xref: /linux/drivers/mtd/nand/raw/meson_nand.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3  * Amlogic Meson Nand Flash Controller Driver
4  *
5  * Copyright (c) 2018 Amlogic, inc.
6  * Author: Liang Yang <liang.yang@amlogic.com>
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/iopoll.h>
21 #include <linux/of.h>
22 #include <linux/sched/task_stack.h>
23 
24 #define NFC_REG_CMD		0x00
25 #define NFC_CMD_IDLE		(0xc << 14)
26 #define NFC_CMD_CLE		(0x5 << 14)
27 #define NFC_CMD_ALE		(0x6 << 14)
28 #define NFC_CMD_ADL		((0 << 16) | (3 << 20))
29 #define NFC_CMD_ADH		((1 << 16) | (3 << 20))
30 #define NFC_CMD_AIL		((2 << 16) | (3 << 20))
31 #define NFC_CMD_AIH		((3 << 16) | (3 << 20))
32 #define NFC_CMD_SEED		((8 << 16) | (3 << 20))
33 #define NFC_CMD_M2N		((0 << 17) | (2 << 20))
34 #define NFC_CMD_N2M		((1 << 17) | (2 << 20))
35 #define NFC_CMD_RB		BIT(20)
36 #define NFC_CMD_SCRAMBLER_ENABLE	BIT(19)
37 #define NFC_CMD_SCRAMBLER_DISABLE	0
38 #define NFC_CMD_SHORTMODE_DISABLE	0
39 #define NFC_CMD_RB_INT		BIT(14)
40 #define NFC_CMD_RB_INT_NO_PIN	((0xb << 10) | BIT(18) | BIT(16))
41 
42 #define NFC_CMD_GET_SIZE(x)	(((x) >> 22) & GENMASK(4, 0))
43 
44 #define NFC_REG_CFG		0x04
45 #define NFC_REG_DADR		0x08
46 #define NFC_REG_IADR		0x0c
47 #define NFC_REG_BUF		0x10
48 #define NFC_REG_INFO		0x14
49 #define NFC_REG_DC		0x18
50 #define NFC_REG_ADR		0x1c
51 #define NFC_REG_DL		0x20
52 #define NFC_REG_DH		0x24
53 #define NFC_REG_CADR		0x28
54 #define NFC_REG_SADR		0x2c
55 #define NFC_REG_PINS		0x30
56 #define NFC_REG_VER		0x38
57 
58 #define NFC_RB_IRQ_EN		BIT(21)
59 
60 #define CLK_DIV_SHIFT		0
61 #define CLK_DIV_WIDTH		6
62 
63 #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages)	\
64 	(								\
65 		(cmd_dir)			|			\
66 		(ran)				|			\
67 		((bch) << 14)			|			\
68 		((short_mode) << 13)		|			\
69 		(((page_size) & 0x7f) << 6)	|			\
70 		((pages) & 0x3f)					\
71 	)
72 
73 #define GENCMDDADDRL(adl, addr)		((adl) | ((addr) & 0xffff))
74 #define GENCMDDADDRH(adh, addr)		((adh) | (((addr) >> 16) & 0xffff))
75 #define GENCMDIADDRL(ail, addr)		((ail) | ((addr) & 0xffff))
76 #define GENCMDIADDRH(aih, addr)		((aih) | (((addr) >> 16) & 0xffff))
77 
78 #define DMA_DIR(dir)		((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
79 #define DMA_ADDR_ALIGN		8
80 
81 #define ECC_CHECK_RETURN_FF	(-1)
82 
83 #define NAND_CE0		(0xe << 10)
84 #define NAND_CE1		(0xd << 10)
85 
86 #define DMA_BUSY_TIMEOUT	0x100000
87 #define CMD_FIFO_EMPTY_TIMEOUT	1000
88 
89 #define MAX_CE_NUM		2
90 
91 /* eMMC clock register, misc control */
92 #define CLK_SELECT_NAND		BIT(31)
93 #define CLK_ALWAYS_ON_NAND	BIT(24)
94 #define CLK_SELECT_FIX_PLL2	BIT(6)
95 
96 #define NFC_CLK_CYCLE		6
97 
98 /* nand flash controller delay 3 ns */
99 #define NFC_DEFAULT_DELAY	3000
100 
101 #define ROW_ADDER(page, index)	(((page) >> (8 * (index))) & 0xff)
102 #define MAX_CYCLE_ADDRS		5
103 #define DIRREAD			1
104 #define DIRWRITE		0
105 
106 #define ECC_PARITY_BCH8_512B	14
107 #define ECC_COMPLETE            BIT(31)
108 #define ECC_ERR_CNT(x)		(((x) >> 24) & GENMASK(5, 0))
109 #define ECC_ZERO_CNT(x)		(((x) >> 16) & GENMASK(5, 0))
110 #define ECC_UNCORRECTABLE	0x3f
111 
112 #define PER_INFO_BYTE		8
113 
114 #define NFC_CMD_RAW_LEN	GENMASK(13, 0)
115 
116 #define NFC_COLUMN_ADDR_0	0
117 #define NFC_COLUMN_ADDR_1	0
118 
119 struct meson_nfc_nand_chip {
120 	struct list_head node;
121 	struct nand_chip nand;
122 	unsigned long clk_rate;
123 	unsigned long level1_divider;
124 	u32 bus_timing;
125 	u32 twb;
126 	u32 tadl;
127 	u32 tbers_max;
128 
129 	u32 bch_mode;
130 	u8 *data_buf;
131 	__le64 *info_buf;
132 	u32 nsels;
133 	u8 sels[] __counted_by(nsels);
134 };
135 
136 struct meson_nand_ecc {
137 	u32 bch;
138 	u32 strength;
139 	u32 size;
140 };
141 
142 struct meson_nfc_data {
143 	const struct nand_ecc_caps *ecc_caps;
144 };
145 
146 struct meson_nfc_param {
147 	u32 chip_select;
148 	u32 rb_select;
149 };
150 
151 struct nand_rw_cmd {
152 	u32 cmd0;
153 	u32 addrs[MAX_CYCLE_ADDRS];
154 	u32 cmd1;
155 };
156 
157 struct nand_timing {
158 	u32 twb;
159 	u32 tadl;
160 	u32 tbers_max;
161 };
162 
163 struct meson_nfc {
164 	struct nand_controller controller;
165 	struct clk *core_clk;
166 	struct clk *device_clk;
167 	struct clk *nand_clk;
168 	struct clk_divider nand_divider;
169 
170 	unsigned long clk_rate;
171 	u32 bus_timing;
172 
173 	struct device *dev;
174 	void __iomem *reg_base;
175 	void __iomem *reg_clk;
176 	struct completion completion;
177 	struct list_head chips;
178 	const struct meson_nfc_data *data;
179 	struct meson_nfc_param param;
180 	struct nand_timing timing;
181 	union {
182 		int cmd[32];
183 		struct nand_rw_cmd rw;
184 	} cmdfifo;
185 
186 	dma_addr_t daddr;
187 	dma_addr_t iaddr;
188 	u32 info_bytes;
189 
190 	unsigned long assigned_cs;
191 	bool no_rb_pin;
192 };
193 
194 enum {
