xref: /linux/drivers/mtd/nand/raw/mxc_nand.c (revision ed30aef3c864f99111e16d4ea5cf29488d99a278)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_data/mtd-mxc_nand.h>
25 
26 #define DRIVER_NAME "mxc_nand"
27 
28 /* Addresses for NFC registers */
29 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
30 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
31 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
32 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
33 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
34 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
35 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
36 #define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
37 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
38 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
39 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
40 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
41 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
42 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
43 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
44 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
45 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
46 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
47 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
48 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
49 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
50 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
51 
52 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
53 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
54 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
55 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
56 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
57 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
58 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
59 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
60 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
61 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
62 
63 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
64 
65 /*
66  * Operation modes for the NFC. Valid for v1, v2 and v3
67  * type controllers.
68  */
69 #define NFC_CMD				(1 << 0)
70 #define NFC_ADDR			(1 << 1)
71 #define NFC_INPUT			(1 << 2)
72 #define NFC_OUTPUT			(1 << 3)
73 #define NFC_ID				(1 << 4)
74 #define NFC_STATUS			(1 << 5)
75 
76 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
77 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
78 
79 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
80 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
81 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
82 
83 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
84 
85 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
86 
87 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
88 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
89 #define NFC_V3_WRPROT_LOCK		(1 << 1)
90 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
91 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
92 
93 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
94 
95 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
96 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
97 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
98 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
99 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
100 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
101 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
102 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
103 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
104 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
105 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
106 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
107 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
108 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
109 
110 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
111 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
112 #define NFC_V3_CONFIG3_FW8			(1 << 3)
113 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
114 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
115 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
116 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
117 
118 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
119 #define NFC_V3_IPC_CREQ			(1 << 0)
120 #define NFC_V3_IPC_INT			(1 << 31)
121 
122 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
123 
124 struct mxc_nand_host;
125 
126 struct mxc_nand_devtype_data {
127 	void (*preset)(struct mtd_info *);
128 	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
129 			 int page);
130 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
131 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
132 	void (*send_page)(struct mtd_info *, unsigned int);
133 	void (*send_read_id)(struct mxc_nand_host *);
134 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
135 	int (*check_int)(struct mxc_nand_host *);
136 	void (*irq_control)(struct mxc_nand_host *, int);
137 	u32 (*get_ecc_status)(struct mxc_nand_host *);
138 	const struct mtd_ooblayout_ops *ooblayout;
139 	void (*select_chip)(struct nand_chip *chip, int cs);
140 	int (*setup_interface)(struct nand_chip *chip, int csline,
141 			       const struct nand_interface_config *conf);
142 	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
143 
144 	/*
145 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
146 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
147 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
148 	 */
149 	int irqpending_quirk;
150 	int needs_ip;
151 
152 	size_t regs_offset;
153 	size_t spare0_offset;
154 	size_t axi_offset;
155 
156 	int spare_len;
157 	int eccbytes;
158 	int eccsize;
159 	int ppb_shift;
160 };
161 
162 struct mxc_nand_host {
163 	struct nand_chip	nand;
164 	struct device		*dev;
165 
166 	void __iomem		*spare0;
167 	void __iomem		*main_area0;
168 
169 	void __iomem		*base;
170 	void __iomem		*regs;
171 	void __iomem		*regs_axi;
172 	void __iomem		*regs_ip;
173 	int			status_request;
174 	struct clk		*clk;
175 	int			clk_act;
176 	int			irq;
177 	int			eccsize;
178 	int			used_oobsize;
179 	int			active_cs;
180 
181 	struct completion	op_completion;
182 
183 	uint8_t			*data_buf;
184 	unsigned int		buf_start;
185 
186 	const struct mxc_nand_devtype_data *devtype_data;
187 	struct mxc_nand_platform_data pdata;
188 };
189 
190 static const char * const part_probes[] = {
191 	"cmdlinepart", "RedBoot", "ofpart", NULL };
192 
193 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
194 {
195 	int i;
196 	u32 *t = trg;
197 	const __iomem u32 *s = src;
198 
199 	for (i = 0; i < (size >> 2); i++)
200 		*t++ = __raw_readl(s++);
201 }
202 
203 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
204 {
205 	int i;
206 	u16 *t = trg;
207 	const __iomem u16 *s = src;
208 
209 	/* We assume that src (IO) is always 32bit aligned */
210 	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
211 		memcpy32_fromio(trg, src, size);
212 		return;
213 	}
214 
215 	for (i = 0; i < (size >> 1); i++)
216 		*t++ = __raw_readw(s++);
217 }
218 
219 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
220 {
221 	/* __iowrite32_copy use 32bit size values so divide by 4 */
222 	__iowrite32_copy(trg, src, size / 4);
223 }
224 
225 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
226 {
227 	int i;
228 	__iomem u16 *t = trg;
229 	const u16 *s = src;
230 
231 	/* We assume that trg (IO) is always 32bit aligned */
232 	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
233 		memcpy32_toio(trg, src, size);
234 		return;
235 	}
236 
237 	for (i = 0; i < (size >> 1); i++)
238 		__raw_writew(*s++, t++);
239 }
240 
241 /*
242  * The controller splits a page into data chunks of 512 bytes + partial oob.
243  * There are writesize / 512 such chunks, the size of the partial oob parts is
244  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
245  * contains additionally the byte lost by rounding (if any).
246  * This function handles the needed shuffling between host->data_buf (which
247  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
248  * spare) and the NFC buffer.
