xref: /linux/drivers/mtd/nand/raw/nand_base.c (revision 031616c434db05ce766f76c62865f55698e0924f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/nand_bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46 
47 #include "internals.h"
48 
49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 				       struct mtd_pairing_info *info)
51 {
52 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 	int dist = 3;
54 
55 	if (page == lastpage)
56 		dist = 2;
57 
58 	if (!page || (page & 1)) {
59 		info->group = 0;
60 		info->pair = (page + 1) / 2;
61 	} else {
62 		info->group = 1;
63 		info->pair = (page + 1 - dist) / 2;
64 	}
65 
66 	return 0;
67 }
68 
69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 					const struct mtd_pairing_info *info)
71 {
72 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 	int page = info->pair * 2;
74 	int dist = 3;
75 
76 	if (!info->group && !info->pair)
77 		return 0;
78 
79 	if (info->pair == lastpair && info->group)
80 		dist = 2;
81 
82 	if (!info->group)
83 		page--;
84 	else if (info->pair)
85 		page += dist - 1;
86 
87 	if (page >= mtd->erasesize / mtd->writesize)
88 		return -EINVAL;
89 
90 	return page;
91 }
92 
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 	.ngroups = 2,
95 	.get_info = nand_pairing_dist3_get_info,
96 	.get_wunit = nand_pairing_dist3_get_wunit,
97 };
98 
99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101 	int ret = 0;
102 
103 	/* Start address must align on block boundary */
104 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 		pr_debug("%s: unaligned address\n", __func__);
106 		ret = -EINVAL;
107 	}
108 
109 	/* Length must align on block boundary */
110 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 		pr_debug("%s: length not block aligned\n", __func__);
112 		ret = -EINVAL;
113 	}
114 
115 	return ret;
116 }
117 
118 /**
119  * nand_extract_bits - Copy unaligned bits from one buffer to another one
120  * @dst: destination buffer
121  * @dst_off: bit offset at which the writing starts
122  * @src: source buffer
123  * @src_off: bit offset at which the reading starts
124  * @nbits: number of bits to copy from @src to @dst
125  *
126  * Copy bits from one memory region to another (overlap authorized).
127  */
128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 		       unsigned int src_off, unsigned int nbits)
130 {
131 	unsigned int tmp, n;
132 
133 	dst += dst_off / 8;
134 	dst_off %= 8;
135 	src += src_off / 8;
136 	src_off %= 8;
137 
138 	while (nbits) {
139 		n = min3(8 - dst_off, 8 - src_off, nbits);
140 
141 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 		*dst |= tmp << dst_off;
144 
145 		dst_off += n;
146 		if (dst_off >= 8) {
147 			dst++;
148 			dst_off -= 8;
149 		}
150 
151 		src_off += n;
152 		if (src_off >= 8) {
153 			src++;
154 			src_off -= 8;
155 		}
156 
157 		nbits -= n;
158 	}
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161 
162 /**
163  * nand_select_target() - Select a NAND target (A.K.A. die)
164  * @chip: NAND chip object
165  * @cs: the CS line to select. Note that this CS id is always from the chip
166  *	PoV, not the controller one
167  *
168  * Select a NAND target so that further operations executed on @chip go to the
169  * selected NAND target.
170  */
171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173 	/*
174 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 	 * not the case it's a bug and the caller should be fixed.
176 	 */
177 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 		return;
179 
180 	chip->cur_cs = cs;
181 
182 	if (chip->legacy.select_chip)
183 		chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186 
187 /**
188  * nand_deselect_target() - Deselect the currently selected target
189  * @chip: NAND chip object
190  *
191  * Deselect the currently selected NAND target. The result of operations
192  * executed on @chip after the target has been deselected is undefined.
193  */
194 void nand_deselect_target(struct nand_chip *chip)
195 {
196 	if (chip->legacy.select_chip)
197 		chip->legacy.select_chip(chip, -1);
198 
199 	chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202 
203 /**
204  * nand_release_device - [GENERIC] release chip
205  * @chip: NAND chip object
206  *
207  * Release chip lock and wake up anyone waiting on the device.
208  */
209 static void nand_release_device(struct nand_chip *chip)
210 {
211 	/* Release the controller and the chip */
212 	mutex_unlock(&chip->controller->lock);
213 	mutex_unlock(&chip->lock);
214 }
215 
216 /**
217  * nand_bbm_get_next_page - Get the next page for bad block markers
218  * @chip: NAND chip object
219  * @page: First page to start checking for bad block marker usage
220  *
221  * Returns an integer that corresponds to the page offset within a block, for
222  * a page that is used to store bad block markers. If no more pages are
223  * available, -EINVAL is returned.
224  */
225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227 	struct mtd_info *mtd = nand_to_mtd(chip);
228 	int last_page = ((mtd->erasesize - mtd->writesize) >>
229 			 chip->page_shift) & chip->pagemask;
230 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 		| NAND_BBM_LASTPAGE;
232 
233 	if (page == 0 && !(chip->options & bbm_flags))
234 		return 0;
235 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 		return 0;
237 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 		return 1;
239 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 		return last_page;
241 
242 	return -EINVAL;
243 }
244 
245 /**
246  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247  * @chip: NAND chip object
248  * @ofs: offset from device start
249  *
250  * Check, if the block is bad.
251  */
252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254 	int first_page, page_offset;
255 	int res;
256 	u8 bad;
257 
258 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 	page_offset = nand_bbm_get_next_page(chip, 0);
260 
261 	while (page_offset >= 0) {
262 		res = chip->ecc.read_oob(chip, first_page + page_offset);
263 		if (res < 0)
264 			return res;
265 
266 		bad = chip->oob_poi[chip->badblockpos];
267 
268 		if (likely(chip->badblockbits == 8))
269 			res = bad != 0xFF;
270 		else
271 			res = hweight8(bad) < chip->badblockbits;
272 		if (res)
273 			return res;
274 
275 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276 	}
277 
278 	return 0;
279 }
280 
281 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
282 {
283 	if (chip->options & NAND_NO_BBM_QUIRK)
284 		return 0;
285 
286 	if (chip->legacy.block_bad)
287 		return chip->legacy.block_bad(chip, ofs);
288 
289 	return nand_block_bad(chip, ofs);
290 }
291 
292 /**
293  * nand_get_device - [GENERIC] Get chip for selected access
294  * @chip: NAND chip structure
295  *
296  * Lock the device and its controller for exclusive access
297  *
298  * Return: -EBUSY if the chip has been suspended, 0 otherwise
299  */
300 static int nand_get_device(struct nand_chip *chip)
301 {
302 	mutex_lock(&chip->lock);
303 	if (chip->suspended) {
304 		mutex_unlock(&chip->lock);
305 		return -EBUSY;
306 	}
307 	mutex_lock(&chip->controller->lock);
308 
309 	return 0;
310 }
311 
312 /**
313  * nand_check_wp - [GENERIC] check if the chip is write protected
314  * @chip: NAND chip object
315  *
316  * Check, if the device is write protected. The function expects, that the
317  * device is already selected.
318  */
319 static int nand_check_wp(struct nand_chip *chip)
320 {
321 	u8 status;
322 	int ret;
323 
324 	/* Broken xD cards report WP despite being writable */
325 	if (chip->options & NAND_BROKEN_XD)
326 		return 0;
327 
328 	/* Check the WP bit */
329 	ret = nand_status_op(chip, &status);
330 	if (ret)
331 		return ret;
332 
333 	return status & NAND_STATUS_WP ? 0 : 1;
334 }
335 
336 /**
337  * nand_fill_oob - [INTERN] Transfer client buffer to oob
338  * @chip: NAND chip object
339  * @oob: oob data buffer
340  * @len: oob data write length
341  * @ops: oob ops structure
342  */
343 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
344 			      struct mtd_oob_ops *ops)
345 {
346 	struct mtd_info *mtd = nand_to_mtd(chip);
347 	int ret;
348 
349 	/*
350 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
351 	 * data from a previous OOB read.
352 	 */
353 	memset(chip->oob_poi, 0xff, mtd->oobsize);
354 
355 	switch (ops->mode) {
356 
357 	case MTD_OPS_PLACE_OOB:
358 	case MTD_OPS_RAW:
359 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
360 		return oob + len;
361 
362 	case MTD_OPS_AUTO_OOB:
363 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
364 						  ops->ooboffs, len);
365 		BUG_ON(ret);
366 		return oob + len;
367 
368 	default:
369 		BUG();
370 	}
371 	return NULL;
372 }
373 
374 /**
375  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
376  * @chip: NAND chip object
377  * @to: offset to write to
378  * @ops: oob operation description structure
379  *
380  * NAND write out-of-band.
381  */
382 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
383 			     struct mtd_oob_ops *ops)
384 {
385 	struct mtd_info *mtd = nand_to_mtd(chip);
386 	int chipnr, page, status, len, ret;
387 
388 	pr_debug("%s: to = 0x%08x, len = %i\n",
389 			 __func__, (unsigned int)to, (int)ops->ooblen);
390 
391 	len = mtd_oobavail(mtd, ops);
392 
393 	/* Do not allow write past end of page */
394 	if ((ops->ooboffs + ops->ooblen) > len) {
395 		pr_debug("%s: attempt to write past end of page\n",
396 				__func__);
397 		return -EINVAL;
398 	}
399 
400 	chipnr = (int)(to >> chip->chip_shift);
401 
402 	/*
403 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
404 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
405 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
406 	 * it in the doc2000 driver in August 1999.  dwmw2.
407 	 */
408 	ret = nand_reset(chip, chipnr);
409 	if (ret)
410 		return ret;
411 
412 	nand_select_target(chip, chipnr);
413 
414 	/* Shift to get page */
415 	page = (int)(to >> chip->page_shift);
416 
417 	/* Check, if it is write protected */
418 	if (nand_check_wp(chip)) {
419 		nand_deselect_target(chip);
420 		return -EROFS;
421 	}
422 
423 	/* Invalidate the page cache, if we write to the cached page */
424 	if (page == chip->pagecache.page)
425 		chip->pagecache.page = -1;
426 
427 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
428 
429 	if (ops->mode == MTD_OPS_RAW)
430 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
431 	else
432 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
433 
434 	nand_deselect_target(chip);
435 
436 	if (status)
437 		return status;
438 
439 	ops->oobretlen = ops->ooblen;
440 
441 	return 0;
442 }
443 
444 /**
445  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
446  * @chip: NAND chip object
447  * @ofs: offset from device start
448  *
449  * This is the default implementation, which can be overridden by a hardware
450  * specific driver. It provides the details for writing a bad block marker to a
451  * block.
452  */
453 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
454 {
455 	struct mtd_info *mtd = nand_to_mtd(chip);
456 	struct mtd_oob_ops ops;
457 	uint8_t buf[2] = { 0, 0 };
458 	int ret = 0, res, page_offset;
459 
460 	memset(&ops, 0, sizeof(ops));
461 	ops.oobbuf = buf;
462 	ops.ooboffs = chip->badblockpos;
463 	if (chip->options & NAND_BUSWIDTH_16) {
464 		ops.ooboffs &= ~0x01;
465 		ops.len = ops.ooblen = 2;
466 	} else {
467 		ops.len = ops.ooblen = 1;
468 	}
469 	ops.mode = MTD_OPS_PLACE_OOB;
470 
471 	page_offset = nand_bbm_get_next_page(chip, 0);
472 
473 	while (page_offset >= 0) {
474 		res = nand_do_write_oob(chip,
475 					ofs + (page_offset * mtd->writesize),
476 					&ops);
477 
478 		if (!ret)
479 			ret = res;
480 
481 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
482 	}
483 
484 	return ret;
485 }
486 
487 /**
488  * nand_markbad_bbm - mark a block by updating the BBM
489  * @chip: NAND chip object
490  * @ofs: offset of the block to mark bad
491  */
492 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
493 {
494 	if (chip->legacy.block_markbad)
495 		return chip->legacy.block_markbad(chip, ofs);
496 
497 	return nand_default_block_markbad(chip, ofs);
498 }
499 
500 /**
501  * nand_block_markbad_lowlevel - mark a block bad
502  * @chip: NAND chip object
503  * @ofs: offset from device start
504  *
505  * This function performs the generic NAND bad block marking steps (i.e., bad
506  * block table(s) and/or marker(s)). We only allow the hardware driver to
507  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
508  *
509  * We try operations in the following order:
510  *
511  *  (1) erase the affected block, to allow OOB marker to be written cleanly
512  *  (2) write bad block marker to OOB area of affected block (unless flag
513  *      NAND_BBT_NO_OOB_BBM is present)
514  *  (3) update the BBT
515  *
516  * Note that we retain the first error encountered in (2) or (3), finish the
517  * procedures, and dump the error in the end.
518 */
519 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
520 {
521 	struct mtd_info *mtd = nand_to_mtd(chip);
522 	int res, ret = 0;
523 
524 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
525 		struct erase_info einfo;
526 
527 		/* Attempt erase before marking OOB */
528 		memset(&einfo, 0, sizeof(einfo));
529 		einfo.addr = ofs;
530 		einfo.len = 1ULL << chip->phys_erase_shift;
531 		nand_erase_nand(chip, &einfo, 0);
532 
533 		/* Write bad block marker to OOB */
534 		ret = nand_get_device(chip);
535 		if (ret)
536 			return ret;
537 
538 		ret = nand_markbad_bbm(chip, ofs);
539 		nand_release_device(chip);
540 	}
541 
542 	/* Mark block bad in BBT */
543 	if (chip->bbt) {
544 		res = nand_markbad_bbt(chip, ofs);
545 		if (!ret)
546 			ret = res;
547 	}
548 
549 	if (!ret)
550 		mtd->ecc_stats.badblocks++;
551 
552 	return ret;
553 }
554 
555 /**
556  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
557  * @mtd: MTD device structure
558  * @ofs: offset from device start
559  *
560  * Check if the block is marked as reserved.
561  */
562 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
563 {
564 	struct nand_chip *chip = mtd_to_nand(mtd);
565 
566 	if (!chip->bbt)
567 		return 0;
568 	/* Return info from the table */
569 	return nand_isreserved_bbt(chip, ofs);
570 }
571 
572 /**
573  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
574  * @chip: NAND chip object
575  * @ofs: offset from device start
576  * @allowbbt: 1, if its allowed to access the bbt area
577  *
578  * Check, if the block is bad. Either by reading the bad block table or
579  * calling of the scan function.
580  */
581 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
582 {
583 	/* Return info from the table */
584 	if (chip->bbt)
585 		return nand_isbad_bbt(chip, ofs, allowbbt);
586 
587 	return nand_isbad_bbm(chip, ofs);
588 }
589 
590 /**
591  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
592  * @chip: NAND chip structure
593  * @timeout_ms: Timeout in ms
594  *
595  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
596  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
597  * returned.
598  *
599  * This helper is intended to be used when the controller does not have access
600  * to the NAND R/B pin.
601  *
602  * Be aware that calling this helper from an ->exec_op() implementation means
603  * ->exec_op() must be re-entrant.
604  *
605  * Return 0 if the NAND chip is ready, a negative error otherwise.
606  */
607 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
608 {
609 	const struct nand_sdr_timings *timings;
610 	u8 status = 0;
611 	int ret;
612 
613 	if (!nand_has_exec_op(chip))
614 		return -ENOTSUPP;
615 
616 	/* Wait tWB before polling the STATUS reg. */
617 	timings = nand_get_sdr_timings(nand_get_interface_config(chip));
618 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
619 
620 	ret = nand_status_op(chip, NULL);
621 	if (ret)
622 		return ret;
623 
624 	/*
625 	 * +1 below is necessary because if we are now in the last fraction
626 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
627 	 * small jiffy fraction - possibly leading to false timeout
628 	 */
629 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
630 	do {
631 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
632 					false);
633 		if (ret)
634 			break;
635 
636 		if (status & NAND_STATUS_READY)
637 			break;
638 
639 		/*
640 		 * Typical lowest execution time for a tR on most NANDs is 10us,
641 		 * use this as polling delay before doing something smarter (ie.
642 		 * deriving a delay from the timeout value, timeout_ms/ratio).
643 		 */
644 		udelay(10);
645 	} while	(time_before(jiffies, timeout_ms));
646 
647 	/*
648 	 * We have to exit READ_STATUS mode in order to read real data on the
649 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
650 	 * instruction.
651 	 */
652 	nand_exit_status_op(chip);
653 
654 	if (ret)
655 		return ret;
656 
657 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
658 };
659 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
660 
661 /**
662  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
663  * @chip: NAND chip structure
664  * @gpiod: GPIO descriptor of R/B pin
665  * @timeout_ms: Timeout in ms
666  *
667  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
668  * whitin the specified timeout, -ETIMEDOUT is returned.
669  *
670  * This helper is intended to be used when the controller has access to the
671  * NAND R/B pin over GPIO.
672  *
673  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
674  */
675 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
676 		      unsigned long timeout_ms)
677 {
678 
679 	/*
680 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
681 	 * +1 below is necessary because if we are now in the last fraction
682 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
683 	 * small jiffy fraction - possibly leading to false timeout.
684 	 */
685 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
686 	do {
687 		if (gpiod_get_value_cansleep(gpiod))
688 			return 0;
689 
690 		cond_resched();
691 	} while	(time_before(jiffies, timeout_ms));
692 
693 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
694 };
695 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
696 
697 /**
698  * panic_nand_wait - [GENERIC] wait until the command is done
699  * @chip: NAND chip structure
700  * @timeo: timeout
701  *
702  * Wait for command done. This is a helper function for nand_wait used when
703  * we are in interrupt context. May happen when in panic and trying to write
704  * an oops through mtdoops.
705  */
706 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
707 {
708 	int i;
709 	for (i = 0; i < timeo; i++) {
710 		if (chip->legacy.dev_ready) {
711 			if (chip->legacy.dev_ready(chip))
712 				break;
713 		} else {
714 			int ret;
715 			u8 status;
716 
717 			ret = nand_read_data_op(chip, &status, sizeof(status),
718 						true, false);
719 			if (ret)
720 				return;
721 
722 			if (status & NAND_STATUS_READY)
723 				break;
724 		}
725 		mdelay(1);
726 	}
727 }
728 
729 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
730 {
731 	return (chip->parameters.supports_set_get_features &&
732 		test_bit(addr, chip->parameters.get_feature_list));
733 }
734 
735 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
736 {
737 	return (chip->parameters.supports_set_get_features &&
738 		test_bit(addr, chip->parameters.set_feature_list));
739 }
740 
741 /**
742  * nand_reset_interface - Reset data interface and timings
743  * @chip: The NAND chip
744  * @chipnr: Internal die id
745  *
746  * Reset the Data interface and timings to ONFI mode 0.
747  *
748  * Returns 0 for success or negative error code otherwise.
749  */
750 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
751 {
752 	const struct nand_controller_ops *ops = chip->controller->ops;
753 	int ret;
754 
755 	if (!nand_controller_can_setup_interface(chip))
756 		return 0;
757 
758 	/*
759 	 * The ONFI specification says:
760 	 * "
761 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
762 	 * interface, the host shall use the Reset (FFh) command
763 	 * using SDR timing mode 0. A device in any timing mode is
764 	 * required to recognize Reset (FFh) command issued in SDR
765 	 * timing mode 0.
766 	 * "
767 	 *
768 	 * Configure the data interface in SDR mode and set the
769 	 * timings to timing mode 0.
770 	 */
771 
772 	chip->current_interface_config = nand_get_reset_interface_config();
773 	ret = ops->setup_interface(chip, chipnr,
774 				   chip->current_interface_config);
775 	if (ret)
776 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
777 
778 	return ret;
779 }
780 
781 /**
782  * nand_setup_interface - Setup the best data interface and timings
783  * @chip: The NAND chip
784  * @chipnr: Internal die id
785  *
786  * Configure what has been reported to be the best data interface and NAND
787  * timings supported by the chip and the driver.
788  *
789  * Returns 0 for success or negative error code otherwise.
790  */
791 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
792 {
793 	const struct nand_controller_ops *ops = chip->controller->ops;
794 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { };
795 	int ret;
796 
797 	if (!nand_controller_can_setup_interface(chip))
798 		return 0;
799 
800 	/*
801 	 * A nand_reset_interface() put both the NAND chip and the NAND
802 	 * controller in timings mode 0. If the default mode for this chip is
803 	 * also 0, no need to proceed to the change again. Plus, at probe time,
804 	 * nand_setup_interface() uses ->set/get_features() which would
805 	 * fail anyway as the parameter page is not available yet.
806 	 */
807 	if (!chip->best_interface_config)
808 		return 0;
809 
810 	tmode_param[0] = chip->best_interface_config->timings.mode;
811 
812 	/* Change the mode on the chip side (if supported by the NAND chip) */
813 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
814 		nand_select_target(chip, chipnr);
815 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
816 					tmode_param);
817 		nand_deselect_target(chip);
818 		if (ret)
819 			return ret;
820 	}
821 
822 	/* Change the mode on the controller side */
823 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
824 	if (ret)
825 		return ret;
826 
827 	/* Check the mode has been accepted by the chip, if supported */
828 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
829 		goto update_interface_config;
830 
831 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
832 	nand_select_target(chip, chipnr);
833 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
834 				tmode_param);
835 	nand_deselect_target(chip);
836 	if (ret)
837 		goto err_reset_chip;
838 
839 	if (tmode_param[0] != chip->best_interface_config->timings.mode) {
840 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
841 			chip->best_interface_config->timings.mode);
842 		goto err_reset_chip;
843 	}
844 
845 update_interface_config:
846 	chip->current_interface_config = chip->best_interface_config;
847 
848 	return 0;
849 
850 err_reset_chip:
851 	/*
852 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
853 	 * timing mode.
854 	 */
855 	nand_reset_interface(chip, chipnr);
856 	nand_select_target(chip, chipnr);
857 	nand_reset_op(chip);
858 	nand_deselect_target(chip);
859 
860 	return ret;
861 }
862 
863 /**
864  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
865  *                                NAND controller and the NAND chip support
866  * @chip: the NAND chip
867  * @iface: the interface configuration (can eventually be updated)
868  * @spec_timings: specific timings, when not fitting the ONFI specification
869  *
870  * If specific timings are provided, use them. Otherwise, retrieve supported
871  * timing modes from ONFI information.