195 	NFC_ECC_BCH8_512	= 1,
196 	NFC_ECC_BCH8_1K,
197 	NFC_ECC_BCH24_1K,
198 	NFC_ECC_BCH30_1K,
199 	NFC_ECC_BCH40_1K,
200 	NFC_ECC_BCH50_1K,
201 	NFC_ECC_BCH60_1K,
202 };
203 
204 #define MESON_ECC_DATA(b, s, sz)	{ .bch = (b), .strength = (s), .size = (sz) }
205 
206 static struct meson_nand_ecc meson_ecc[] = {
207 	MESON_ECC_DATA(NFC_ECC_BCH8_512, 8,  512),
208 	MESON_ECC_DATA(NFC_ECC_BCH8_1K,  8,  1024),
209 	MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24, 1024),
210 	MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30, 1024),
211 	MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40, 1024),
212 	MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50, 1024),
213 	MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60, 1024),
214 };
215 
216 static int meson_nand_calc_ecc_bytes(int step_size, int strength)
217 {
218 	int ecc_bytes;
219 
220 	if (step_size == 512 && strength == 8)
221 		return ECC_PARITY_BCH8_512B;
222 
223 	ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
224 	ecc_bytes = ALIGN(ecc_bytes, 2);
225 
226 	return ecc_bytes;
227 }
228 
229 NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps,
230 		     meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
231 
232 static const int axg_stepinfo_strengths[] = { 8 };
233 
234 static const struct nand_ecc_step_info axg_stepinfo[] = {
235 	{
236 		.stepsize = 1024,
237 		.strengths = axg_stepinfo_strengths,
238 		.nstrengths = ARRAY_SIZE(axg_stepinfo_strengths)
239 	},
240 	{
241 		.stepsize = 512,
242 		.strengths = axg_stepinfo_strengths,
243 		.nstrengths = ARRAY_SIZE(axg_stepinfo_strengths)
244 	},
245 };
246 
247 static const struct nand_ecc_caps meson_axg_ecc_caps = {
248 	.stepinfos = axg_stepinfo,
249 	.nstepinfos = ARRAY_SIZE(axg_stepinfo),
250 	.calc_ecc_bytes = meson_nand_calc_ecc_bytes,
251 };
252 
253 static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
254 {
255 	return container_of(nand, struct meson_nfc_nand_chip, nand);
256 }
257 
258 static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
259 {
260 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
261 	struct meson_nfc *nfc = nand_get_controller_data(nand);
262 	int ret, value;
263 
264 	if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
265 		return;
266 
267 	nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
268 	nfc->param.rb_select = nfc->param.chip_select;
269 	nfc->timing.twb = meson_chip->twb;
270 	nfc->timing.tadl = meson_chip->tadl;
271 	nfc->timing.tbers_max = meson_chip->tbers_max;
272 
273 	if (nfc->clk_rate != meson_chip->clk_rate) {
274 		ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate);
275 		if (ret) {
276 			dev_err(nfc->dev, "failed to set clock rate\n");
277 			return;
278 		}
279 		nfc->clk_rate = meson_chip->clk_rate;
280 	}
281 	if (nfc->bus_timing != meson_chip->bus_timing) {
282 		value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
283 		writel(value, nfc->reg_base + NFC_REG_CFG);
284 		writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
285 		nfc->bus_timing =  meson_chip->bus_timing;
286 	}
287 }
288 
289 static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
290 {
291 	writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
292 	       nfc->reg_base + NFC_REG_CMD);
293 }
294 
295 static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
296 {
297 	writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
298 	       nfc->reg_base + NFC_REG_CMD);
299 }
300 
301 static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
302 				 int scrambler)
303 {
304 	struct mtd_info *mtd = nand_to_mtd(nand);
305 	struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
306 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
307 	u32 bch = meson_chip->bch_mode, cmd;
308 	int len = mtd->writesize, pagesize, pages;
309 
310 	pagesize = nand->ecc.size;
311 
312 	if (raw) {
313 		len = mtd->writesize + mtd->oobsize;
314 		cmd = len | scrambler | DMA_DIR(dir);
315 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
316 		return;
317 	}
318 
319 	pages = len / nand->ecc.size;
320 
321 	cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
322 		       NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
323 
324 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
325 }
326 
327 static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
328 {
329 	/*
330 	 * Insert two commands to make sure all valid commands are finished.
331 	 *
332 	 * The Nand flash controller is designed as two stages pipleline -
333 	 *  a) fetch and b) excute.
334 	 * There might be cases when the driver see command queue is empty,
335 	 * but the Nand flash controller still has two commands buffered,
336 	 * one is fetched into NFC request queue (ready to run), and another
337 	 * is actively executing. So pushing 2 "IDLE" commands guarantees that
338 	 * the pipeline is emptied.