249  */
250 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
251 {
252 	struct nand_chip *this = mtd_to_nand(mtd);
253 	struct mxc_nand_host *host = nand_get_controller_data(this);
254 	u16 i, oob_chunk_size;
255 	u16 num_chunks = mtd->writesize / 512;
256 
257 	u8 *d = buf;
258 	u8 __iomem *s = host->spare0;
259 	u16 sparebuf_size = host->devtype_data->spare_len;
260 
261 	/* size of oob chunk for all but possibly the last one */
262 	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
263 
264 	if (bfrom) {
265 		for (i = 0; i < num_chunks - 1; i++)
266 			memcpy16_fromio(d + i * oob_chunk_size,
267 					s + i * sparebuf_size,
268 					oob_chunk_size);
269 
270 		/* the last chunk */
271 		memcpy16_fromio(d + i * oob_chunk_size,
272 				s + i * sparebuf_size,
273 				host->used_oobsize - i * oob_chunk_size);
274 	} else {
275 		for (i = 0; i < num_chunks - 1; i++)
276 			memcpy16_toio(&s[i * sparebuf_size],
277 				      &d[i * oob_chunk_size],
278 				      oob_chunk_size);
279 
280 		/* the last chunk */
281 		memcpy16_toio(&s[i * sparebuf_size],
282 			      &d[i * oob_chunk_size],
283 			      host->used_oobsize - i * oob_chunk_size);
284 	}
285 }
286 
287 /*
288  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
289  * the upper layers perform a read/write buf operation, the saved column address
290  * is used to index into the full page. So usually this function is called with
291  * column == 0 (unless no column cycle is needed indicated by column == -1)
292  */
293 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
294 {
295 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
296 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
297 
298 	/* Write out column address, if necessary */
299 	if (column != -1) {
300 		host->devtype_data->send_addr(host, column & 0xff,
301 					      page_addr == -1);
302 		if (mtd->writesize > 512)
303 			/* another col addr cycle for 2k page */
304 			host->devtype_data->send_addr(host,
305 						      (column >> 8) & 0xff,
306 						      false);
307 	}
308 
309 	/* Write out page address, if necessary */
310 	if (page_addr != -1) {
311 		/* paddr_0 - p_addr_7 */
312 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
313 
314 		if (mtd->writesize > 512) {
315 			if (mtd->size >= 0x10000000) {
316 				/* paddr_8 - paddr_15 */
317 				host->devtype_data->send_addr(host,
318 						(page_addr >> 8) & 0xff,
319 						false);
320 				host->devtype_data->send_addr(host,
321 						(page_addr >> 16) & 0xff,
322 						true);
323 			} else
324 				/* paddr_8 - paddr_15 */
325 				host->devtype_data->send_addr(host,
326 						(page_addr >> 8) & 0xff, true);
327 		} else {
328 			if (nand_chip->options & NAND_ROW_ADDR_3) {
329 				/* paddr_8 - paddr_15 */
330 				host->devtype_data->send_addr(host,
331 						(page_addr >> 8) & 0xff,
332 						false);
333 				host->devtype_data->send_addr(host,
334 						(page_addr >> 16) & 0xff,
335 						true);
336 			} else
337 				/* paddr_8 - paddr_15 */
338 				host->devtype_data->send_addr(host,
339 						(page_addr >> 8) & 0xff, true);
340 		}
341 	}
342 }
343 
344 static int check_int_v3(struct mxc_nand_host *host)
345 {
346 	uint32_t tmp;
347 
348 	tmp = readl(NFC_V3_IPC);
349 	if (!(tmp & NFC_V3_IPC_INT))
350 		return 0;
351 
352 	tmp &= ~NFC_V3_IPC_INT;
353 	writel(tmp, NFC_V3_IPC);
354 
355 	return 1;
356 }
357 
358 static int check_int_v1_v2(struct mxc_nand_host *host)
359 {
360 	uint32_t tmp;
361 
362 	tmp = readw(NFC_V1_V2_CONFIG2);
363 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
364 		return 0;
365 
366 	if (!host->devtype_data->irqpending_quirk)
367 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
368 
369 	return 1;
370 }
371 
372 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
373 {
374 	uint16_t tmp;
375 
376 	tmp = readw(NFC_V1_V2_CONFIG1);
377 
378 	if (activate)
379 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
380 	else
381 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
382 
383 	writew(tmp, NFC_V1_V2_CONFIG1);
384 }
385 
386 static void irq_control_v3(struct mxc_nand_host *host, int activate)
387 {
388 	uint32_t tmp;
389 
390 	tmp = readl(NFC_V3_CONFIG2);
391 
392 	if (activate)
393 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
394 	else
395 		tmp |= NFC_V3_CONFIG2_INT_MSK;
396 
397 	writel(tmp, NFC_V3_CONFIG2);
398 }
399 
400 static void irq_control(struct mxc_nand_host *host, int activate)
401 {
402 	if (host->devtype_data->irqpending_quirk) {
403 		if (activate)
404 			enable_irq(host->irq);
405 		else
406 			disable_irq_nosync(host->irq);
407 	} else {
408 		host->devtype_data->irq_control(host, activate);
409 	}
410 }
411 
412 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
413 {
414 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
415 }
416 
417 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
418 {
419 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
420 }
421 
422 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
423 {
424 	return readl(NFC_V3_ECC_STATUS_RESULT);
425 }
426 
427 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
428 {
429 	struct mxc_nand_host *host = dev_id;
430 
431 	if (!host->devtype_data->check_int(host))
432 		return IRQ_NONE;
433 
434 	irq_control(host, 0);
435 
436 	complete(&host->op_completion);
437 
438 	return IRQ_HANDLED;
439 }
440 
441 /* This function polls the NANDFC to wait for the basic operation to
442  * complete by checking the INT bit of config2 register.
443  */
444 static int wait_op_done(struct mxc_nand_host *host, int useirq)
445 {
446 	int ret = 0;
447 
448 	/*
449 	 * If operation is already complete, don't bother to setup an irq or a
450 	 * loop.
451 	 */
452 	if (host->devtype_data->check_int(host))
453 		return 0;
454 
455 	if (useirq) {
456 		unsigned long timeout;
457 
458 		reinit_completion(&host->op_completion);
459 
460 		irq_control(host, 1);
461 
462 		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
463 		if (!timeout && !host->devtype_data->check_int(host)) {
464 			dev_dbg(host->dev, "timeout waiting for irq\n");
465 			ret = -ETIMEDOUT;
466 		}
467 	} else {
468 		int max_retries = 8000;
469 		int done;
470 
471 		do {
472 			udelay(1);
473 
474 			done = host->devtype_data->check_int(host);
475 			if (done)
476 				break;
477 
478 		} while (--max_retries);
479 
480 		if (!done) {
481 			dev_dbg(host->dev, "timeout polling for completion\n");
482 			ret = -ETIMEDOUT;
483 		}
484 	}
485 
486 	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
487 
488 	return ret;
489 }
490 
491 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
492 {
493 	/* fill command */
494 	writel(cmd, NFC_V3_FLASH_CMD);
495 
496 	/* send out command */
497 	writel(NFC_CMD, NFC_V3_LAUNCH);
498 
499 	/* Wait for operation to complete */
500 	wait_op_done(host, useirq);
501 }
502 
503 /* This function issues the specified command to the NAND device and
504  * waits for completion. */
505 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
506 {
507 	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
508 
509 	writew(cmd, NFC_V1_V2_FLASH_CMD);
510 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
511 
512 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
513 		int max_retries = 100;
514 		/* Reset completion is indicated by NFC_CONFIG2 */
515 		/* being set to 0 */
516 		while (max_retries-- > 0) {
517 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
518 				break;
519 			}
520 			udelay(1);
521 		}
522 		if (max_retries < 0)
523 			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
524 	} else {
525 		/* Wait for operation to complete */
526 		wait_op_done(host, useirq);
527 	}
528 }
529 
530 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
531 {
532 	/* fill address */
533 	writel(addr, NFC_V3_FLASH_ADDR0);
