id_data[1];
4874 
4875 	/*
4876 	 * Try again to make sure, as some systems the bus-hold or other
4877 	 * interface concerns can cause random data which looks like a
4878 	 * possibly credible NAND flash to appear. If the two results do
4879 	 * not match, ignore the device completely.
4880 	 */
4881 
4882 	/* Read entire ID string */
4883 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4884 	if (ret)
4885 		return ret;
4886 
4887 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4888 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4889 			maf_id, dev_id, id_data[0], id_data[1]);
4890 		return -ENODEV;
4891 	}
4892 
4893 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4894 
4895 	/* Try to identify manufacturer */
4896 	manufacturer = nand_get_manufacturer(maf_id);
4897 	chip->manufacturer.desc = manufacturer;
4898 
4899 	if (!type)
4900 		type = nand_flash_ids;
4901 
4902 	/*
4903 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4904 	 * override it.
4905 	 * This is required to make sure initial NAND bus width set by the
4906 	 * NAND controller driver is coherent with the real NAND bus width
4907 	 * (extracted by auto-detection code).
4908 	 */
4909 	busw = chip->options & NAND_BUSWIDTH_16;
4910 
4911 	/*
4912 	 * The flag is only set (never cleared), reset it to its default value
4913 	 * before starting auto-detection.
4914 	 */
4915 	chip->options &= ~NAND_BUSWIDTH_16;
4916 
4917 	for (; type->name != NULL; type++) {
4918 		if (is_full_id_nand(type)) {
4919 			if (find_full_id_nand(chip, type))
4920 				goto ident_done;
4921 		} else if (dev_id == type->dev_id) {
4922 			break;
4923 		}
4924 	}
4925 
4926 	if (!type->name || !type->pagesize) {
4927 		/* Check if the chip is ONFI compliant */
4928 		ret = nand_onfi_detect(chip);
4929 		if (ret < 0)
4930 			return ret;
4931 		else if (ret)
4932 			goto ident_done;
4933 
4934 		/* Check if the chip is JEDEC compliant */
4935 		ret = nand_jedec_detect(chip);
4936 		if (ret < 0)
4937 			return ret;
4938 		else if (ret)
4939 			goto ident_done;
4940 	}
4941 
4942 	if (!type->name)
4943 		return -ENODEV;
4944 
4945 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4946 	if (!chip->parameters.model)
4947 		return -ENOMEM;
4948 
4949 	if (!type->pagesize)
4950 		nand_manufacturer_detect(chip);
4951 	else
4952 		nand_decode_id(chip, type);
4953 
4954 	/* Get chip options */
4955 	chip->options |= type->options;
4956 
4957 	memorg->eraseblocks_per_lun =
4958 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4959 					   memorg->pagesize *
4960 					   memorg->pages_per_eraseblock);
4961 
4962 ident_done:
4963 	if (!mtd->name)
4964 		mtd->name = chip->parameters.model;
4965 
4966 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4967 		WARN_ON(busw & NAND_BUSWIDTH_16);
4968 		nand_set_defaults(chip);
4969 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4970 		/*
4971 		 * Check, if buswidth is correct. Hardware drivers should set
4972 		 * chip correct!
4973 		 */
4974 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4975 			maf_id, dev_id);
4976 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4977 			mtd->name);
4978 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4979 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4980 		ret = -EINVAL;
4981 
4982 		goto free_detect_allocation;
4983 	}
4984 
4985 	nand_decode_bbm_options(chip);
4986 
4987 	/* Calculate the address shift from the page size */
4988 	chip->page_shift = ffs(mtd->writesize) - 1;
4989 	/* Convert chipsize to number of pages per chip -1 */
4990 	targetsize = nanddev_target_size(&chip->base);
4991 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
4992 
4993 	chip->bbt_erase_shift = chip->phys_erase_shift =
4994 		ffs(mtd->erasesize) - 1;
4995 	if (targetsize & 0xffffffff)
4996 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
4997 	else {
4998 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4999 		chip->chip_shift += 32 - 1;
5000 	}
5001 
5002 	if (chip->chip_shift - chip->page_shift > 16)
5003 		chip->options |= NAND_ROW_ADDR_3;
5004 
5005 	chip->badblockbits = 8;
5006 
5007 	nand_legacy_adjust_cmdfunc(chip);
5008 
5009 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5010 		maf_id, dev_id);
5011 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5012 		chip->parameters.model);
5013 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5014 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5015 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5016 	return 0;
5017 
5018 free_detect_allocation:
5019 	kfree(chip->parameters.model);
5020 
5021 	return ret;
5022 }
5023 
5024 static const char * const nand_ecc_modes[] = {
5025 	[NAND_ECC_NONE]		= "none",
5026 	[NAND_ECC_SOFT]		= "soft",
5027 	[NAND_ECC_HW]		= "hw",
5028 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5029 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
5030 	[NAND_ECC_ON_DIE]	= "on-die",
5031 };
5032 
5033 static int of_get_nand_ecc_mode(struct device_node *np)
5034 {
5035 	const char *pm;
5036 	int err, i;
5037 
5038 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5039 	if (err < 0)
5040 		return err;
5041 
5042 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
5043 		if (!strcasecmp(pm, nand_ecc_modes[i]))
5044 			return i;
5045 
5046 	/*
5047 	 * For backward compatibility we support few obsoleted values that don't
5048 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
5049 	 * with other enums).