872  */
873 int nand_choose_best_sdr_timings(struct nand_chip *chip,
874 				 struct nand_interface_config *iface,
875 				 struct nand_sdr_timings *spec_timings)
876 {
877 	const struct nand_controller_ops *ops = chip->controller->ops;
878 	int best_mode = 0, mode, ret;
879 
880 	iface->type = NAND_SDR_IFACE;
881 
882 	if (spec_timings) {
883 		iface->timings.sdr = *spec_timings;
884 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
885 
886 		/* Verify the controller supports the requested interface */
887 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
888 					   iface);
889 		if (!ret) {
890 			chip->best_interface_config = iface;
891 			return ret;
892 		}
893 
894 		/* Fallback to slower modes */
895 		best_mode = iface->timings.mode;
896 	} else if (chip->parameters.onfi) {
897 		best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1;
898 	}
899 
900 	for (mode = best_mode; mode >= 0; mode--) {
901 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
902 
903 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
904 					   iface);
905 		if (!ret)
906 			break;
907 	}
908 
909 	chip->best_interface_config = iface;
910 
911 	return 0;
912 }
913 
914 /**
915  * nand_choose_interface_config - find the best data interface and timings
916  * @chip: The NAND chip
917  *
918  * Find the best data interface and NAND timings supported by the chip
919  * and the driver. Eventually let the NAND manufacturer driver propose his own
920  * set of timings.
921  *
922  * After this function nand_chip->interface_config is initialized with the best
923  * timing mode available.
924  *
925  * Returns 0 for success or negative error code otherwise.
926  */
927 static int nand_choose_interface_config(struct nand_chip *chip)
928 {
929 	struct nand_interface_config *iface;
930 	int ret;
931 
932 	if (!nand_controller_can_setup_interface(chip))
933 		return 0;
934 
935 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
936 	if (!iface)
937 		return -ENOMEM;
938 
939 	if (chip->ops.choose_interface_config)
940 		ret = chip->ops.choose_interface_config(chip, iface);
941 	else
942 		ret = nand_choose_best_sdr_timings(chip, iface, NULL);
943 
944 	if (ret)
945 		kfree(iface);
946 
947 	return ret;
948 }
949 
950 /**
951  * nand_fill_column_cycles - fill the column cycles of an address
952  * @chip: The NAND chip
953  * @addrs: Array of address cycles to fill
954  * @offset_in_page: The offset in the page
955  *
956  * Fills the first or the first two bytes of the @addrs field depending
957  * on the NAND bus width and the page size.
958  *
959  * Returns the number of cycles needed to encode the column, or a negative
960  * error code in case one of the arguments is invalid.
961  */
962 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
963 				   unsigned int offset_in_page)
964 {
965 	struct mtd_info *mtd = nand_to_mtd(chip);
966 
967 	/* Make sure the offset is less than the actual page size. */
968 	if (offset_in_page > mtd->writesize + mtd->oobsize)
969 		return -EINVAL;
970 
971 	/*
972 	 * On small page NANDs, there's a dedicated command to access the OOB
973 	 * area, and the column address is relative to the start of the OOB
974 	 * area, not the start of the page. Asjust the address accordingly.
975 	 */
976 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
977 		offset_in_page -= mtd->writesize;
978 
979 	/*
980 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
981 	 * wide, then it must be divided by 2.
982 	 */
983 	if (chip->options & NAND_BUSWIDTH_16) {
984 		if (WARN_ON(offset_in_page % 2))
985 			return -EINVAL;
986 
987 		offset_in_page /= 2;
988 	}
989 
990 	addrs[0] = offset_in_page;
991 
992 	/*
993 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
994 	 * need 2
995 	 */
996 	if (mtd->writesize <= 512)
997 		return 1;
998 
999 	addrs[1] = offset_in_page >> 8;
1000 
1001 	return 2;
1002 }
1003 
1004 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1005 				     unsigned int offset_in_page, void *buf,
1006 				     unsigned int len)
1007 {
1008 	const struct nand_sdr_timings *sdr =
1009 		nand_get_sdr_timings(nand_get_interface_config(chip));
1010 	struct mtd_info *mtd = nand_to_mtd(chip);
1011 	u8 addrs[4];
1012 	struct nand_op_instr instrs[] = {
1013 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1014 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1015 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1016 				 PSEC_TO_NSEC(sdr->tRR_min)),
1017 		NAND_OP_DATA_IN(len, buf, 0),
1018 	};
1019 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1020 	int ret;
1021 
1022 	/* Drop the DATA_IN instruction if len is set to 0. */
1023 	if (!len)
1024 		op.ninstrs--;
1025 
1026 	if (offset_in_page >= mtd->writesize)
1027 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1028 	else if (offset_in_page >= 256 &&
1029 		 !(chip->options & NAND_BUSWIDTH_16))
1030 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1031 
1032 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1033 	if (ret < 0)
1034 		return ret;
1035 
1036 	addrs[1] = page;
1037 	addrs[2] = page >> 8;
1038 
1039 	if (chip->options & NAND_ROW_ADDR_3) {
1040 		addrs[3] = page >> 16;
1041 		instrs[1].ctx.addr.naddrs++;
1042 	}
1043 
1044 	return nand_exec_op(chip, &op);
1045 }
1046 
1047 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1048 				     unsigned int offset_in_page, void *buf,
1049 				     unsigned int len)
1050 {
1051 	const struct nand_sdr_timings *sdr =
1052 		nand_get_sdr_timings(nand_get_interface_config(chip));
1053 	u8 addrs[5];
1054 	struct nand_op_instr instrs[] = {
1055 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1056 		NAND_OP_ADDR(4, addrs, 0),
1057 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1058 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1059 				 PSEC_TO_NSEC(sdr->tRR_min)),
1060 		NAND_OP_DATA_IN(len, buf, 0),
1061 	};
1062 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1063 	int ret;
1064 
1065 	/* Drop the DATA_IN instruction if len is set to 0. */
1066 	if (!len)
1067 		op.ninstrs--;
1068 
1069 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1070 	if (ret < 0)
1071 		return ret;
1072 
1073 	addrs[2] = page;
1074 	addrs[3] = page >> 8;
1075 
1076 	if (chip->options & NAND_ROW_ADDR_3) {
1077 		addrs[4] = page >> 16;
1078 		instrs[1].ctx.addr.naddrs++;
1079 	}
1080 
1081 	return nand_exec_op(chip, &op);
1082 }
1083 
1084 /**
1085  * nand_read_page_op - Do a READ PAGE operation
1086  * @chip: The NAND chip
1087  * @page: page to read
1088  * @offset_in_page: offset within the page
1089  * @buf: buffer used to store the data
1090  * @len: length of the buffer
1091  *
1092  * This function issues a READ PAGE operation.
1093  * This function does not select/unselect the CS line.
1094  *
1095  * Returns 0 on success, a negative error code otherwise.
1096  */
1097 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1098 		      unsigned int offset_in_page, void *buf, unsigned int len)
1099 {
1100 	struct mtd_info *mtd = nand_to_mtd(chip);
1101 
1102 	if (len && !buf)
1103 		return -EINVAL;
1104 
1105 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1106 		return -EINVAL;
1107 
1108 	if (nand_has_exec_op(chip)) {
1109 		if (mtd->writesize > 512)
1110 			return nand_lp_exec_read_page_op(chip, page,
1111 							 offset_in_page, buf,
1112 							 len);
1113 
1114 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1115 						 buf, len);
1116 	}
1117 
1118 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1119 	if (len)
1120 		chip->legacy.read_buf(chip, buf, len);
1121 
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(nand_read_page_op);
1125 
1126 /**
1127  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1128  * @chip: The NAND chip
1129  * @page: parameter page to read
1130  * @buf: buffer used to store the data
1131  * @len: length of the buffer
1132  *
1133  * This function issues a READ PARAMETER PAGE operation.
1134  * This function does not select/unselect the CS line.
1135  *
1136  * Returns 0 on success, a negative error code otherwise.
1137  */
1138 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1139 			    unsigned int len)
1140 {
1141 	unsigned int i;
1142 	u8 *p = buf;
1143 
1144 	if (len && !buf)
1145 		return -EINVAL;
1146 
1147 	if (nand_has_exec_op(chip)) {
1148 		const struct nand_sdr_timings *sdr =
1149 			nand_get_sdr_timings(nand_get_interface_config(chip));
1150 		struct nand_op_instr instrs[] = {
1151 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1152 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1153 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1154 					 PSEC_TO_NSEC(sdr->tRR_min)),
1155 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1156 		};
1157 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1158 
1159 		/* Drop the DATA_IN instruction if len is set to 0. */
1160 		if (!len)
1161 			op.ninstrs--;
1162 
1163 		return nand_exec_op(chip, &op);
1164 	}
1165 
1166 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1167 	for (i = 0; i < len; i++)
1168 		p[i] = chip->legacy.read_byte(chip);
1169 
1170 	return 0;
1171 }
1172 
1173 /**
1174  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1175  * @chip: The NAND chip
1176  * @offset_in_page: offset within the page
1177  * @buf: buffer used to store the data
1178  * @len: length of the buffer
1179  * @force_8bit: force 8-bit bus access
1180  *
1181  * This function issues a CHANGE READ COLUMN operation.
1182  * This function does not select/unselect the CS line.
1183  *
1184  * Returns 0 on success, a negative error code otherwise.
1185  */
1186 int nand_change_read_column_op(struct nand_chip *chip,
1187 			       unsigned int offset_in_page, void *buf,
1188 			       unsigned int len, bool force_8bit)
1189 {
1190 	struct mtd_info *mtd = nand_to_mtd(chip);
1191 
1192 	if (len && !buf)
1193 		return -EINVAL;
1194 
1195 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1196 		return -EINVAL;
1197 
1198 	/* Small page NANDs do not support column change. */
1199 	if (mtd->writesize <= 512)
1200 		return -ENOTSUPP;
1201 
1202 	if (nand_has_exec_op(chip)) {
1203 		const struct nand_sdr_timings *sdr =
1204 			nand_get_sdr_timings(nand_get_interface_config(chip));
1205 		u8 addrs[2] = {};
1206 		struct nand_op_instr instrs[] = {
1207 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1208 			NAND_OP_ADDR(2, addrs, 0),
1209 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1210 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1211 			NAND_OP_DATA_IN(len, buf, 0),
1212 		};
1213 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1214 		int ret;
1215 
1216 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1217 		if (ret < 0)
1218 			return ret;
1219 
1220 		/* Drop the DATA_IN instruction if len is set to 0. */
1221 		if (!len)
1222 			op.ninstrs--;
1223 
1224 		instrs[3].ctx.data.force_8bit = force_8bit;
1225 
1226 		return nand_exec_op(chip, &op);
1227 	}
1228 
1229 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1230 	if (len)
1231 		chip->legacy.read_buf(chip, buf, len);
1232 
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1236 
1237 /**
1238  * nand_read_oob_op - Do a READ OOB operation
1239  * @chip: The NAND chip
1240  * @page: page to read
1241  * @offset_in_oob: offset within the OOB area
1242  * @buf: buffer used to store the data
1243  * @len: length of the buffer
1244  *
1245  * This function issues a READ OOB operation.
1246  * This function does not select/unselect the CS line.
1247  *
1248  * Returns 0 on success, a negative error code otherwise.
1249  */
1250 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1251 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1252 {
1253 	struct mtd_info *mtd = nand_to_mtd(chip);
1254 
1255 	if (len && !buf)
1256 		return -EINVAL;
1257 
1258 	if (offset_in_oob + len > mtd->oobsize)
1259 		return -EINVAL;
1260 
1261 	if (nand_has_exec_op(chip))
1262 		return nand_read_page_op(chip, page,
1263 					 mtd->writesize + offset_in_oob,
1264 					 buf, len);
1265 
1266 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1267 	if (len)
1268 		chip->legacy.read_buf(chip, buf, len);
1269 
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1273 
1274 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1275 				  unsigned int offset_in_page, const void *buf,
1276 				  unsigned int len, bool prog)
1277 {
1278 	const struct nand_sdr_timings *sdr =
1279 		nand_get_sdr_timings(nand_get_interface_config(chip));
1280 	struct mtd_info *mtd = nand_to_mtd(chip);
1281 	u8 addrs[5] = {};
1282 	struct nand_op_instr instrs[] = {
1283 		/*
1284 		 * The first instruction will be dropped if we're dealing
1285 		 * with a large page NAND and adjusted if we're dealing
1286 		 * with a small page NAND and the page offset is > 255.
1287 		 */
1288 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1289 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1290 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1291 		NAND_OP_DATA_OUT(len, buf, 0),
1292 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1293 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1294 	};
1295 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1296 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1297 	int ret;
1298 	u8 status;
1299 
1300 	if (naddrs < 0)
1301 		return naddrs;
1302 
1303 	addrs[naddrs++] = page;
1304 	addrs[naddrs++] = page >> 8;
1305 	if (chip->options & NAND_ROW_ADDR_3)
1306 		addrs[naddrs++] = page >> 16;
1307 
1308 	instrs[2].ctx.addr.naddrs = naddrs;
1309 
1310 	/* Drop the last two instructions if we're not programming the page. */
1311 	if (!prog) {
1312 		op.ninstrs -= 2;
1313 		/* Also drop the DATA_OUT instruction if empty. */
1314 		if (!len)
1315 			op.ninstrs--;
1316 	}
1317 
1318 	if (mtd->writesize <= 512) {
1319 		/*
1320 		 * Small pages need some more tweaking: we have to adjust the
1321 		 * first instruction depending on the page offset we're trying
1322 		 * to access.
1323 		 */
1324 		if (offset_in_page >= mtd->writesize)
1325 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1326 		else if (offset_in_page >= 256 &&
1327 			 !(chip->options & NAND_BUSWIDTH_16))
1328 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1329 	} else {
1330 		/*
1331 		 * Drop the first command if we're dealing with a large page
1332 		 * NAND.
1333 		 */
1334 		op.instrs++;
1335 		op.ninstrs--;
1336 	}
1337 
1338 	ret = nand_exec_op(chip, &op);
1339 	if (!prog || ret)
1340 		return ret;
1341 
1342 	ret = nand_status_op(chip, &status);
1343 	if (ret)
1344 		return ret;
1345 
1346 	return status;
1347 }
1348 
1349 /**
1350  * nand_prog_page_begin_op - starts a PROG PAGE operation
1351  * @chip: The NAND chip
1352  * @page: page to write
1353  * @offset_in_page: offset within the page
1354  * @buf: buffer containing the data to write to the page
1355  * @len: length of the buffer
1356  *
1357  * This function issues the first half of a PROG PAGE operation.
1358  * This function does not select/unselect the CS line.
1359  *
1360  * Returns 0 on success, a negative error code otherwise.
1361  */
1362 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1363 			    unsigned int offset_in_page, const void *buf,
1364 			    unsigned int len)
1365 {
1366 	struct mtd_info *mtd = nand_to_mtd(chip);
1367 
1368 	if (len && !buf)
1369 		return -EINVAL;
1370 
1371 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1372 		return -EINVAL;
1373 
1374 	if (nand_has_exec_op(chip))
1375 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1376 					      len, false);
1377 
1378 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1379 
1380 	if (buf)
1381 		chip->legacy.write_buf(chip, buf, len);
1382 
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1386 
1387 /**
1388  * nand_prog_page_end_op - ends a PROG PAGE operation
1389  * @chip: The NAND chip
1390  *
1391  * This function issues the second half of a PROG PAGE operation.
1392  * This function does not select/unselect the CS line.
1393  *
1394  * Returns 0 on success, a negative error code otherwise.
1395  */
1396 int nand_prog_page_end_op(struct nand_chip *chip)
1397 {
1398 	int ret;
1399 	u8 status;
1400 
1401 	if (nand_has_exec_op(chip)) {
1402 		const struct nand_sdr_timings *sdr =
1403 			nand_get_sdr_timings(nand_get_interface_config(chip));
1404 		struct nand_op_instr instrs[] = {
1405 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1406 				    PSEC_TO_NSEC(sdr->tWB_max)),
1407 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1408 		};
1409 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1410 
1411 		ret = nand_exec_op(chip, &op);
1412 		if (ret)
1413 			return ret;
1414 
1415 		ret = nand_status_op(chip, &status);
1416 		if (ret)
1417 			return ret;
1418 	} else {
1419 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1420 		ret = chip->legacy.waitfunc(chip);
1421 		if (ret < 0)
1422 			return ret;
1423 
1424 		status = ret;
1425 	}
1426 
1427 	if (status & NAND_STATUS_FAIL)
1428 		return -EIO;
1429 
1430 	return 0;
1431 }
1432 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1433 
1434 /**
1435  * nand_prog_page_op - Do a full PROG PAGE operation
1436  * @chip: The NAND chip
1437  * @page: page to write
1438  * @offset_in_page: offset within the page
1439  * @buf: buffer containing the data to write to the page
1440  * @len: length of the buffer
1441  *
1442  * This function issues a full PROG PAGE operation.
1443  * This function does not select/unselect the CS line.
1444  *
1445  * Returns 0 on success, a negative error code otherwise.
1446  */
1447 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1448 		      unsigned int offset_in_page, const void *buf,
1449 		      unsigned int len)
1450 {
1451 	struct mtd_info *mtd = nand_to_mtd(chip);
1452 	int status;
1453 
1454 	if (!len || !buf)
1455 		return -EINVAL;
1456 
1457 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1458 		return -EINVAL;
1459 
1460 	if (nand_has_exec_op(chip)) {
1461 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1462 						len, true);
1463 	} else {
1464 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1465 				     page);
1466 		chip->legacy.write_buf(chip, buf, len);
1467 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1468 		status = chip->legacy.waitfunc(chip);
1469 	}
1470 
1471 	if (status & NAND_STATUS_FAIL)
1472 		return -EIO;
1473 
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1477 
1478 /**
1479  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1480  * @chip: The NAND chip
1481  * @offset_in_page: offset within the page
1482  * @buf: buffer containing the data to send to the NAND
1483  * @len: length of the buffer
1484  * @force_8bit: force 8-bit bus access
1485  *
1486  * This function issues a CHANGE WRITE COLUMN operation.
1487  * This function does not select/unselect the CS line.
1488  *
1489  * Returns 0 on success, a negative error code otherwise.
1490  */
1491 int nand_change_write_column_op(struct nand_chip *chip,
1492 				unsigned int offset_in_page,
1493 				const void *buf, unsigned int len,
1494 				bool force_8bit)
1495 {
1496 	struct mtd_info *mtd = nand_to_mtd(chip);
1497 
1498 	if (len && !buf)
1499 		return -EINVAL;
1500 
1501 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1502 		return -EINVAL;
1503 
1504 	/* Small page NANDs do not support column change. */
1505 	if (mtd->writesize <= 512)
1506 		return -ENOTSUPP;
1507 
1508 	if (nand_has_exec_op(chip)) {
1509 		const struct nand_sdr_timings *sdr =
1510 			nand_get_sdr_timings(nand_get_interface_config(chip));
1511 		u8 addrs[2];
1512 		struct nand_op_instr instrs[] = {
1513 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1514 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1515 			NAND_OP_DATA_OUT(len, buf, 0),
1516 		};
1517 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1518 		int ret;
1519 
1520 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1521 		if (ret < 0)
1522 			return ret;
1523 
1524 		instrs[2].ctx.data.force_8bit = force_8bit;
1525 
1526 		/* Drop the DATA_OUT instruction if len is set to 0. */
1527 		if (!len)
1528 			op.ninstrs--;
1529 
1530 		return nand_exec_op(chip, &op);
1531 	}
1532 
1533 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1534 	if (len)
1535 		chip->legacy.write_buf(chip, buf, len);
1536 
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1540 
1541 /**
1542  * nand_readid_op - Do a READID operation
1543  * @chip: The NAND chip
1544  * @addr: address cycle to pass after the READID command
1545  * @buf: buffer used to store the ID
1546  * @len: length of the buffer
1547  *
1548  * This function sends a READID command and reads back the ID returned by the
1549  * NAND.
1550  * This function does not select/unselect the CS line.
1551  *
1552  * Returns 0 on success, a negative error code otherwise.
1553  */
1554 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1555 		   unsigned int len)
1556 {
1557 	unsigned int i;
1558 	u8 *id = buf;
1559 
1560 	if (len && !buf)
1561 		return -EINVAL;
1562 
1563 	if (nand_has_exec_op(chip)) {
1564 		const struct nand_sdr_timings *sdr =
1565 			nand_get_sdr_timings(nand_get_interface_config(chip));
1566 		struct nand_op_instr instrs[] = {
1567 			NAND_OP_CMD(NAND_CMD_READID, 0),
1568 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1569 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1570 		};
1571 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1572 
1573 		/* Drop the DATA_IN instruction if len is set to 0. */
1574 		if (!len)
1575 			op.ninstrs--;
1576 
1577 		return nand_exec_op(chip, &op);
1578 	}
1579 
1580 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1581 
1582 	for (i = 0; i < len; i++)
1583 		id[i] = chip->legacy.read_byte(chip);
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(nand_readid_op);
1588 
1589 /**
1590  * nand_status_op - Do a STATUS operation
1591  * @chip: The NAND chip
1592  * @status: out variable to store the NAND status
1593  *
1594  * This function sends a STATUS command and reads back the status returned by
1595  * the NAND.
1596  * This function does not select/unselect the CS line.
1597  *
1598  * Returns 0 on success, a negative error code otherwise.
1599  */
1600 int nand_status_op(struct nand_chip *chip, u8 *status)
1601 {
1602 	if (nand_has_exec_op(chip)) {
1603 		const struct nand_sdr_timings *sdr =
1604 			nand_get_sdr_timings(nand_get_interface_config(chip));
1605 		struct nand_op_instr instrs[] = {
1606 			NAND_OP_CMD(NAND_CMD_STATUS,
1607 				    PSEC_TO_NSEC(sdr->tADL_min)),
1608 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1609 		};
1610 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1611 
1612 		if (!status)
1613 			op.ninstrs--;
1614 
1615 		return nand_exec_op(chip, &op);
1616 	}
1617 
1618 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1619 	if (status)
1620 		*status = chip->legacy.read_byte(chip);
1621 
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(nand_status_op);
1625 
1626 /**
1627  * nand_exit_status_op - Exit a STATUS operation
1628  * @chip: The NAND chip
1629  *
1630  * This function sends a READ0 command to cancel the effect of the STATUS
1631  * command to avoid reading only the status until a new read command is sent.
1632  *
1633  * This function does not select/unselect the CS line.