534 
535 	/* send out address */
536 	writel(NFC_ADDR, NFC_V3_LAUNCH);
537 
538 	wait_op_done(host, 0);
539 }
540 
541 /* This function sends an address (or partial address) to the
542  * NAND device. The address is used to select the source/destination for
543  * a NAND command. */
544 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
545 {
546 	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
547 
548 	writew(addr, NFC_V1_V2_FLASH_ADDR);
549 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
550 
551 	/* Wait for operation to complete */
552 	wait_op_done(host, islast);
553 }
554 
555 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
556 {
557 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
558 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
559 	uint32_t tmp;
560 
561 	tmp = readl(NFC_V3_CONFIG1);
562 	tmp &= ~(7 << 4);
563 	writel(tmp, NFC_V3_CONFIG1);
564 
565 	/* transfer data from NFC ram to nand */
566 	writel(ops, NFC_V3_LAUNCH);
567 
568 	wait_op_done(host, false);
569 }
570 
571 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
572 {
573 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
574 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
575 
576 	/* NANDFC buffer 0 is used for page read/write */
577 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
578 
579 	writew(ops, NFC_V1_V2_CONFIG2);
580 
581 	/* Wait for operation to complete */
582 	wait_op_done(host, true);
583 }
584 
585 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
586 {
587 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
588 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
589 	int bufs, i;
590 
591 	if (mtd->writesize > 512)
592 		bufs = 4;
593 	else
594 		bufs = 1;
595 
596 	for (i = 0; i < bufs; i++) {
597 
598 		/* NANDFC buffer 0 is used for page read/write */
599 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
600 
601 		writew(ops, NFC_V1_V2_CONFIG2);
602 
603 		/* Wait for operation to complete */
604 		wait_op_done(host, true);
605 	}
606 }
607 
608 static void send_read_id_v3(struct mxc_nand_host *host)
609 {
610 	/* Read ID into main buffer */
611 	writel(NFC_ID, NFC_V3_LAUNCH);
612 
613 	wait_op_done(host, true);
614 
615 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
616 }
617 
618 /* Request the NANDFC to perform a read of the NAND device ID. */
619 static void send_read_id_v1_v2(struct mxc_nand_host *host)
620 {
621 	/* NANDFC buffer 0 is used for device ID output */
622 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
623 
624 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
625 
626 	/* Wait for operation to complete */
627 	wait_op_done(host, true);
628 
629 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
630 }
631 
632 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
633 {
634 	writew(NFC_STATUS, NFC_V3_LAUNCH);
635 	wait_op_done(host, true);
636 
637 	return readl(NFC_V3_CONFIG1) >> 16;
638 }
639 
640 /* This function requests the NANDFC to perform a read of the
641  * NAND device status and returns the current status. */
642 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
643 {
644 	void __iomem *main_buf = host->main_area0;
645 	uint32_t store;
646 	uint16_t ret;
647 
648 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
649 
650 	/*
651 	 * The device status is stored in main_area0. To
652 	 * prevent corruption of the buffer save the value
653 	 * and restore it afterwards.
654 	 */
655 	store = readl(main_buf);
656 
657 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
658 	wait_op_done(host, true);
659 
660 	ret = readw(main_buf);
661 
662 	writel(store, main_buf);
663 
664 	return ret;
665 }
666 
667 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
668 {
669 	struct mxc_nand_host *host = nand_get_controller_data(chip);
670 	uint16_t config1;
671 
672 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
673 		return;
674 
675 	config1 = readw(NFC_V1_V2_CONFIG1);
676 
677 	if (enable)
678 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
679 	else
680 		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
681 
682 	writew(config1, NFC_V1_V2_CONFIG1);
683 }
684 
685 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
686 {
687 	struct mxc_nand_host *host = nand_get_controller_data(chip);
688 	uint32_t config2;
689 
690 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
691 		return;
692 
693 	config2 = readl(NFC_V3_CONFIG2);
694 
695 	if (enable)
696 		config2 |= NFC_V3_CONFIG2_ECC_EN;
697 	else
698 		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
699 
700 	writel(config2, NFC_V3_CONFIG2);
701 }
702 
703 /* This functions is used by upper layer to checks if device is ready */
704 static int mxc_nand_dev_ready(struct nand_chip *chip)
705 {
706 	/*
707 	 * NFC handles R/B internally. Therefore, this function
708 	 * always returns status as ready.
709 	 */
710 	return 1;
711 }
712 
713 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
714 				 bool ecc, int page)
715 {
716 	struct mtd_info *mtd = nand_to_mtd(chip);
717 	struct mxc_nand_host *host = nand_get_controller_data(chip);
718 	unsigned int bitflips_corrected = 0;
719 	int no_subpages;
720 	int i;
721 
722 	host->devtype_data->enable_hwecc(chip, ecc);
723 
724 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
725 	mxc_do_addr_cycle(mtd, 0, page);
726 
727 	if (mtd->writesize > 512)
728 		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
729 
730 	no_subpages = mtd->writesize >> 9;
731 
732 	for (i = 0; i < no_subpages; i++) {
733 		uint16_t ecc_stats;
734 
735 		/* NANDFC buffer 0 is used for page read/write */
736 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
737 
738 		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
739 
740 		/* Wait for operation to complete */
741 		wait_op_done(host, true);
742 
743 		ecc_stats = get_ecc_status_v1(host);
744 
745 		ecc_stats >>= 2;
746 
747 		if (buf && ecc) {
748 			switch (ecc_stats & 0x3) {
749 			case 0:
750 			default:
751 				break;
752 			case 1:
753 				mtd->ecc_stats.corrected++;
754 				bitflips_corrected = 1;
755 				break;
756 			case 2:
757 				mtd->ecc_stats.failed++;
758 				break;
759 			}
760 		}
761 	}
762 
763 	if (buf)
764 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
765 	if (oob)
766 		copy_spare(mtd, true, oob);
767 
768 	return bitflips_corrected;
769 }
770 
771 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
772 				    void *oob, bool ecc, int page)
773 {
774 	struct mtd_info *mtd = nand_to_mtd(chip);
775 	struct mxc_nand_host *host = nand_get_controller_data(chip);
776 	unsigned int max_bitflips = 0;
777 	u32 ecc_stat, err;
778 	int no_subpages;
779 	u8 ecc_bit_mask, err_limit;
780 
781 	host->devtype_data->enable_hwecc(chip, ecc);
782 
783 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
784 	mxc_do_addr_cycle(mtd, 0, page);
785 
786 	if (mtd->writesize > 512)
787 		host->devtype_data->send_cmd(host,
788 				NAND_CMD_READSTART, true);
789 
790 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
791 
792 	if (buf)
793 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
794 	if (oob)
795 		copy_spare(mtd, true, oob);
796 
797 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
798 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
799 
800 	no_subpages = mtd->writesize >> 9;
801 
802 	ecc_stat = host->devtype_data->get_ecc_status(host);
803 
804 	do {
805 		err = ecc_stat & ecc_bit_mask;
806 		if (err > err_limit) {
807 			mtd->ecc_stats.failed++;
808 		} else {
809 			mtd->ecc_stats.corrected += err;
810 			max_bitflips = max_t(unsigned int, max_bitflips, err);
811 		}
812 
813 		ecc_stat >>= 4;
814 	} while (--no_subpages);
815 
816 	return max_bitflips;
817 }
818 
819 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