5050 	 */
5051 	if (!strcasecmp(pm, "soft_bch"))
5052 		return NAND_ECC_SOFT;
5053 
5054 	return -ENODEV;
5055 }
5056 
5057 static const char * const nand_ecc_algos[] = {
5058 	[NAND_ECC_HAMMING]	= "hamming",
5059 	[NAND_ECC_BCH]		= "bch",
5060 	[NAND_ECC_RS]		= "rs",
5061 };
5062 
5063 static int of_get_nand_ecc_algo(struct device_node *np)
5064 {
5065 	const char *pm;
5066 	int err, i;
5067 
5068 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
5069 	if (!err) {
5070 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
5071 			if (!strcasecmp(pm, nand_ecc_algos[i]))
5072 				return i;
5073 		return -ENODEV;
5074 	}
5075 
5076 	/*
5077 	 * For backward compatibility we also read "nand-ecc-mode" checking
5078 	 * for some obsoleted values that were specifying ECC algorithm.
5079 	 */
5080 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5081 	if (err < 0)
5082 		return err;
5083 
5084 	if (!strcasecmp(pm, "soft"))
5085 		return NAND_ECC_HAMMING;
5086 	else if (!strcasecmp(pm, "soft_bch"))
5087 		return NAND_ECC_BCH;
5088 
5089 	return -ENODEV;
5090 }
5091 
5092 static int of_get_nand_ecc_step_size(struct device_node *np)
5093 {
5094 	int ret;
5095 	u32 val;
5096 
5097 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5098 	return ret ? ret : val;
5099 }
5100 
5101 static int of_get_nand_ecc_strength(struct device_node *np)
5102 {
5103 	int ret;
5104 	u32 val;
5105 
5106 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5107 	return ret ? ret : val;
5108 }
5109 
5110 static int of_get_nand_bus_width(struct device_node *np)
5111 {
5112 	u32 val;
5113 
5114 	if (of_property_read_u32(np, "nand-bus-width", &val))
5115 		return 8;
5116 
5117 	switch (val) {
5118 	case 8:
5119 	case 16:
5120 		return val;
5121 	default:
5122 		return -EIO;
5123 	}
5124 }
5125 
5126 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5127 {
5128 	return of_property_read_bool(np, "nand-on-flash-bbt");
5129 }
5130 
5131 static int nand_dt_init(struct nand_chip *chip)
5132 {
5133 	struct device_node *dn = nand_get_flash_node(chip);
5134 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5135 
5136 	if (!dn)
5137 		return 0;
5138 
5139 	if (of_get_nand_bus_width(dn) == 16)
5140 		chip->options |= NAND_BUSWIDTH_16;
5141 
5142 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5143 		chip->options |= NAND_IS_BOOT_MEDIUM;
5144 
5145 	if (of_get_nand_on_flash_bbt(dn))
5146 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5147 
5148 	ecc_mode = of_get_nand_ecc_mode(dn);
5149 	ecc_algo = of_get_nand_ecc_algo(dn);
5150 	ecc_strength = of_get_nand_ecc_strength(dn);
5151 	ecc_step = of_get_nand_ecc_step_size(dn);
5152 
5153 	if (ecc_mode >= 0)
5154 		chip->ecc.mode = ecc_mode;
5155 
5156 	if (ecc_algo >= 0)
5157 		chip->ecc.algo = ecc_algo;
5158 
5159 	if (ecc_strength >= 0)
5160 		chip->ecc.strength = ecc_strength;
5161 
5162 	if (ecc_step > 0)
5163 		chip->ecc.size = ecc_step;
5164 
5165 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
5166 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
5167 
5168 	return 0;
5169 }
5170 
5171 /**
5172  * nand_scan_ident - Scan for the NAND device
5173  * @chip: NAND chip object
5174  * @maxchips: number of chips to scan for
5175  * @table: alternative NAND ID table
5176  *
5177  * This is the first phase of the normal nand_scan() function. It reads the
5178  * flash ID and sets up MTD fields accordingly.