1634  *
1635  * Returns 0 on success, a negative error code otherwise.
1636  */
1637 int nand_exit_status_op(struct nand_chip *chip)
1638 {
1639 	if (nand_has_exec_op(chip)) {
1640 		struct nand_op_instr instrs[] = {
1641 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1642 		};
1643 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1644 
1645 		return nand_exec_op(chip, &op);
1646 	}
1647 
1648 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  * nand_erase_op - Do an erase operation
1655  * @chip: The NAND chip
1656  * @eraseblock: block to erase
1657  *
1658  * This function sends an ERASE command and waits for the NAND to be ready
1659  * before returning.
1660  * This function does not select/unselect the CS line.
1661  *
1662  * Returns 0 on success, a negative error code otherwise.
1663  */
1664 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1665 {
1666 	unsigned int page = eraseblock <<
1667 			    (chip->phys_erase_shift - chip->page_shift);
1668 	int ret;
1669 	u8 status;
1670 
1671 	if (nand_has_exec_op(chip)) {
1672 		const struct nand_sdr_timings *sdr =
1673 			nand_get_sdr_timings(nand_get_interface_config(chip));
1674 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1675 		struct nand_op_instr instrs[] = {
1676 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1677 			NAND_OP_ADDR(2, addrs, 0),
1678 			NAND_OP_CMD(NAND_CMD_ERASE2,
1679 				    PSEC_TO_MSEC(sdr->tWB_max)),
1680 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1681 		};
1682 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1683 
1684 		if (chip->options & NAND_ROW_ADDR_3)
1685 			instrs[1].ctx.addr.naddrs++;
1686 
1687 		ret = nand_exec_op(chip, &op);
1688 		if (ret)
1689 			return ret;
1690 
1691 		ret = nand_status_op(chip, &status);
1692 		if (ret)
1693 			return ret;
1694 	} else {
1695 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1696 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1697 
1698 		ret = chip->legacy.waitfunc(chip);
1699 		if (ret < 0)
1700 			return ret;
1701 
1702 		status = ret;
1703 	}
1704 
1705 	if (status & NAND_STATUS_FAIL)
1706 		return -EIO;
1707 
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(nand_erase_op);
1711 
1712 /**
1713  * nand_set_features_op - Do a SET FEATURES operation
1714  * @chip: The NAND chip
1715  * @feature: feature id
1716  * @data: 4 bytes of data
1717  *
1718  * This function sends a SET FEATURES command and waits for the NAND to be
1719  * ready before returning.
1720  * This function does not select/unselect the CS line.
1721  *
1722  * Returns 0 on success, a negative error code otherwise.
1723  */
1724 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1725 				const void *data)
1726 {
1727 	const u8 *params = data;
1728 	int i, ret;
1729 
1730 	if (nand_has_exec_op(chip)) {
1731 		const struct nand_sdr_timings *sdr =
1732 			nand_get_sdr_timings(nand_get_interface_config(chip));
1733 		struct nand_op_instr instrs[] = {
1734 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1735 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1736 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1737 					      PSEC_TO_NSEC(sdr->tWB_max)),
1738 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1739 		};
1740 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1741 
1742 		return nand_exec_op(chip, &op);
1743 	}
1744 
1745 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1746 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1747 		chip->legacy.write_byte(chip, params[i]);
1748 
1749 	ret = chip->legacy.waitfunc(chip);
1750 	if (ret < 0)
1751 		return ret;
1752 
1753 	if (ret & NAND_STATUS_FAIL)
1754 		return -EIO;
1755 
1756 	return 0;
1757 }
1758 
1759 /**
1760  * nand_get_features_op - Do a GET FEATURES operation
1761  * @chip: The NAND chip
1762  * @feature: feature id
1763  * @data: 4 bytes of data
1764  *
1765  * This function sends a GET FEATURES command and waits for the NAND to be
1766  * ready before returning.
1767  * This function does not select/unselect the CS line.
1768  *
1769  * Returns 0 on success, a negative error code otherwise.
1770  */
1771 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1772 				void *data)
1773 {
1774 	u8 *params = data;
1775 	int i;
1776 
1777 	if (nand_has_exec_op(chip)) {
1778 		const struct nand_sdr_timings *sdr =
1779 			nand_get_sdr_timings(nand_get_interface_config(chip));
1780 		struct nand_op_instr instrs[] = {
1781 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1782 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1783 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1784 					 PSEC_TO_NSEC(sdr->tRR_min)),
1785 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1786 					     data, 0),
1787 		};
1788 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1789 
1790 		return nand_exec_op(chip, &op);
1791 	}
1792 
1793 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1794 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1795 		params[i] = chip->legacy.read_byte(chip);
1796 
1797 	return 0;
1798 }
1799 
1800 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1801 			    unsigned int delay_ns)
1802 {
1803 	if (nand_has_exec_op(chip)) {
1804 		struct nand_op_instr instrs[] = {
1805 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1806 					 PSEC_TO_NSEC(delay_ns)),
1807 		};
1808 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1809 
1810 		return nand_exec_op(chip, &op);
1811 	}
1812 
1813 	/* Apply delay or wait for ready/busy pin */
1814 	if (!chip->legacy.dev_ready)
1815 		udelay(chip->legacy.chip_delay);
1816 	else
1817 		nand_wait_ready(chip);
1818 
1819 	return 0;
1820 }
1821 
1822 /**
1823  * nand_reset_op - Do a reset operation
1824  * @chip: The NAND chip
1825  *
1826  * This function sends a RESET command and waits for the NAND to be ready
1827  * before returning.
1828  * This function does not select/unselect the CS line.
1829  *
1830  * Returns 0 on success, a negative error code otherwise.
1831  */
1832 int nand_reset_op(struct nand_chip *chip)
1833 {
1834 	if (nand_has_exec_op(chip)) {
1835 		const struct nand_sdr_timings *sdr =
1836 			nand_get_sdr_timings(nand_get_interface_config(chip));
1837 		struct nand_op_instr instrs[] = {
1838 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1839 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1840 		};
1841 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1842 
1843 		return nand_exec_op(chip, &op);
1844 	}
1845 
1846 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1847 
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL_GPL(nand_reset_op);
1851 
1852 /**
1853  * nand_read_data_op - Read data from the NAND
1854  * @chip: The NAND chip
1855  * @buf: buffer used to store the data
1856  * @len: length of the buffer
1857  * @force_8bit: force 8-bit bus access
1858  * @check_only: do not actually run the command, only checks if the
1859  *              controller driver supports it
1860  *
1861  * This function does a raw data read on the bus. Usually used after launching
1862  * another NAND operation like nand_read_page_op().
1863  * This function does not select/unselect the CS line.
1864  *
1865  * Returns 0 on success, a negative error code otherwise.
1866  */
1867 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1868 		      bool force_8bit, bool check_only)
1869 {
1870 	if (!len || !buf)
1871 		return -EINVAL;
1872 
1873 	if (nand_has_exec_op(chip)) {
1874 		struct nand_op_instr instrs[] = {
1875 			NAND_OP_DATA_IN(len, buf, 0),
1876 		};
1877 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1878 
1879 		instrs[0].ctx.data.force_8bit = force_8bit;
1880 
1881 		if (check_only)
1882 			return nand_check_op(chip, &op);
1883 
1884 		return nand_exec_op(chip, &op);
1885 	}
1886 
1887 	if (check_only)
1888 		return 0;
1889 
1890 	if (force_8bit) {
1891 		u8 *p = buf;
1892 		unsigned int i;
1893 
1894 		for (i = 0; i < len; i++)
1895 			p[i] = chip->legacy.read_byte(chip);
1896 	} else {
1897 		chip->legacy.read_buf(chip, buf, len);
1898 	}
1899 
1900 	return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(nand_read_data_op);
1903 
1904 /**
1905  * nand_write_data_op - Write data from the NAND
1906  * @chip: The NAND chip
1907  * @buf: buffer containing the data to send on the bus
1908  * @len: length of the buffer
1909  * @force_8bit: force 8-bit bus access
1910  *
1911  * This function does a raw data write on the bus. Usually used after launching
1912  * another NAND operation like nand_write_page_begin_op().
1913  * This function does not select/unselect the CS line.
1914  *
1915  * Returns 0 on success, a negative error code otherwise.
1916  */
1917 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1918 		       unsigned int len, bool force_8bit)
1919 {
1920 	if (!len || !buf)
1921 		return -EINVAL;
1922 
1923 	if (nand_has_exec_op(chip)) {
1924 		struct nand_op_instr instrs[] = {
1925 			NAND_OP_DATA_OUT(len, buf, 0),
1926 		};
1927 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1928 
1929 		instrs[0].ctx.data.force_8bit = force_8bit;
1930 
1931 		return nand_exec_op(chip, &op);
1932 	}
1933 
1934 	if (force_8bit) {
1935 		const u8 *p = buf;
1936 		unsigned int i;
1937 
1938 		for (i = 0; i < len; i++)
1939 			chip->legacy.write_byte(chip, p[i]);
1940 	} else {
1941 		chip->legacy.write_buf(chip, buf, len);
1942 	}
1943 
1944 	return 0;
1945 }
1946 EXPORT_SYMBOL_GPL(nand_write_data_op);
1947 
1948 /**
1949  * struct nand_op_parser_ctx - Context used by the parser
1950  * @instrs: array of all the instructions that must be addressed
1951  * @ninstrs: length of the @instrs array
1952  * @subop: Sub-operation to be passed to the NAND controller
1953  *
1954  * This structure is used by the core to split NAND operations into
1955  * sub-operations that can be handled by the NAND controller.
1956  */
1957 struct nand_op_parser_ctx {
1958 	const struct nand_op_instr *instrs;
1959 	unsigned int ninstrs;
1960 	struct nand_subop subop;
1961 };
1962 
1963 /**
1964  * nand_op_parser_must_split_instr - Checks if an instruction must be split
1965  * @pat: the parser pattern element that matches @instr
1966  * @instr: pointer to the instruction to check
1967  * @start_offset: this is an in/out parameter. If @instr has already been
1968  *		  split, then @start_offset is the offset from which to start
1969  *		  (either an address cycle or an offset in the data buffer).
1970  *		  Conversely, if the function returns true (ie. instr must be
1971  *		  split), this parameter is updated to point to the first
1972  *		  data/address cycle that has not been taken care of.
1973  *
1974  * Some NAND controllers are limited and cannot send X address cycles with a
1975  * unique operation, or cannot read/write more than Y bytes at the same time.
1976  * In this case, split the instruction that does not fit in a single
1977  * controller-operation into two or more chunks.
1978  *
1979  * Returns true if the instruction must be split, false otherwise.
1980  * The @start_offset parameter is also updated to the offset at which the next
1981  * bundle of instruction must start (if an address or a data instruction).
1982  */
1983 static bool
1984 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1985 				const struct nand_op_instr *instr,
1986 				unsigned int *start_offset)
1987 {
1988 	switch (pat->type) {
1989 	case NAND_OP_ADDR_INSTR:
1990 		if (!pat->ctx.addr.maxcycles)
1991 			break;
1992 
1993 		if (instr->ctx.addr.naddrs - *start_offset >
1994 		    pat->ctx.addr.maxcycles) {
1995 			*start_offset += pat->ctx.addr.maxcycles;
1996 			return true;
1997 		}
1998 		break;
1999 
2000 	case NAND_OP_DATA_IN_INSTR:
2001 	case NAND_OP_DATA_OUT_INSTR:
2002 		if (!pat->ctx.data.maxlen)
2003 			break;
2004 
2005 		if (instr->ctx.data.len - *start_offset >
2006 		    pat->ctx.data.maxlen) {
2007 			*start_offset += pat->ctx.data.maxlen;
2008 			return true;
2009 		}
2010 		break;
2011 
2012 	default:
2013 		break;
2014 	}
2015 
2016 	return false;
2017 }
2018 
2019 /**
2020  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2021  *			      remaining in the parser context
2022  * @pat: the pattern to test
2023  * @ctx: the parser context structure to match with the pattern @pat
2024  *
2025  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2026  * Returns true if this is the case, false ortherwise. When true is returned,
2027  * @ctx->subop is updated with the set of instructions to be passed to the
2028  * controller driver.
2029  */
2030 static bool
2031 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2032 			 struct nand_op_parser_ctx *ctx)
2033 {
2034 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2035 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2036 	const struct nand_op_instr *instr = ctx->subop.instrs;
2037 	unsigned int i, ninstrs;
2038 
2039 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2040 		/*
2041 		 * The pattern instruction does not match the operation
2042 		 * instruction. If the instruction is marked optional in the
2043 		 * pattern definition, we skip the pattern element and continue
2044 		 * to the next one. If the element is mandatory, there's no
2045 		 * match and we can return false directly.
2046 		 */
2047 		if (instr->type != pat->elems[i].type) {
2048 			if (!pat->elems[i].optional)
2049 				return false;
2050 
2051 			continue;
2052 		}
2053 
2054 		/*
2055 		 * Now check the pattern element constraints. If the pattern is
2056 		 * not able to handle the whole instruction in a single step,
2057 		 * we have to split it.
2058 		 * The last_instr_end_off value comes back updated to point to
2059 		 * the position where we have to split the instruction (the
2060 		 * start of the next subop chunk).
2061 		 */
2062 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2063 						    &instr_offset)) {
2064 			ninstrs++;
2065 			i++;
2066 			break;
2067 		}
2068 
2069 		instr++;
2070 		ninstrs++;
2071 		instr_offset = 0;
2072 	}
2073 
2074 	/*
2075 	 * This can happen if all instructions of a pattern are optional.
2076 	 * Still, if there's not at least one instruction handled by this
2077 	 * pattern, this is not a match, and we should try the next one (if
2078 	 * any).
2079 	 */
2080 	if (!ninstrs)
2081 		return false;
2082 
2083 	/*
2084 	 * We had a match on the pattern head, but the pattern may be longer
2085 	 * than the instructions we're asked to execute. We need to make sure
2086 	 * there's no mandatory elements in the pattern tail.
2087 	 */
2088 	for (; i < pat->nelems; i++) {
2089 		if (!pat->elems[i].optional)
2090 			return false;
2091 	}
2092 
2093 	/*
2094 	 * We have a match: update the subop structure accordingly and return
2095 	 * true.
2096 	 */
2097 	ctx->subop.ninstrs = ninstrs;
2098 	ctx->subop.last_instr_end_off = instr_offset;
2099 
2100 	return true;
2101 }
2102 
2103 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2104 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2105 {
2106 	const struct nand_op_instr *instr;
2107 	char *prefix = "      ";
2108 	unsigned int i;
2109 
2110 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2111 
2112 	for (i = 0; i < ctx->ninstrs; i++) {
2113 		instr = &ctx->instrs[i];
2114 
2115 		if (instr == &ctx->subop.instrs[0])
2116 			prefix = "    ->";
2117 
2118 		nand_op_trace(prefix, instr);
2119 
2120 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2121 			prefix = "      ";
2122 	}
2123 }
2124 #else
2125 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2126 {
2127 	/* NOP */
2128 }
2129 #endif
2130 
2131 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2132 				  const struct nand_op_parser_ctx *b)
2133 {
2134 	if (a->subop.ninstrs < b->subop.ninstrs)
2135 		return -1;
2136 	else if (a->subop.ninstrs > b->subop.ninstrs)
2137 		return 1;
2138 
2139 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2140 		return -1;
2141 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2142 		return 1;
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * nand_op_parser_exec_op - exec_op parser
2149  * @chip: the NAND chip
2150  * @parser: patterns description provided by the controller driver
2151  * @op: the NAND operation to address
2152  * @check_only: when true, the function only checks if @op can be handled but
2153  *		does not execute the operation
2154  *
2155  * Helper function designed to ease integration of NAND controller drivers that
2156  * only support a limited set of instruction sequences. The supported sequences
2157  * are described in @parser, and the framework takes care of splitting @op into
2158  * multiple sub-operations (if required) and pass them back to the ->exec()
2159  * callback of the matching pattern if @check_only is set to false.
2160  *
2161  * NAND controller drivers should call this function from their own ->exec_op()
2162  * implementation.
2163  *
2164  * Returns 0 on success, a negative error code otherwise. A failure can be
2165  * caused by an unsupported operation (none of the supported patterns is able
2166  * to handle the requested operation), or an error returned by one of the
2167  * matching pattern->exec() hook.
2168  */
2169 int nand_op_parser_exec_op(struct nand_chip *chip,
2170 			   const struct nand_op_parser *parser,
2171 			   const struct nand_operation *op, bool check_only)
2172 {
2173 	struct nand_op_parser_ctx ctx = {
2174 		.subop.cs = op->cs,
2175 		.subop.instrs = op->instrs,
2176 		.instrs = op->instrs,
2177 		.ninstrs = op->ninstrs,
2178 	};
2179 	unsigned int i;
2180 
2181 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2182 		const struct nand_op_parser_pattern *pattern;
2183 		struct nand_op_parser_ctx best_ctx;
2184 		int ret, best_pattern = -1;
2185 
2186 		for (i = 0; i < parser->npatterns; i++) {
2187 			struct nand_op_parser_ctx test_ctx = ctx;
2188 
2189 			pattern = &parser->patterns[i];
2190 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2191 				continue;
2192 
2193 			if (best_pattern >= 0 &&
2194 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2195 				continue;
2196 
2197 			best_pattern = i;
2198 			best_ctx = test_ctx;
2199 		}
2200 
2201 		if (best_pattern < 0) {
2202 			pr_debug("->exec_op() parser: pattern not found!\n");
2203 			return -ENOTSUPP;
2204 		}
2205 
2206 		ctx = best_ctx;
2207 		nand_op_parser_trace(&ctx);
2208 
2209 		if (!check_only) {
2210 			pattern = &parser->patterns[best_pattern];
2211 			ret = pattern->exec(chip, &ctx.subop);
2212 			if (ret)
2213 				return ret;
2214 		}
2215 
2216 		/*
2217 		 * Update the context structure by pointing to the start of the
2218 		 * next subop.
2219 		 */
2220 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2221 		if (ctx.subop.last_instr_end_off)
2222 			ctx.subop.instrs -= 1;
2223 
2224 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2225 	}
2226 
2227 	return 0;
2228 }
2229 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2230 
2231 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2232 {
2233 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2234 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2235 }
2236 
2237 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2238 				      unsigned int instr_idx)
2239 {
2240 	return subop && instr_idx < subop->ninstrs;
2241 }
2242 
2243 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2244 					     unsigned int instr_idx)
2245 {
2246 	if (instr_idx)
2247 		return 0;
2248 
2249 	return subop->first_instr_start_off;
2250 }
2251 
2252 /**
2253  * nand_subop_get_addr_start_off - Get the start offset in an address array
2254  * @subop: The entire sub-operation
2255  * @instr_idx: Index of the instruction inside the sub-operation
2256  *
2257  * During driver development, one could be tempted to directly use the
2258  * ->addr.addrs field of address instructions. This is wrong as address
2259  * instructions might be split.
2260  *
2261  * Given an address instruction, returns the offset of the first cycle to issue.
2262  */
2263 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2264 					   unsigned int instr_idx)
2265 {
2266 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2267 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2268 		return 0;
2269 
2270 	return nand_subop_get_start_off(subop, instr_idx);
2271 }
2272 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2273 
2274 /**
2275  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2276  * @subop: The entire sub-operation
2277  * @instr_idx: Index of the instruction inside the sub-operation
2278  *
2279  * During driver development, one could be tempted to directly use the
2280  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2281  * might be split.
2282  *
2283  * Given an address instruction, returns the number of address cycle to issue.
2284  */
2285 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2286 					 unsigned int instr_idx)
2287 {
2288 	int start_off, end_off;
2289 
2290 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2291 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2292 		return 0;
2293 
2294 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2295 
2296 	if (instr_idx == subop->ninstrs - 1 &&
2297 	    subop->last_instr_end_off)
2298 		end_off = subop->last_instr_end_off;
2299 	else
2300 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2301 
2302 	return end_off - start_off;
2303 }
2304 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2305 
2306 /**
2307  * nand_subop_get_data_start_off - Get the start offset in a data array
2308  * @subop: The entire sub-operation
2309  * @instr_idx: Index of the instruction inside the sub-operation
2310  *
2311  * During driver development, one could be tempted to directly use the
2312  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2313  * instructions might be split.
2314  *
2315  * Given a data instruction, returns the offset to start from.
2316  */
2317 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2318 					   unsigned int instr_idx)
2319 {
2320 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2321 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2322 		return 0;
2323 
2324 	return nand_subop_get_start_off(subop, instr_idx);
2325 }
2326 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2327 
2328 /**
2329  * nand_subop_get_data_len - Get the number of bytes to retrieve
2330  * @subop: The entire sub-operation
2331  * @instr_idx: Index of the instruction inside the sub-operation
2332  *
2333  * During driver development, one could be tempted to directly use the
2334  * ->data->len field of a data instruction. This is wrong as data instructions
2335  * might be split.
2336  *
2337  * Returns the length of the chunk of data to send/receive.
2338  */
2339 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2340 				     unsigned int instr_idx)
2341 {
2342 	int start_off = 0, end_off;
2343 
2344 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2345 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2346 		return 0;
2347 
2348 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2349 
2350 	if (instr_idx == subop->ninstrs - 1 &&
2351 	    subop->last_instr_end_off)
2352 		end_off = subop->last_instr_end_off;
2353 	else
2354 		end_off = subop->instrs[instr_idx].ctx.data.len;
2355 
2356 	return end_off - start_off;
2357 }
2358 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2359 
2360 /**
2361  * nand_reset - Reset and initialize a NAND device
2362  * @chip: The NAND chip
2363  * @chipnr: Internal die id
2364  *
2365  * Save the timings data structure, then apply SDR timings mode 0 (see
2366  * nand_reset_interface for details), do the reset operation, and apply
2367  * back the previous timings.
2368  *
2369  * Returns 0 on success, a negative error code otherwise.
2370  */
2371 int nand_reset(struct nand_chip *chip, int chipnr)
2372 {
2373 	int ret;
2374 
2375 	ret = nand_reset_interface(chip, chipnr);
2376 	if (ret)
2377 		return ret;
2378 
2379 	/*
2380 	 * The CS line has to be released before we can apply the new NAND
2381 	 * interface settings, hence this weird nand_select_target()
2382 	 * nand_deselect_target() dance.