339 	 */
340 	meson_nfc_cmd_idle(nfc, 0);
341 	meson_nfc_cmd_idle(nfc, 0);
342 }
343 
344 static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
345 				     unsigned int timeout_ms)
346 {
347 	u32 cmd_size = 0;
348 	int ret;
349 
350 	/* wait cmd fifo is empty */
351 	ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
352 					 !NFC_CMD_GET_SIZE(cmd_size),
353 					 10, timeout_ms * 1000);
354 	if (ret)
355 		dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
356 
357 	return ret;
358 }
359 
360 static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
361 {
362 	meson_nfc_drain_cmd(nfc);
363 
364 	return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
365 }
366 
367 static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
368 {
369 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
370 	int len;
371 
372 	len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
373 
374 	return meson_chip->data_buf + len;
375 }
376 
377 static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
378 {
379 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
380 	int len, temp;
381 
382 	temp = nand->ecc.size + nand->ecc.bytes;
383 	len = (temp + 2) * i;
384 
385 	return meson_chip->data_buf + len;
386 }
387 
388 static void meson_nfc_get_data_oob(struct nand_chip *nand,
389 				   u8 *buf, u8 *oobbuf)
390 {
391 	int i, oob_len = 0;
392 	u8 *dsrc, *osrc;
393 
394 	oob_len = nand->ecc.bytes + 2;
395 	for (i = 0; i < nand->ecc.steps; i++) {
396 		if (buf) {
397 			dsrc = meson_nfc_data_ptr(nand, i);
398 			memcpy(buf, dsrc, nand->ecc.size);
399 			buf += nand->ecc.size;
400 		}
401 		osrc = meson_nfc_oob_ptr(nand, i);
402 		memcpy(oobbuf, osrc, oob_len);
403 		oobbuf += oob_len;
404 	}
405 }
406 
407 static void meson_nfc_set_data_oob(struct nand_chip *nand,
408 				   const u8 *buf, u8 *oobbuf)
409 {
410 	int i, oob_len = 0;
411 	u8 *dsrc, *osrc;
412 
413 	oob_len = nand->ecc.bytes + 2;
414 	for (i = 0; i < nand->ecc.steps; i++) {
415 		if (buf) {
416 			dsrc = meson_nfc_data_ptr(nand, i);
417 			memcpy(dsrc, buf, nand->ecc.size);
418 			buf += nand->ecc.size;
419 		}
420 		osrc = meson_nfc_oob_ptr(nand, i);
421 		memcpy(osrc, oobbuf, oob_len);
422 		oobbuf += oob_len;
423 	}
424 }
425 
426 static int meson_nfc_wait_no_rb_pin(struct nand_chip *nand, int timeout_ms,
427 				    bool need_cmd_read0)
428 {
429 	struct meson_nfc *nfc = nand_get_controller_data(nand);
430 	u32 cmd, cfg;
431 
432 	meson_nfc_cmd_idle(nfc, nfc->timing.twb);
433 	meson_nfc_drain_cmd(nfc);
434 	meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
435 
436 	cfg = readl(nfc->reg_base + NFC_REG_CFG);
437 	cfg |= NFC_RB_IRQ_EN;
438 	writel(cfg, nfc->reg_base + NFC_REG_CFG);
439 
440 	reinit_completion(&nfc->completion);
441 	nand_status_op(nand, NULL);
442 
443 	/* use the max erase time as the maximum clock for waiting R/B */
444 	cmd = NFC_CMD_RB | NFC_CMD_RB_INT_NO_PIN | nfc->timing.tbers_max;
445 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
446 
447 	if (!wait_for_completion_timeout(&nfc->completion,
448 					 msecs_to_jiffies(timeout_ms)))
449 		return -ETIMEDOUT;
450 
451 	if (need_cmd_read0)
452 		nand_exit_status_op(nand);
453 
454 	return 0;
455 }
456 
457 static int meson_nfc_wait_rb_pin(struct meson_nfc *nfc, int timeout_ms)
458 {
459 	u32 cmd, cfg;
460 	int ret = 0;
461 
462 	meson_nfc_cmd_idle(nfc, nfc->timing.twb);
463 	meson_nfc_drain_cmd(nfc);
464 	meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
465 
466 	cfg = readl(nfc->reg_base + NFC_REG_CFG);
467 	cfg |= NFC_RB_IRQ_EN;
468 	writel(cfg, nfc->reg_base + NFC_REG_CFG);
469 
470 	reinit_completion(&nfc->completion);
471 
472 	/* use the max erase time as the maximum clock for waiting R/B */
473 	cmd = NFC_CMD_RB | NFC_CMD_RB_INT
474 		| nfc->param.chip_select | nfc->timing.tbers_max;
475 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
476 
477 	ret = wait_for_completion_timeout(&nfc->completion,
478 					  msecs_to_jiffies(timeout_ms));
479 	if (ret == 0)
480 		ret = -1;
481 
482 	return ret;
483 }
484 
485 static int meson_nfc_queue_rb(struct nand_chip *nand, int timeout_ms,
486 			      bool need_cmd_read0)
487 {
488 	struct meson_nfc *nfc = nand_get_controller_data(nand);
489 
490 	if (nfc->no_rb_pin) {
491 		/* This mode is used when there is no wired R/B pin.
492 		 * It works like 'nand_soft_waitrdy()', but instead of
493 		 * polling NAND_CMD_STATUS bit in the software loop,
494 		 * it will wait for interrupt - controllers checks IO
495 		 * bus and when it detects NAND_CMD_STATUS on it, it
496 		 * raises interrupt. After interrupt, NAND_CMD_READ0 is
497 		 * sent as terminator of the ready waiting procedure if
498 		 * needed (for all cases except page programming - this
499 		 * is reason of 'need_cmd_read0' flag).