5179  *
5180  * This helper used to be called directly from controller drivers that needed
5181  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5182  * prevented dynamic allocations during this phase which was unconvenient and
5183  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5184  */
5185 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5186 			   struct nand_flash_dev *table)
5187 {
5188 	struct mtd_info *mtd = nand_to_mtd(chip);
5189 	struct nand_memory_organization *memorg;
5190 	int nand_maf_id, nand_dev_id;
5191 	unsigned int i;
5192 	int ret;
5193 
5194 	memorg = nanddev_get_memorg(&chip->base);
5195 
5196 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5197 	chip->cur_cs = -1;
5198 
5199 	mutex_init(&chip->lock);
5200 
5201 	/* Enforce the right timings for reset/detection */
5202 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5203 
5204 	ret = nand_dt_init(chip);
5205 	if (ret)
5206 		return ret;
5207 
5208 	if (!mtd->name && mtd->dev.parent)
5209 		mtd->name = dev_name(mtd->dev.parent);
5210 
5211 	/* Set the default functions */
5212 	nand_set_defaults(chip);
5213 
5214 	ret = nand_legacy_check_hooks(chip);
5215 	if (ret)
5216 		return ret;
5217 
5218 	memorg->ntargets = maxchips;
5219 
5220 	/* Read the flash type */
5221 	ret = nand_detect(chip, table);
5222 	if (ret) {
5223 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5224 			pr_warn("No NAND device found\n");
5225 		nand_deselect_target(chip);
5226 		return ret;
5227 	}
5228 
5229 	nand_maf_id = chip->id.data[0];
5230 	nand_dev_id = chip->id.data[1];
5231 
5232 	nand_deselect_target(chip);
5233 
5234 	/* Check for a chip array */
5235 	for (i = 1; i < maxchips; i++) {
5236 		u8 id[2];
5237 
5238 		/* See comment in nand_get_flash_type for reset */
5239 		ret = nand_reset(chip, i);
5240 		if (ret)
5241 			break;
5242 
5243 		nand_select_target(chip, i);
5244 		/* Send the command for reading device ID */
5245 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5246 		if (ret)
5247 			break;
5248 		/* Read manufacturer and device IDs */
5249 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5250 			nand_deselect_target(chip);
5251 			break;
5252 		}
5253 		nand_deselect_target(chip);
5254 	}
5255 	if (i > 1)
5256 		pr_info("%d chips detected\n", i);
5257 
5258 	/* Store the number of chips and calc total size for mtd */
5259 	memorg->ntargets = i;
5260 	mtd->size = i * nanddev_target_size(&chip->base);
5261 
5262 	return 0;
5263 }
5264 
5265 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5266 {
5267 	kfree(chip->parameters.model);
5268 	kfree(chip->parameters.onfi);
5269 }
5270 
5271 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5272 {
5273 	struct mtd_info *mtd = nand_to_mtd(chip);
5274 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5275 
5276 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5277 		return -EINVAL;
5278 
5279 	switch (ecc->algo) {
5280 	case NAND_ECC_HAMMING:
5281 		ecc->calculate = nand_calculate_ecc;
5282 		ecc->correct = nand_correct_data;
5283 		ecc->read_page = nand_read_page_swecc;
5284 		ecc->read_subpage = nand_read_subpage;
5285 		ecc->write_page = nand_write_page_swecc;
5286 		if (!ecc->read_page_raw)
5287 			ecc->read_page_raw = nand_read_page_raw;
5288 		if (!ecc->write_page_raw)
5289 			ecc->write_page_raw = nand_write_page_raw;
5290 		ecc->read_oob = nand_read_oob_std;
5291 		ecc->write_oob = nand_write_oob_std;
5292 		if (!ecc->size)
5293 			ecc->size = 256;
5294 		ecc->bytes = 3;
5295 		ecc->strength = 1;
5296 
5297 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5298 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5299 
5300 		return 0;
5301 	case NAND_ECC_BCH:
5302 		if (!mtd_nand_has_bch()) {
5303 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5304 			return -EINVAL;
5305 		}
5306 		ecc->calculate = nand_bch_calculate_ecc;
5307 		ecc->correct = nand_bch_correct_data;
5308 		ecc->read_page = nand_read_page_swecc;
5309 		ecc->read_subpage = nand_read_subpage;
5310 		ecc->write_page = nand_write_page_swecc;
5311 		if (!ecc->read_page_raw)
5312 			ecc->read_page_raw = nand_read_page_raw;
5313 		if (!ecc->write_page_raw)
5314 			ecc->write_page_raw = nand_write_page_raw;
5315 		ecc->read_oob = nand_read_oob_std;
5316 		ecc->write_oob = nand_write_oob_std;
5317 
5318 		/*
5319 		* Board driver should supply ecc.size and ecc.strength
5320 		* values to select how many bits are correctable.
5321 		* Otherwise, default to 4 bits for large page devices.
5322 		*/
5323 		if (!ecc->size && (mtd->oobsize >= 64)) {
5324 			ecc->size = 512;
5325 			ecc->strength = 4;
5326 		}
5327 
5328 		/*
5329 		 * if no ecc placement scheme was provided pickup the default
5330 		 * large page one.
5331 		 */
5332 		if (!mtd->ooblayout) {
5333 			/* handle large page devices only */
5334 			if (mtd->oobsize < 64) {
5335 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5336 				return -EINVAL;
5337 			}
5338 
5339 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5340 
5341 		}
5342 
5343 		/*
5344 		 * We can only maximize ECC config when the default layout is
5345 		 * used, otherwise we don't know how many bytes can really be
5346 		 * used.
5347 		 */
5348 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5349 		    ecc->options & NAND_ECC_MAXIMIZE) {
5350 			int steps, bytes;
5351 
5352 			/* Always prefer 1k blocks over 512bytes ones */
5353 			ecc->size = 1024;
5354 			steps = mtd->writesize / ecc->size;
5355 
5356 			/* Reserve 2 bytes for the BBM */
5357 			bytes = (mtd->oobsize - 2) / steps;
5358 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5359 		}
5360 
5361 		/* See nand_bch_init() for details. */
5362 		ecc->bytes = 0;
5363 		ecc->priv = nand_bch_init(mtd);
5364 		if (!ecc->priv) {
5365 			WARN(1, "BCH ECC initialization failed!\n");
5366 			return -EINVAL;
5367 		}
5368 		return 0;
5369 	default:
5370 		WARN(1, "Unsupported ECC algorithm!\n");
5371 		return -EINVAL;
5372 	}
5373 }
5374 
5375 /**
5376  * nand_check_ecc_caps - check the sanity of preset ECC settings
5377  * @chip: nand chip info structure
5378  * @caps: ECC caps info structure
5379  * @oobavail: OOB size that the ECC engine can use
5380  *
5381  * When ECC step size and strength are already set, check if they are supported
5382  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5383  * On success, the calculated ECC bytes is set.
