xref: /linux/drivers/mtd/nand/raw/mxic_nand.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Macronix International Co., Ltd.
4  *
5  * Author:
6  *	Mason Yang <masonccyang@mxic.com.tw>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/io.h>
11 #include <linux/iopoll.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/rawnand.h>
16 #include <linux/mtd/nand_ecc.h>
17 #include <linux/platform_device.h>
18 
19 #include "internals.h"
20 
21 #define HC_CFG			0x0
22 #define HC_CFG_IF_CFG(x)	((x) << 27)
23 #define HC_CFG_DUAL_SLAVE	BIT(31)
24 #define HC_CFG_INDIVIDUAL	BIT(30)
25 #define HC_CFG_NIO(x)		(((x) / 4) << 27)
26 #define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
27 #define HC_CFG_TYPE_SPI_NOR	0
28 #define HC_CFG_TYPE_SPI_NAND	1
29 #define HC_CFG_TYPE_SPI_RAM	2
30 #define HC_CFG_TYPE_RAW_NAND	3
31 #define HC_CFG_SLV_ACT(x)	((x) << 21)
32 #define HC_CFG_CLK_PH_EN	BIT(20)
33 #define HC_CFG_CLK_POL_INV	BIT(19)
34 #define HC_CFG_BIG_ENDIAN	BIT(18)
35 #define HC_CFG_DATA_PASS	BIT(17)
36 #define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
37 #define HC_CFG_MAN_START_EN	BIT(3)
38 #define HC_CFG_MAN_START	BIT(2)
39 #define HC_CFG_MAN_CS_EN	BIT(1)
40 #define HC_CFG_MAN_CS_ASSERT	BIT(0)
41 
42 #define INT_STS			0x4
43 #define INT_STS_EN		0x8
44 #define INT_SIG_EN		0xc
45 #define INT_STS_ALL		GENMASK(31, 0)
46 #define INT_RDY_PIN		BIT(26)
47 #define INT_RDY_SR		BIT(25)
48 #define INT_LNR_SUSP		BIT(24)
49 #define INT_ECC_ERR		BIT(17)
50 #define INT_CRC_ERR		BIT(16)
51 #define INT_LWR_DIS		BIT(12)
52 #define INT_LRD_DIS		BIT(11)
53 #define INT_SDMA_INT		BIT(10)
54 #define INT_DMA_FINISH		BIT(9)
55 #define INT_RX_NOT_FULL		BIT(3)
56 #define INT_RX_NOT_EMPTY	BIT(2)
57 #define INT_TX_NOT_FULL		BIT(1)
58 #define INT_TX_EMPTY		BIT(0)
59 
60 #define HC_EN			0x10
61 #define HC_EN_BIT		BIT(0)
62 
63 #define TXD(x)			(0x14 + ((x) * 4))
64 #define RXD			0x24
65 
66 #define SS_CTRL(s)		(0x30 + ((s) * 4))
67 #define LRD_CFG			0x44
68 #define LWR_CFG			0x80
69 #define RWW_CFG			0x70
70 #define OP_READ			BIT(23)
71 #define OP_DUMMY_CYC(x)		((x) << 17)
72 #define OP_ADDR_BYTES(x)	((x) << 14)
73 #define OP_CMD_BYTES(x)		(((x) - 1) << 13)
74 #define OP_OCTA_CRC_EN		BIT(12)
75 #define OP_DQS_EN		BIT(11)
76 #define OP_ENHC_EN		BIT(10)
77 #define OP_PREAMBLE_EN		BIT(9)
78 #define OP_DATA_DDR		BIT(8)
79 #define OP_DATA_BUSW(x)		((x) << 6)
80 #define OP_ADDR_DDR		BIT(5)
81 #define OP_ADDR_BUSW(x)		((x) << 3)
82 #define OP_CMD_DDR		BIT(2)
83 #define OP_CMD_BUSW(x)		(x)
84 #define OP_BUSW_1		0
85 #define OP_BUSW_2		1
86 #define OP_BUSW_4		2
87 #define OP_BUSW_8		3
88 
89 #define OCTA_CRC		0x38
90 #define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
91 #define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
92 #define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
93 
94 #define ONFI_DIN_CNT(s)		(0x3c + (s))
95 
96 #define LRD_CTRL		0x48
97 #define RWW_CTRL		0x74
98 #define LWR_CTRL		0x84
99 #define LMODE_EN		BIT(31)
100 #define LMODE_SLV_ACT(x)	((x) << 21)
101 #define LMODE_CMD1(x)		((x) << 8)
102 #define LMODE_CMD0(x)		(x)
103 
104 #define LRD_ADDR		0x4c
105 #define LWR_ADDR		0x88
106 #define LRD_RANGE		0x50
107 #define LWR_RANGE		0x8c
108 
109 #define AXI_SLV_ADDR		0x54
110 
111 #define DMAC_RD_CFG		0x58