820 			      int oob_required, int page)
821 {
822 	struct mxc_nand_host *host = nand_get_controller_data(chip);
823 	void *oob_buf;
824 
825 	if (oob_required)
826 		oob_buf = chip->oob_poi;
827 	else
828 		oob_buf = NULL;
829 
830 	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
831 }
832 
833 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
834 				  int oob_required, int page)
835 {
836 	struct mxc_nand_host *host = nand_get_controller_data(chip);
837 	void *oob_buf;
838 
839 	if (oob_required)
840 		oob_buf = chip->oob_poi;
841 	else
842 		oob_buf = NULL;
843 
844 	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
845 }
846 
847 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
848 {
849 	struct mxc_nand_host *host = nand_get_controller_data(chip);
850 
851 	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
852 					     page);
853 }
854 
855 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
856 			       bool ecc, int page)
857 {
858 	struct mtd_info *mtd = nand_to_mtd(chip);
859 	struct mxc_nand_host *host = nand_get_controller_data(chip);
860 
861 	host->devtype_data->enable_hwecc(chip, ecc);
862 
863 	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
864 	mxc_do_addr_cycle(mtd, 0, page);
865 
866 	memcpy32_toio(host->main_area0, buf, mtd->writesize);
867 	copy_spare(mtd, false, chip->oob_poi);
868 
869 	host->devtype_data->send_page(mtd, NFC_INPUT);
870 	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
871 	mxc_do_addr_cycle(mtd, 0, page);
872 
873 	return 0;
874 }
875 
876 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
877 				   int oob_required, int page)
878 {
879 	return mxc_nand_write_page(chip, buf, true, page);
880 }
881 
882 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
883 				   int oob_required, int page)
884 {
885 	return mxc_nand_write_page(chip, buf, false, page);
886 }
887 
888 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
889 {
890 	struct mtd_info *mtd = nand_to_mtd(chip);
891 	struct mxc_nand_host *host = nand_get_controller_data(chip);
892 
893 	memset(host->data_buf, 0xff, mtd->writesize);
894 
895 	return mxc_nand_write_page(chip, host->data_buf, false, page);
896 }
897 
898 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
899 {
900 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
901 	uint8_t ret;
902 
903 	/* Check for status request */
904 	if (host->status_request)
905 		return host->devtype_data->get_dev_status(host) & 0xFF;
906 
907 	if (nand_chip->options & NAND_BUSWIDTH_16) {
908 		/* only take the lower byte of each word */
909 		ret = *(uint16_t *)(host->data_buf + host->buf_start);
910 
911 		host->buf_start += 2;
912 	} else {
913 		ret = *(uint8_t *)(host->data_buf + host->buf_start);
914 		host->buf_start++;
915 	}
916 
917 	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
918 	return ret;
919 }
920 
921 /* Write data of length len to buffer buf. The data to be
922  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
923  * Operation by the NFC, the data is written to NAND Flash */
924 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
925 			       int len)
926 {
927 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
928 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
929 	u16 col = host->buf_start;
930 	int n = mtd->oobsize + mtd->writesize - col;
931 
932 	n = min(n, len);
933 
934 	memcpy(host->data_buf + col, buf, n);
935 
936 	host->buf_start += n;
937 }
938 
939 /* Read the data buffer from the NAND Flash. To read the data from NAND
940  * Flash first the data output cycle is initiated by the NFC, which copies
941  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
942  */
943 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
944 			      int len)
945 {
946 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
947 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
948 	u16 col = host->buf_start;
949 	int n = mtd->oobsize + mtd->writesize - col;
950 
951 	n = min(n, len);
952 
953 	memcpy(buf, host->data_buf + col, n);
954 
955 	host->buf_start += n;
956 }
957 
958 /* This function is used by upper layer for select and
959  * deselect of the NAND chip */
960 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
961 {
962 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
963 
964 	if (chip == -1) {
965 		/* Disable the NFC clock */
966 		if (host->clk_act) {
967 			clk_disable_unprepare(host->clk);
968 			host->clk_act = 0;
969 		}
970 		return;
971 	}
972 
973 	if (!host->clk_act) {
974 		/* Enable the NFC clock */
975 		clk_prepare_enable(host->clk);
976 		host->clk_act = 1;
977 	}
978 }
979 
980 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
981 {
982 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
983 
984 	if (chip == -1) {
985 		/* Disable the NFC clock */
986 		if (host->clk_act) {
987 			clk_disable_unprepare(host->clk);
988 			host->clk_act = 0;
989 		}
990 		return;
991 	}
992 
993 	if (!host->clk_act) {
994 		/* Enable the NFC clock */
995 		clk_prepare_enable(host->clk);
996 		host->clk_act = 1;
997 	}
998 
999 	host->active_cs = chip;
1000 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1001 }
1002 
1003 #define MXC_V1_ECCBYTES		5
1004 
1005 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1006 				struct mtd_oob_region *oobregion)
1007 {
1008 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1009 
1010 	if (section >= nand_chip->ecc.steps)
1011 		return -ERANGE;
1012 
1013 	oobregion->offset = (section * 16) + 6;
1014 	oobregion->length = MXC_V1_ECCBYTES;
1015 
1016 	return 0;
1017 }
1018 
1019 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1020 				 struct mtd_oob_region *oobregion)
1021 {
1022 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023 
1024 	if (section > nand_chip->ecc.steps)
1025 		return -ERANGE;
1026 
1027 	if (!section) {
1028 		if (mtd->writesize <= 512) {
1029 			oobregion->offset = 0;
1030 			oobregion->length = 5;
1031 		} else {
1032 			oobregion->offset = 2;
1033 			oobregion->length = 4;
1034 		}
1035 	} else {
1036 		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1037 		if (section < nand_chip->ecc.steps)
1038 			oobregion->length = (section * 16) + 6 -
1039 					    oobregion->offset;
1040 		else
1041 			oobregion->length = mtd->oobsize - oobregion->offset;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1048 	.ecc = mxc_v1_ooblayout_ecc,
1049 	.free = mxc_v1_ooblayout_free,
1050 };
1051 
1052 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1053 				struct mtd_oob_region *oobregion)
1054 {
1055 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1056 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1057 
1058 	if (section >= nand_chip->ecc.steps)
1059 		return -ERANGE;
1060 
1061 	oobregion->offset = (section * stepsize) + 7;
1062 	oobregion->length = nand_chip->ecc.bytes;
1063 
1064 	return 0;
1065 }
1066 
1067 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1068 				 struct mtd_oob_region *oobregion)
1069 {
1070 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1071 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1072 
1073 	if (section >= nand_chip->ecc.steps)
1074 		return -ERANGE;
1075 
1076 	if (!section) {
1077 		if (mtd->writesize <= 512) {
1078 			oobregion->offset = 0;
1079 			oobregion->length = 5;
1080 		} else {
1081 			oobregion->offset = 2;
1082 			oobregion->length = 4;
1083 		}
1084 	} else {
1085 		oobregion->offset = section * stepsize;
1086 		oobregion->length = 7;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1093 	.ecc = mxc_v2_ooblayout_ecc,
1094 	.free = mxc_v2_ooblayout_free,
1095 };
1096 
1097 /*
1098  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1099  * on how much oob the nand chip has. For 8bit ecc we need at least
1100  * 26 bytes of oob data per 512 byte block.