5384  */
5385 static int
5386 nand_check_ecc_caps(struct nand_chip *chip,
5387 		    const struct nand_ecc_caps *caps, int oobavail)
5388 {
5389 	struct mtd_info *mtd = nand_to_mtd(chip);
5390 	const struct nand_ecc_step_info *stepinfo;
5391 	int preset_step = chip->ecc.size;
5392 	int preset_strength = chip->ecc.strength;
5393 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5394 	int i, j;
5395 
5396 	for (i = 0; i < caps->nstepinfos; i++) {
5397 		stepinfo = &caps->stepinfos[i];
5398 
5399 		if (stepinfo->stepsize != preset_step)
5400 			continue;
5401 
5402 		for (j = 0; j < stepinfo->nstrengths; j++) {
5403 			if (stepinfo->strengths[j] != preset_strength)
5404 				continue;
5405 
5406 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5407 							 preset_strength);
5408 			if (WARN_ON_ONCE(ecc_bytes < 0))
5409 				return ecc_bytes;
5410 
5411 			if (ecc_bytes * nsteps > oobavail) {
5412 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5413 				       preset_step, preset_strength);
5414 				return -ENOSPC;
5415 			}
5416 
5417 			chip->ecc.bytes = ecc_bytes;
5418 
5419 			return 0;
5420 		}
5421 	}
5422 
5423 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5424 	       preset_step, preset_strength);
5425 
5426 	return -ENOTSUPP;
5427 }
5428 
5429 /**
5430  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5431  * @chip: nand chip info structure
5432  * @caps: ECC engine caps info structure
5433  * @oobavail: OOB size that the ECC engine can use
5434  *
5435  * If a chip's ECC requirement is provided, try to meet it with the least
5436  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5437  * On success, the chosen ECC settings are set.
5438  */
5439 static int
5440 nand_match_ecc_req(struct nand_chip *chip,
5441 		   const struct nand_ecc_caps *caps, int oobavail)
5442 {
5443 	struct mtd_info *mtd = nand_to_mtd(chip);
5444 	const struct nand_ecc_step_info *stepinfo;
5445 	int req_step = chip->base.eccreq.step_size;
5446 	int req_strength = chip->base.eccreq.strength;
5447 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5448 	int best_step, best_strength, best_ecc_bytes;
5449 	int best_ecc_bytes_total = INT_MAX;
5450 	int i, j;
5451 
5452 	/* No information provided by the NAND chip */
5453 	if (!req_step || !req_strength)
5454 		return -ENOTSUPP;
5455 
5456 	/* number of correctable bits the chip requires in a page */
5457 	req_corr = mtd->writesize / req_step * req_strength;
5458 
5459 	for (i = 0; i < caps->nstepinfos; i++) {
5460 		stepinfo = &caps->stepinfos[i];
5461 		step_size = stepinfo->stepsize;
5462 
5463 		for (j = 0; j < stepinfo->nstrengths; j++) {
5464 			strength = stepinfo->strengths[j];
5465 
5466 			/*
5467 			 * If both step size and strength are smaller than the
5468 			 * chip's requirement, it is not easy to compare the
5469 			 * resulted reliability.
5470 			 */
5471 			if (step_size < req_step && strength < req_strength)
5472 				continue;
5473 
5474 			if (mtd->writesize % step_size)
5475 				continue;
5476 
5477 			nsteps = mtd->writesize / step_size;
5478 
5479 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5480 			if (WARN_ON_ONCE(ecc_bytes < 0))
5481 				continue;
5482 			ecc_bytes_total = ecc_bytes * nsteps;
5483 
5484 			if (ecc_bytes_total > oobavail ||
5485 			    strength * nsteps < req_corr)
5486 				continue;
5487 
5488 			/*
5489 			 * We assume the best is to meet the chip's requrement
5490 			 * with the least number of ECC bytes.
5491 			 */
5492 			if (ecc_bytes_total < best_ecc_bytes_total) {
5493 				best_ecc_bytes_total = ecc_bytes_total;
5494 				best_step = step_size;
5495 				best_strength = strength;
5496 				best_ecc_bytes = ecc_bytes;
5497 			}
5498 		}
5499 	}
5500 
5501 	if (best_ecc_bytes_total == INT_MAX)
5502 		return -ENOTSUPP;
5503 
5504 	chip->ecc.size = best_step;
5505 	chip->ecc.strength = best_strength;
5506 	chip->ecc.bytes = best_ecc_bytes;
5507 
5508 	return 0;
5509 }
5510 
5511 /**
5512  * nand_maximize_ecc - choose the max ECC strength available
5513  * @chip: nand chip info structure
5514  * @caps: ECC engine caps info structure
5515  * @oobavail: OOB size that the ECC engine can use
5516  *
5517  * Choose the max ECC strength that is supported on the controller, and can fit
5518  * within the chip's OOB.  On success, the chosen ECC settings are set.