112 #define DMAC_WR_CFG		0x94
113 #define DMAC_CFG_PERIPH_EN	BIT(31)
114 #define DMAC_CFG_ALLFLUSH_EN	BIT(30)
115 #define DMAC_CFG_LASTFLUSH_EN	BIT(29)
116 #define DMAC_CFG_QE(x)		(((x) + 1) << 16)
117 #define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
118 #define DMAC_CFG_BURST_SZ(x)	((x) << 8)
119 #define DMAC_CFG_DIR_READ	BIT(1)
120 #define DMAC_CFG_START		BIT(0)
121 
122 #define DMAC_RD_CNT		0x5c
123 #define DMAC_WR_CNT		0x98
124 
125 #define SDMA_ADDR		0x60
126 
127 #define DMAM_CFG		0x64
128 #define DMAM_CFG_START		BIT(31)
129 #define DMAM_CFG_CONT		BIT(30)
130 #define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
131 #define DMAM_CFG_DIR_READ	BIT(1)
132 #define DMAM_CFG_EN		BIT(0)
133 
134 #define DMAM_CNT		0x68
135 
136 #define LNR_TIMER_TH		0x6c
137 
138 #define RDM_CFG0		0x78
139 #define RDM_CFG0_POLY(x)	(x)
140 
141 #define RDM_CFG1		0x7c
142 #define RDM_CFG1_RDM_EN		BIT(31)
143 #define RDM_CFG1_SEED(x)	(x)
144 
145 #define LWR_SUSP_CTRL		0x90
146 #define LWR_SUSP_CTRL_EN	BIT(31)
147 
148 #define DMAS_CTRL		0x9c
149 #define DMAS_CTRL_EN		BIT(31)
150 #define DMAS_CTRL_DIR_READ	BIT(30)
151 
152 #define DATA_STROB		0xa0
153 #define DATA_STROB_EDO_EN	BIT(2)
154 #define DATA_STROB_INV_POL	BIT(1)
155 #define DATA_STROB_DELAY_2CYC	BIT(0)
156 
157 #define IDLY_CODE(x)		(0xa4 + ((x) * 4))
158 #define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
159 
160 #define GPIO			0xc4
161 #define GPIO_PT(x)		BIT(3 + ((x) * 16))
162 #define GPIO_RESET(x)		BIT(2 + ((x) * 16))
163 #define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
164 #define GPIO_WPB(x)		BIT((x) * 16)
165 
166 #define HC_VER			0xd0
167 
168 #define HW_TEST(x)		(0xe0 + ((x) * 4))
169 
170 #define MXIC_NFC_MAX_CLK_HZ	50000000
171 #define IRQ_TIMEOUT		1000
172 
173 struct mxic_nand_ctlr {
174 	struct clk *ps_clk;
175 	struct clk *send_clk;
176 	struct clk *send_dly_clk;
177 	struct completion complete;
178 	void __iomem *regs;
179 	struct nand_controller controller;
180 	struct device *dev;
181 	struct nand_chip chip;
182 };
183 
184 static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
185 {
186 	int ret;
187 
188 	ret = clk_prepare_enable(nfc->ps_clk);
189 	if (ret)
190 		return ret;
191 
192 	ret = clk_prepare_enable(nfc->send_clk);
193 	if (ret)
194 		goto err_ps_clk;
195 
196 	ret = clk_prepare_enable(nfc->send_dly_clk);
197 	if (ret)
198 		goto err_send_dly_clk;
199 
200 	return ret;
201 
202 err_send_dly_clk:
203 	clk_disable_unprepare(nfc->send_clk);
204 err_ps_clk:
205 	clk_disable_unprepare(nfc->ps_clk);
206 
207 	return ret;
208 }
209 
210 static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
211 {
212 	clk_disable_unprepare(nfc->send_clk);
213 	clk_disable_unprepare(nfc->send_dly_clk);
214 	clk_disable_unprepare(nfc->ps_clk);
215 }
216 
217 static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
218 {
219 	writel(IDLY_CODE_VAL(0, idly_code) |
220 	       IDLY_CODE_VAL(1, idly_code) |
221 	       IDLY_CODE_VAL(2, idly_code) |
222 	       IDLY_CODE_VAL(3, idly_code),
223 	       nfc->regs + IDLY_CODE(0));
224 	writel(IDLY_CODE_VAL(4, idly_code) |
225 	       IDLY_CODE_VAL(5, idly_code) |
226 	       IDLY_CODE_VAL(6, idly_code) |
227 	       IDLY_CODE_VAL(7, idly_code),
228 	       nfc->regs + IDLY_CODE(1));