2383 	 */
2384 	nand_select_target(chip, chipnr);
2385 	ret = nand_reset_op(chip);
2386 	nand_deselect_target(chip);
2387 	if (ret)
2388 		return ret;
2389 
2390 	ret = nand_setup_interface(chip, chipnr);
2391 	if (ret)
2392 		return ret;
2393 
2394 	return 0;
2395 }
2396 EXPORT_SYMBOL_GPL(nand_reset);
2397 
2398 /**
2399  * nand_get_features - wrapper to perform a GET_FEATURE
2400  * @chip: NAND chip info structure
2401  * @addr: feature address
2402  * @subfeature_param: the subfeature parameters, a four bytes array
2403  *
2404  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2405  * operation cannot be handled.
2406  */
2407 int nand_get_features(struct nand_chip *chip, int addr,
2408 		      u8 *subfeature_param)
2409 {
2410 	if (!nand_supports_get_features(chip, addr))
2411 		return -ENOTSUPP;
2412 
2413 	if (chip->legacy.get_features)
2414 		return chip->legacy.get_features(chip, addr, subfeature_param);
2415 
2416 	return nand_get_features_op(chip, addr, subfeature_param);
2417 }
2418 
2419 /**
2420  * nand_set_features - wrapper to perform a SET_FEATURE
2421  * @chip: NAND chip info structure
2422  * @addr: feature address
2423  * @subfeature_param: the subfeature parameters, a four bytes array
2424  *
2425  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2426  * operation cannot be handled.
2427  */
2428 int nand_set_features(struct nand_chip *chip, int addr,
2429 		      u8 *subfeature_param)
2430 {
2431 	if (!nand_supports_set_features(chip, addr))
2432 		return -ENOTSUPP;
2433 
2434 	if (chip->legacy.set_features)
2435 		return chip->legacy.set_features(chip, addr, subfeature_param);
2436 
2437 	return nand_set_features_op(chip, addr, subfeature_param);
2438 }
2439 
2440 /**
2441  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2442  * @buf: buffer to test
2443  * @len: buffer length
2444  * @bitflips_threshold: maximum number of bitflips
2445  *
2446  * Check if a buffer contains only 0xff, which means the underlying region
2447  * has been erased and is ready to be programmed.
2448  * The bitflips_threshold specify the maximum number of bitflips before
2449  * considering the region is not erased.
2450  * Note: The logic of this function has been extracted from the memweight
2451  * implementation, except that nand_check_erased_buf function exit before
2452  * testing the whole buffer if the number of bitflips exceed the
2453  * bitflips_threshold value.
2454  *
2455  * Returns a positive number of bitflips less than or equal to
2456  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2457  * threshold.
2458  */
2459 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2460 {
2461 	const unsigned char *bitmap = buf;
2462 	int bitflips = 0;
2463 	int weight;
2464 
2465 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2466 	     len--, bitmap++) {
2467 		weight = hweight8(*bitmap);
2468 		bitflips += BITS_PER_BYTE - weight;
2469 		if (unlikely(bitflips > bitflips_threshold))
2470 			return -EBADMSG;
2471 	}
2472 
2473 	for (; len >= sizeof(long);
2474 	     len -= sizeof(long), bitmap += sizeof(long)) {
2475 		unsigned long d = *((unsigned long *)bitmap);
2476 		if (d == ~0UL)
2477 			continue;
2478 		weight = hweight_long(d);
2479 		bitflips += BITS_PER_LONG - weight;
2480 		if (unlikely(bitflips > bitflips_threshold))
2481 			return -EBADMSG;
2482 	}
2483 
2484 	for (; len > 0; len--, bitmap++) {
2485 		weight = hweight8(*bitmap);
2486 		bitflips += BITS_PER_BYTE - weight;
2487 		if (unlikely(bitflips > bitflips_threshold))
2488 			return -EBADMSG;
2489 	}
2490 
2491 	return bitflips;
2492 }
2493 
2494 /**
2495  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2496  *				 0xff data
2497  * @data: data buffer to test
2498  * @datalen: data length
2499  * @ecc: ECC buffer
2500  * @ecclen: ECC length
2501  * @extraoob: extra OOB buffer
2502  * @extraooblen: extra OOB length
2503  * @bitflips_threshold: maximum number of bitflips
2504  *
2505  * Check if a data buffer and its associated ECC and OOB data contains only
2506  * 0xff pattern, which means the underlying region has been erased and is
2507  * ready to be programmed.
2508  * The bitflips_threshold specify the maximum number of bitflips before
2509  * considering the region as not erased.
2510  *
2511  * Note:
2512  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2513  *    different from the NAND page size. When fixing bitflips, ECC engines will
2514  *    report the number of errors per chunk, and the NAND core infrastructure
2515  *    expect you to return the maximum number of bitflips for the whole page.
2516  *    This is why you should always use this function on a single chunk and
2517  *    not on the whole page. After checking each chunk you should update your
2518  *    max_bitflips value accordingly.
2519  * 2/ When checking for bitflips in erased pages you should not only check
2520  *    the payload data but also their associated ECC data, because a user might
2521  *    have programmed almost all bits to 1 but a few. In this case, we
2522  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2523  *    this case.
2524  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2525  *    data are protected by the ECC engine.
2526  *    It could also be used if you support subpages and want to attach some
2527  *    extra OOB data to an ECC chunk.
2528  *
2529  * Returns a positive number of bitflips less than or equal to
2530  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2531  * threshold. In case of success, the passed buffers are filled with 0xff.
2532  */
2533 int nand_check_erased_ecc_chunk(void *data, int datalen,
2534 				void *ecc, int ecclen,
2535 				void *extraoob, int extraooblen,
2536 				int bitflips_threshold)
2537 {
2538 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2539 
2540 	data_bitflips = nand_check_erased_buf(data, datalen,
2541 					      bitflips_threshold);
2542 	if (data_bitflips < 0)
2543 		return data_bitflips;
2544 
2545 	bitflips_threshold -= data_bitflips;
2546 
2547 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2548 	if (ecc_bitflips < 0)
2549 		return ecc_bitflips;
2550 
2551 	bitflips_threshold -= ecc_bitflips;
2552 
2553 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2554 						  bitflips_threshold);
2555 	if (extraoob_bitflips < 0)
2556 		return extraoob_bitflips;
2557 
2558 	if (data_bitflips)
2559 		memset(data, 0xff, datalen);
2560 
2561 	if (ecc_bitflips)
2562 		memset(ecc, 0xff, ecclen);
2563 
2564 	if (extraoob_bitflips)
2565 		memset(extraoob, 0xff, extraooblen);
2566 
2567 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2568 }
2569 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2570 
2571 /**
2572  * nand_read_page_raw_notsupp - dummy read raw page function
2573  * @chip: nand chip info structure
2574  * @buf: buffer to store read data
2575  * @oob_required: caller requires OOB data read to chip->oob_poi
2576  * @page: page number to read
2577  *
2578  * Returns -ENOTSUPP unconditionally.
2579  */
2580 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2581 			       int oob_required, int page)
2582 {
2583 	return -ENOTSUPP;
2584 }
2585 
2586 /**
2587  * nand_read_page_raw - [INTERN] read raw page data without ecc
2588  * @chip: nand chip info structure
2589  * @buf: buffer to store read data
2590  * @oob_required: caller requires OOB data read to chip->oob_poi
2591  * @page: page number to read
2592  *
2593  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2594  */
2595 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2596 		       int page)
2597 {
2598 	struct mtd_info *mtd = nand_to_mtd(chip);
2599 	int ret;
2600 
2601 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2602 	if (ret)
2603 		return ret;
2604 
2605 	if (oob_required) {
2606 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2607 					false, false);
2608 		if (ret)
2609 			return ret;
2610 	}
2611 
2612 	return 0;
2613 }
2614 EXPORT_SYMBOL(nand_read_page_raw);
2615 
2616 /**
2617  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2618  * @chip: NAND chip info structure
2619  * @buf: buffer to store read data
2620  * @oob_required: caller requires OOB data read to chip->oob_poi
2621  * @page: page number to read
2622  *
2623  * This is a raw page read, ie. without any error detection/correction.
2624  * Monolithic means we are requesting all the relevant data (main plus
2625  * eventually OOB) to be loaded in the NAND cache and sent over the
2626  * bus (from the NAND chip to the NAND controller) in a single
2627  * operation. This is an alternative to nand_read_page_raw(), which
2628  * first reads the main data, and if the OOB data is requested too,
2629  * then reads more data on the bus.
2630  */
2631 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2632 				  int oob_required, int page)
2633 {
2634 	struct mtd_info *mtd = nand_to_mtd(chip);
2635 	unsigned int size = mtd->writesize;
2636 	u8 *read_buf = buf;
2637 	int ret;
2638 
2639 	if (oob_required) {
2640 		size += mtd->oobsize;
2641 
2642 		if (buf != chip->data_buf)
2643 			read_buf = nand_get_data_buf(chip);
2644 	}
2645 
2646 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2647 	if (ret)
2648 		return ret;
2649 
2650 	if (buf != chip->data_buf)
2651 		memcpy(buf, read_buf, mtd->writesize);
2652 
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2656 
2657 /**
2658  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2659  * @chip: nand chip info structure
2660  * @buf: buffer to store read data
2661  * @oob_required: caller requires OOB data read to chip->oob_poi
2662  * @page: page number to read
2663  *
2664  * We need a special oob layout and handling even when OOB isn't used.
2665  */
2666 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2667 				       int oob_required, int page)
2668 {
2669 	struct mtd_info *mtd = nand_to_mtd(chip);
2670 	int eccsize = chip->ecc.size;
2671 	int eccbytes = chip->ecc.bytes;
2672 	uint8_t *oob = chip->oob_poi;
2673 	int steps, size, ret;
2674 
2675 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2676 	if (ret)
2677 		return ret;
2678 
2679 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2680 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
2681 		if (ret)
2682 			return ret;
2683 
2684 		buf += eccsize;
2685 
2686 		if (chip->ecc.prepad) {
2687 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2688 						false, false);
2689 			if (ret)
2690 				return ret;
2691 
2692 			oob += chip->ecc.prepad;
2693 		}
2694 
2695 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2696 		if (ret)
2697 			return ret;
2698 
2699 		oob += eccbytes;
2700 
2701 		if (chip->ecc.postpad) {
2702 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2703 						false, false);
2704 			if (ret)
2705 				return ret;
2706 
2707 			oob += chip->ecc.postpad;
2708 		}
2709 	}
2710 
2711 	size = mtd->oobsize - (oob - chip->oob_poi);
2712 	if (size) {
2713 		ret = nand_read_data_op(chip, oob, size, false, false);
2714 		if (ret)
2715 			return ret;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 /**
2722  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2723  * @chip: nand chip info structure
2724  * @buf: buffer to store read data
2725  * @oob_required: caller requires OOB data read to chip->oob_poi
2726  * @page: page number to read
2727  */
2728 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2729 				int oob_required, int page)
2730 {
2731 	struct mtd_info *mtd = nand_to_mtd(chip);
2732 	int i, eccsize = chip->ecc.size, ret;
2733 	int eccbytes = chip->ecc.bytes;
2734 	int eccsteps = chip->ecc.steps;
2735 	uint8_t *p = buf;
2736 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2737 	uint8_t *ecc_code = chip->ecc.code_buf;
2738 	unsigned int max_bitflips = 0;
2739 
2740 	chip->ecc.read_page_raw(chip, buf, 1, page);
2741 
2742 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2743 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2744 
2745 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2746 					 chip->ecc.total);
2747 	if (ret)
2748 		return ret;
2749 
2750 	eccsteps = chip->ecc.steps;
2751 	p = buf;
2752 
2753 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2754 		int stat;
2755 
2756 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2757 		if (stat < 0) {
2758 			mtd->ecc_stats.failed++;
2759 		} else {
2760 			mtd->ecc_stats.corrected += stat;
2761 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2762 		}
2763 	}
2764 	return max_bitflips;
2765 }
2766 
2767 /**
2768  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2769  * @chip: nand chip info structure
2770  * @data_offs: offset of requested data within the page
2771  * @readlen: data length
2772  * @bufpoi: buffer to store read data
2773  * @page: page number to read
2774  */
2775 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2776 			     uint32_t readlen, uint8_t *bufpoi, int page)
2777 {
2778 	struct mtd_info *mtd = nand_to_mtd(chip);
2779 	int start_step, end_step, num_steps, ret;
2780 	uint8_t *p;
2781 	int data_col_addr, i, gaps = 0;
2782 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2783 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2784 	int index, section = 0;
2785 	unsigned int max_bitflips = 0;
2786 	struct mtd_oob_region oobregion = { };
2787 
2788 	/* Column address within the page aligned to ECC size (256bytes) */
2789 	start_step = data_offs / chip->ecc.size;
2790 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2791 	num_steps = end_step - start_step + 1;
2792 	index = start_step * chip->ecc.bytes;
2793 
2794 	/* Data size aligned to ECC ecc.size */
2795 	datafrag_len = num_steps * chip->ecc.size;
2796 	eccfrag_len = num_steps * chip->ecc.bytes;
2797 
2798 	data_col_addr = start_step * chip->ecc.size;
2799 	/* If we read not a page aligned data */
2800 	p = bufpoi + data_col_addr;
2801 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2802 	if (ret)
2803 		return ret;
2804 
2805 	/* Calculate ECC */
2806 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2807 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2808 
2809 	/*
2810 	 * The performance is faster if we position offsets according to
2811 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2812 	 */
2813 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2814 	if (ret)
2815 		return ret;
2816 
2817 	if (oobregion.length < eccfrag_len)
2818 		gaps = 1;
2819 
2820 	if (gaps) {
2821 		ret = nand_change_read_column_op(chip, mtd->writesize,
2822 						 chip->oob_poi, mtd->oobsize,
2823 						 false);
2824 		if (ret)
2825 			return ret;
2826 	} else {
2827 		/*
2828 		 * Send the command to read the particular ECC bytes take care
2829 		 * about buswidth alignment in read_buf.
2830 		 */
2831 		aligned_pos = oobregion.offset & ~(busw - 1);
2832 		aligned_len = eccfrag_len;
2833 		if (oobregion.offset & (busw - 1))
2834 			aligned_len++;
2835 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2836 		    (busw - 1))
2837 			aligned_len++;
2838 
2839 		ret = nand_change_read_column_op(chip,
2840 						 mtd->writesize + aligned_pos,
2841 						 &chip->oob_poi[aligned_pos],
2842 						 aligned_len, false);
2843 		if (ret)
2844 			return ret;
2845 	}
2846 
2847 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2848 					 chip->oob_poi, index, eccfrag_len);
2849 	if (ret)
2850 		return ret;
2851 
2852 	p = bufpoi + data_col_addr;
2853 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2854 		int stat;
2855 
2856 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2857 					 &chip->ecc.calc_buf[i]);
2858 		if (stat == -EBADMSG &&
2859 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2860 			/* check for empty pages with bitflips */
2861 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2862 						&chip->ecc.code_buf[i],
2863 						chip->ecc.bytes,
2864 						NULL, 0,
2865 						chip->ecc.strength);
2866 		}
2867 
2868 		if (stat < 0) {
2869 			mtd->ecc_stats.failed++;
2870 		} else {
2871 			mtd->ecc_stats.corrected += stat;
2872 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2873 		}
2874 	}
2875 	return max_bitflips;
2876 }
2877 
2878 /**
2879  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2880  * @chip: nand chip info structure
2881  * @buf: buffer to store read data
2882  * @oob_required: caller requires OOB data read to chip->oob_poi
2883  * @page: page number to read
2884  *
2885  * Not for syndrome calculating ECC controllers which need a special oob layout.
2886  */
2887 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2888 				int oob_required, int page)
2889 {
2890 	struct mtd_info *mtd = nand_to_mtd(chip);
2891 	int i, eccsize = chip->ecc.size, ret;
2892 	int eccbytes = chip->ecc.bytes;
2893 	int eccsteps = chip->ecc.steps;
2894 	uint8_t *p = buf;
2895 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2896 	uint8_t *ecc_code = chip->ecc.code_buf;
2897 	unsigned int max_bitflips = 0;
2898 
2899 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2900 	if (ret)
2901 		return ret;
2902 
2903 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2904 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2905 
2906 		ret = nand_read_data_op(chip, p, eccsize, false, false);
2907 		if (ret)
2908 			return ret;
2909 
2910 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2911 	}
2912 
2913 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
2914 				false);
2915 	if (ret)
2916 		return ret;
2917 
2918 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2919 					 chip->ecc.total);
2920 	if (ret)
2921 		return ret;
2922 
2923 	eccsteps = chip->ecc.steps;
2924 	p = buf;
2925 
2926 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2927 		int stat;
2928 
2929 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2930 		if (stat == -EBADMSG &&
2931 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2932 			/* check for empty pages with bitflips */
2933 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2934 						&ecc_code[i], eccbytes,
2935 						NULL, 0,
2936 						chip->ecc.strength);
2937 		}
2938 
2939 		if (stat < 0) {
2940 			mtd->ecc_stats.failed++;
2941 		} else {
2942 			mtd->ecc_stats.corrected += stat;
2943 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2944 		}
2945 	}
2946 	return max_bitflips;
2947 }
2948 
2949 /**
2950  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2951  * @chip: nand chip info structure
2952  * @buf: buffer to store read data
2953  * @oob_required: caller requires OOB data read to chip->oob_poi
2954  * @page: page number to read
2955  *
2956  * The hw generator calculates the error syndrome automatically. Therefore we
2957  * need a special oob layout and handling.
2958  */
2959 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
2960 				   int oob_required, int page)
2961 {
2962 	struct mtd_info *mtd = nand_to_mtd(chip);
2963 	int ret, i, eccsize = chip->ecc.size;
2964 	int eccbytes = chip->ecc.bytes;
2965 	int eccsteps = chip->ecc.steps;
2966 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
2967 	uint8_t *p = buf;
2968 	uint8_t *oob = chip->oob_poi;
2969 	unsigned int max_bitflips = 0;
2970 
2971 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2972 	if (ret)
2973 		return ret;
2974 
2975 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2976 		int stat;
2977 
2978 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2979 
2980 		ret = nand_read_data_op(chip, p, eccsize, false, false);
2981 		if (ret)
2982 			return ret;
2983 
2984 		if (chip->ecc.prepad) {
2985 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2986 						false, false);
2987 			if (ret)
2988 				return ret;
2989 
2990 			oob += chip->ecc.prepad;
2991 		}
2992 
2993 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
2994 
2995 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2996 		if (ret)
2997 			return ret;
2998 
2999 		stat = chip->ecc.correct(chip, p, oob, NULL);
3000 
3001 		oob += eccbytes;
3002 
3003 		if (chip->ecc.postpad) {
3004 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3005 						false, false);
3006 			if (ret)
3007 				return ret;
3008 
3009 			oob += chip->ecc.postpad;
3010 		}
3011 
3012 		if (stat == -EBADMSG &&
3013 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3014 			/* check for empty pages with bitflips */
3015 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3016 							   oob - eccpadbytes,
3017 							   eccpadbytes,
3018 							   NULL, 0,
3019 							   chip->ecc.strength);
3020 		}
3021 
3022 		if (stat < 0) {
3023 			mtd->ecc_stats.failed++;
3024 		} else {
3025 			mtd->ecc_stats.corrected += stat;
3026 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3027 		}
3028 	}
3029 
3030 	/* Calculate remaining oob bytes */
3031 	i = mtd->oobsize - (oob - chip->oob_poi);
3032 	if (i) {
3033 		ret = nand_read_data_op(chip, oob, i, false, false);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 	return max_bitflips;
3039 }
3040 
3041 /**
3042  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3043  * @chip: NAND chip object
3044  * @oob: oob destination address
3045  * @ops: oob ops structure
3046  * @len: size of oob to transfer
3047  */
3048 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3049 				  struct mtd_oob_ops *ops, size_t len)
3050 {
3051 	struct mtd_info *mtd = nand_to_mtd(chip);
3052 	int ret;
3053 
3054 	switch (ops->mode) {
3055 
3056 	case MTD_OPS_PLACE_OOB:
3057 	case MTD_OPS_RAW:
3058 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3059 		return oob + len;
3060 
3061 	case MTD_OPS_AUTO_OOB:
3062 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3063 						  ops->ooboffs, len);
3064 		BUG_ON(ret);
3065 		return oob + len;
3066 
3067 	default:
3068 		BUG();
3069 	}
3070 	return NULL;
3071 }
3072 
3073 /**
3074  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3075  * @chip: NAND chip object
3076  * @retry_mode: the retry mode to use
3077  *
3078  * Some vendors supply a special command to shift the Vt threshold, to be used
3079  * when there are too many bitflips in a page (i.e., ECC error). After setting
3080  * a new threshold, the host should retry reading the page.
3081  */
3082 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3083 {
3084 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3085 
3086 	if (retry_mode >= chip->read_retries)
3087 		return -EINVAL;
3088 
3089 	if (!chip->ops.setup_read_retry)
3090 		return -EOPNOTSUPP;
3091 
3092 	return chip->ops.setup_read_retry(chip, retry_mode);
3093 }
3094 
3095 static void nand_wait_readrdy(struct nand_chip *chip)
3096 {
3097 	const struct nand_sdr_timings *sdr;
3098 
3099 	if (!(chip->options & NAND_NEED_READRDY))
3100 		return;
3101 
3102 	sdr = nand_get_sdr_timings(nand_get_interface_config(chip));
3103 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3104 }
3105 
3106 /**
3107  * nand_do_read_ops - [INTERN] Read data with ECC
3108  * @chip: NAND chip object
3109  * @from: offset to read from
3110  * @ops: oob ops structure
3111  *
3112  * Internal function. Called with chip held.