5519  */
5520 static int
5521 nand_maximize_ecc(struct nand_chip *chip,
5522 		  const struct nand_ecc_caps *caps, int oobavail)
5523 {
5524 	struct mtd_info *mtd = nand_to_mtd(chip);
5525 	const struct nand_ecc_step_info *stepinfo;
5526 	int step_size, strength, nsteps, ecc_bytes, corr;
5527 	int best_corr = 0;
5528 	int best_step = 0;
5529 	int best_strength, best_ecc_bytes;
5530 	int i, j;
5531 
5532 	for (i = 0; i < caps->nstepinfos; i++) {
5533 		stepinfo = &caps->stepinfos[i];
5534 		step_size = stepinfo->stepsize;
5535 
5536 		/* If chip->ecc.size is already set, respect it */
5537 		if (chip->ecc.size && step_size != chip->ecc.size)
5538 			continue;
5539 
5540 		for (j = 0; j < stepinfo->nstrengths; j++) {
5541 			strength = stepinfo->strengths[j];
5542 
5543 			if (mtd->writesize % step_size)
5544 				continue;
5545 
5546 			nsteps = mtd->writesize / step_size;
5547 
5548 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5549 			if (WARN_ON_ONCE(ecc_bytes < 0))
5550 				continue;
5551 
5552 			if (ecc_bytes * nsteps > oobavail)
5553 				continue;
5554 
5555 			corr = strength * nsteps;
5556 
5557 			/*
5558 			 * If the number of correctable bits is the same,
5559 			 * bigger step_size has more reliability.
5560 			 */
5561 			if (corr > best_corr ||
5562 			    (corr == best_corr && step_size > best_step)) {
5563 				best_corr = corr;
5564 				best_step = step_size;
5565 				best_strength = strength;
5566 				best_ecc_bytes = ecc_bytes;
5567 			}
5568 		}
5569 	}
5570 
5571 	if (!best_corr)
5572 		return -ENOTSUPP;
5573 
5574 	chip->ecc.size = best_step;
5575 	chip->ecc.strength = best_strength;
5576 	chip->ecc.bytes = best_ecc_bytes;
5577 
5578 	return 0;
5579 }
5580 
5581 /**
5582  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5583  * @chip: nand chip info structure
5584  * @caps: ECC engine caps info structure
5585  * @oobavail: OOB size that the ECC engine can use
5586  *
5587  * Choose the ECC configuration according to following logic
5588  *
5589  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5590  *    then check if it is supported by this controller.
5591  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5592  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5593  *    to the chip's requirement. If available OOB size can't fit the chip
5594  *    requirement then fallback to the maximum ECC step size and ECC strength.
5595  *
5596  * On success, the chosen ECC settings are set.
5597  */
5598 int nand_ecc_choose_conf(struct nand_chip *chip,
5599 			 const struct nand_ecc_caps *caps, int oobavail)
5600 {
5601 	struct mtd_info *mtd = nand_to_mtd(chip);
5602 
5603 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5604 		return -EINVAL;
5605 
5606 	if (chip->ecc.size && chip->ecc.strength)
5607 		return nand_check_ecc_caps(chip, caps, oobavail);
5608 
5609 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5610 		return nand_maximize_ecc(chip, caps, oobavail);
5611 
5612 	if (!nand_match_ecc_req(chip, caps, oobavail))
5613 		return 0;
5614 
5615 	return nand_maximize_ecc(chip, caps, oobavail);
5616 }
5617 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5618 
5619 /*
5620  * Check if the chip configuration meet the datasheet requirements.
5621 
5622  * If our configuration corrects A bits per B bytes and the minimum
5623  * required correction level is X bits per Y bytes, then we must ensure
5624  * both of the following are true:
5625  *
5626  * (1) A / B >= X / Y
5627  * (2) A >= X
5628  *
5629  * Requirement (1) ensures we can correct for the required bitflip density.
5630  * Requirement (2) ensures we can correct even when all bitflips are clumped
5631  * in the same sector.
5632  */
5633 static bool nand_ecc_strength_good(struct nand_chip *chip)
5634 {
5635 	struct mtd_info *mtd = nand_to_mtd(chip);
5636 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5637 	int corr, ds_corr;
5638 
5639 	if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5640 		/* Not enough information */
5641 		return true;
5642 
5643 	/*
5644 	 * We get the number of corrected bits per page to compare
5645 	 * the correction density.
5646 	 */
5647 	corr = (mtd->writesize * ecc->strength) / ecc->size;
5648 	ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5649 		  chip->base.eccreq.step_size;
5650 
5651 	return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5652 }
5653 
5654 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5655 {
5656 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5657 					      base);
5658 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5659 	int ret;
5660 
5661 	eb >>= nand->rowconv.eraseblock_addr_shift;
5662 
5663 	nand_select_target(chip, pos->target);
5664 	ret = nand_erase_op(chip, eb);
5665 	nand_deselect_target(chip);
5666 
5667 	return ret;
5668 }
5669 
5670 static int rawnand_markbad(struct nand_device *nand,
5671 			   const struct nand_pos *pos)
5672 {
5673 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5674 					      base);
5675 
5676 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5677 }
5678 
5679 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5680 {
5681 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5682 					      base);
5683 	int ret;
5684 
5685 	nand_select_target(chip, pos->target);
5686 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5687 	nand_deselect_target(chip);
5688 
5689 	return ret;
5690 }
5691 
5692 static const struct nand_ops rawnand_ops = {
5693 	.erase = rawnand_erase,
5694 	.markbad = rawnand_markbad,
5695 	.isbad = rawnand_isbad,
5696 };
5697 
5698 /**
5699  * nand_scan_tail - Scan for the NAND device
5700  * @chip: NAND chip object
5701  *
5702  * This is the second phase of the normal nand_scan() function. It fills out
5703  * all the uninitialized function pointers with the defaults and scans for a
5704  * bad block table if appropriate.