1101  */
1102 static int get_eccsize(struct mtd_info *mtd)
1103 {
1104 	int oobbytes_per_512 = 0;
1105 
1106 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1107 
1108 	if (oobbytes_per_512 < 26)
1109 		return 4;
1110 	else
1111 		return 8;
1112 }
1113 
1114 static void preset_v1(struct mtd_info *mtd)
1115 {
1116 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1117 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1118 	uint16_t config1 = 0;
1119 
1120 	if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1121 	    mtd->writesize)
1122 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1123 
1124 	if (!host->devtype_data->irqpending_quirk)
1125 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1126 
1127 	host->eccsize = 1;
1128 
1129 	writew(config1, NFC_V1_V2_CONFIG1);
1130 	/* preset operation */
1131 
1132 	/* Unlock the internal RAM Buffer */
1133 	writew(0x2, NFC_V1_V2_CONFIG);
1134 
1135 	/* Blocks to be unlocked */
1136 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1137 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1138 
1139 	/* Unlock Block Command for given address range */
1140 	writew(0x4, NFC_V1_V2_WRPROT);
1141 }
1142 
1143 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1144 				       const struct nand_interface_config *conf)
1145 {
1146 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1147 	int tRC_min_ns, tRC_ps, ret;
1148 	unsigned long rate, rate_round;
1149 	const struct nand_sdr_timings *timings;
1150 	u16 config1;
1151 
1152 	timings = nand_get_sdr_timings(conf);
1153 	if (IS_ERR(timings))
1154 		return -ENOTSUPP;
1155 
1156 	config1 = readw(NFC_V1_V2_CONFIG1);
1157 
1158 	tRC_min_ns = timings->tRC_min / 1000;
1159 	rate = 1000000000 / tRC_min_ns;
1160 
1161 	/*
1162 	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1163 	 * does one access per clock cycle. Otherwise the controller does one
1164 	 * access in two clock cycles, thus we have to double the rate to the
1165 	 * controller.
1166 	 */
1167 	if (tRC_min_ns < 30) {
1168 		rate_round = clk_round_rate(host->clk, rate);
1169 		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1170 		tRC_ps = 1000000000 / (rate_round / 1000);
1171 	} else {
1172 		rate *= 2;
1173 		rate_round = clk_round_rate(host->clk, rate);
1174 		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1175 		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1176 	}
1177 
1178 	/*
1179 	 * The timing values compared against are from the i.MX25 Automotive
1180 	 * datasheet, Table 50. NFC Timing Parameters
1181 	 */
1182 	if (timings->tCLS_min > tRC_ps - 1000 ||
1183 	    timings->tCLH_min > tRC_ps - 2000 ||
1184 	    timings->tCS_min > tRC_ps - 1000 ||
1185 	    timings->tCH_min > tRC_ps - 2000 ||
1186 	    timings->tWP_min > tRC_ps - 1500 ||
1187 	    timings->tALS_min > tRC_ps ||
1188 	    timings->tALH_min > tRC_ps - 3000 ||
1189 	    timings->tDS_min > tRC_ps ||
1190 	    timings->tDH_min > tRC_ps - 5000 ||
1191 	    timings->tWC_min > 2 * tRC_ps ||
1192 	    timings->tWH_min > tRC_ps - 2500 ||
1193 	    timings->tRR_min > 6 * tRC_ps ||
1194 	    timings->tRP_min > 3 * tRC_ps / 2 ||
1195 	    timings->tRC_min > 2 * tRC_ps ||
1196 	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1197 		dev_dbg(host->dev, "Timing out of bounds\n");
1198 		return -EINVAL;
1199 	}
1200 
1201 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1202 		return 0;
1203 
1204 	ret = clk_set_rate(host->clk, rate);
1205 	if (ret)
1206 		return ret;
1207 
1208 	writew(config1, NFC_V1_V2_CONFIG1);
1209 
1210 	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1211 		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1212 		"normal");
1213 
1214 	return 0;
1215 }
1216 
1217 static void preset_v2(struct mtd_info *mtd)
1218 {
1219 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1220 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1221 	uint16_t config1 = 0;
1222 
1223 	config1 |= NFC_V2_CONFIG1_FP_INT;
1224 
1225 	if (!host->devtype_data->irqpending_quirk)
1226 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1227 
1228 	if (mtd->writesize) {
1229 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1230 
1231 		if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1232 			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1233 
1234 		host->eccsize = get_eccsize(mtd);
1235 		if (host->eccsize == 4)
1236 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1237 
1238 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1239 	} else {
1240 		host->eccsize = 1;
1241 	}
1242 
1243 	writew(config1, NFC_V1_V2_CONFIG1);
1244 	/* preset operation */
1245 
1246 	/* spare area size in 16-bit half-words */
1247 	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1248 
1249 	/* Unlock the internal RAM Buffer */
1250 	writew(0x2, NFC_V1_V2_CONFIG);
1251 
1252 	/* Blocks to be unlocked */
1253 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1254 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1255 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1256 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1257 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1258 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1259 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1260 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1261 
1262 	/* Unlock Block Command for given address range */
1263 	writew(0x4, NFC_V1_V2_WRPROT);
1264 }
1265 
1266 static void preset_v3(struct mtd_info *mtd)
1267 {
1268 	struct nand_chip *chip = mtd_to_nand(mtd);
1269 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1270 	uint32_t config2, config3;
1271 	int i, addr_phases;
1272 
1273 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1274 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1275 
1276 	/* Unlock the internal RAM Buffer */
1277 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1278 			NFC_V3_WRPROT);
1279 
1280 	/* Blocks to be unlocked */
1281 	for (i = 0; i < NAND_MAX_CHIPS; i++)
1282 		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1283 
1284 	writel(0, NFC_V3_IPC);
1285 
1286 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1287 		NFC_V3_CONFIG2_2CMD_PHASES |
1288 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1289 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1290 		NFC_V3_CONFIG2_INT_MSK |
1291 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1292 
1293 	addr_phases = fls(chip->pagemask) >> 3;
1294 
1295 	if (mtd->writesize == 2048) {
1296 		config2 |= NFC_V3_CONFIG2_PS_2048;
1297 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298 	} else if (mtd->writesize == 4096) {
1299 		config2 |= NFC_V3_CONFIG2_PS_4096;
1300 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1301 	} else {
1302 		config2 |= NFC_V3_CONFIG2_PS_512;
1303 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1304 	}