3113  */
3114 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3115 			    struct mtd_oob_ops *ops)
3116 {
3117 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3118 	struct mtd_info *mtd = nand_to_mtd(chip);
3119 	int ret = 0;
3120 	uint32_t readlen = ops->len;
3121 	uint32_t oobreadlen = ops->ooblen;
3122 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3123 
3124 	uint8_t *bufpoi, *oob, *buf;
3125 	int use_bounce_buf;
3126 	unsigned int max_bitflips = 0;
3127 	int retry_mode = 0;
3128 	bool ecc_fail = false;
3129 
3130 	chipnr = (int)(from >> chip->chip_shift);
3131 	nand_select_target(chip, chipnr);
3132 
3133 	realpage = (int)(from >> chip->page_shift);
3134 	page = realpage & chip->pagemask;
3135 
3136 	col = (int)(from & (mtd->writesize - 1));
3137 
3138 	buf = ops->datbuf;
3139 	oob = ops->oobbuf;
3140 	oob_required = oob ? 1 : 0;
3141 
3142 	while (1) {
3143 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3144 
3145 		bytes = min(mtd->writesize - col, readlen);
3146 		aligned = (bytes == mtd->writesize);
3147 
3148 		if (!aligned)
3149 			use_bounce_buf = 1;
3150 		else if (chip->options & NAND_USES_DMA)
3151 			use_bounce_buf = !virt_addr_valid(buf) ||
3152 					 !IS_ALIGNED((unsigned long)buf,
3153 						     chip->buf_align);
3154 		else
3155 			use_bounce_buf = 0;
3156 
3157 		/* Is the current page in the buffer? */
3158 		if (realpage != chip->pagecache.page || oob) {
3159 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3160 
3161 			if (use_bounce_buf && aligned)
3162 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3163 						 __func__, buf);
3164 
3165 read_retry:
3166 			/*
3167 			 * Now read the page into the buffer.  Absent an error,
3168 			 * the read methods return max bitflips per ecc step.
3169 			 */
3170 			if (unlikely(ops->mode == MTD_OPS_RAW))
3171 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3172 							      oob_required,
3173 							      page);
3174 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3175 				 !oob)
3176 				ret = chip->ecc.read_subpage(chip, col, bytes,
3177 							     bufpoi, page);
3178 			else
3179 				ret = chip->ecc.read_page(chip, bufpoi,
3180 							  oob_required, page);
3181 			if (ret < 0) {
3182 				if (use_bounce_buf)
3183 					/* Invalidate page cache */
3184 					chip->pagecache.page = -1;
3185 				break;
3186 			}
3187 
3188 			/*
3189 			 * Copy back the data in the initial buffer when reading
3190 			 * partial pages or when a bounce buffer is required.
3191 			 */
3192 			if (use_bounce_buf) {
3193 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3194 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3195 				    (ops->mode != MTD_OPS_RAW)) {
3196 					chip->pagecache.page = realpage;
3197 					chip->pagecache.bitflips = ret;
3198 				} else {
3199 					/* Invalidate page cache */
3200 					chip->pagecache.page = -1;
3201 				}
3202 				memcpy(buf, bufpoi + col, bytes);
3203 			}
3204 
3205 			if (unlikely(oob)) {
3206 				int toread = min(oobreadlen, max_oobsize);
3207 
3208 				if (toread) {
3209 					oob = nand_transfer_oob(chip, oob, ops,
3210 								toread);
3211 					oobreadlen -= toread;
3212 				}
3213 			}
3214 
3215 			nand_wait_readrdy(chip);
3216 
3217 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3218 				if (retry_mode + 1 < chip->read_retries) {
3219 					retry_mode++;
3220 					ret = nand_setup_read_retry(chip,
3221 							retry_mode);
3222 					if (ret < 0)
3223 						break;
3224 
3225 					/* Reset ecc_stats; retry */
3226 					mtd->ecc_stats = ecc_stats;
3227 					goto read_retry;
3228 				} else {
3229 					/* No more retry modes; real failure */
3230 					ecc_fail = true;
3231 				}
3232 			}
3233 
3234 			buf += bytes;
3235 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3236 		} else {
3237 			memcpy(buf, chip->data_buf + col, bytes);
3238 			buf += bytes;
3239 			max_bitflips = max_t(unsigned int, max_bitflips,
3240 					     chip->pagecache.bitflips);
3241 		}
3242 
3243 		readlen -= bytes;
3244 
3245 		/* Reset to retry mode 0 */
3246 		if (retry_mode) {
3247 			ret = nand_setup_read_retry(chip, 0);
3248 			if (ret < 0)
3249 				break;
3250 			retry_mode = 0;
3251 		}
3252 
3253 		if (!readlen)
3254 			break;
3255 
3256 		/* For subsequent reads align to page boundary */
3257 		col = 0;
3258 		/* Increment page address */
3259 		realpage++;
3260 
3261 		page = realpage & chip->pagemask;
3262 		/* Check, if we cross a chip boundary */
3263 		if (!page) {
3264 			chipnr++;
3265 			nand_deselect_target(chip);
3266 			nand_select_target(chip, chipnr);
3267 		}
3268 	}
3269 	nand_deselect_target(chip);
3270 
3271 	ops->retlen = ops->len - (size_t) readlen;
3272 	if (oob)
3273 		ops->oobretlen = ops->ooblen - oobreadlen;
3274 
3275 	if (ret < 0)
3276 		return ret;
3277 
3278 	if (ecc_fail)
3279 		return -EBADMSG;
3280 
3281 	return max_bitflips;
3282 }
3283 
3284 /**
3285  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3286  * @chip: nand chip info structure
3287  * @page: page number to read
3288  */
3289 int nand_read_oob_std(struct nand_chip *chip, int page)
3290 {
3291 	struct mtd_info *mtd = nand_to_mtd(chip);
3292 
3293 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3294 }
3295 EXPORT_SYMBOL(nand_read_oob_std);
3296 
3297 /**
3298  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3299  *			    with syndromes
3300  * @chip: nand chip info structure
3301  * @page: page number to read
3302  */
3303 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3304 {
3305 	struct mtd_info *mtd = nand_to_mtd(chip);
3306 	int length = mtd->oobsize;
3307 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3308 	int eccsize = chip->ecc.size;
3309 	uint8_t *bufpoi = chip->oob_poi;
3310 	int i, toread, sndrnd = 0, pos, ret;
3311 
3312 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3313 	if (ret)
3314 		return ret;
3315 
3316 	for (i = 0; i < chip->ecc.steps; i++) {
3317 		if (sndrnd) {
3318 			int ret;
3319 
3320 			pos = eccsize + i * (eccsize + chunk);
3321 			if (mtd->writesize > 512)
3322 				ret = nand_change_read_column_op(chip, pos,
3323 								 NULL, 0,
3324 								 false);
3325 			else
3326 				ret = nand_read_page_op(chip, page, pos, NULL,
3327 							0);
3328 
3329 			if (ret)
3330 				return ret;
3331 		} else
3332 			sndrnd = 1;
3333 		toread = min_t(int, length, chunk);
3334 
3335 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3336 		if (ret)
3337 			return ret;
3338 
3339 		bufpoi += toread;
3340 		length -= toread;
3341 	}
3342 	if (length > 0) {
3343 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3344 		if (ret)
3345 			return ret;
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3353  * @chip: nand chip info structure
3354  * @page: page number to write
3355  */
3356 int nand_write_oob_std(struct nand_chip *chip, int page)
3357 {
3358 	struct mtd_info *mtd = nand_to_mtd(chip);
3359 
3360 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3361 				 mtd->oobsize);
3362 }
3363 EXPORT_SYMBOL(nand_write_oob_std);
3364 
3365 /**
3366  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3367  *			     with syndrome - only for large page flash
3368  * @chip: nand chip info structure
3369  * @page: page number to write
3370  */
3371 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3372 {
3373 	struct mtd_info *mtd = nand_to_mtd(chip);
3374 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3375 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3376 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3377 	const uint8_t *bufpoi = chip->oob_poi;
3378 
3379 	/*
3380 	 * data-ecc-data-ecc ... ecc-oob
3381 	 * or
3382 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3383 	 */
3384 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3385 		pos = steps * (eccsize + chunk);
3386 		steps = 0;
3387 	} else
3388 		pos = eccsize;
3389 
3390 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3391 	if (ret)
3392 		return ret;
3393 
3394 	for (i = 0; i < steps; i++) {
3395 		if (sndcmd) {
3396 			if (mtd->writesize <= 512) {
3397 				uint32_t fill = 0xFFFFFFFF;
3398 
3399 				len = eccsize;
3400 				while (len > 0) {
3401 					int num = min_t(int, len, 4);
3402 
3403 					ret = nand_write_data_op(chip, &fill,
3404 								 num, false);
3405 					if (ret)
3406 						return ret;
3407 
3408 					len -= num;
3409 				}
3410 			} else {
3411 				pos = eccsize + i * (eccsize + chunk);
3412 				ret = nand_change_write_column_op(chip, pos,
3413 								  NULL, 0,
3414 								  false);
3415 				if (ret)
3416 					return ret;
3417 			}
3418 		} else
3419 			sndcmd = 1;
3420 		len = min_t(int, length, chunk);
3421 
3422 		ret = nand_write_data_op(chip, bufpoi, len, false);
3423 		if (ret)
3424 			return ret;
3425 
3426 		bufpoi += len;
3427 		length -= len;
3428 	}
3429 	if (length > 0) {
3430 		ret = nand_write_data_op(chip, bufpoi, length, false);
3431 		if (ret)
3432 			return ret;
3433 	}
3434 
3435 	return nand_prog_page_end_op(chip);
3436 }
3437 
3438 /**
3439  * nand_do_read_oob - [INTERN] NAND read out-of-band
3440  * @chip: NAND chip object
3441  * @from: offset to read from
3442  * @ops: oob operations description structure
3443  *
3444  * NAND read out-of-band data from the spare area.
3445  */
3446 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3447 			    struct mtd_oob_ops *ops)
3448 {
3449 	struct mtd_info *mtd = nand_to_mtd(chip);
3450 	unsigned int max_bitflips = 0;
3451 	int page, realpage, chipnr;
3452 	struct mtd_ecc_stats stats;
3453 	int readlen = ops->ooblen;
3454 	int len;
3455 	uint8_t *buf = ops->oobbuf;
3456 	int ret = 0;
3457 
3458 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3459 			__func__, (unsigned long long)from, readlen);
3460 
3461 	stats = mtd->ecc_stats;
3462 
3463 	len = mtd_oobavail(mtd, ops);
3464 
3465 	chipnr = (int)(from >> chip->chip_shift);
3466 	nand_select_target(chip, chipnr);
3467 
3468 	/* Shift to get page */
3469 	realpage = (int)(from >> chip->page_shift);
3470 	page = realpage & chip->pagemask;
3471 
3472 	while (1) {
3473 		if (ops->mode == MTD_OPS_RAW)
3474 			ret = chip->ecc.read_oob_raw(chip, page);
3475 		else
3476 			ret = chip->ecc.read_oob(chip, page);
3477 
3478 		if (ret < 0)
3479 			break;
3480 
3481 		len = min(len, readlen);
3482 		buf = nand_transfer_oob(chip, buf, ops, len);
3483 
3484 		nand_wait_readrdy(chip);
3485 
3486 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3487 
3488 		readlen -= len;
3489 		if (!readlen)
3490 			break;
3491 
3492 		/* Increment page address */
3493 		realpage++;
3494 
3495 		page = realpage & chip->pagemask;
3496 		/* Check, if we cross a chip boundary */
3497 		if (!page) {
3498 			chipnr++;
3499 			nand_deselect_target(chip);
3500 			nand_select_target(chip, chipnr);
3501 		}
3502 	}
3503 	nand_deselect_target(chip);
3504 
3505 	ops->oobretlen = ops->ooblen - readlen;
3506 
3507 	if (ret < 0)
3508 		return ret;
3509 
3510 	if (mtd->ecc_stats.failed - stats.failed)
3511 		return -EBADMSG;
3512 
3513 	return max_bitflips;
3514 }
3515 
3516 /**
3517  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3518  * @mtd: MTD device structure
3519  * @from: offset to read from
3520  * @ops: oob operation description structure
3521  *
3522  * NAND read data and/or out-of-band data.
3523  */
3524 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3525 			 struct mtd_oob_ops *ops)
3526 {
3527 	struct nand_chip *chip = mtd_to_nand(mtd);
3528 	int ret;
3529 
3530 	ops->retlen = 0;
3531 
3532 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3533 	    ops->mode != MTD_OPS_AUTO_OOB &&
3534 	    ops->mode != MTD_OPS_RAW)
3535 		return -ENOTSUPP;
3536 
3537 	ret = nand_get_device(chip);
3538 	if (ret)
3539 		return ret;
3540 
3541 	if (!ops->datbuf)
3542 		ret = nand_do_read_oob(chip, from, ops);
3543 	else
3544 		ret = nand_do_read_ops(chip, from, ops);
3545 
3546 	nand_release_device(chip);
3547 	return ret;
3548 }
3549 
3550 /**
3551  * nand_write_page_raw_notsupp - dummy raw page write function
3552  * @chip: nand chip info structure
3553  * @buf: data buffer
3554  * @oob_required: must write chip->oob_poi to OOB
3555  * @page: page number to write
3556  *
3557  * Returns -ENOTSUPP unconditionally.
3558  */
3559 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3560 				int oob_required, int page)
3561 {
3562 	return -ENOTSUPP;
3563 }
3564 
3565 /**
3566  * nand_write_page_raw - [INTERN] raw page write function
3567  * @chip: nand chip info structure
3568  * @buf: data buffer
3569  * @oob_required: must write chip->oob_poi to OOB
3570  * @page: page number to write
3571  *
3572  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3573  */
3574 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3575 			int oob_required, int page)
3576 {
3577 	struct mtd_info *mtd = nand_to_mtd(chip);
3578 	int ret;
3579 
3580 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3581 	if (ret)
3582 		return ret;
3583 
3584 	if (oob_required) {
3585 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3586 					 false);
3587 		if (ret)
3588 			return ret;
3589 	}
3590 
3591 	return nand_prog_page_end_op(chip);
3592 }
3593 EXPORT_SYMBOL(nand_write_page_raw);
3594 
3595 /**
3596  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3597  * @chip: NAND chip info structure
3598  * @buf: data buffer to write
3599  * @oob_required: must write chip->oob_poi to OOB
3600  * @page: page number to write
3601  *
3602  * This is a raw page write, ie. without any error detection/correction.
3603  * Monolithic means we are requesting all the relevant data (main plus
3604  * eventually OOB) to be sent over the bus and effectively programmed
3605  * into the NAND chip arrays in a single operation. This is an
3606  * alternative to nand_write_page_raw(), which first sends the main
3607  * data, then eventually send the OOB data by latching more data
3608  * cycles on the NAND bus, and finally sends the program command to
3609  * synchronyze the NAND chip cache.
3610  */
3611 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3612 				   int oob_required, int page)
3613 {
3614 	struct mtd_info *mtd = nand_to_mtd(chip);
3615 	unsigned int size = mtd->writesize;
3616 	u8 *write_buf = (u8 *)buf;
3617 
3618 	if (oob_required) {
3619 		size += mtd->oobsize;
3620 
3621 		if (buf != chip->data_buf) {
3622 			write_buf = nand_get_data_buf(chip);
3623 			memcpy(write_buf, buf, mtd->writesize);
3624 		}
3625 	}
3626 
3627 	return nand_prog_page_op(chip, page, 0, write_buf, size);
3628 }
3629 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3630 
3631 /**
3632  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3633  * @chip: nand chip info structure
3634  * @buf: data buffer
3635  * @oob_required: must write chip->oob_poi to OOB
3636  * @page: page number to write
3637  *
3638  * We need a special oob layout and handling even when ECC isn't checked.
3639  */
3640 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3641 					const uint8_t *buf, int oob_required,
3642 					int page)
3643 {
3644 	struct mtd_info *mtd = nand_to_mtd(chip);
3645 	int eccsize = chip->ecc.size;
3646 	int eccbytes = chip->ecc.bytes;
3647 	uint8_t *oob = chip->oob_poi;
3648 	int steps, size, ret;
3649 
3650 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3651 	if (ret)
3652 		return ret;
3653 
3654 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3655 		ret = nand_write_data_op(chip, buf, eccsize, false);
3656 		if (ret)
3657 			return ret;
3658 
3659 		buf += eccsize;
3660 
3661 		if (chip->ecc.prepad) {
3662 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3663 						 false);
3664 			if (ret)
3665 				return ret;
3666 
3667 			oob += chip->ecc.prepad;
3668 		}
3669 
3670 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3671 		if (ret)
3672 			return ret;
3673 
3674 		oob += eccbytes;
3675 
3676 		if (chip->ecc.postpad) {
3677 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3678 						 false);
3679 			if (ret)
3680 				return ret;
3681 
3682 			oob += chip->ecc.postpad;
3683 		}
3684 	}
3685 
3686 	size = mtd->oobsize - (oob - chip->oob_poi);
3687 	if (size) {
3688 		ret = nand_write_data_op(chip, oob, size, false);
3689 		if (ret)
3690 			return ret;
3691 	}
3692 
3693 	return nand_prog_page_end_op(chip);
3694 }
3695 /**
3696  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3697  * @chip: nand chip info structure
3698  * @buf: data buffer
3699  * @oob_required: must write chip->oob_poi to OOB
3700  * @page: page number to write
3701  */
3702 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3703 				 int oob_required, int page)
3704 {
3705 	struct mtd_info *mtd = nand_to_mtd(chip);
3706 	int i, eccsize = chip->ecc.size, ret;
3707 	int eccbytes = chip->ecc.bytes;
3708 	int eccsteps = chip->ecc.steps;
3709 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3710 	const uint8_t *p = buf;
3711 
3712 	/* Software ECC calculation */
3713 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3714 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3715 
3716 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3717 					 chip->ecc.total);
3718 	if (ret)
3719 		return ret;
3720 
3721 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3722 }
3723 
3724 /**
3725  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3726  * @chip: nand chip info structure
3727  * @buf: data buffer
3728  * @oob_required: must write chip->oob_poi to OOB
3729  * @page: page number to write
3730  */
3731 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3732 				 int oob_required, int page)
3733 {
3734 	struct mtd_info *mtd = nand_to_mtd(chip);
3735 	int i, eccsize = chip->ecc.size, ret;
3736 	int eccbytes = chip->ecc.bytes;
3737 	int eccsteps = chip->ecc.steps;
3738 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3739 	const uint8_t *p = buf;
3740 
3741 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3742 	if (ret)
3743 		return ret;
3744 
3745 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3746 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3747 
3748 		ret = nand_write_data_op(chip, p, eccsize, false);
3749 		if (ret)
3750 			return ret;
3751 
3752 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3753 	}
3754 
3755 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3756 					 chip->ecc.total);
3757 	if (ret)
3758 		return ret;
3759 
3760 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3761 	if (ret)
3762 		return ret;
3763 
3764 	return nand_prog_page_end_op(chip);
3765 }
3766 
3767 
3768 /**
3769  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3770  * @chip:	nand chip info structure
3771  * @offset:	column address of subpage within the page
3772  * @data_len:	data length
3773  * @buf:	data buffer
3774  * @oob_required: must write chip->oob_poi to OOB
3775  * @page: page number to write
3776  */
3777 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3778 				    uint32_t data_len, const uint8_t *buf,
3779 				    int oob_required, int page)
3780 {
3781 	struct mtd_info *mtd = nand_to_mtd(chip);
3782 	uint8_t *oob_buf  = chip->oob_poi;
3783 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3784 	int ecc_size      = chip->ecc.size;
3785 	int ecc_bytes     = chip->ecc.bytes;
3786 	int ecc_steps     = chip->ecc.steps;
3787 	uint32_t start_step = offset / ecc_size;
3788 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3789 	int oob_bytes       = mtd->oobsize / ecc_steps;
3790 	int step, ret;
3791 
3792 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3793 	if (ret)
3794 		return ret;
3795 
3796 	for (step = 0; step < ecc_steps; step++) {
3797 		/* configure controller for WRITE access */
3798 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3799 
3800 		/* write data (untouched subpages already masked by 0xFF) */
3801 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3802 		if (ret)
3803 			return ret;
3804 
3805 		/* mask ECC of un-touched subpages by padding 0xFF */
3806 		if ((step < start_step) || (step > end_step))
3807 			memset(ecc_calc, 0xff, ecc_bytes);
3808 		else
3809 			chip->ecc.calculate(chip, buf, ecc_calc);
3810 
3811 		/* mask OOB of un-touched subpages by padding 0xFF */
3812 		/* if oob_required, preserve OOB metadata of written subpage */
3813 		if (!oob_required || (step < start_step) || (step > end_step))
3814 			memset(oob_buf, 0xff, oob_bytes);
3815 
3816 		buf += ecc_size;
3817 		ecc_calc += ecc_bytes;
3818 		oob_buf  += oob_bytes;
3819 	}
3820 
3821 	/* copy calculated ECC for whole page to chip->buffer->oob */
3822 	/* this include masked-value(0xFF) for unwritten subpages */
3823 	ecc_calc = chip->ecc.calc_buf;
3824 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3825 					 chip->ecc.total);
3826 	if (ret)
3827 		return ret;
3828 
3829 	/* write OOB buffer to NAND device */
3830 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3831 	if (ret)
3832 		return ret;
3833 
3834 	return nand_prog_page_end_op(chip);
3835 }
3836 
3837 
3838 /**
3839  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3840  * @chip: nand chip info structure
3841  * @buf: data buffer
3842  * @oob_required: must write chip->oob_poi to OOB
3843  * @page: page number to write
3844  *
3845  * The hw generator calculates the error syndrome automatically. Therefore we
3846  * need a special oob layout and handling.