500 		 */
501 		return meson_nfc_wait_no_rb_pin(nand, timeout_ms,
502 						need_cmd_read0);
503 	} else {
504 		return meson_nfc_wait_rb_pin(nfc, timeout_ms);
505 	}
506 }
507 
508 static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
509 {
510 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
511 	__le64 *info;
512 	int i, count;
513 
514 	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) {
515 		info = &meson_chip->info_buf[i];
516 		*info |= oob_buf[count];
517 		*info |= oob_buf[count + 1] << 8;
518 	}
519 }
520 
521 static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
522 {
523 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
524 	__le64 *info;
525 	int i, count;
526 
527 	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) {
528 		info = &meson_chip->info_buf[i];
529 		oob_buf[count] = *info;
530 		oob_buf[count + 1] = *info >> 8;
531 	}
532 }
533 
534 static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
535 				 u64 *correct_bitmap)
536 {
537 	struct mtd_info *mtd = nand_to_mtd(nand);
538 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
539 	__le64 *info;
540 	int ret = 0, i;
541 
542 	for (i = 0; i < nand->ecc.steps; i++) {
543 		info = &meson_chip->info_buf[i];
544 		if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
545 			mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
546 			*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
547 			*correct_bitmap |= BIT_ULL(i);
548 			continue;
549 		}
550 		if ((nand->options & NAND_NEED_SCRAMBLING) &&
551 		    ECC_ZERO_CNT(*info) < nand->ecc.strength) {
552 			mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
553 			*bitflips = max_t(u32, *bitflips,
554 					  ECC_ZERO_CNT(*info));
555 			ret = ECC_CHECK_RETURN_FF;
556 		} else {
557 			ret = -EBADMSG;
558 		}
559 	}
560 	return ret;
561 }
562 
563 static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
564 				      int datalen, void *infobuf, int infolen,
565 				      enum dma_data_direction dir)
566 {
567 	struct meson_nfc *nfc = nand_get_controller_data(nand);
568 	u32 cmd;
569 	int ret = 0;
570 
571 	nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir);
572 	ret = dma_mapping_error(nfc->dev, nfc->daddr);
573 	if (ret) {
574 		dev_err(nfc->dev, "DMA mapping error\n");
575 		return ret;
576 	}
577 	cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
578 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
579 
580 	cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
581 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
582 
583 	if (infobuf) {
584 		nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
585 		ret = dma_mapping_error(nfc->dev, nfc->iaddr);
586 		if (ret) {
587 			dev_err(nfc->dev, "DMA mapping error\n");
588 			dma_unmap_single(nfc->dev,
589 					 nfc->daddr, datalen, dir);
590 			return ret;
591 		}
592 		nfc->info_bytes = infolen;
593 		cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
594 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
595 
596 		cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
597 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
598 	}
599 
600 	return ret;
601 }
602 
603 static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
604 					 int datalen, int infolen,
605 					 enum dma_data_direction dir)
606 {
607 	struct meson_nfc *nfc = nand_get_controller_data(nand);
608 
609 	dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
610 	if (infolen) {
611 		dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
612 		nfc->info_bytes = 0;
613 	}
614 }
615 
616 static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
617 {
618 	struct meson_nfc *nfc = nand_get_controller_data(nand);
619 	int ret = 0;
620 	u32 cmd;
621 	u8 *info;
622 
623 	info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
624 	if (!info)
625 		return -ENOMEM;
626 
627 	ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
628 					 PER_INFO_BYTE, DMA_FROM_DEVICE);
629 	if (ret)
630 		goto out;
631 
632 	cmd = NFC_CMD_N2M | len;
633 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
634 
635 	meson_nfc_drain_cmd(nfc);
636 	meson_nfc_wait_cmd_finish(nfc, 1000);
637 	meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
638 
639 out:
640 	kfree(info);
641 
642 	return ret;
643 }
644 
645 static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
646 {
647 	struct meson_nfc *nfc = nand_get_controller_data(nand);
648 	int ret = 0;
649 	u32 cmd;
650 
651 	ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
652 					 0, DMA_TO_DEVICE);
653 	if (ret)
654 		return ret;
655 
656 	cmd = NFC_CMD_M2N | len;
657 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
658 
659 	meson_nfc_drain_cmd(nfc);
660 	meson_nfc_wait_cmd_finish(nfc, 1000);
661 	meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
662 
663 	return ret;
664 }
665 
666 static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
667 						int page, bool in)
668 {
669 	const struct nand_sdr_timings *sdr =
670 		nand_get_sdr_timings(nand_get_interface_config(nand));
671 	struct mtd_info *mtd = nand_to_mtd(nand);
672 	struct meson_nfc *nfc = nand_get_controller_data(nand);
673 	u32 *addrs = nfc->cmdfifo.rw.addrs;
674 	u32 cs = nfc->param.chip_select;
675 	u32 cmd0, cmd_num, row_start;
676 	int i;
677 
678 	cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
679 
680 	cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
681 	nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
682 
683 	addrs[0] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_0;
684 	if (mtd->writesize <= 512) {
685 		cmd_num--;
686 		row_start = 1;
687 	} else {
688 		addrs[1] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_1;
689 		row_start = 2;
690 	}
691 
692 	addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