5705  */
5706 static int nand_scan_tail(struct nand_chip *chip)
5707 {
5708 	struct mtd_info *mtd = nand_to_mtd(chip);
5709 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5710 	int ret, i;
5711 
5712 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5713 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5714 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5715 		return -EINVAL;
5716 	}
5717 
5718 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5719 	if (!chip->data_buf)
5720 		return -ENOMEM;
5721 
5722 	/*
5723 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5724 	 * selected when manufacturer->init() is called. They should be fixed
5725 	 * to explictly select the relevant die when interacting with the NAND
5726 	 * chip.
5727 	 */
5728 	nand_select_target(chip, 0);
5729 	ret = nand_manufacturer_init(chip);
5730 	nand_deselect_target(chip);
5731 	if (ret)
5732 		goto err_free_buf;
5733 
5734 	/* Set the internal oob buffer location, just after the page data */
5735 	chip->oob_poi = chip->data_buf + mtd->writesize;
5736 
5737 	/*
5738 	 * If no default placement scheme is given, select an appropriate one.
5739 	 */
5740 	if (!mtd->ooblayout &&
5741 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5742 		switch (mtd->oobsize) {
5743 		case 8:
5744 		case 16:
5745 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5746 			break;
5747 		case 64:
5748 		case 128:
5749 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5750 			break;
5751 		default:
5752 			/*
5753 			 * Expose the whole OOB area to users if ECC_NONE
5754 			 * is passed. We could do that for all kind of
5755 			 * ->oobsize, but we must keep the old large/small
5756 			 * page with ECC layout when ->oobsize <= 128 for
5757 			 * compatibility reasons.
5758 			 */
5759 			if (ecc->mode == NAND_ECC_NONE) {
5760 				mtd_set_ooblayout(mtd,
5761 						&nand_ooblayout_lp_ops);
5762 				break;
5763 			}
5764 
5765 			WARN(1, "No oob scheme defined for oobsize %d\n",
5766 				mtd->oobsize);
5767 			ret = -EINVAL;
5768 			goto err_nand_manuf_cleanup;
5769 		}
5770 	}
5771 
5772 	/*
5773 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5774 	 * selected and we have 256 byte pagesize fallback to software ECC
5775 	 */
5776 
5777 	switch (ecc->mode) {
5778 	case NAND_ECC_HW_OOB_FIRST:
5779 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
5780 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5781 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5782 			ret = -EINVAL;
5783 			goto err_nand_manuf_cleanup;
5784 		}
5785 		if (!ecc->read_page)
5786 			ecc->read_page = nand_read_page_hwecc_oob_first;
5787 		fallthrough;
5788 	case NAND_ECC_HW:
5789 		/* Use standard hwecc read page function? */
5790 		if (!ecc->read_page)
5791 			ecc->read_page = nand_read_page_hwecc;
5792 		if (!ecc->write_page)
5793 			ecc->write_page = nand_write_page_hwecc;
5794 		if (!ecc->read_page_raw)
5795 			ecc->read_page_raw = nand_read_page_raw;
5796 		if (!ecc->write_page_raw)
5797 			ecc->write_page_raw = nand_write_page_raw;
5798 		if (!ecc->read_oob)
5799 			ecc->read_oob = nand_read_oob_std;
5800 		if (!ecc->write_oob)
5801 			ecc->write_oob = nand_write_oob_std;
5802 		if (!ecc->read_subpage)
5803 			ecc->read_subpage = nand_read_subpage;
5804 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5805 			ecc->write_subpage = nand_write_subpage_hwecc;
5806 		fallthrough;
5807 	case NAND_ECC_HW_SYNDROME:
5808 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5809 		    (!ecc->read_page ||
5810 		     ecc->read_page == nand_read_page_hwecc ||
5811 		     !ecc->write_page ||
5812 		     ecc->write_page == nand_write_page_hwecc)) {
5813 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5814 			ret = -EINVAL;
5815 			goto err_nand_manuf_cleanup;
5816 		}
5817 		/* Use standard syndrome read/write page function? */
5818 		if (!ecc->read_page)
5819 			ecc->read_page = nand_read_page_syndrome;
5820 		if (!ecc->write_page)
5821 			ecc->write_page = nand_write_page_syndrome;
5822 		if (!ecc->read_page_raw)
5823 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5824 		if (!ecc->write_page_raw)
5825 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5826 		if (!ecc->read_oob)
5827 			ecc->read_oob = nand_read_oob_syndrome;
5828 		if (!ecc->write_oob)
5829 			ecc->write_oob = nand_write_oob_syndrome;
5830 
5831 		if (mtd->writesize >= ecc->size) {
5832 			if (!ecc->strength) {
5833 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5834 				ret = -EINVAL;
5835 				goto err_nand_manuf_cleanup;
5836 			}
5837 			break;
5838 		}
5839 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5840 			ecc->size, mtd->writesize);
5841 		ecc->mode = NAND_ECC_SOFT;