1305 
1306 	if (mtd->writesize) {
1307 		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1308 			config2 |= NFC_V3_CONFIG2_ECC_EN;
1309 
1310 		config2 |= NFC_V3_CONFIG2_PPB(
1311 				ffs(mtd->erasesize / mtd->writesize) - 6,
1312 				host->devtype_data->ppb_shift);
1313 		host->eccsize = get_eccsize(mtd);
1314 		if (host->eccsize == 8)
1315 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1316 	}
1317 
1318 	writel(config2, NFC_V3_CONFIG2);
1319 
1320 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1321 			NFC_V3_CONFIG3_NO_SDMA |
1322 			NFC_V3_CONFIG3_RBB_MODE |
1323 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1324 			NFC_V3_CONFIG3_ADD_OP(0);
1325 
1326 	if (!(chip->options & NAND_BUSWIDTH_16))
1327 		config3 |= NFC_V3_CONFIG3_FW8;
1328 
1329 	writel(config3, NFC_V3_CONFIG3);
1330 
1331 	writel(0, NFC_V3_DELAY_LINE);
1332 }
1333 
1334 /* Used by the upper layer to write command to NAND Flash for
1335  * different operations to be carried out on NAND Flash */
1336 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1337 			     int column, int page_addr)
1338 {
1339 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
1340 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1341 
1342 	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1343 	      command, column, page_addr);
1344 
1345 	/* Reset command state information */
1346 	host->status_request = false;
1347 
1348 	/* Command pre-processing step */
1349 	switch (command) {
1350 	case NAND_CMD_RESET:
1351 		host->devtype_data->preset(mtd);
1352 		host->devtype_data->send_cmd(host, command, false);
1353 		break;
1354 
1355 	case NAND_CMD_STATUS:
1356 		host->buf_start = 0;
1357 		host->status_request = true;
1358 
1359 		host->devtype_data->send_cmd(host, command, true);
1360 		WARN_ONCE(column != -1 || page_addr != -1,
1361 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1362 			  command, column, page_addr);
1363 		mxc_do_addr_cycle(mtd, column, page_addr);
1364 		break;
1365 
1366 	case NAND_CMD_READID:
1367 		host->devtype_data->send_cmd(host, command, true);
1368 		mxc_do_addr_cycle(mtd, column, page_addr);
1369 		host->devtype_data->send_read_id(host);
1370 		host->buf_start = 0;
1371 		break;
1372 
1373 	case NAND_CMD_ERASE1:
1374 	case NAND_CMD_ERASE2:
1375 		host->devtype_data->send_cmd(host, command, false);
1376 		WARN_ONCE(column != -1,
1377 			  "Unexpected column value (cmd=%u, col=%d)\n",
1378 			  command, column);
1379 		mxc_do_addr_cycle(mtd, column, page_addr);
1380 
1381 		break;
1382 	case NAND_CMD_PARAM:
1383 		host->devtype_data->send_cmd(host, command, false);
1384 		mxc_do_addr_cycle(mtd, column, page_addr);
1385 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1386 		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1387 		host->buf_start = 0;
1388 		break;
1389 	default:
1390 		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1391 			  command);
1392 		break;
1393 	}
1394 }
1395 
1396 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1397 				 u8 *subfeature_param)
1398 {
1399 	struct mtd_info *mtd = nand_to_mtd(chip);
1400 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1401 	int i;
1402 
1403 	host->buf_start = 0;
1404 
1405 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1406 		chip->legacy.write_byte(chip, subfeature_param[i]);
1407 
1408 	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1409 	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1410 	mxc_do_addr_cycle(mtd, addr, -1);
1411 	host->devtype_data->send_page(mtd, NFC_INPUT);
1412 
1413 	return 0;
1414 }
1415 
1416 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1417 				 u8 *subfeature_param)
1418 {
1419 	struct mtd_info *mtd = nand_to_mtd(chip);
1420 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1421 	int i;
1422 
1423 	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1424 	mxc_do_addr_cycle(mtd, addr, -1);
1425 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1426 	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1427 	host->buf_start = 0;
1428 
1429 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1430 		*subfeature_param++ = chip->legacy.read_byte(chip);
1431 
1432 	return 0;
1433 }
1434 
1435 /*
1436  * The generic flash bbt descriptors overlap with our ecc
1437  * hardware, so define some i.MX specific ones.
1438  */
1439 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1440 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1441 
1442 static struct nand_bbt_descr bbt_main_descr = {
1443 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1444 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1445 	.offs = 0,
1446 	.len = 4,
1447 	.veroffs = 4,
1448 	.maxblocks = 4,
1449 	.pattern = bbt_pattern,
1450 };
1451 
1452 static struct nand_bbt_descr bbt_mirror_descr = {
1453 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1454 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1455 	.offs = 0,
1456 	.len = 4,
1457 	.veroffs = 4,
1458 	.maxblocks = 4,
1459 	.pattern = mirror_pattern,
1460 };
1461 
1462 /* v1 + irqpending_quirk: i.MX21 */
1463 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1464 	.preset = preset_v1,
1465 	.read_page = mxc_nand_read_page_v1,
1466 	.send_cmd = send_cmd_v1_v2,
1467 	.send_addr = send_addr_v1_v2,
1468 	.send_page = send_page_v1,
1469 	.send_read_id = send_read_id_v1_v2,
1470 	.get_dev_status = get_dev_status_v1_v2,
1471 	.check_int = check_int_v1_v2,
1472 	.irq_control = irq_control_v1_v2,
1473 	.get_ecc_status = get_ecc_status_v1,
1474 	.ooblayout = &mxc_v1_ooblayout_ops,
1475 	.select_chip = mxc_nand_select_chip_v1_v3,
1476 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1477 	.irqpending_quirk = 1,
1478 	.needs_ip = 0,
1479 	.regs_offset = 0xe00,
1480 	.spare0_offset = 0x800,
1481 	.spare_len = 16,
1482 	.eccbytes = 3,
1483 	.eccsize = 1,
1484 };
1485 
1486 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1487 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1488 	.preset = preset_v1,
1489 	.read_page = mxc_nand_read_page_v1,
1490 	.send_cmd = send_cmd_v1_v2,
1491 	.send_addr = send_addr_v1_v2,
1492 	.send_page = send_page_v1,
1493 	.send_read_id = send_read_id_v1_v2,
1494 	.get_dev_status = get_dev_status_v1_v2,
1495 	.check_int = check_int_v1_v2,
1496 	.irq_control = irq_control_v1_v2,
1497 	.get_ecc_status = get_ecc_status_v1,
1498 	.ooblayout = &mxc_v1_ooblayout_ops,
1499 	.select_chip = mxc_nand_select_chip_v1_v3,
1500 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1501 	.irqpending_quirk = 0,
1502 	.needs_ip = 0,
1503 	.regs_offset = 0xe00,
1504 	.spare0_offset = 0x800,
1505 	.axi_offset = 0,
1506 	.spare_len = 16,
1507 	.eccbytes = 3,
1508 	.eccsize = 1,
1509 };
1510 
1511 /* v21: i.MX25, i.MX35 */
1512 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1513 	.preset = preset_v2,