693 	addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
694 
695 	if (nand->options & NAND_ROW_ADDR_3)
696 		addrs[row_start + 2] =
697 			cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
698 	else
699 		cmd_num--;
700 
701 	/* subtract cmd1 */
702 	cmd_num--;
703 
704 	for (i = 0; i < cmd_num; i++)
705 		writel_relaxed(nfc->cmdfifo.cmd[i],
706 			       nfc->reg_base + NFC_REG_CMD);
707 
708 	if (in) {
709 		nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
710 		writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
711 		meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tR_max), true);
712 	} else {
713 		meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
714 	}
715 
716 	return 0;
717 }
718 
719 static int meson_nfc_write_page_sub(struct nand_chip *nand,
720 				    int page, int raw)
721 {
722 	const struct nand_sdr_timings *sdr =
723 		nand_get_sdr_timings(nand_get_interface_config(nand));
724 	struct mtd_info *mtd = nand_to_mtd(nand);
725 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
726 	struct meson_nfc *nfc = nand_get_controller_data(nand);
727 	int data_len, info_len;
728 	u32 cmd;
729 	int ret;
730 
731 	meson_nfc_select_chip(nand, nand->cur_cs);
732 
733 	data_len =  mtd->writesize + mtd->oobsize;
734 	info_len = nand->ecc.steps * PER_INFO_BYTE;
735 
736 	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
737 	if (ret)
738 		return ret;
739 
740 	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
741 					 data_len, meson_chip->info_buf,
742 					 info_len, DMA_TO_DEVICE);
743 	if (ret)
744 		return ret;
745 
746 	if (nand->options & NAND_NEED_SCRAMBLING) {
747 		meson_nfc_cmd_seed(nfc, page);
748 		meson_nfc_cmd_access(nand, raw, DIRWRITE,
749 				     NFC_CMD_SCRAMBLER_ENABLE);
750 	} else {
751 		meson_nfc_cmd_access(nand, raw, DIRWRITE,
752 				     NFC_CMD_SCRAMBLER_DISABLE);
753 	}
754 
755 	cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
756 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
757 	meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tPROG_max), false);
758 
759 	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
760 
761 	return ret;
762 }
763 
764 static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
765 				    int oob_required, int page)
766 {
767 	u8 *oob_buf = nand->oob_poi;
768 
769 	meson_nfc_set_data_oob(nand, buf, oob_buf);
770 
771 	return meson_nfc_write_page_sub(nand, page, 1);
772 }
773 
774 static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
775 				      const u8 *buf, int oob_required, int page)
776 {
777 	struct mtd_info *mtd = nand_to_mtd(nand);
778 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
779 	u8 *oob_buf = nand->oob_poi;
780 
781 	memcpy(meson_chip->data_buf, buf, mtd->writesize);
782 	memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
783 	meson_nfc_set_user_byte(nand, oob_buf);
784 
785 	return meson_nfc_write_page_sub(nand, page, 0);
786 }
787 
788 static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
789 					    struct nand_chip *nand, int raw)
790 {
791 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
792 	__le64 *info;
793 	u32 neccpages;
794 	int ret;
795 
796 	neccpages = raw ? 1 : nand->ecc.steps;
797 	info = &meson_chip->info_buf[neccpages - 1];
798 	do {
799 		usleep_range(10, 15);
800 		/* info is updated by nfc dma engine*/
801 		smp_rmb();
802 		dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes,
803 					DMA_FROM_DEVICE);
804 		ret = *info & ECC_COMPLETE;
805 	} while (!ret);
806 }
807 
808 static int meson_nfc_read_page_sub(struct nand_chip *nand,
809 				   int page, int raw)
810 {
811 	struct mtd_info *mtd = nand_to_mtd(nand);
812 	struct meson_nfc *nfc = nand_get_controller_data(nand);
813 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
814 	int data_len, info_len;
815 	int ret;
816 
817 	meson_nfc_select_chip(nand, nand->cur_cs);
818 
819 	data_len =  mtd->writesize + mtd->oobsize;
820 	info_len = nand->ecc.steps * PER_INFO_BYTE;
821 
822 	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
823 	if (ret)
824 		return ret;
825 
826 	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
827 					 data_len, meson_chip->info_buf,
828 					 info_len, DMA_FROM_DEVICE);
829 	if (ret)
830 		return ret;
831 
832 	if (nand->options & NAND_NEED_SCRAMBLING) {
833 		meson_nfc_cmd_seed(nfc, page);
834 		meson_nfc_cmd_access(nand, raw, DIRREAD,
835 				     NFC_CMD_SCRAMBLER_ENABLE);
836 	} else {
837 		meson_nfc_cmd_access(nand, raw, DIRREAD,
838 				     NFC_CMD_SCRAMBLER_DISABLE);
839 	}
840 
841 	ret = meson_nfc_wait_dma_finish(nfc);
842 	meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
843 
844 	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
845 
846 	return ret;
847 }
848 
849 static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
850 				   int oob_required, int page)
851 {
852 	u8 *oob_buf = nand->oob_poi;
853 	int ret;
854 
855 	ret = meson_nfc_read_page_sub(nand, page, 1);
856 	if (ret)
857 		return ret;
858 
859 	meson_nfc_get_data_oob(nand, buf, oob_buf);
860 
861 	return 0;
862 }
863 
864 static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
865 				     int oob_required, int page)
866 {
867 	struct mtd_info *mtd = nand_to_mtd(nand);
868 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
869 	struct nand_ecc_ctrl *ecc = &nand->ecc;
870 	u64 correct_bitmap = 0;
871 	u32 bitflips = 0;
872 	u8 *oob_buf = nand->oob_poi;
873 	int ret, i;
874 
875 	ret = meson_nfc_read_page_sub(nand, page, 0);
876 	if (ret)
877 		return ret;
878 
879 	meson_nfc_get_user_byte(nand, oob_buf);
880 	ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
881 	if (ret == ECC_CHECK_RETURN_FF) {
882 		if (buf)
883 			memset(buf, 0xff, mtd->writesize);
884 		memset(oob_buf, 0xff, mtd->oobsize);