5842 		ecc->algo = NAND_ECC_HAMMING;
5843 		fallthrough;
5844 	case NAND_ECC_SOFT:
5845 		ret = nand_set_ecc_soft_ops(chip);
5846 		if (ret) {
5847 			ret = -EINVAL;
5848 			goto err_nand_manuf_cleanup;
5849 		}
5850 		break;
5851 
5852 	case NAND_ECC_ON_DIE:
5853 		if (!ecc->read_page || !ecc->write_page) {
5854 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5855 			ret = -EINVAL;
5856 			goto err_nand_manuf_cleanup;
5857 		}
5858 		if (!ecc->read_oob)
5859 			ecc->read_oob = nand_read_oob_std;
5860 		if (!ecc->write_oob)
5861 			ecc->write_oob = nand_write_oob_std;
5862 		break;
5863 
5864 	case NAND_ECC_NONE:
5865 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5866 		ecc->read_page = nand_read_page_raw;
5867 		ecc->write_page = nand_write_page_raw;
5868 		ecc->read_oob = nand_read_oob_std;
5869 		ecc->read_page_raw = nand_read_page_raw;
5870 		ecc->write_page_raw = nand_write_page_raw;
5871 		ecc->write_oob = nand_write_oob_std;
5872 		ecc->size = mtd->writesize;
5873 		ecc->bytes = 0;
5874 		ecc->strength = 0;
5875 		break;
5876 
5877 	default:
5878 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5879 		ret = -EINVAL;
5880 		goto err_nand_manuf_cleanup;
5881 	}
5882 
5883 	if (ecc->correct || ecc->calculate) {
5884 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5885 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5886 		if (!ecc->calc_buf || !ecc->code_buf) {
5887 			ret = -ENOMEM;
5888 			goto err_nand_manuf_cleanup;
5889 		}
5890 	}
5891 
5892 	/* For many systems, the standard OOB write also works for raw */
5893 	if (!ecc->read_oob_raw)
5894 		ecc->read_oob_raw = ecc->read_oob;
5895 	if (!ecc->write_oob_raw)
5896 		ecc->write_oob_raw = ecc->write_oob;
5897 
5898 	/* propagate ecc info to mtd_info */
5899 	mtd->ecc_strength = ecc->strength;
5900 	mtd->ecc_step_size = ecc->size;
5901 
5902 	/*
5903 	 * Set the number of read / write steps for one page depending on ECC
5904 	 * mode.
5905 	 */
5906 	ecc->steps = mtd->writesize / ecc->size;
5907 	if (ecc->steps * ecc->size != mtd->writesize) {
5908 		WARN(1, "Invalid ECC parameters\n");
5909 		ret = -EINVAL;
5910 		goto err_nand_manuf_cleanup;
5911 	}
5912 	ecc->total = ecc->steps * ecc->bytes;
5913 	if (ecc->total > mtd->oobsize) {
5914 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5915 		ret = -EINVAL;
5916 		goto err_nand_manuf_cleanup;
5917 	}
5918 
5919 	/*
5920 	 * The number of bytes available for a client to place data into
5921 	 * the out of band area.
5922 	 */
5923 	ret = mtd_ooblayout_count_freebytes(mtd);
5924 	if (ret < 0)
5925 		ret = 0;
5926 
5927 	mtd->oobavail = ret;
5928 
5929 	/* ECC sanity check: warn if it's too weak */
5930 	if (!nand_ecc_strength_good(chip))
5931 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
5932 			mtd->name, chip->ecc.strength, chip->ecc.size,
5933 			chip->base.eccreq.strength,
5934 			chip->base.eccreq.step_size);
5935 
5936 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5937 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5938 		switch (ecc->steps) {
5939 		case 2:
5940 			mtd->subpage_sft = 1;
5941 			break;
5942 		case 4:
5943 		case 8:
5944 		case 16:
5945 			mtd->subpage_sft = 2;
5946 			break;
5947 		}
5948 	}
5949 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5950 
5951 	/* Invalidate the pagebuffer reference */
5952 	chip->pagecache.page = -1;
5953 
5954 	/* Large page NAND with SOFT_ECC should support subpage reads */
5955 	switch (ecc->mode) {
5956 	case NAND_ECC_SOFT:
5957 		if (chip->page_shift > 9)
5958 			chip->options |= NAND_SUBPAGE_READ;
5959 		break;
5960 
5961 	default:
5962 		break;
5963 	}
5964 
5965 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5966 	if (ret)
5967 		goto err_nand_manuf_cleanup;
5968 
5969 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5970 	if (chip->options & NAND_ROM)
5971 		mtd->flags = MTD_CAP_ROM;
5972 
5973 	/* Fill in remaining MTD driver data */
5974 	mtd->_erase = nand_erase;
5975 	mtd->_point = NULL;
5976 	mtd->_unpoint = NULL;
5977 	mtd->_panic_write = panic_nand_write;
5978 	mtd->_read_oob = nand_read_oob;
5979 	mtd->_write_oob = nand_write_oob;
5980 	mtd->_sync = nand_sync;
5981 	mtd->_lock = nand_lock;
5982 	mtd->_unlock = nand_unlock;
5983 	mtd->_suspend = nand_suspend;
5984 	mtd->_resume = nand_resume;
5985 	mtd->_reboot = nand_shutdown;
5986 	mtd->_block_isreserved = nand_block_isreserved;
5987 	mtd->_block_isbad = nand_block_isbad;
5988 	mtd->_block_markbad = nand_block_markbad;
5989 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5990 
5991 	/*
5992 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5993 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5994 	 * properly set.