3847  */
3848 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3849 				    int oob_required, int page)
3850 {
3851 	struct mtd_info *mtd = nand_to_mtd(chip);
3852 	int i, eccsize = chip->ecc.size;
3853 	int eccbytes = chip->ecc.bytes;
3854 	int eccsteps = chip->ecc.steps;
3855 	const uint8_t *p = buf;
3856 	uint8_t *oob = chip->oob_poi;
3857 	int ret;
3858 
3859 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3860 	if (ret)
3861 		return ret;
3862 
3863 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3864 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3865 
3866 		ret = nand_write_data_op(chip, p, eccsize, false);
3867 		if (ret)
3868 			return ret;
3869 
3870 		if (chip->ecc.prepad) {
3871 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3872 						 false);
3873 			if (ret)
3874 				return ret;
3875 
3876 			oob += chip->ecc.prepad;
3877 		}
3878 
3879 		chip->ecc.calculate(chip, p, oob);
3880 
3881 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3882 		if (ret)
3883 			return ret;
3884 
3885 		oob += eccbytes;
3886 
3887 		if (chip->ecc.postpad) {
3888 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3889 						 false);
3890 			if (ret)
3891 				return ret;
3892 
3893 			oob += chip->ecc.postpad;
3894 		}
3895 	}
3896 
3897 	/* Calculate remaining oob bytes */
3898 	i = mtd->oobsize - (oob - chip->oob_poi);
3899 	if (i) {
3900 		ret = nand_write_data_op(chip, oob, i, false);
3901 		if (ret)
3902 			return ret;
3903 	}
3904 
3905 	return nand_prog_page_end_op(chip);
3906 }
3907 
3908 /**
3909  * nand_write_page - write one page
3910  * @chip: NAND chip descriptor
3911  * @offset: address offset within the page
3912  * @data_len: length of actual data to be written
3913  * @buf: the data to write
3914  * @oob_required: must write chip->oob_poi to OOB
3915  * @page: page number to write
3916  * @raw: use _raw version of write_page
3917  */
3918 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3919 			   int data_len, const uint8_t *buf, int oob_required,
3920 			   int page, int raw)
3921 {
3922 	struct mtd_info *mtd = nand_to_mtd(chip);
3923 	int status, subpage;
3924 
3925 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3926 		chip->ecc.write_subpage)
3927 		subpage = offset || (data_len < mtd->writesize);
3928 	else
3929 		subpage = 0;
3930 
3931 	if (unlikely(raw))
3932 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
3933 						  page);
3934 	else if (subpage)
3935 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3936 						 oob_required, page);
3937 	else
3938 		status = chip->ecc.write_page(chip, buf, oob_required, page);
3939 
3940 	if (status < 0)
3941 		return status;
3942 
3943 	return 0;
3944 }
3945 
3946 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
3947 
3948 /**
3949  * nand_do_write_ops - [INTERN] NAND write with ECC
3950  * @chip: NAND chip object
3951  * @to: offset to write to
3952  * @ops: oob operations description structure
3953  *
3954  * NAND write with ECC.
3955  */
3956 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
3957 			     struct mtd_oob_ops *ops)
3958 {
3959 	struct mtd_info *mtd = nand_to_mtd(chip);
3960 	int chipnr, realpage, page, column;
3961 	uint32_t writelen = ops->len;
3962 
3963 	uint32_t oobwritelen = ops->ooblen;
3964 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3965 
3966 	uint8_t *oob = ops->oobbuf;
3967 	uint8_t *buf = ops->datbuf;
3968 	int ret;
3969 	int oob_required = oob ? 1 : 0;
3970 
3971 	ops->retlen = 0;
3972 	if (!writelen)
3973 		return 0;
3974 
3975 	/* Reject writes, which are not page aligned */
3976 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3977 		pr_notice("%s: attempt to write non page aligned data\n",
3978 			   __func__);
3979 		return -EINVAL;
3980 	}
3981 
3982 	column = to & (mtd->writesize - 1);
3983 
3984 	chipnr = (int)(to >> chip->chip_shift);
3985 	nand_select_target(chip, chipnr);
3986 
3987 	/* Check, if it is write protected */
3988 	if (nand_check_wp(chip)) {
3989 		ret = -EIO;
3990 		goto err_out;
3991 	}
3992 
3993 	realpage = (int)(to >> chip->page_shift);
3994 	page = realpage & chip->pagemask;
3995 
3996 	/* Invalidate the page cache, when we write to the cached page */
3997 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
3998 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
3999 		chip->pagecache.page = -1;
4000 
4001 	/* Don't allow multipage oob writes with offset */
4002 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4003 		ret = -EINVAL;
4004 		goto err_out;
4005 	}
4006 
4007 	while (1) {
4008 		int bytes = mtd->writesize;
4009 		uint8_t *wbuf = buf;
4010 		int use_bounce_buf;
4011 		int part_pagewr = (column || writelen < mtd->writesize);
4012 
4013 		if (part_pagewr)
4014 			use_bounce_buf = 1;
4015 		else if (chip->options & NAND_USES_DMA)
4016 			use_bounce_buf = !virt_addr_valid(buf) ||
4017 					 !IS_ALIGNED((unsigned long)buf,
4018 						     chip->buf_align);
4019 		else
4020 			use_bounce_buf = 0;
4021 
4022 		/*
4023 		 * Copy the data from the initial buffer when doing partial page
4024 		 * writes or when a bounce buffer is required.
4025 		 */
4026 		if (use_bounce_buf) {
4027 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4028 					 __func__, buf);
4029 			if (part_pagewr)
4030 				bytes = min_t(int, bytes - column, writelen);
4031 			wbuf = nand_get_data_buf(chip);
4032 			memset(wbuf, 0xff, mtd->writesize);
4033 			memcpy(&wbuf[column], buf, bytes);
4034 		}
4035 
4036 		if (unlikely(oob)) {
4037 			size_t len = min(oobwritelen, oobmaxlen);
4038 			oob = nand_fill_oob(chip, oob, len, ops);
4039 			oobwritelen -= len;
4040 		} else {
4041 			/* We still need to erase leftover OOB data */
4042 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4043 		}
4044 
4045 		ret = nand_write_page(chip, column, bytes, wbuf,
4046 				      oob_required, page,
4047 				      (ops->mode == MTD_OPS_RAW));
4048 		if (ret)
4049 			break;
4050 
4051 		writelen -= bytes;
4052 		if (!writelen)
4053 			break;
4054 
4055 		column = 0;
4056 		buf += bytes;
4057 		realpage++;
4058 
4059 		page = realpage & chip->pagemask;
4060 		/* Check, if we cross a chip boundary */
4061 		if (!page) {
4062 			chipnr++;
4063 			nand_deselect_target(chip);
4064 			nand_select_target(chip, chipnr);
4065 		}
4066 	}
4067 
4068 	ops->retlen = ops->len - writelen;
4069 	if (unlikely(oob))
4070 		ops->oobretlen = ops->ooblen;
4071 
4072 err_out:
4073 	nand_deselect_target(chip);
4074 	return ret;
4075 }
4076 
4077 /**
4078  * panic_nand_write - [MTD Interface] NAND write with ECC
4079  * @mtd: MTD device structure
4080  * @to: offset to write to
4081  * @len: number of bytes to write
4082  * @retlen: pointer to variable to store the number of written bytes
4083  * @buf: the data to write
4084  *
4085  * NAND write with ECC. Used when performing writes in interrupt context, this
4086  * may for example be called by mtdoops when writing an oops while in panic.
4087  */
4088 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4089 			    size_t *retlen, const uint8_t *buf)
4090 {
4091 	struct nand_chip *chip = mtd_to_nand(mtd);
4092 	int chipnr = (int)(to >> chip->chip_shift);
4093 	struct mtd_oob_ops ops;
4094 	int ret;
4095 
4096 	nand_select_target(chip, chipnr);
4097 
4098 	/* Wait for the device to get ready */
4099 	panic_nand_wait(chip, 400);
4100 
4101 	memset(&ops, 0, sizeof(ops));
4102 	ops.len = len;
4103 	ops.datbuf = (uint8_t *)buf;
4104 	ops.mode = MTD_OPS_PLACE_OOB;
4105 
4106 	ret = nand_do_write_ops(chip, to, &ops);
4107 
4108 	*retlen = ops.retlen;
4109 	return ret;
4110 }
4111 
4112 /**
4113  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4114  * @mtd: MTD device structure
4115  * @to: offset to write to
4116  * @ops: oob operation description structure
4117  */
4118 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4119 			  struct mtd_oob_ops *ops)
4120 {
4121 	struct nand_chip *chip = mtd_to_nand(mtd);
4122 	int ret;
4123 
4124 	ops->retlen = 0;
4125 
4126 	ret = nand_get_device(chip);
4127 	if (ret)
4128 		return ret;
4129 
4130 	switch (ops->mode) {
4131 	case MTD_OPS_PLACE_OOB:
4132 	case MTD_OPS_AUTO_OOB:
4133 	case MTD_OPS_RAW:
4134 		break;
4135 
4136 	default:
4137 		goto out;
4138 	}
4139 
4140 	if (!ops->datbuf)
4141 		ret = nand_do_write_oob(chip, to, ops);
4142 	else
4143 		ret = nand_do_write_ops(chip, to, ops);
4144 
4145 out:
4146 	nand_release_device(chip);
4147 	return ret;
4148 }
4149 
4150 /**
4151  * nand_erase - [MTD Interface] erase block(s)
4152  * @mtd: MTD device structure
4153  * @instr: erase instruction
4154  *
4155  * Erase one ore more blocks.
4156  */
4157 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4158 {
4159 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4160 }
4161 
4162 /**
4163  * nand_erase_nand - [INTERN] erase block(s)
4164  * @chip: NAND chip object
4165  * @instr: erase instruction
4166  * @allowbbt: allow erasing the bbt area
4167  *
4168  * Erase one ore more blocks.
4169  */
4170 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4171 		    int allowbbt)
4172 {
4173 	int page, pages_per_block, ret, chipnr;
4174 	loff_t len;
4175 
4176 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4177 			__func__, (unsigned long long)instr->addr,
4178 			(unsigned long long)instr->len);
4179 
4180 	if (check_offs_len(chip, instr->addr, instr->len))
4181 		return -EINVAL;
4182 
4183 	/* Grab the lock and see if the device is available */
4184 	ret = nand_get_device(chip);
4185 	if (ret)
4186 		return ret;
4187 
4188 	/* Shift to get first page */
4189 	page = (int)(instr->addr >> chip->page_shift);
4190 	chipnr = (int)(instr->addr >> chip->chip_shift);
4191 
4192 	/* Calculate pages in each block */
4193 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4194 
4195 	/* Select the NAND device */
4196 	nand_select_target(chip, chipnr);
4197 
4198 	/* Check, if it is write protected */
4199 	if (nand_check_wp(chip)) {
4200 		pr_debug("%s: device is write protected!\n",
4201 				__func__);
4202 		ret = -EIO;
4203 		goto erase_exit;
4204 	}
4205 
4206 	/* Loop through the pages */
4207 	len = instr->len;
4208 
4209 	while (len) {
4210 		/* Check if we have a bad block, we do not erase bad blocks! */
4211 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4212 					chip->page_shift, allowbbt)) {
4213 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4214 				    __func__, page);
4215 			ret = -EIO;
4216 			goto erase_exit;
4217 		}
4218 
4219 		/*
4220 		 * Invalidate the page cache, if we erase the block which
4221 		 * contains the current cached page.
4222 		 */
4223 		if (page <= chip->pagecache.page && chip->pagecache.page <
4224 		    (page + pages_per_block))
4225 			chip->pagecache.page = -1;
4226 
4227 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4228 				    (chip->phys_erase_shift - chip->page_shift));
4229 		if (ret) {
4230 			pr_debug("%s: failed erase, page 0x%08x\n",
4231 					__func__, page);
4232 			instr->fail_addr =
4233 				((loff_t)page << chip->page_shift);
4234 			goto erase_exit;
4235 		}
4236 
4237 		/* Increment page address and decrement length */
4238 		len -= (1ULL << chip->phys_erase_shift);
4239 		page += pages_per_block;
4240 
4241 		/* Check, if we cross a chip boundary */
4242 		if (len && !(page & chip->pagemask)) {
4243 			chipnr++;
4244 			nand_deselect_target(chip);
4245 			nand_select_target(chip, chipnr);
4246 		}
4247 	}
4248 
4249 	ret = 0;
4250 erase_exit:
4251 
4252 	/* Deselect and wake up anyone waiting on the device */
4253 	nand_deselect_target(chip);
4254 	nand_release_device(chip);
4255 
4256 	/* Return more or less happy */
4257 	return ret;
4258 }
4259 
4260 /**
4261  * nand_sync - [MTD Interface] sync
4262  * @mtd: MTD device structure
4263  *
4264  * Sync is actually a wait for chip ready function.
4265  */
4266 static void nand_sync(struct mtd_info *mtd)
4267 {
4268 	struct nand_chip *chip = mtd_to_nand(mtd);
4269 
4270 	pr_debug("%s: called\n", __func__);
4271 
4272 	/* Grab the lock and see if the device is available */
4273 	WARN_ON(nand_get_device(chip));
4274 	/* Release it and go back */
4275 	nand_release_device(chip);
4276 }
4277 
4278 /**
4279  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4280  * @mtd: MTD device structure
4281  * @offs: offset relative to mtd start
4282  */
4283 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4284 {
4285 	struct nand_chip *chip = mtd_to_nand(mtd);
4286 	int chipnr = (int)(offs >> chip->chip_shift);
4287 	int ret;
4288 
4289 	/* Select the NAND device */
4290 	ret = nand_get_device(chip);
4291 	if (ret)
4292 		return ret;
4293 
4294 	nand_select_target(chip, chipnr);
4295 
4296 	ret = nand_block_checkbad(chip, offs, 0);
4297 
4298 	nand_deselect_target(chip);
4299 	nand_release_device(chip);
4300 
4301 	return ret;
4302 }
4303 
4304 /**
4305  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4306  * @mtd: MTD device structure
4307  * @ofs: offset relative to mtd start
4308  */
4309 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4310 {
4311 	int ret;
4312 
4313 	ret = nand_block_isbad(mtd, ofs);
4314 	if (ret) {
4315 		/* If it was bad already, return success and do nothing */
4316 		if (ret > 0)
4317 			return 0;
4318 		return ret;
4319 	}
4320 
4321 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4322 }
4323 
4324 /**
4325  * nand_suspend - [MTD Interface] Suspend the NAND flash
4326  * @mtd: MTD device structure
4327  *
4328  * Returns 0 for success or negative error code otherwise.
4329  */
4330 static int nand_suspend(struct mtd_info *mtd)
4331 {
4332 	struct nand_chip *chip = mtd_to_nand(mtd);
4333 	int ret = 0;
4334 
4335 	mutex_lock(&chip->lock);
4336 	if (chip->ops.suspend)
4337 		ret = chip->ops.suspend(chip);
4338 	if (!ret)
4339 		chip->suspended = 1;
4340 	mutex_unlock(&chip->lock);
4341 
4342 	return ret;
4343 }
4344 
4345 /**
4346  * nand_resume - [MTD Interface] Resume the NAND flash
4347  * @mtd: MTD device structure
4348  */
4349 static void nand_resume(struct mtd_info *mtd)
4350 {
4351 	struct nand_chip *chip = mtd_to_nand(mtd);
4352 
4353 	mutex_lock(&chip->lock);
4354 	if (chip->suspended) {
4355 		if (chip->ops.resume)
4356 			chip->ops.resume(chip);
4357 		chip->suspended = 0;
4358 	} else {
4359 		pr_err("%s called for a chip which is not in suspended state\n",
4360 			__func__);
4361 	}
4362 	mutex_unlock(&chip->lock);
4363 }
4364 
4365 /**
4366  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4367  *                 prevent further operations
4368  * @mtd: MTD device structure
4369  */
4370 static void nand_shutdown(struct mtd_info *mtd)
4371 {
4372 	nand_suspend(mtd);
4373 }
4374 
4375 /**
4376  * nand_lock - [MTD Interface] Lock the NAND flash
4377  * @mtd: MTD device structure
4378  * @ofs: offset byte address
4379  * @len: number of bytes to lock (must be a multiple of block/page size)
4380  */
4381 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4382 {
4383 	struct nand_chip *chip = mtd_to_nand(mtd);
4384 
4385 	if (!chip->ops.lock_area)
4386 		return -ENOTSUPP;
4387 
4388 	return chip->ops.lock_area(chip, ofs, len);
4389 }
4390 
4391 /**
4392  * nand_unlock - [MTD Interface] Unlock the NAND flash
4393  * @mtd: MTD device structure
4394  * @ofs: offset byte address
4395  * @len: number of bytes to unlock (must be a multiple of block/page size)
4396  */
4397 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4398 {
4399 	struct nand_chip *chip = mtd_to_nand(mtd);
4400 
4401 	if (!chip->ops.unlock_area)
4402 		return -ENOTSUPP;
4403 
4404 	return chip->ops.unlock_area(chip, ofs, len);
4405 }
4406 
4407 /* Set default functions */
4408 static void nand_set_defaults(struct nand_chip *chip)
4409 {
4410 	/* If no controller is provided, use the dummy, legacy one. */
4411 	if (!chip->controller) {
4412 		chip->controller = &chip->legacy.dummy_controller;
4413 		nand_controller_init(chip->controller);
4414 	}
4415 
4416 	nand_legacy_set_defaults(chip);
4417 
4418 	if (!chip->buf_align)
4419 		chip->buf_align = 1;
4420 }
4421 
4422 /* Sanitize ONFI strings so we can safely print them */
4423 void sanitize_string(uint8_t *s, size_t len)
4424 {
4425 	ssize_t i;
4426 
4427 	/* Null terminate */
4428 	s[len - 1] = 0;
4429 
4430 	/* Remove non printable chars */
4431 	for (i = 0; i < len - 1; i++) {
4432 		if (s[i] < ' ' || s[i] > 127)
4433 			s[i] = '?';
4434 	}
4435 
4436 	/* Remove trailing spaces */
4437 	strim(s);
4438 }
4439 
4440 /*
4441  * nand_id_has_period - Check if an ID string has a given wraparound period
4442  * @id_data: the ID string
4443  * @arrlen: the length of the @id_data array
4444  * @period: the period of repitition
4445  *
4446  * Check if an ID string is repeated within a given sequence of bytes at
4447  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4448  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4449  * if the repetition has a period of @period; otherwise, returns zero.
4450  */
4451 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4452 {
4453 	int i, j;
4454 	for (i = 0; i < period; i++)
4455 		for (j = i + period; j < arrlen; j += period)
4456 			if (id_data[i] != id_data[j])
4457 				return 0;
4458 	return 1;
4459 }
4460 
4461 /*
4462  * nand_id_len - Get the length of an ID string returned by CMD_READID
4463  * @id_data: the ID string
4464  * @arrlen: the length of the @id_data array
4465 
4466  * Returns the length of the ID string, according to known wraparound/trailing
4467  * zero patterns. If no pattern exists, returns the length of the array.
4468  */
4469 static int nand_id_len(u8 *id_data, int arrlen)
4470 {
4471 	int last_nonzero, period;
4472 
4473 	/* Find last non-zero byte */
4474 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4475 		if (id_data[last_nonzero])
4476 			break;
4477 
4478 	/* All zeros */
4479 	if (last_nonzero < 0)
4480 		return 0;
4481 
4482 	/* Calculate wraparound period */
4483 	for (period = 1; period < arrlen; period++)
4484 		if (nand_id_has_period(id_data, arrlen, period))
4485 			break;
4486 
4487 	/* There's a repeated pattern */
4488 	if (period < arrlen)
4489 		return period;
4490 
4491 	/* There are trailing zeros */
4492 	if (last_nonzero < arrlen - 1)
4493 		return last_nonzero + 1;
4494 
4495 	/* No pattern detected */
4496 	return arrlen;
4497 }
4498 
4499 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4500 static int nand_get_bits_per_cell(u8 cellinfo)
4501 {
4502 	int bits;
4503 
4504 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4505 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4506 	return bits + 1;
4507 }
4508 
4509 /*
4510  * Many new NAND share similar device ID codes, which represent the size of the
4511  * chip. The rest of the parameters must be decoded according to generic or
4512  * manufacturer-specific "extended ID" decoding patterns.
4513  */
4514 void nand_decode_ext_id(struct nand_chip *chip)
4515 {
4516 	struct nand_memory_organization *memorg;
4517 	struct mtd_info *mtd = nand_to_mtd(chip);
4518 	int extid;
4519 	u8 *id_data = chip->id.data;
4520 
4521 	memorg = nanddev_get_memorg(&chip->base);
4522 
4523 	/* The 3rd id byte holds MLC / multichip data */
4524 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4525 	/* The 4th id byte is the important one */
4526 	extid = id_data[3];
4527 
4528 	/* Calc pagesize */
4529 	memorg->pagesize = 1024 << (extid & 0x03);
4530 	mtd->writesize = memorg->pagesize;
4531 	extid >>= 2;
4532 	/* Calc oobsize */
4533 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4534 	mtd->oobsize = memorg->oobsize;
4535 	extid >>= 2;
4536 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4537 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4538 				       memorg->pagesize;
4539 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4540 	extid >>= 2;
4541 	/* Get buswidth information */
4542 	if (extid & 0x1)
4543 		chip->options |= NAND_BUSWIDTH_16;
4544 }
4545 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4546 
4547 /*
4548  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4549  * decodes a matching ID table entry and assigns the MTD size parameters for
4550  * the chip.
4551  */
4552 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4553 {
4554 	struct mtd_info *mtd = nand_to_mtd(chip);
4555 	struct nand_memory_organization *memorg;
4556 
4557 	memorg = nanddev_get_memorg(&chip->base);
4558 
4559 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4560 	mtd->erasesize = type->erasesize;
4561 	memorg->pagesize = type->pagesize;
4562 	mtd->writesize = memorg->pagesize;
4563 	memorg->oobsize = memorg->pagesize / 32;
4564 	mtd->oobsize = memorg->oobsize;
4565 
4566 	/* All legacy ID NAND are small-page, SLC */
4567 	memorg->bits_per_cell = 1;
4568 }
4569 
4570 /*
4571  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4572  * heuristic patterns using various detected parameters (e.g., manufacturer,
4573  * page size, cell-type information).
4574  */
4575 static void nand_decode_bbm_options(struct nand_chip *chip)
4576 {
4577 	struct mtd_info *mtd = nand_to_mtd(chip);
4578 
4579 	/* Set the bad block position */
4580 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4581 		chip->badblockpos = NAND_BBM_POS_LARGE;
4582 	else
4583 		chip->badblockpos = NAND_BBM_POS_SMALL;
4584 }
4585 
4586 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4587 {
4588 	return type->id_len;
4589 }
4590 
4591 static bool find_full_id_nand(struct nand_chip *chip,
4592 			      struct nand_flash_dev *type)
4593 {
4594 	struct nand_device *base = &chip->base;
4595 	struct nand_ecc_props requirements;
4596 	struct mtd_info *mtd = nand_to_mtd(chip);
4597 	struct nand_memory_organization *memorg;
4598 	u8 *id_data = chip->id.data;
4599 
4600 	memorg = nanddev_get_memorg(&chip->base);
4601 
4602 	if (!strncmp(type->id, id_data, type->id_len)) {
4603 		memorg->pagesize = type->pagesize;
4604 		mtd->writesize = memorg->pagesize;
4605 		memorg->pages_per_eraseblock = type->erasesize /
4606 					       type->pagesize;
4607 		mtd->erasesize = type->erasesize;
4608 		memorg->oobsize = type->oobsize;
4609 		mtd->oobsize = memorg->oobsize;
4610 
4611 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4612 		memorg->eraseblocks_per_lun =
4613 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4614 					   memorg->pagesize *
4615 					   memorg->pages_per_eraseblock);
4616 		chip->options |= type->options;
4617 		requirements.strength = NAND_ECC_STRENGTH(type);
4618 		requirements.step_size = NAND_ECC_STEP(type);
4619 		nanddev_set_ecc_requirements(base, &requirements);
4620 
4621 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4622 		if (!chip->parameters.model)
4623 			return false;
4624 
4625 		return true;
4626 	}
4627 	return false;
4628 }
4629 
4630 /*
4631  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4632  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4633  * table.