885 	} else if (ret < 0) {
886 		if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
887 			mtd->ecc_stats.failed++;
888 			return bitflips;
889 		}
890 		ret  = meson_nfc_read_page_raw(nand, buf, 0, page);
891 		if (ret)
892 			return ret;
893 
894 		for (i = 0; i < nand->ecc.steps ; i++) {
895 			u8 *data = buf + i * ecc->size;
896 			u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
897 
898 			if (correct_bitmap & BIT_ULL(i))
899 				continue;
900 			ret = nand_check_erased_ecc_chunk(data,	ecc->size,
901 							  oob, ecc->bytes + 2,
902 							  NULL, 0,
903 							  ecc->strength);
904 			if (ret < 0) {
905 				mtd->ecc_stats.failed++;
906 			} else {
907 				mtd->ecc_stats.corrected += ret;
908 				bitflips =  max_t(u32, bitflips, ret);
909 			}
910 		}
911 	} else if (buf && buf != meson_chip->data_buf) {
912 		memcpy(buf, meson_chip->data_buf, mtd->writesize);
913 	}
914 
915 	return bitflips;
916 }
917 
918 static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
919 {
920 	return meson_nfc_read_page_raw(nand, NULL, 1, page);
921 }
922 
923 static int meson_nfc_read_oob(struct nand_chip *nand, int page)
924 {
925 	return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
926 }
927 
928 static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
929 {
930 	if ((uintptr_t)buffer % DMA_ADDR_ALIGN)
931 		return false;
932 
933 	if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
934 		return true;
935 	return false;
936 }
937 
938 static void *
939 meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
940 {
941 	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
942 		return NULL;
943 
944 	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
945 		return instr->ctx.data.buf.in;
946 
947 	return kzalloc(instr->ctx.data.len, GFP_KERNEL);
948 }
949 
950 static void
951 meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
952 				     void *buf)
953 {
954 	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
955 	    WARN_ON(!buf))
956 		return;
957 
958 	if (buf == instr->ctx.data.buf.in)
959 		return;
960 
961 	memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
962 	kfree(buf);
963 }
964 
965 static void *
966 meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
967 {
968 	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
969 		return NULL;
970 
971 	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
972 		return (void *)instr->ctx.data.buf.out;
973 
974 	return kmemdup(instr->ctx.data.buf.out,
975 		       instr->ctx.data.len, GFP_KERNEL);
976 }
977 
978 static void
979 meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
980 				      const void *buf)
981 {
982 	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
983 	    WARN_ON(!buf))
984 		return;
985 
986 	if (buf != instr->ctx.data.buf.out)
987 		kfree(buf);
988 }
989 
990 static int meson_nfc_check_op(struct nand_chip *chip,
991 			      const struct nand_operation *op)
992 {
993 	int op_id;
994 
995 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
996 		const struct nand_op_instr *instr;
997 
998 		instr = &op->instrs[op_id];
999 
1000 		switch (instr->type) {
1001 		case NAND_OP_DATA_IN_INSTR:
1002 		case NAND_OP_DATA_OUT_INSTR:
1003 			if (instr->ctx.data.len > NFC_CMD_RAW_LEN)
1004 				return -ENOTSUPP;
1005 
1006 			break;
1007 		default:
1008 			break;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static int meson_nfc_exec_op(struct nand_chip *nand,
1016 			     const struct nand_operation *op, bool check_only)
1017 {
1018 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1019 	struct meson_nfc *nfc = nand_get_controller_data(nand);
1020 	const struct nand_op_instr *instr = NULL;
1021 	void *buf;
1022 	u32 op_id, delay_idle, cmd;
1023 	int err;
1024 	int i;
1025 
1026 	err = meson_nfc_check_op(nand, op);
1027 	if (err)
1028 		return err;
1029 
1030 	if (check_only)
1031 		return 0;
1032 
1033 	meson_nfc_select_chip(nand, op->cs);
1034 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1035 		instr = &op->instrs[op_id];
1036 		delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
1037 					  meson_chip->level1_divider *
1038 					  NFC_CLK_CYCLE);
1039 		switch (instr->type) {
1040 		case NAND_OP_CMD_INSTR:
1041 			cmd = nfc->param.chip_select | NFC_CMD_CLE;
1042 			cmd |= instr->ctx.cmd.opcode & 0xff;
1043 			writel(cmd, nfc->reg_base + NFC_REG_CMD);
1044 			meson_nfc_cmd_idle(nfc, delay_idle);
1045 			break;
1046 
1047 		case NAND_OP_ADDR_INSTR:
1048 			for (i = 0; i < instr->ctx.addr.naddrs; i++) {
1049 				cmd = nfc->param.chip_select | NFC_CMD_ALE;
1050 				cmd |= instr->ctx.addr.addrs[i] & 0xff;
1051 				writel(cmd, nfc->reg_base + NFC_REG_CMD);
1052 			}
1053 			meson_nfc_cmd_idle(nfc, delay_idle);
1054 			break;
1055 
1056 		case NAND_OP_DATA_IN_INSTR:
1057 			buf = meson_nand_op_get_dma_safe_input_buf(instr);
1058 			if (!buf)
1059 				return -ENOMEM;
1060 			meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
1061 			meson_nand_op_put_dma_safe_input_buf(instr, buf);
1062 			break;
1063 
1064 		case NAND_OP_DATA_OUT_INSTR:
1065 			buf = meson_nand_op_get_dma_safe_output_buf(instr);
1066 			if (!buf)
1067 				return -ENOMEM;
1068 			meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
1069 			meson_nand_op_put_dma_safe_output_buf(instr, buf);
1070 			break;
1071 
1072 		case NAND_OP_WAITRDY_INSTR:
1073 			meson_nfc_queue_rb(nand, instr->ctx.waitrdy.timeout_ms,
1074 					   true);
1075 			if (instr->delay_ns)
1076 				meson_nfc_cmd_idle(nfc, delay_idle);
1077 			break;
1078 		}
1079 	}
1080 	meson_nfc_wait_cmd_finish(nfc, 1000);
1081 	return 0;
1082 }
1083 
1084 static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
1085 			       struct mtd_oob_region *oobregion)
1086 {
1087 	struct nand_chip *nand = mtd_to_nand(mtd);