229 }
230 
231 static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
232 {
233 	int ret;
234 
235 	ret = clk_set_rate(nfc->send_clk, freq);
236 	if (ret)
237 		return ret;
238 
239 	ret = clk_set_rate(nfc->send_dly_clk, freq);
240 	if (ret)
241 		return ret;
242 
243 	/*
244 	 * A constant delay range from 0x0 ~ 0x1F for input delay,
245 	 * the unit is 78 ps, the max input delay is 2.418 ns.
246 	 */
247 	mxic_nfc_set_input_delay(nfc, 0xf);
248 
249 	/*
250 	 * Phase degree = 360 * freq * output-delay
251 	 * where output-delay is a constant value 1 ns in FPGA.
252 	 *
253 	 * Get Phase degree = 360 * freq * 1 ns
254 	 *                  = 360 * freq * 1 sec / 1000000000
255 	 *                  = 9 * freq / 25000000
256 	 */
257 	ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
258 	if (ret)
259 		return ret;
260 
261 	return 0;
262 }
263 
264 static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
265 {
266 	int ret;
267 
268 	if (freq > MXIC_NFC_MAX_CLK_HZ)
269 		freq = MXIC_NFC_MAX_CLK_HZ;
270 
271 	mxic_nfc_clk_disable(nfc);
272 	ret = mxic_nfc_clk_setup(nfc, freq);
273 	if (ret)
274 		return ret;
275 
276 	ret = mxic_nfc_clk_enable(nfc);
277 	if (ret)
278 		return ret;
279 
280 	return 0;
281 }
282 
283 static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
284 {
285 	struct mxic_nand_ctlr *nfc = dev_id;
286 	u32 sts;
287 
288 	sts = readl(nfc->regs + INT_STS);
289 	if (sts & INT_RDY_PIN)
290 		complete(&nfc->complete);
291 	else
292 		return IRQ_NONE;
293 
294 	return IRQ_HANDLED;
295 }
296 
297 static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
298 {
299 	writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
300 	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
301 	       HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
302 	writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
303 	writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
304 	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
305 	writel(0, nfc->regs + LRD_CFG);
306 	writel(0, nfc->regs + LRD_CTRL);
307 	writel(0x0, nfc->regs + HC_EN);
308 }
309 
310 static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
311 {
312 	writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
313 	       nfc->regs + HC_CFG);
314 	writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
315 	       nfc->regs + HC_CFG);
316 }
317 
318 static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
319 {
320 	writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
321 	       nfc->regs + HC_CFG);
322 }
323 
324 static int  mxic_nfc_wait_ready(struct nand_chip *chip)
325 {
326 	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
327 	int ret;
328 
329 	ret = wait_for_completion_timeout(&nfc->complete,
330 					  msecs_to_jiffies(IRQ_TIMEOUT));
331 	if (!ret) {
332 		dev_err(nfc->dev, "nand device timeout\n");
333 		return -ETIMEDOUT;
334 	}
335 
336 	return 0;
337 }
338 
339 static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
340 			      void *rxbuf, unsigned int len)
341 {
342 	unsigned int pos = 0;
343 
344 	while (pos < len) {
345 		unsigned int nbytes = len - pos;
346 		u32 data = 0xffffffff;
347 		u32 sts;
348 		int ret;
349 
350 		if (nbytes > 4)
351 			nbytes = 4;