4634  */
4635 static void nand_manufacturer_detect(struct nand_chip *chip)
4636 {
4637 	/*
4638 	 * Try manufacturer detection if available and use
4639 	 * nand_decode_ext_id() otherwise.
4640 	 */
4641 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4642 	    chip->manufacturer.desc->ops->detect) {
4643 		struct nand_memory_organization *memorg;
4644 
4645 		memorg = nanddev_get_memorg(&chip->base);
4646 
4647 		/* The 3rd id byte holds MLC / multichip data */
4648 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4649 		chip->manufacturer.desc->ops->detect(chip);
4650 	} else {
4651 		nand_decode_ext_id(chip);
4652 	}
4653 }
4654 
4655 /*
4656  * Manufacturer initialization. This function is called for all NANDs including
4657  * ONFI and JEDEC compliant ones.
4658  * Manufacturer drivers should put all their specific initialization code in
4659  * their ->init() hook.
4660  */
4661 static int nand_manufacturer_init(struct nand_chip *chip)
4662 {
4663 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4664 	    !chip->manufacturer.desc->ops->init)
4665 		return 0;
4666 
4667 	return chip->manufacturer.desc->ops->init(chip);
4668 }
4669 
4670 /*
4671  * Manufacturer cleanup. This function is called for all NANDs including
4672  * ONFI and JEDEC compliant ones.
4673  * Manufacturer drivers should put all their specific cleanup code in their
4674  * ->cleanup() hook.
4675  */
4676 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4677 {
4678 	/* Release manufacturer private data */
4679 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4680 	    chip->manufacturer.desc->ops->cleanup)
4681 		chip->manufacturer.desc->ops->cleanup(chip);
4682 }
4683 
4684 static const char *
4685 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4686 {
4687 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4688 }
4689 
4690 /*
4691  * Get the flash and manufacturer id and lookup if the type is supported.
4692  */
4693 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4694 {
4695 	const struct nand_manufacturer_desc *manufacturer_desc;
4696 	struct mtd_info *mtd = nand_to_mtd(chip);
4697 	struct nand_memory_organization *memorg;
4698 	int busw, ret;
4699 	u8 *id_data = chip->id.data;
4700 	u8 maf_id, dev_id;
4701 	u64 targetsize;
4702 
4703 	/*
4704 	 * Let's start by initializing memorg fields that might be left
4705 	 * unassigned by the ID-based detection logic.
4706 	 */
4707 	memorg = nanddev_get_memorg(&chip->base);
4708 	memorg->planes_per_lun = 1;
4709 	memorg->luns_per_target = 1;
4710 
4711 	/*
4712 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4713 	 * after power-up.
4714 	 */
4715 	ret = nand_reset(chip, 0);
4716 	if (ret)
4717 		return ret;
4718 
4719 	/* Select the device */
4720 	nand_select_target(chip, 0);
4721 
4722 	/* Send the command for reading device ID */
4723 	ret = nand_readid_op(chip, 0, id_data, 2);
4724 	if (ret)
4725 		return ret;
4726 
4727 	/* Read manufacturer and device IDs */
4728 	maf_id = id_data[0];
4729 	dev_id = id_data[1];
4730 
4731 	/*
4732 	 * Try again to make sure, as some systems the bus-hold or other
4733 	 * interface concerns can cause random data which looks like a
4734 	 * possibly credible NAND flash to appear. If the two results do
4735 	 * not match, ignore the device completely.
4736 	 */
4737 
4738 	/* Read entire ID string */
4739 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4740 	if (ret)
4741 		return ret;
4742 
4743 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4744 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4745 			maf_id, dev_id, id_data[0], id_data[1]);
4746 		return -ENODEV;
4747 	}
4748 
4749 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4750 
4751 	/* Try to identify manufacturer */
4752 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
4753 	chip->manufacturer.desc = manufacturer_desc;
4754 
4755 	if (!type)
4756 		type = nand_flash_ids;
4757 
4758 	/*
4759 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4760 	 * override it.
4761 	 * This is required to make sure initial NAND bus width set by the
4762 	 * NAND controller driver is coherent with the real NAND bus width
4763 	 * (extracted by auto-detection code).
4764 	 */
4765 	busw = chip->options & NAND_BUSWIDTH_16;
4766 
4767 	/*
4768 	 * The flag is only set (never cleared), reset it to its default value
4769 	 * before starting auto-detection.
4770 	 */
4771 	chip->options &= ~NAND_BUSWIDTH_16;
4772 
4773 	for (; type->name != NULL; type++) {
4774 		if (is_full_id_nand(type)) {
4775 			if (find_full_id_nand(chip, type))
4776 				goto ident_done;
4777 		} else if (dev_id == type->dev_id) {
4778 			break;
4779 		}
4780 	}
4781 
4782 	if (!type->name || !type->pagesize) {
4783 		/* Check if the chip is ONFI compliant */
4784 		ret = nand_onfi_detect(chip);
4785 		if (ret < 0)
4786 			return ret;
4787 		else if (ret)
4788 			goto ident_done;
4789 
4790 		/* Check if the chip is JEDEC compliant */
4791 		ret = nand_jedec_detect(chip);
4792 		if (ret < 0)
4793 			return ret;
4794 		else if (ret)
4795 			goto ident_done;
4796 	}
4797 
4798 	if (!type->name)
4799 		return -ENODEV;
4800 
4801 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4802 	if (!chip->parameters.model)
4803 		return -ENOMEM;
4804 
4805 	if (!type->pagesize)
4806 		nand_manufacturer_detect(chip);
4807 	else
4808 		nand_decode_id(chip, type);
4809 
4810 	/* Get chip options */
4811 	chip->options |= type->options;
4812 
4813 	memorg->eraseblocks_per_lun =
4814 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4815 					   memorg->pagesize *
4816 					   memorg->pages_per_eraseblock);
4817 
4818 ident_done:
4819 	if (!mtd->name)
4820 		mtd->name = chip->parameters.model;
4821 
4822 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4823 		WARN_ON(busw & NAND_BUSWIDTH_16);
4824 		nand_set_defaults(chip);
4825 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4826 		/*
4827 		 * Check, if buswidth is correct. Hardware drivers should set
4828 		 * chip correct!
4829 		 */
4830 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4831 			maf_id, dev_id);
4832 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
4833 			mtd->name);
4834 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4835 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4836 		ret = -EINVAL;
4837 
4838 		goto free_detect_allocation;
4839 	}
4840 
4841 	nand_decode_bbm_options(chip);
4842 
4843 	/* Calculate the address shift from the page size */
4844 	chip->page_shift = ffs(mtd->writesize) - 1;
4845 	/* Convert chipsize to number of pages per chip -1 */
4846 	targetsize = nanddev_target_size(&chip->base);
4847 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
4848 
4849 	chip->bbt_erase_shift = chip->phys_erase_shift =
4850 		ffs(mtd->erasesize) - 1;
4851 	if (targetsize & 0xffffffff)
4852 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
4853 	else {
4854 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4855 		chip->chip_shift += 32 - 1;
4856 	}
4857 
4858 	if (chip->chip_shift - chip->page_shift > 16)
4859 		chip->options |= NAND_ROW_ADDR_3;
4860 
4861 	chip->badblockbits = 8;
4862 
4863 	nand_legacy_adjust_cmdfunc(chip);
4864 
4865 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4866 		maf_id, dev_id);
4867 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
4868 		chip->parameters.model);
4869 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4870 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4871 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4872 	return 0;
4873 
4874 free_detect_allocation:
4875 	kfree(chip->parameters.model);
4876 
4877 	return ret;
4878 }
4879 
4880 static enum nand_ecc_engine_type
4881 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
4882 {
4883 	enum nand_ecc_legacy_mode {
4884 		NAND_ECC_INVALID,
4885 		NAND_ECC_NONE,
4886 		NAND_ECC_SOFT,
4887 		NAND_ECC_SOFT_BCH,
4888 		NAND_ECC_HW,
4889 		NAND_ECC_HW_SYNDROME,
4890 		NAND_ECC_ON_DIE,
4891 	};
4892 	const char * const nand_ecc_legacy_modes[] = {
4893 		[NAND_ECC_NONE]		= "none",
4894 		[NAND_ECC_SOFT]		= "soft",
4895 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
4896 		[NAND_ECC_HW]		= "hw",
4897 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
4898 		[NAND_ECC_ON_DIE]	= "on-die",
4899 	};
4900 	enum nand_ecc_legacy_mode eng_type;
4901 	const char *pm;
4902 	int err;
4903 
4904 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4905 	if (err)
4906 		return NAND_ECC_ENGINE_TYPE_INVALID;
4907 
4908 	for (eng_type = NAND_ECC_NONE;
4909 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
4910 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
4911 			switch (eng_type) {
4912 			case NAND_ECC_NONE:
4913 				return NAND_ECC_ENGINE_TYPE_NONE;
4914 			case NAND_ECC_SOFT:
4915 			case NAND_ECC_SOFT_BCH:
4916 				return NAND_ECC_ENGINE_TYPE_SOFT;
4917 			case NAND_ECC_HW:
4918 			case NAND_ECC_HW_SYNDROME:
4919 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
4920 			case NAND_ECC_ON_DIE:
4921 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
4922 			default:
4923 				break;
4924 			}
4925 		}
4926 	}
4927 
4928 	return NAND_ECC_ENGINE_TYPE_INVALID;
4929 }
4930 
4931 static enum nand_ecc_placement
4932 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
4933 {
4934 	const char *pm;
4935 	int err;
4936 
4937 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4938 	if (!err) {
4939 		if (!strcasecmp(pm, "hw_syndrome"))
4940 			return NAND_ECC_PLACEMENT_INTERLEAVED;
4941 	}
4942 
4943 	return NAND_ECC_PLACEMENT_UNKNOWN;
4944 }
4945 
4946 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
4947 {
4948 	const char *pm;
4949 	int err;
4950 
4951 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4952 	if (!err) {
4953 		if (!strcasecmp(pm, "soft"))
4954 			return NAND_ECC_ALGO_HAMMING;
4955 		else if (!strcasecmp(pm, "soft_bch"))
4956 			return NAND_ECC_ALGO_BCH;
4957 	}
4958 
4959 	return NAND_ECC_ALGO_UNKNOWN;
4960 }
4961 
4962 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
4963 {
4964 	struct device_node *dn = nand_get_flash_node(chip);
4965 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
4966 
4967 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
4968 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
4969 
4970 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
4971 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
4972 
4973 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
4974 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
4975 }
4976 
4977 static int of_get_nand_bus_width(struct device_node *np)
4978 {
4979 	u32 val;
4980 
4981 	if (of_property_read_u32(np, "nand-bus-width", &val))
4982 		return 8;
4983 
4984 	switch (val) {
4985 	case 8:
4986 	case 16:
4987 		return val;
4988 	default:
4989 		return -EIO;
4990 	}
4991 }
4992 
4993 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4994 {
4995 	return of_property_read_bool(np, "nand-on-flash-bbt");
4996 }
4997 
4998 static int rawnand_dt_init(struct nand_chip *chip)
4999 {
5000 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5001 	struct device_node *dn = nand_get_flash_node(chip);
5002 
5003 	if (!dn)
5004 		return 0;
5005 
5006 	if (of_get_nand_bus_width(dn) == 16)
5007 		chip->options |= NAND_BUSWIDTH_16;
5008 
5009 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5010 		chip->options |= NAND_IS_BOOT_MEDIUM;
5011 
5012 	if (of_get_nand_on_flash_bbt(dn))
5013 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5014 
5015 	of_get_nand_ecc_user_config(nand);
5016 	of_get_nand_ecc_legacy_user_config(chip);
5017 
5018 	/*
5019 	 * If neither the user nor the NAND controller have requested a specific
5020 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5021 	 */
5022 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5023 
5024 	/*
5025 	 * Use the user requested engine type, unless there is none, in this
5026 	 * case default to the NAND controller choice, otherwise fallback to
5027 	 * the raw NAND default one.
5028 	 */
5029 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5030 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5031 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5032 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5033 
5034 	chip->ecc.placement = nand->ecc.user_conf.placement;
5035 	chip->ecc.algo = nand->ecc.user_conf.algo;
5036 	chip->ecc.strength = nand->ecc.user_conf.strength;
5037 	chip->ecc.size = nand->ecc.user_conf.step_size;
5038 
5039 	return 0;
5040 }
5041 
5042 /**
5043  * nand_scan_ident - Scan for the NAND device
5044  * @chip: NAND chip object
5045  * @maxchips: number of chips to scan for
5046  * @table: alternative NAND ID table
5047  *
5048  * This is the first phase of the normal nand_scan() function. It reads the
5049  * flash ID and sets up MTD fields accordingly.
5050  *
5051  * This helper used to be called directly from controller drivers that needed
5052  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5053  * prevented dynamic allocations during this phase which was unconvenient and
5054  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5055  */
5056 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5057 			   struct nand_flash_dev *table)
5058 {
5059 	struct mtd_info *mtd = nand_to_mtd(chip);
5060 	struct nand_memory_organization *memorg;
5061 	int nand_maf_id, nand_dev_id;
5062 	unsigned int i;
5063 	int ret;
5064 
5065 	memorg = nanddev_get_memorg(&chip->base);
5066 
5067 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5068 	chip->cur_cs = -1;
5069 
5070 	mutex_init(&chip->lock);
5071 
5072 	/* Enforce the right timings for reset/detection */
5073 	chip->current_interface_config = nand_get_reset_interface_config();
5074 
5075 	ret = rawnand_dt_init(chip);
5076 	if (ret)
5077 		return ret;
5078 
5079 	if (!mtd->name && mtd->dev.parent)
5080 		mtd->name = dev_name(mtd->dev.parent);
5081 
5082 	/* Set the default functions */
5083 	nand_set_defaults(chip);
5084 
5085 	ret = nand_legacy_check_hooks(chip);
5086 	if (ret)
5087 		return ret;
5088 
5089 	memorg->ntargets = maxchips;
5090 
5091 	/* Read the flash type */
5092 	ret = nand_detect(chip, table);
5093 	if (ret) {
5094 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5095 			pr_warn("No NAND device found\n");
5096 		nand_deselect_target(chip);
5097 		return ret;
5098 	}
5099 
5100 	nand_maf_id = chip->id.data[0];
5101 	nand_dev_id = chip->id.data[1];
5102 
5103 	nand_deselect_target(chip);
5104 
5105 	/* Check for a chip array */
5106 	for (i = 1; i < maxchips; i++) {
5107 		u8 id[2];
5108 
5109 		/* See comment in nand_get_flash_type for reset */
5110 		ret = nand_reset(chip, i);
5111 		if (ret)
5112 			break;
5113 
5114 		nand_select_target(chip, i);
5115 		/* Send the command for reading device ID */
5116 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5117 		if (ret)
5118 			break;
5119 		/* Read manufacturer and device IDs */
5120 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5121 			nand_deselect_target(chip);
5122 			break;
5123 		}
5124 		nand_deselect_target(chip);
5125 	}
5126 	if (i > 1)
5127 		pr_info("%d chips detected\n", i);
5128 
5129 	/* Store the number of chips and calc total size for mtd */
5130 	memorg->ntargets = i;
5131 	mtd->size = i * nanddev_target_size(&chip->base);
5132 
5133 	return 0;
5134 }
5135 
5136 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5137 {
5138 	kfree(chip->parameters.model);
5139 	kfree(chip->parameters.onfi);
5140 }
5141 
5142 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5143 {
5144 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5145 
5146 	switch (ecc->placement) {
5147 	case NAND_ECC_PLACEMENT_UNKNOWN:
5148 	case NAND_ECC_PLACEMENT_OOB:
5149 		/* Use standard hwecc read page function? */
5150 		if (!ecc->read_page)
5151 			ecc->read_page = nand_read_page_hwecc;
5152 		if (!ecc->write_page)
5153 			ecc->write_page = nand_write_page_hwecc;
5154 		if (!ecc->read_page_raw)
5155 			ecc->read_page_raw = nand_read_page_raw;
5156 		if (!ecc->write_page_raw)
5157 			ecc->write_page_raw = nand_write_page_raw;
5158 		if (!ecc->read_oob)
5159 			ecc->read_oob = nand_read_oob_std;
5160 		if (!ecc->write_oob)
5161 			ecc->write_oob = nand_write_oob_std;
5162 		if (!ecc->read_subpage)
5163 			ecc->read_subpage = nand_read_subpage;
5164 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5165 			ecc->write_subpage = nand_write_subpage_hwecc;
5166 		fallthrough;
5167 
5168 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5169 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5170 		    (!ecc->read_page ||
5171 		     ecc->read_page == nand_read_page_hwecc ||
5172 		     !ecc->write_page ||
5173 		     ecc->write_page == nand_write_page_hwecc)) {
5174 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5175 			return -EINVAL;
5176 		}
5177 		/* Use standard syndrome read/write page function? */
5178 		if (!ecc->read_page)
5179 			ecc->read_page = nand_read_page_syndrome;
5180 		if (!ecc->write_page)
5181 			ecc->write_page = nand_write_page_syndrome;
5182 		if (!ecc->read_page_raw)
5183 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5184 		if (!ecc->write_page_raw)
5185 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5186 		if (!ecc->read_oob)
5187 			ecc->read_oob = nand_read_oob_syndrome;
5188 		if (!ecc->write_oob)
5189 			ecc->write_oob = nand_write_oob_syndrome;
5190 		break;
5191 
5192 	default:
5193 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5194 			ecc->placement);
5195 		return -EINVAL;
5196 	}
5197 
5198 	return 0;
5199 }
5200 
5201 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5202 {
5203 	struct mtd_info *mtd = nand_to_mtd(chip);
5204 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5205 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5206 
5207 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5208 		return -EINVAL;
5209 
5210 	switch (ecc->algo) {
5211 	case NAND_ECC_ALGO_HAMMING:
5212 		ecc->calculate = nand_calculate_ecc;
5213 		ecc->correct = nand_correct_data;
5214 		ecc->read_page = nand_read_page_swecc;
5215 		ecc->read_subpage = nand_read_subpage;
5216 		ecc->write_page = nand_write_page_swecc;
5217 		if (!ecc->read_page_raw)
5218 			ecc->read_page_raw = nand_read_page_raw;
5219 		if (!ecc->write_page_raw)
5220 			ecc->write_page_raw = nand_write_page_raw;
5221 		ecc->read_oob = nand_read_oob_std;
5222 		ecc->write_oob = nand_write_oob_std;
5223 		if (!ecc->size)
5224 			ecc->size = 256;
5225 		ecc->bytes = 3;
5226 		ecc->strength = 1;
5227 
5228 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5229 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5230 
5231 		return 0;
5232 	case NAND_ECC_ALGO_BCH:
5233 		if (!mtd_nand_has_bch()) {
5234 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5235 			return -EINVAL;
5236 		}
5237 		ecc->calculate = nand_bch_calculate_ecc;
5238 		ecc->correct = nand_bch_correct_data;
5239 		ecc->read_page = nand_read_page_swecc;
5240 		ecc->read_subpage = nand_read_subpage;
5241 		ecc->write_page = nand_write_page_swecc;
5242 		if (!ecc->read_page_raw)
5243 			ecc->read_page_raw = nand_read_page_raw;
5244 		if (!ecc->write_page_raw)
5245 			ecc->write_page_raw = nand_write_page_raw;
5246 		ecc->read_oob = nand_read_oob_std;
5247 		ecc->write_oob = nand_write_oob_std;
5248 
5249 		/*
5250 		* Board driver should supply ecc.size and ecc.strength
5251 		* values to select how many bits are correctable.
5252 		* Otherwise, default to 4 bits for large page devices.
5253 		*/
5254 		if (!ecc->size && (mtd->oobsize >= 64)) {
5255 			ecc->size = 512;
5256 			ecc->strength = 4;
5257 		}
5258 
5259 		/*
5260 		 * if no ecc placement scheme was provided pickup the default
5261 		 * large page one.
5262 		 */
5263 		if (!mtd->ooblayout) {
5264 			/* handle large page devices only */
5265 			if (mtd->oobsize < 64) {
5266 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5267 				return -EINVAL;
5268 			}
5269 
5270 			mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
5271 
5272 		}
5273 
5274 		/*
5275 		 * We can only maximize ECC config when the default layout is
5276 		 * used, otherwise we don't know how many bytes can really be
5277 		 * used.
5278 		 */
5279 		if (mtd->ooblayout == nand_get_large_page_ooblayout() &&
5280 		    nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) {
5281 			int steps, bytes;
5282 
5283 			/* Always prefer 1k blocks over 512bytes ones */
5284 			ecc->size = 1024;
5285 			steps = mtd->writesize / ecc->size;
5286 
5287 			/* Reserve 2 bytes for the BBM */
5288 			bytes = (mtd->oobsize - 2) / steps;
5289 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5290 		}
5291 
5292 		/* See nand_bch_init() for details. */
5293 		ecc->bytes = 0;
5294 		ecc->priv = nand_bch_init(mtd);
5295 		if (!ecc->priv) {
5296 			WARN(1, "BCH ECC initialization failed!\n");
5297 			return -EINVAL;
5298 		}
5299 		return 0;
5300 	default:
5301 		WARN(1, "Unsupported ECC algorithm!\n");
5302 		return -EINVAL;
5303 	}
5304 }
5305 
5306 /**
5307  * nand_check_ecc_caps - check the sanity of preset ECC settings
5308  * @chip: nand chip info structure
5309  * @caps: ECC caps info structure
5310  * @oobavail: OOB size that the ECC engine can use
5311  *
5312  * When ECC step size and strength are already set, check if they are supported
5313  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5314  * On success, the calculated ECC bytes is set.