1088 
1089 	if (section >= nand->ecc.steps)
1090 		return -ERANGE;
1091 
1092 	oobregion->offset =  2 + (section * (2 + nand->ecc.bytes));
1093 	oobregion->length = nand->ecc.bytes;
1094 
1095 	return 0;
1096 }
1097 
1098 static int meson_ooblayout_free(struct mtd_info *mtd, int section,
1099 				struct mtd_oob_region *oobregion)
1100 {
1101 	struct nand_chip *nand = mtd_to_nand(mtd);
1102 
1103 	if (section >= nand->ecc.steps)
1104 		return -ERANGE;
1105 
1106 	oobregion->offset = section * (2 + nand->ecc.bytes);
1107 	oobregion->length = 2;
1108 
1109 	return 0;
1110 }
1111 
1112 static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
1113 	.ecc = meson_ooblayout_ecc,
1114 	.free = meson_ooblayout_free,
1115 };
1116 
1117 static int meson_nfc_clk_init(struct meson_nfc *nfc)
1118 {
1119 	struct clk_parent_data nfc_divider_parent_data[1] = {0};
1120 	struct clk_init_data init = {0};
1121 	int ret;
1122 
1123 	/* request core clock */
1124 	nfc->core_clk = devm_clk_get(nfc->dev, "core");
1125 	if (IS_ERR(nfc->core_clk)) {
1126 		dev_err(nfc->dev, "failed to get core clock\n");
1127 		return PTR_ERR(nfc->core_clk);
1128 	}
1129 
1130 	nfc->device_clk = devm_clk_get(nfc->dev, "device");
1131 	if (IS_ERR(nfc->device_clk)) {
1132 		dev_err(nfc->dev, "failed to get device clock\n");
1133 		return PTR_ERR(nfc->device_clk);
1134 	}
1135 
1136 	init.name = devm_kasprintf(nfc->dev,
1137 				   GFP_KERNEL, "%s#div",
1138 				   dev_name(nfc->dev));
1139 	if (!init.name)
1140 		return -ENOMEM;
1141 
1142 	init.ops = &clk_divider_ops;
1143 	nfc_divider_parent_data[0].fw_name = "device";
1144 	init.parent_data = nfc_divider_parent_data;
1145 	init.num_parents = 1;
1146 	nfc->nand_divider.reg = nfc->reg_clk;
1147 	nfc->nand_divider.shift = CLK_DIV_SHIFT;
1148 	nfc->nand_divider.width = CLK_DIV_WIDTH;
1149 	nfc->nand_divider.hw.init = &init;
1150 	nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED |
1151 				  CLK_DIVIDER_ROUND_CLOSEST |
1152 				  CLK_DIVIDER_ALLOW_ZERO;
1153 
1154 	nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw);
1155 	if (IS_ERR(nfc->nand_clk))
1156 		return PTR_ERR(nfc->nand_clk);
1157 
1158 	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
1159 	writel(CLK_ALWAYS_ON_NAND | CLK_SELECT_NAND | CLK_SELECT_FIX_PLL2,
1160 	       nfc->reg_clk);
1161 
1162 	ret = clk_prepare_enable(nfc->core_clk);
1163 	if (ret) {
1164 		dev_err(nfc->dev, "failed to enable core clock\n");
1165 		return ret;
1166 	}
1167 
1168 	ret = clk_prepare_enable(nfc->device_clk);
1169 	if (ret) {
1170 		dev_err(nfc->dev, "failed to enable device clock\n");
1171 		goto err_device_clk;
1172 	}
1173 
1174 	ret = clk_prepare_enable(nfc->nand_clk);
1175 	if (ret) {
1176 		dev_err(nfc->dev, "pre enable NFC divider fail\n");
1177 		goto err_nand_clk;
1178 	}
1179 
1180 	ret = clk_set_rate(nfc->nand_clk, 24000000);
1181 	if (ret)
1182 		goto err_disable_clk;
1183 
1184 	return 0;
1185 
1186 err_disable_clk:
1187 	clk_disable_unprepare(nfc->nand_clk);
1188 err_nand_clk:
1189 	clk_disable_unprepare(nfc->device_clk);
1190 err_device_clk:
1191 	clk_disable_unprepare(nfc->core_clk);
1192 	return ret;
1193 }
1194 
1195 static void meson_nfc_disable_clk(struct meson_nfc *nfc)
1196 {
1197 	clk_disable_unprepare(nfc->nand_clk);
1198 	clk_disable_unprepare(nfc->device_clk);
1199 	clk_disable_unprepare(nfc->core_clk);
1200 }
1201 
1202 static void meson_nfc_free_buffer(struct nand_chip *nand)
1203 {
1204 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1205 
1206 	kfree(meson_chip->info_buf);
1207 	kfree(meson_chip->data_buf);
1208 }
1209 
1210 static int meson_chip_buffer_init(struct nand_chip *nand)
1211 {
1212 	struct mtd_info *mtd = nand_to_mtd(nand);
1213 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1214 	u32 page_bytes, info_bytes, nsectors;
1215 
1216 	nsectors = mtd->writesize / nand->ecc.size;
1217 
1218 	page_bytes =  mtd->writesize + mtd->oobsize;
1219 	info_bytes = nsectors * PER_INFO_BYTE;
1220 
1221 	meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
1222 	if (!meson_chip->data_buf)
1223 		return -ENOMEM;
1224 
1225 	meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
1226 	if (!meson_chip->info_buf) {
1227 		kfree(meson_chip->data_buf);
1228 		return -ENOMEM;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 static
1235 int meson_nfc_setup_interface(struct nand_chip *nand, int csline,
1236 			      const struct nand_interface_config *conf)
1237 {
1238 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1239 	const struct nand_sdr_timings *timings;
1240 	u32 div, bt_min, bt_max, tbers_clocks;
1241 
1242 	timings = nand_get_sdr_timings(conf);
1243 	if (IS_ERR(timings))
1244 		return -ENOTSUPP;
1245 
1246 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1247 		return 0;
1248 
1249 	div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
1250 	bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
1251 	bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
1252 		  timings->tRC_min / 2) / div;
1253 
1254 	meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
1255 				       div * NFC_CLK_CYCLE);
1256 	meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
1257 					div * NFC_CLK_CYCLE);
1258 	tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
1259 					div * NFC_CLK_CYCLE);
1260 	meson_chip->tbers_max = ilog2(tbers_clocks);
1261 	if (!is_power_of_2(tbers_clocks))
1262 		meson_chip->tbers_max++;
1263 
1264 	bt_min = DIV_ROUND_UP(bt_min, 1000);
1265 	bt_max = DIV_ROUND_UP(bt_max, 1000);
1266 
1267 	if (bt_max < bt_min)
1268 		return -EINVAL;
1269 
1270 	meson_chip->level1_divider = div;
1271 	meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
1272 	meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
1273 
1274 	return 0;
1275 }
1276 