352 
353 		if (txbuf)
354 			memcpy(&data, txbuf + pos, nbytes);
355 
356 		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
357 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
358 		if (ret)
359 			return ret;
360 
361 		writel(data, nfc->regs + TXD(nbytes % 4));
362 
363 		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
364 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
365 		if (ret)
366 			return ret;
367 
368 		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
369 					 sts & INT_RX_NOT_EMPTY, 0,
370 					 USEC_PER_SEC);
371 		if (ret)
372 			return ret;
373 
374 		data = readl(nfc->regs + RXD);
375 		if (rxbuf) {
376 			data >>= (8 * (4 - nbytes));
377 			memcpy(rxbuf + pos, &data, nbytes);
378 		}
379 		if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
380 			dev_warn(nfc->dev, "RX FIFO not empty\n");
381 
382 		pos += nbytes;
383 	}
384 
385 	return 0;
386 }
387 
388 static int mxic_nfc_exec_op(struct nand_chip *chip,
389 			    const struct nand_operation *op, bool check_only)
390 {
391 	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
392 	const struct nand_op_instr *instr = NULL;
393 	int ret = 0;
394 	unsigned int op_id;
395 
396 	mxic_nfc_cs_enable(nfc);
397 	init_completion(&nfc->complete);
398 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
399 		instr = &op->instrs[op_id];
400 
401 		switch (instr->type) {
402 		case NAND_OP_CMD_INSTR:
403 			writel(0, nfc->regs + HC_EN);
404 			writel(HC_EN_BIT, nfc->regs + HC_EN);
405 			writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) |
406 			       OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
407 
408 			ret = mxic_nfc_data_xfer(nfc,
409 						 &instr->ctx.cmd.opcode,
410 						 NULL, 1);
411 			break;
412 
413 		case NAND_OP_ADDR_INSTR:
414 			writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
415 			       OP_ADDR_BYTES(instr->ctx.addr.naddrs),
416 			       nfc->regs + SS_CTRL(0));
417 			ret = mxic_nfc_data_xfer(nfc,
418 						 instr->ctx.addr.addrs, NULL,
419 						 instr->ctx.addr.naddrs);
420 			break;
421 
422 		case NAND_OP_DATA_IN_INSTR:
423 			writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
424 			writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
425 			       OP_READ, nfc->regs + SS_CTRL(0));
426 			ret = mxic_nfc_data_xfer(nfc, NULL,
427 						 instr->ctx.data.buf.in,
428 						 instr->ctx.data.len);
429 			break;
430 
431 		case NAND_OP_DATA_OUT_INSTR:
432 			writel(instr->ctx.data.len,
433 			       nfc->regs + ONFI_DIN_CNT(0));
434 			writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
435 			       nfc->regs + SS_CTRL(0));
436 			ret = mxic_nfc_data_xfer(nfc,
437 						 instr->ctx.data.buf.out, NULL,
438 						 instr->ctx.data.len);
439 			break;
440 
441 		case NAND_OP_WAITRDY_INSTR:
442 			ret = mxic_nfc_wait_ready(chip);
443 			break;
444 		}
445 	}
446 	mxic_nfc_cs_disable(nfc);
447 
448 	return ret;
449 }
450 
451 static int mxic_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
452 					 const struct nand_data_interface *conf)
453 {
454 	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
455 	const struct nand_sdr_timings *sdr;
456 	unsigned long freq;
457 	int ret;
458 
459 	sdr = nand_get_sdr_timings(conf);
460 	if (IS_ERR(sdr))