1514 	.read_page = mxc_nand_read_page_v2_v3,
1515 	.send_cmd = send_cmd_v1_v2,
1516 	.send_addr = send_addr_v1_v2,
1517 	.send_page = send_page_v2,
1518 	.send_read_id = send_read_id_v1_v2,
1519 	.get_dev_status = get_dev_status_v1_v2,
1520 	.check_int = check_int_v1_v2,
1521 	.irq_control = irq_control_v1_v2,
1522 	.get_ecc_status = get_ecc_status_v2,
1523 	.ooblayout = &mxc_v2_ooblayout_ops,
1524 	.select_chip = mxc_nand_select_chip_v2,
1525 	.setup_interface = mxc_nand_v2_setup_interface,
1526 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1527 	.irqpending_quirk = 0,
1528 	.needs_ip = 0,
1529 	.regs_offset = 0x1e00,
1530 	.spare0_offset = 0x1000,
1531 	.axi_offset = 0,
1532 	.spare_len = 64,
1533 	.eccbytes = 9,
1534 	.eccsize = 0,
1535 };
1536 
1537 /* v3.2a: i.MX51 */
1538 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1539 	.preset = preset_v3,
1540 	.read_page = mxc_nand_read_page_v2_v3,
1541 	.send_cmd = send_cmd_v3,
1542 	.send_addr = send_addr_v3,
1543 	.send_page = send_page_v3,
1544 	.send_read_id = send_read_id_v3,
1545 	.get_dev_status = get_dev_status_v3,
1546 	.check_int = check_int_v3,
1547 	.irq_control = irq_control_v3,
1548 	.get_ecc_status = get_ecc_status_v3,
1549 	.ooblayout = &mxc_v2_ooblayout_ops,
1550 	.select_chip = mxc_nand_select_chip_v1_v3,
1551 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1552 	.irqpending_quirk = 0,
1553 	.needs_ip = 1,
1554 	.regs_offset = 0,
1555 	.spare0_offset = 0x1000,
1556 	.axi_offset = 0x1e00,
1557 	.spare_len = 64,
1558 	.eccbytes = 0,
1559 	.eccsize = 0,
1560 	.ppb_shift = 7,
1561 };
1562 
1563 /* v3.2b: i.MX53 */
1564 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1565 	.preset = preset_v3,
1566 	.read_page = mxc_nand_read_page_v2_v3,
1567 	.send_cmd = send_cmd_v3,
1568 	.send_addr = send_addr_v3,
1569 	.send_page = send_page_v3,
1570 	.send_read_id = send_read_id_v3,
1571 	.get_dev_status = get_dev_status_v3,
1572 	.check_int = check_int_v3,
1573 	.irq_control = irq_control_v3,
1574 	.get_ecc_status = get_ecc_status_v3,
1575 	.ooblayout = &mxc_v2_ooblayout_ops,
1576 	.select_chip = mxc_nand_select_chip_v1_v3,
1577 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1578 	.irqpending_quirk = 0,
1579 	.needs_ip = 1,
1580 	.regs_offset = 0,
1581 	.spare0_offset = 0x1000,
1582 	.axi_offset = 0x1e00,
1583 	.spare_len = 64,
1584 	.eccbytes = 0,
1585 	.eccsize = 0,
1586 	.ppb_shift = 8,
1587 };
1588 
1589 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1590 {
1591 	return host->devtype_data == &imx21_nand_devtype_data;
1592 }
1593 
1594 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1595 {
1596 	return host->devtype_data == &imx27_nand_devtype_data;
1597 }
1598 
1599 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1600 {
1601 	return host->devtype_data == &imx25_nand_devtype_data;
1602 }
1603 
1604 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1605 {
1606 	return host->devtype_data == &imx51_nand_devtype_data;
1607 }
1608 
1609 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1610 {
1611 	return host->devtype_data == &imx53_nand_devtype_data;
1612 }
1613 
1614 static const struct platform_device_id mxcnd_devtype[] = {
1615 	{
1616 		.name = "imx21-nand",
1617 		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1618 	}, {
1619 		.name = "imx27-nand",
1620 		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1621 	}, {
1622 		.name = "imx25-nand",
1623 		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1624 	}, {
1625 		.name = "imx51-nand",
1626 		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1627 	}, {
1628 		.name = "imx53-nand",
1629 		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1630 	}, {
1631 		/* sentinel */
1632 	}
1633 };
1634 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1635 
1636 #ifdef CONFIG_OF
1637 static const struct of_device_id mxcnd_dt_ids[] = {
1638 	{
1639 		.compatible = "fsl,imx21-nand",
1640 		.data = &imx21_nand_devtype_data,
1641 	}, {
1642 		.compatible = "fsl,imx27-nand",
1643 		.data = &imx27_nand_devtype_data,
1644 	}, {
1645 		.compatible = "fsl,imx25-nand",
1646 		.data = &imx25_nand_devtype_data,
1647 	}, {
1648 		.compatible = "fsl,imx51-nand",
1649 		.data = &imx51_nand_devtype_data,
1650 	}, {
1651 		.compatible = "fsl,imx53-nand",
1652 		.data = &imx53_nand_devtype_data,
1653 	},
1654 	{ /* sentinel */ }
1655 };
1656 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1657 
1658 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1659 {
1660 	struct device_node *np = host->dev->of_node;
1661 	const struct of_device_id *of_id =
1662 		of_match_device(mxcnd_dt_ids, host->dev);
1663 
1664 	if (!np)
1665 		return 1;
1666 
1667 	host->devtype_data = of_id->data;
1668 
1669 	return 0;
1670 }
1671 #else
1672 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1673 {
1674 	return 1;
1675 }
1676 #endif
1677 
1678 static int mxcnd_attach_chip(struct nand_chip *chip)
1679 {
1680 	struct mtd_info *mtd = nand_to_mtd(chip);
1681 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1682 	struct device *dev = mtd->dev.parent;
1683 
1684 	chip->ecc.bytes = host->devtype_data->eccbytes;
1685 	host->eccsize = host->devtype_data->eccsize;
1686 	chip->ecc.size = 512;
1687 	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1688 
1689 	switch (chip->ecc.engine_type) {
1690 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1691 		chip->ecc.read_page = mxc_nand_read_page;
1692 		chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1693 		chip->ecc.read_oob = mxc_nand_read_oob;
1694 		chip->ecc.write_page = mxc_nand_write_page_ecc;
1695 		chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1696 		chip->ecc.write_oob = mxc_nand_write_oob;
1697 		break;
1698 
1699 	case NAND_ECC_ENGINE_TYPE_SOFT:
1700 		break;
1701 
1702 	default:
1703 		return -EINVAL;
1704 	}
1705 
1706 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1707 		chip->bbt_td = &bbt_main_descr;
1708 		chip->bbt_md = &bbt_mirror_descr;
1709 	}
1710 
1711 	/* Allocate the right size buffer now */
1712 	devm_kfree(dev, (void *)host->data_buf);
1713 	host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1714 				      GFP_KERNEL);
1715 	if (!host->data_buf)
1716 		return -ENOMEM;
1717 
1718 	/* Call preset again, with correct writesize chip time */
1719 	host->devtype_data->preset(mtd);
1720 
1721 	if (!chip->ecc.bytes) {
1722 		if (host->eccsize == 8)
1723 			chip->ecc.bytes = 18;
1724 		else if (host->eccsize == 4)
1725 			chip->ecc.bytes = 9;
1726 	}
1727 
1728 	/*
1729 	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1730 	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1731 	 * into copying invalid data to/from the spare IO buffer, as this
1732 	 * might cause ECC data corruption when doing sub-page write to a
1733 	 * partially written page.