5315  */
5316 static int
5317 nand_check_ecc_caps(struct nand_chip *chip,
5318 		    const struct nand_ecc_caps *caps, int oobavail)
5319 {
5320 	struct mtd_info *mtd = nand_to_mtd(chip);
5321 	const struct nand_ecc_step_info *stepinfo;
5322 	int preset_step = chip->ecc.size;
5323 	int preset_strength = chip->ecc.strength;
5324 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5325 	int i, j;
5326 
5327 	for (i = 0; i < caps->nstepinfos; i++) {
5328 		stepinfo = &caps->stepinfos[i];
5329 
5330 		if (stepinfo->stepsize != preset_step)
5331 			continue;
5332 
5333 		for (j = 0; j < stepinfo->nstrengths; j++) {
5334 			if (stepinfo->strengths[j] != preset_strength)
5335 				continue;
5336 
5337 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5338 							 preset_strength);
5339 			if (WARN_ON_ONCE(ecc_bytes < 0))
5340 				return ecc_bytes;
5341 
5342 			if (ecc_bytes * nsteps > oobavail) {
5343 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5344 				       preset_step, preset_strength);
5345 				return -ENOSPC;
5346 			}
5347 
5348 			chip->ecc.bytes = ecc_bytes;
5349 
5350 			return 0;
5351 		}
5352 	}
5353 
5354 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5355 	       preset_step, preset_strength);
5356 
5357 	return -ENOTSUPP;
5358 }
5359 
5360 /**
5361  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5362  * @chip: nand chip info structure
5363  * @caps: ECC engine caps info structure
5364  * @oobavail: OOB size that the ECC engine can use
5365  *
5366  * If a chip's ECC requirement is provided, try to meet it with the least
5367  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5368  * On success, the chosen ECC settings are set.
5369  */
5370 static int
5371 nand_match_ecc_req(struct nand_chip *chip,
5372 		   const struct nand_ecc_caps *caps, int oobavail)
5373 {
5374 	const struct nand_ecc_props *requirements =
5375 		nanddev_get_ecc_requirements(&chip->base);
5376 	struct mtd_info *mtd = nand_to_mtd(chip);
5377 	const struct nand_ecc_step_info *stepinfo;
5378 	int req_step = requirements->step_size;
5379 	int req_strength = requirements->strength;
5380 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5381 	int best_step, best_strength, best_ecc_bytes;
5382 	int best_ecc_bytes_total = INT_MAX;
5383 	int i, j;
5384 
5385 	/* No information provided by the NAND chip */
5386 	if (!req_step || !req_strength)
5387 		return -ENOTSUPP;
5388 
5389 	/* number of correctable bits the chip requires in a page */
5390 	req_corr = mtd->writesize / req_step * req_strength;
5391 
5392 	for (i = 0; i < caps->nstepinfos; i++) {
5393 		stepinfo = &caps->stepinfos[i];
5394 		step_size = stepinfo->stepsize;
5395 
5396 		for (j = 0; j < stepinfo->nstrengths; j++) {
5397 			strength = stepinfo->strengths[j];
5398 
5399 			/*
5400 			 * If both step size and strength are smaller than the
5401 			 * chip's requirement, it is not easy to compare the
5402 			 * resulted reliability.
5403 			 */
5404 			if (step_size < req_step && strength < req_strength)
5405 				continue;
5406 
5407 			if (mtd->writesize % step_size)
5408 				continue;
5409 
5410 			nsteps = mtd->writesize / step_size;
5411 
5412 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5413 			if (WARN_ON_ONCE(ecc_bytes < 0))
5414 				continue;
5415 			ecc_bytes_total = ecc_bytes * nsteps;
5416 
5417 			if (ecc_bytes_total > oobavail ||
5418 			    strength * nsteps < req_corr)
5419 				continue;
5420 
5421 			/*
5422 			 * We assume the best is to meet the chip's requrement
5423 			 * with the least number of ECC bytes.
5424 			 */
5425 			if (ecc_bytes_total < best_ecc_bytes_total) {
5426 				best_ecc_bytes_total = ecc_bytes_total;
5427 				best_step = step_size;
5428 				best_strength = strength;
5429 				best_ecc_bytes = ecc_bytes;
5430 			}
5431 		}
5432 	}
5433 
5434 	if (best_ecc_bytes_total == INT_MAX)
5435 		return -ENOTSUPP;
5436 
5437 	chip->ecc.size = best_step;
5438 	chip->ecc.strength = best_strength;
5439 	chip->ecc.bytes = best_ecc_bytes;
5440 
5441 	return 0;
5442 }
5443 
5444 /**
5445  * nand_maximize_ecc - choose the max ECC strength available
5446  * @chip: nand chip info structure
5447  * @caps: ECC engine caps info structure
5448  * @oobavail: OOB size that the ECC engine can use
5449  *
5450  * Choose the max ECC strength that is supported on the controller, and can fit
5451  * within the chip's OOB.  On success, the chosen ECC settings are set.
5452  */
5453 static int
5454 nand_maximize_ecc(struct nand_chip *chip,
5455 		  const struct nand_ecc_caps *caps, int oobavail)
5456 {
5457 	struct mtd_info *mtd = nand_to_mtd(chip);
5458 	const struct nand_ecc_step_info *stepinfo;
5459 	int step_size, strength, nsteps, ecc_bytes, corr;
5460 	int best_corr = 0;
5461 	int best_step = 0;
5462 	int best_strength, best_ecc_bytes;
5463 	int i, j;
5464 
5465 	for (i = 0; i < caps->nstepinfos; i++) {
5466 		stepinfo = &caps->stepinfos[i];
5467 		step_size = stepinfo->stepsize;
5468 
5469 		/* If chip->ecc.size is already set, respect it */
5470 		if (chip->ecc.size && step_size != chip->ecc.size)
5471 			continue;
5472 
5473 		for (j = 0; j < stepinfo->nstrengths; j++) {
5474 			strength = stepinfo->strengths[j];
5475 
5476 			if (mtd->writesize % step_size)
5477 				continue;
5478 
5479 			nsteps = mtd->writesize / step_size;
5480 
5481 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5482 			if (WARN_ON_ONCE(ecc_bytes < 0))
5483 				continue;
5484 
5485 			if (ecc_bytes * nsteps > oobavail)
5486 				continue;
5487 
5488 			corr = strength * nsteps;
5489 
5490 			/*
5491 			 * If the number of correctable bits is the same,
5492 			 * bigger step_size has more reliability.
5493 			 */
5494 			if (corr > best_corr ||
5495 			    (corr == best_corr && step_size > best_step)) {
5496 				best_corr = corr;
5497 				best_step = step_size;
5498 				best_strength = strength;
5499 				best_ecc_bytes = ecc_bytes;
5500 			}
5501 		}
5502 	}
5503 
5504 	if (!best_corr)
5505 		return -ENOTSUPP;
5506 
5507 	chip->ecc.size = best_step;
5508 	chip->ecc.strength = best_strength;
5509 	chip->ecc.bytes = best_ecc_bytes;
5510 
5511 	return 0;
5512 }
5513 
5514 /**
5515  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5516  * @chip: nand chip info structure
5517  * @caps: ECC engine caps info structure
5518  * @oobavail: OOB size that the ECC engine can use
5519  *
5520  * Choose the ECC configuration according to following logic.
5521  *
5522  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5523  *    then check if it is supported by this controller.
5524  * 2. If the user provided the nand-ecc-maximize property, then select maximum
5525  *    ECC strength.
5526  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5527  *    to the chip's requirement. If available OOB size can't fit the chip
5528  *    requirement then fallback to the maximum ECC step size and ECC strength.
5529  *
5530  * On success, the chosen ECC settings are set.
5531  */
5532 int nand_ecc_choose_conf(struct nand_chip *chip,
5533 			 const struct nand_ecc_caps *caps, int oobavail)
5534 {
5535 	struct mtd_info *mtd = nand_to_mtd(chip);
5536 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5537 
5538 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5539 		return -EINVAL;
5540 
5541 	if (chip->ecc.size && chip->ecc.strength)
5542 		return nand_check_ecc_caps(chip, caps, oobavail);
5543 
5544 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
5545 		return nand_maximize_ecc(chip, caps, oobavail);
5546 
5547 	if (!nand_match_ecc_req(chip, caps, oobavail))
5548 		return 0;
5549 
5550 	return nand_maximize_ecc(chip, caps, oobavail);
5551 }
5552 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5553 
5554 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5555 {
5556 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5557 					      base);
5558 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5559 	int ret;
5560 
5561 	eb >>= nand->rowconv.eraseblock_addr_shift;
5562 
5563 	nand_select_target(chip, pos->target);
5564 	ret = nand_erase_op(chip, eb);
5565 	nand_deselect_target(chip);
5566 
5567 	return ret;
5568 }
5569 
5570 static int rawnand_markbad(struct nand_device *nand,
5571 			   const struct nand_pos *pos)
5572 {
5573 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5574 					      base);
5575 
5576 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5577 }
5578 
5579 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5580 {
5581 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5582 					      base);
5583 	int ret;
5584 
5585 	nand_select_target(chip, pos->target);
5586 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5587 	nand_deselect_target(chip);
5588 
5589 	return ret;
5590 }
5591 
5592 static const struct nand_ops rawnand_ops = {
5593 	.erase = rawnand_erase,
5594 	.markbad = rawnand_markbad,
5595 	.isbad = rawnand_isbad,
5596 };
5597 
5598 /**
5599  * nand_scan_tail - Scan for the NAND device
5600  * @chip: NAND chip object
5601  *
5602  * This is the second phase of the normal nand_scan() function. It fills out
5603  * all the uninitialized function pointers with the defaults and scans for a
5604  * bad block table if appropriate.
5605  */
5606 static int nand_scan_tail(struct nand_chip *chip)
5607 {
5608 	struct mtd_info *mtd = nand_to_mtd(chip);
5609 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5610 	int ret, i;
5611 
5612 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5613 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5614 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5615 		return -EINVAL;
5616 	}
5617 
5618 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5619 	if (!chip->data_buf)
5620 		return -ENOMEM;
5621 
5622 	/*
5623 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5624 	 * selected when manufacturer->init() is called. They should be fixed
5625 	 * to explictly select the relevant die when interacting with the NAND
5626 	 * chip.
5627 	 */
5628 	nand_select_target(chip, 0);
5629 	ret = nand_manufacturer_init(chip);
5630 	nand_deselect_target(chip);
5631 	if (ret)
5632 		goto err_free_buf;
5633 
5634 	/* Set the internal oob buffer location, just after the page data */
5635 	chip->oob_poi = chip->data_buf + mtd->writesize;
5636 
5637 	/*
5638 	 * If no default placement scheme is given, select an appropriate one.
5639 	 */
5640 	if (!mtd->ooblayout &&
5641 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
5642 	      ecc->algo == NAND_ECC_ALGO_BCH)) {
5643 		switch (mtd->oobsize) {
5644 		case 8:
5645 		case 16:
5646 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
5647 			break;
5648 		case 64:
5649 		case 128:
5650 			mtd_set_ooblayout(mtd,
5651 					  nand_get_large_page_hamming_ooblayout());
5652 			break;
5653 		default:
5654 			/*
5655 			 * Expose the whole OOB area to users if ECC_NONE
5656 			 * is passed. We could do that for all kind of
5657 			 * ->oobsize, but we must keep the old large/small
5658 			 * page with ECC layout when ->oobsize <= 128 for
5659 			 * compatibility reasons.
5660 			 */
5661 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
5662 				mtd_set_ooblayout(mtd,
5663 						  nand_get_large_page_ooblayout());
5664 				break;
5665 			}
5666 
5667 			WARN(1, "No oob scheme defined for oobsize %d\n",
5668 				mtd->oobsize);
5669 			ret = -EINVAL;
5670 			goto err_nand_manuf_cleanup;
5671 		}
5672 	}
5673 
5674 	/*
5675 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5676 	 * selected and we have 256 byte pagesize fallback to software ECC
5677 	 */
5678 
5679 	switch (ecc->engine_type) {
5680 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
5681 		ret = nand_set_ecc_on_host_ops(chip);
5682 		if (ret)
5683 			goto err_nand_manuf_cleanup;
5684 
5685 		if (mtd->writesize >= ecc->size) {
5686 			if (!ecc->strength) {
5687 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5688 				ret = -EINVAL;
5689 				goto err_nand_manuf_cleanup;
5690 			}
5691 			break;
5692 		}
5693 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5694 			ecc->size, mtd->writesize);
5695 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5696 		ecc->algo = NAND_ECC_ALGO_HAMMING;
5697 		fallthrough;
5698 
5699 	case NAND_ECC_ENGINE_TYPE_SOFT:
5700 		ret = nand_set_ecc_soft_ops(chip);
5701 		if (ret)
5702 			goto err_nand_manuf_cleanup;
5703 		break;
5704 
5705 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
5706 		if (!ecc->read_page || !ecc->write_page) {
5707 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5708 			ret = -EINVAL;
5709 			goto err_nand_manuf_cleanup;
5710 		}
5711 		if (!ecc->read_oob)
5712 			ecc->read_oob = nand_read_oob_std;
5713 		if (!ecc->write_oob)
5714 			ecc->write_oob = nand_write_oob_std;
5715 		break;
5716 
5717 	case NAND_ECC_ENGINE_TYPE_NONE:
5718 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
5719 		ecc->read_page = nand_read_page_raw;
5720 		ecc->write_page = nand_write_page_raw;
5721 		ecc->read_oob = nand_read_oob_std;
5722 		ecc->read_page_raw = nand_read_page_raw;
5723 		ecc->write_page_raw = nand_write_page_raw;
5724 		ecc->write_oob = nand_write_oob_std;
5725 		ecc->size = mtd->writesize;
5726 		ecc->bytes = 0;
5727 		ecc->strength = 0;
5728 		break;
5729 
5730 	default:
5731 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
5732 		ret = -EINVAL;
5733 		goto err_nand_manuf_cleanup;
5734 	}
5735 
5736 	if (ecc->correct || ecc->calculate) {
5737 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5738 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5739 		if (!ecc->calc_buf || !ecc->code_buf) {
5740 			ret = -ENOMEM;
5741 			goto err_nand_manuf_cleanup;
5742 		}
5743 	}
5744 
5745 	/* For many systems, the standard OOB write also works for raw */
5746 	if (!ecc->read_oob_raw)
5747 		ecc->read_oob_raw = ecc->read_oob;
5748 	if (!ecc->write_oob_raw)
5749 		ecc->write_oob_raw = ecc->write_oob;
5750 
5751 	/* propagate ecc info to mtd_info */
5752 	mtd->ecc_strength = ecc->strength;
5753 	mtd->ecc_step_size = ecc->size;
5754 
5755 	/*
5756 	 * Set the number of read / write steps for one page depending on ECC
5757 	 * mode.
5758 	 */
5759 	ecc->steps = mtd->writesize / ecc->size;
5760 	if (ecc->steps * ecc->size != mtd->writesize) {
5761 		WARN(1, "Invalid ECC parameters\n");
5762 		ret = -EINVAL;
5763 		goto err_nand_manuf_cleanup;
5764 	}
5765 
5766 	ecc->total = ecc->steps * ecc->bytes;
5767 	chip->base.ecc.ctx.total = ecc->total;
5768 
5769 	if (ecc->total > mtd->oobsize) {
5770 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5771 		ret = -EINVAL;
5772 		goto err_nand_manuf_cleanup;
5773 	}
5774 
5775 	/*
5776 	 * The number of bytes available for a client to place data into
5777 	 * the out of band area.
5778 	 */
5779 	ret = mtd_ooblayout_count_freebytes(mtd);
5780 	if (ret < 0)
5781 		ret = 0;
5782 
5783 	mtd->oobavail = ret;
5784 
5785 	/* ECC sanity check: warn if it's too weak */
5786 	if (!nand_ecc_is_strong_enough(&chip->base))
5787 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
5788 			mtd->name, chip->ecc.strength, chip->ecc.size,
5789 			nanddev_get_ecc_requirements(&chip->base)->strength,
5790 			nanddev_get_ecc_requirements(&chip->base)->step_size);
5791 
5792 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5793 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5794 		switch (ecc->steps) {
5795 		case 2:
5796 			mtd->subpage_sft = 1;
5797 			break;
5798 		case 4:
5799 		case 8:
5800 		case 16:
5801 			mtd->subpage_sft = 2;
5802 			break;
5803 		}
5804 	}
5805 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5806 
5807 	/* Invalidate the pagebuffer reference */
5808 	chip->pagecache.page = -1;
5809 
5810 	/* Large page NAND with SOFT_ECC should support subpage reads */
5811 	switch (ecc->engine_type) {
5812 	case NAND_ECC_ENGINE_TYPE_SOFT:
5813 		if (chip->page_shift > 9)
5814 			chip->options |= NAND_SUBPAGE_READ;
5815 		break;
5816 
5817 	default:
5818 		break;
5819 	}
5820 
5821 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5822 	if (ret)
5823 		goto err_nand_manuf_cleanup;
5824 
5825 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5826 	if (chip->options & NAND_ROM)
5827 		mtd->flags = MTD_CAP_ROM;
5828 
5829 	/* Fill in remaining MTD driver data */
5830 	mtd->_erase = nand_erase;
5831 	mtd->_point = NULL;
5832 	mtd->_unpoint = NULL;
5833 	mtd->_panic_write = panic_nand_write;
5834 	mtd->_read_oob = nand_read_oob;
5835 	mtd->_write_oob = nand_write_oob;
5836 	mtd->_sync = nand_sync;
5837 	mtd->_lock = nand_lock;
5838 	mtd->_unlock = nand_unlock;
5839 	mtd->_suspend = nand_suspend;
5840 	mtd->_resume = nand_resume;
5841 	mtd->_reboot = nand_shutdown;
5842 	mtd->_block_isreserved = nand_block_isreserved;
5843 	mtd->_block_isbad = nand_block_isbad;
5844 	mtd->_block_markbad = nand_block_markbad;
5845 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5846 
5847 	/*
5848 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5849 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5850 	 * properly set.
5851 	 */
5852 	if (!mtd->bitflip_threshold)
5853 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5854 
5855 	/* Find the fastest data interface for this chip */
5856 	ret = nand_choose_interface_config(chip);
5857 	if (ret)
5858 		goto err_nanddev_cleanup;
5859 
5860 	/* Enter fastest possible mode on all dies. */
5861 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
5862 		ret = nand_setup_interface(chip, i);
5863 		if (ret)
5864 			goto err_free_interface_config;
5865 	}
5866 
5867 	/* Check, if we should skip the bad block table scan */
5868 	if (chip->options & NAND_SKIP_BBTSCAN)
5869 		return 0;
5870 
5871 	/* Build bad block table */
5872 	ret = nand_create_bbt(chip);
5873 	if (ret)
5874 		goto err_free_interface_config;
5875 
5876 	return 0;
5877 
5878 err_free_interface_config:
5879 	kfree(chip->best_interface_config);
5880 
5881 err_nanddev_cleanup:
5882 	nanddev_cleanup(&chip->base);
5883 
5884 err_nand_manuf_cleanup:
5885 	nand_manufacturer_cleanup(chip);
5886 
5887 err_free_buf:
5888 	kfree(chip->data_buf);
5889 	kfree(ecc->code_buf);
5890 	kfree(ecc->calc_buf);
5891 
5892 	return ret;
5893 }
5894 
5895 static int nand_attach(struct nand_chip *chip)
5896 {
5897 	if (chip->controller->ops && chip->controller->ops->attach_chip)
5898 		return chip->controller->ops->attach_chip(chip);
5899 
5900 	return 0;
5901 }
5902 
5903 static void nand_detach(struct nand_chip *chip)
5904 {
5905 	if (chip->controller->ops && chip->controller->ops->detach_chip)
5906 		chip->controller->ops->detach_chip(chip);
5907 }
5908 
5909 /**
5910  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5911  * @chip: NAND chip object
5912  * @maxchips: number of chips to scan for.
5913  * @ids: optional flash IDs table
5914  *
5915  * This fills out all the uninitialized function pointers with the defaults.
5916  * The flash ID is read and the mtd/chip structures are filled with the
5917  * appropriate values.
5918  */
5919 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5920 		       struct nand_flash_dev *ids)
5921 {
5922 	int ret;
5923 
5924 	if (!maxchips)
5925 		return -EINVAL;
5926 
5927 	ret = nand_scan_ident(chip, maxchips, ids);
5928 	if (ret)
5929 		return ret;
5930 
5931 	ret = nand_attach(chip);
5932 	if (ret)
5933 		goto cleanup_ident;
5934 
5935 	ret = nand_scan_tail(chip);
5936 	if (ret)
5937 		goto detach_chip;
5938 
5939 	return 0;
5940 
5941 detach_chip:
5942 	nand_detach(chip);
5943 cleanup_ident:
5944 	nand_scan_ident_cleanup(chip);
5945 
5946 	return ret;
5947 }
5948 EXPORT_SYMBOL(nand_scan_with_ids);
5949 
5950 /**
5951  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5952  * @chip: NAND chip object
5953  */
5954 void nand_cleanup(struct nand_chip *chip)
5955 {
5956 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
5957 	    chip->ecc.algo == NAND_ECC_ALGO_BCH)
5958 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5959 
5960 	nanddev_cleanup(&chip->base);
5961 
5962 	/* Free bad block table memory */
5963 	kfree(chip->bbt);
5964 	kfree(chip->data_buf);
5965 	kfree(chip->ecc.code_buf);
5966 	kfree(chip->ecc.calc_buf);
5967 
5968 	/* Free bad block descriptor memory */
5969 	if (chip->badblock_pattern && chip->badblock_pattern->options
5970 			& NAND_BBT_DYNAMICSTRUCT)
5971 		kfree(chip->badblock_pattern);
5972 
5973 	/* Free the data interface */
5974 	kfree(chip->best_interface_config);
5975 
5976 	/* Free manufacturer priv data. */
5977 	nand_manufacturer_cleanup(chip);
5978 
5979 	/* Free controller specific allocations after chip identification */
5980 	nand_detach(chip);
5981 
5982 	/* Free identification phase allocations */
5983 	nand_scan_ident_cleanup(chip);
5984 }
5985 
5986 EXPORT_SYMBOL_GPL(nand_cleanup);
5987 
5988 MODULE_LICENSE("GPL");
5989 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5990 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5991 MODULE_DESCRIPTION("Generic NAND flash driver code");
5992