461 		return PTR_ERR(sdr);
462 
463 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
464 		return 0;
465 
466 	freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
467 
468 	ret =  mxic_nfc_set_freq(nfc, freq);
469 	if (ret)
470 		dev_err(nfc->dev, "set freq:%ld failed\n", freq);
471 
472 	if (sdr->tRC_min < 30000)
473 		writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
474 
475 	return 0;
476 }
477 
478 static const struct nand_controller_ops mxic_nand_controller_ops = {
479 	.exec_op = mxic_nfc_exec_op,
480 	.setup_data_interface = mxic_nfc_setup_data_interface,
481 };
482 
483 static int mxic_nfc_probe(struct platform_device *pdev)
484 {
485 	struct device_node *nand_np, *np = pdev->dev.of_node;
486 	struct mtd_info *mtd;
487 	struct mxic_nand_ctlr *nfc;
488 	struct nand_chip *nand_chip;
489 	int err;
490 	int irq;
491 
492 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
493 			   GFP_KERNEL);
494 	if (!nfc)
495 		return -ENOMEM;
496 
497 	nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
498 	if (IS_ERR(nfc->ps_clk))
499 		return PTR_ERR(nfc->ps_clk);
500 
501 	nfc->send_clk = devm_clk_get(&pdev->dev, "send");
502 	if (IS_ERR(nfc->send_clk))
503 		return PTR_ERR(nfc->send_clk);
504 
505 	nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
506 	if (IS_ERR(nfc->send_dly_clk))
507 		return PTR_ERR(nfc->send_dly_clk);
508 
509 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
510 	if (IS_ERR(nfc->regs))
511 		return PTR_ERR(nfc->regs);
512 
513 	nand_chip = &nfc->chip;
514 	mtd = nand_to_mtd(nand_chip);
515 	mtd->dev.parent = &pdev->dev;
516 
517 	for_each_child_of_node(np, nand_np)
518 		nand_set_flash_node(nand_chip, nand_np);
519 
520 	nand_chip->priv = nfc;
521 	nfc->dev = &pdev->dev;
522 	nfc->controller.ops = &mxic_nand_controller_ops;
523 	nand_controller_init(&nfc->controller);
524 	nand_chip->controller = &nfc->controller;
525 
526 	irq = platform_get_irq(pdev, 0);
527 	if (irq < 0)
528 		return irq;
529 
530 	mxic_nfc_hw_init(nfc);
531 
532 	err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
533 			       0, "mxic-nfc", nfc);
534 	if (err)
535 		goto fail;
536 
537 	err = nand_scan(nand_chip, 1);
538 	if (err)
539 		goto fail;
540 
541 	err = mtd_device_register(mtd, NULL, 0);
542 	if (err)
543 		goto fail;
544 
545 	platform_set_drvdata(pdev, nfc);
546 	return 0;
547 
548 fail:
549 	mxic_nfc_clk_disable(nfc);
550 	return err;
551 }
552 
553 static int mxic_nfc_remove(struct platform_device *pdev)
554 {
555 	struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
556 
557 	nand_release(&nfc->chip);
558 	mxic_nfc_clk_disable(nfc);
559 	return 0;
560 }
561 
562 static const struct of_device_id mxic_nfc_of_ids[] = {
563 	{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
564 	{},
565 };
566 MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
567 
568 static struct platform_driver mxic_nfc_driver = {
569 	.probe = mxic_nfc_probe,
570 	.remove = mxic_nfc_remove,
571 	.driver = {
572 		.name = "mxic-nfc",
573 		.of_match_table = mxic_nfc_of_ids,
574 	},
575 };
576 module_platform_driver(mxic_nfc_driver);
577 
578 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
579 MODULE_DESCRIPTION("Macronix raw NAND controller driver");
580 MODULE_LICENSE("GPL v2");
581