1734 	 */
1735 	host->used_oobsize = min(mtd->oobsize, 218U);
1736 
1737 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1738 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1739 			chip->ecc.strength = 1;
1740 		else
1741 			chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1748 				 const struct nand_interface_config *conf)
1749 {
1750 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1751 
1752 	return host->devtype_data->setup_interface(chip, chipnr, conf);
1753 }
1754 
1755 static const struct nand_controller_ops mxcnd_controller_ops = {
1756 	.attach_chip = mxcnd_attach_chip,
1757 	.setup_interface = mxcnd_setup_interface,
1758 };
1759 
1760 static int mxcnd_probe(struct platform_device *pdev)
1761 {
1762 	struct nand_chip *this;
1763 	struct mtd_info *mtd;
1764 	struct mxc_nand_host *host;
1765 	struct resource *res;
1766 	int err = 0;
1767 
1768 	/* Allocate memory for MTD device structure and private data */
1769 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1770 			GFP_KERNEL);
1771 	if (!host)
1772 		return -ENOMEM;
1773 
1774 	/* allocate a temporary buffer for the nand_scan_ident() */
1775 	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1776 	if (!host->data_buf)
1777 		return -ENOMEM;
1778 
1779 	host->dev = &pdev->dev;
1780 	/* structures must be linked */
1781 	this = &host->nand;
1782 	mtd = nand_to_mtd(this);
1783 	mtd->dev.parent = &pdev->dev;
1784 	mtd->name = DRIVER_NAME;
1785 
1786 	/* 50 us command delay time */
1787 	this->legacy.chip_delay = 5;
1788 
1789 	nand_set_controller_data(this, host);
1790 	nand_set_flash_node(this, pdev->dev.of_node),
1791 	this->legacy.dev_ready = mxc_nand_dev_ready;
1792 	this->legacy.cmdfunc = mxc_nand_command;
1793 	this->legacy.read_byte = mxc_nand_read_byte;
1794 	this->legacy.write_buf = mxc_nand_write_buf;
1795 	this->legacy.read_buf = mxc_nand_read_buf;
1796 	this->legacy.set_features = mxc_nand_set_features;
1797 	this->legacy.get_features = mxc_nand_get_features;
1798 
1799 	host->clk = devm_clk_get(&pdev->dev, NULL);
1800 	if (IS_ERR(host->clk))
1801 		return PTR_ERR(host->clk);
1802 
1803 	err = mxcnd_probe_dt(host);
1804 	if (err > 0) {
1805 		struct mxc_nand_platform_data *pdata =
1806 					dev_get_platdata(&pdev->dev);
1807 		if (pdata) {
1808 			host->pdata = *pdata;
1809 			host->devtype_data = (struct mxc_nand_devtype_data *)
1810 						pdev->id_entry->driver_data;
1811 		} else {
1812 			err = -ENODEV;
1813 		}
1814 	}
1815 	if (err < 0)
1816 		return err;
1817 
1818 	if (!host->devtype_data->setup_interface)
1819 		this->options |= NAND_KEEP_TIMINGS;
1820 
1821 	if (host->devtype_data->needs_ip) {
1822 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1823 		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1824 		if (IS_ERR(host->regs_ip))
1825 			return PTR_ERR(host->regs_ip);
1826 
1827 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1828 	} else {
1829 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1830 	}
1831 
1832 	host->base = devm_ioremap_resource(&pdev->dev, res);
1833 	if (IS_ERR(host->base))
1834 		return PTR_ERR(host->base);
1835 
1836 	host->main_area0 = host->base;
1837 
1838 	if (host->devtype_data->regs_offset)
1839 		host->regs = host->base + host->devtype_data->regs_offset;
1840 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1841 	if (host->devtype_data->axi_offset)
1842 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1843 
1844 	this->legacy.select_chip = host->devtype_data->select_chip;
1845 
1846 	/* NAND bus width determines access functions used by upper layer */
1847 	if (host->pdata.width == 2)
1848 		this->options |= NAND_BUSWIDTH_16;
1849 
1850 	/* update flash based bbt */
1851 	if (host->pdata.flash_bbt)
1852 		this->bbt_options |= NAND_BBT_USE_FLASH;
1853 
1854 	init_completion(&host->op_completion);
1855 
1856 	host->irq = platform_get_irq(pdev, 0);
1857 	if (host->irq < 0)
1858 		return host->irq;
1859 
1860 	/*
1861 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1862 	 * because we must not disable_irq_nosync without having requested the
1863 	 * irq.
1864 	 */
1865 	host->devtype_data->irq_control(host, 0);
1866 
1867 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1868 			0, DRIVER_NAME, host);
1869 	if (err)
1870 		return err;
1871 
1872 	err = clk_prepare_enable(host->clk);
1873 	if (err)
1874 		return err;
1875 	host->clk_act = 1;
1876 
1877 	/*
1878 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1879 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1880 	 * on this machine.
1881 	 */
1882 	if (host->devtype_data->irqpending_quirk) {
1883 		disable_irq_nosync(host->irq);
1884 		host->devtype_data->irq_control(host, 1);
1885 	}
1886 
1887 	/* Scan the NAND device */
1888 	this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1889 	err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1890 	if (err)
1891 		goto escan;
1892 
1893 	/* Register the partitions */
1894 	err = mtd_device_parse_register(mtd, part_probes, NULL,
1895 					host->pdata.parts,
1896 					host->pdata.nr_parts);
1897 	if (err)
1898 		goto cleanup_nand;
1899 
1900 	platform_set_drvdata(pdev, host);
1901 
1902 	return 0;
1903 
1904 cleanup_nand:
1905 	nand_cleanup(this);
1906 escan:
1907 	if (host->clk_act)
1908 		clk_disable_unprepare(host->clk);
1909 
1910 	return err;
1911 }
1912 
1913 static int mxcnd_remove(struct platform_device *pdev)
1914 {
1915 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1916 	struct nand_chip *chip = &host->nand;
1917 	int ret;
1918 
1919 	ret = mtd_device_unregister(nand_to_mtd(chip));
1920 	WARN_ON(ret);
1921 	nand_cleanup(chip);
1922 	if (host->clk_act)
1923 		clk_disable_unprepare(host->clk);
1924 
1925 	return 0;
1926 }
1927 
1928 static struct platform_driver mxcnd_driver = {
1929 	.driver = {
1930 		   .name = DRIVER_NAME,
1931 		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1932 	},
1933 	.id_table = mxcnd_devtype,
1934 	.probe = mxcnd_probe,
1935 	.remove = mxcnd_remove,
1936 };
1937 module_platform_driver(mxcnd_driver);
1938 
1939 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1940 MODULE_DESCRIPTION("MXC NAND MTD driver");
1941 MODULE_LICENSE("GPL");
1942