5995 	 */
5996 	if (!mtd->bitflip_threshold)
5997 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5998 
5999 	/* Initialize the ->data_interface field. */
6000 	ret = nand_init_data_interface(chip);
6001 	if (ret)
6002 		goto err_nanddev_cleanup;
6003 
6004 	/* Enter fastest possible mode on all dies. */
6005 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6006 		ret = nand_setup_data_interface(chip, i);
6007 		if (ret)
6008 			goto err_nanddev_cleanup;
6009 	}
6010 
6011 	/* Check, if we should skip the bad block table scan */
6012 	if (chip->options & NAND_SKIP_BBTSCAN)
6013 		return 0;
6014 
6015 	/* Build bad block table */
6016 	ret = nand_create_bbt(chip);
6017 	if (ret)
6018 		goto err_nanddev_cleanup;
6019 
6020 	return 0;
6021 
6022 
6023 err_nanddev_cleanup:
6024 	nanddev_cleanup(&chip->base);
6025 
6026 err_nand_manuf_cleanup:
6027 	nand_manufacturer_cleanup(chip);
6028 
6029 err_free_buf:
6030 	kfree(chip->data_buf);
6031 	kfree(ecc->code_buf);
6032 	kfree(ecc->calc_buf);
6033 
6034 	return ret;
6035 }
6036 
6037 static int nand_attach(struct nand_chip *chip)
6038 {
6039 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6040 		return chip->controller->ops->attach_chip(chip);
6041 
6042 	return 0;
6043 }
6044 
6045 static void nand_detach(struct nand_chip *chip)
6046 {
6047 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6048 		chip->controller->ops->detach_chip(chip);
6049 }
6050 
6051 /**
6052  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6053  * @chip: NAND chip object
6054  * @maxchips: number of chips to scan for.
6055  * @ids: optional flash IDs table
6056  *
6057  * This fills out all the uninitialized function pointers with the defaults.
6058  * The flash ID is read and the mtd/chip structures are filled with the
6059  * appropriate values.
6060  */
6061 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6062 		       struct nand_flash_dev *ids)
6063 {
6064 	int ret;
6065 
6066 	if (!maxchips)
6067 		return -EINVAL;
6068 
6069 	ret = nand_scan_ident(chip, maxchips, ids);
6070 	if (ret)
6071 		return ret;
6072 
6073 	ret = nand_attach(chip);
6074 	if (ret)
6075 		goto cleanup_ident;
6076 
6077 	ret = nand_scan_tail(chip);
6078 	if (ret)
6079 		goto detach_chip;
6080 
6081 	return 0;
6082 
6083 detach_chip:
6084 	nand_detach(chip);
6085 cleanup_ident:
6086 	nand_scan_ident_cleanup(chip);
6087 
6088 	return ret;
6089 }
6090 EXPORT_SYMBOL(nand_scan_with_ids);
6091 
6092 /**
6093  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6094  * @chip: NAND chip object
6095  */
6096 void nand_cleanup(struct nand_chip *chip)
6097 {
6098 	if (chip->ecc.mode == NAND_ECC_SOFT &&
6099 	    chip->ecc.algo == NAND_ECC_BCH)
6100 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6101 
6102 	nanddev_cleanup(&chip->base);
6103 
6104 	/* Free bad block table memory */
6105 	kfree(chip->bbt);
6106 	kfree(chip->data_buf);
6107 	kfree(chip->ecc.code_buf);
6108 	kfree(chip->ecc.calc_buf);
6109 
6110 	/* Free bad block descriptor memory */
6111 	if (chip->badblock_pattern && chip->badblock_pattern->options
6112 			& NAND_BBT_DYNAMICSTRUCT)
6113 		kfree(chip->badblock_pattern);
6114 
6115 	/* Free manufacturer priv data. */
6116 	nand_manufacturer_cleanup(chip);
6117 
6118 	/* Free controller specific allocations after chip identification */
6119 	nand_detach(chip);
6120 
6121 	/* Free identification phase allocations */
6122 	nand_scan_ident_cleanup(chip);
6123 }
6124 
6125 EXPORT_SYMBOL_GPL(nand_cleanup);
6126 
6127 /**
6128  * nand_release - [NAND Interface] Unregister the MTD device and free resources
6129  *		  held by the NAND device
6130  * @chip: NAND chip object
6131  */
6132 void nand_release(struct nand_chip *chip)
6133 {
6134 	mtd_device_unregister(nand_to_mtd(chip));
6135 	nand_cleanup(chip);
6136 }
6137 EXPORT_SYMBOL_GPL(nand_release);
6138 
6139 MODULE_LICENSE("GPL");
6140 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6141 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6142 MODULE_DESCRIPTION("Generic NAND flash driver code");
6143