1277 static int meson_nand_bch_mode(struct nand_chip *nand)
1278 {
1279 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1280 	int i;
1281 
1282 	if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
1283 		return -EINVAL;
1284 
1285 	for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
1286 		if (meson_ecc[i].strength == nand->ecc.strength &&
1287 		    meson_ecc[i].size == nand->ecc.size) {
1288 			meson_chip->bch_mode = meson_ecc[i].bch;
1289 			return 0;
1290 		}
1291 	}
1292 
1293 	return -EINVAL;
1294 }
1295 
1296 static void meson_nand_detach_chip(struct nand_chip *nand)
1297 {
1298 	meson_nfc_free_buffer(nand);
1299 }
1300 
1301 static int meson_nand_attach_chip(struct nand_chip *nand)
1302 {
1303 	struct meson_nfc *nfc = nand_get_controller_data(nand);
1304 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1305 	struct mtd_info *mtd = nand_to_mtd(nand);
1306 	int raw_writesize;
1307 	int ret;
1308 
1309 	if (!mtd->name) {
1310 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
1311 					   "%s:nand%d",
1312 					   dev_name(nfc->dev),
1313 					   meson_chip->sels[0]);
1314 		if (!mtd->name)
1315 			return -ENOMEM;
1316 	}
1317 
1318 	raw_writesize = mtd->writesize + mtd->oobsize;
1319 	if (raw_writesize > NFC_CMD_RAW_LEN) {
1320 		dev_err(nfc->dev, "too big write size in raw mode: %d > %ld\n",
1321 			raw_writesize, NFC_CMD_RAW_LEN);
1322 		return -EINVAL;
1323 	}
1324 
1325 	if (nand->bbt_options & NAND_BBT_USE_FLASH)
1326 		nand->bbt_options |= NAND_BBT_NO_OOB;
1327 
1328 	nand->options |= NAND_NO_SUBPAGE_WRITE;
1329 
1330 	ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
1331 				   mtd->oobsize - 2);
1332 	if (ret) {
1333 		dev_err(nfc->dev, "failed to ECC init\n");
1334 		return -EINVAL;
1335 	}
1336 
1337 	mtd_set_ooblayout(mtd, &meson_ooblayout_ops);
1338 
1339 	ret = meson_nand_bch_mode(nand);
1340 	if (ret)
1341 		return -EINVAL;
1342 
1343 	nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1344 	nand->ecc.write_page_raw = meson_nfc_write_page_raw;
1345 	nand->ecc.write_page = meson_nfc_write_page_hwecc;
1346 	nand->ecc.write_oob_raw = nand_write_oob_std;
1347 	nand->ecc.write_oob = nand_write_oob_std;
1348 
1349 	nand->ecc.read_page_raw = meson_nfc_read_page_raw;
1350 	nand->ecc.read_page = meson_nfc_read_page_hwecc;
1351 	nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
1352 	nand->ecc.read_oob = meson_nfc_read_oob;
1353 
1354 	if (nand->options & NAND_BUSWIDTH_16) {
1355 		dev_err(nfc->dev, "16bits bus width not supported");
1356 		return -EINVAL;
1357 	}
1358 	ret = meson_chip_buffer_init(nand);
1359 	if (ret)
1360 		return -ENOMEM;
1361 
1362 	return ret;
1363 }
1364 
1365 static const struct nand_controller_ops meson_nand_controller_ops = {
1366 	.attach_chip = meson_nand_attach_chip,
1367 	.detach_chip = meson_nand_detach_chip,
1368 	.setup_interface = meson_nfc_setup_interface,
1369 	.exec_op = meson_nfc_exec_op,
1370 };
1371 
1372 static int
1373 meson_nfc_nand_chip_init(struct device *dev,
1374 			 struct meson_nfc *nfc, struct device_node *np)
1375 {
1376 	struct meson_nfc_nand_chip *meson_chip;
1377 	struct nand_chip *nand;
1378 	struct mtd_info *mtd;
1379 	int ret, i;
1380 	u32 tmp, nsels;
1381 	u32 nand_rb_val = 0;
1382 
1383 	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1384 	if (!nsels || nsels > MAX_CE_NUM) {
1385 		dev_err(dev, "invalid register property size\n");
1386 		return -EINVAL;
1387 	}
1388 
1389 	meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels),
1390 				  GFP_KERNEL);
1391 	if (!meson_chip)
1392 		return -ENOMEM;
1393 
1394 	meson_chip->nsels = nsels;
1395 
1396 	for (i = 0; i < nsels; i++) {
1397 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1398 		if (ret) {
1399 			dev_err(dev, "could not retrieve register property: %d\n",
1400 				ret);
1401 			return ret;
1402 		}
1403 
1404 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1405 			dev_err(dev, "CS %d already assigned\n", tmp);
1406 			return -EINVAL;
1407 		}
1408 	}
1409 
1410 	nand = &meson_chip->nand;
1411 	nand->controller = &nfc->controller;
1412 	nand->controller->ops = &meson_nand_controller_ops;
1413 	nand_set_flash_node(nand, np);
1414 	nand_set_controller_data(nand, nfc);
1415 
1416 	nand->options |= NAND_USES_DMA;
1417 	mtd = nand_to_mtd(nand);
1418 	mtd->owner = THIS_MODULE;
1419 	mtd->dev.parent = dev;
1420 
1421 	ret = of_property_read_u32(np, "nand-rb", &nand_rb_val);
1422 	if (ret == -EINVAL)
1423 		nfc->no_rb_pin = true;
1424 	else if (ret)
1425 		return ret;
1426 
1427 	if (nand_rb_val)
1428 		return -EINVAL;
1429 
1430 	ret = nand_scan(nand, nsels);
1431 	if (ret)
1432 		return ret;
1433 
1434 	ret = mtd_device_register(mtd, NULL, 0);
1435 	if (ret) {
1436 		dev_err(dev, "failed to register MTD device: %d\n", ret);
1437 		nand_cleanup(nand);
1438 		return ret;
1439 	}
1440 
1441 	list_add_tail(&meson_chip->node, &nfc->chips);
1442 
1443 	return 0;
1444 }
1445 
1446 static void meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
1447 {
1448 	struct meson_nfc_nand_chip *meson_chip;
1449 	struct mtd_info *mtd;
1450 
1451 	while (!list_empty(&nfc->chips)) {
1452 		meson_chip = list_first_entry(&nfc->chips,
1453 					      struct meson_nfc_nand_chip, node);
1454 		mtd = nand_to_mtd(&meson_chip->nand);
1455 		WARN_ON(mtd_device_unregister(mtd));
1456 
1457 		nand_cleanup(&meson_chip->nand);
1458 		list_del(&meson_chip->node);
1459 	}
1460 }
1461 
1462 static int meson_nfc_nand_chips_init(struct device *dev,
1463 				     struct meson_nfc *nfc)
1464 {
1465 	struct device_node *np = dev->of_node;
1466 	struct device_node *nand_np;
1467 	int ret;
1468 
1469 	for_each_child_of_node(np, nand_np) {
1470 		ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
1471 		if (ret) {
1472 			meson_nfc_nand_chip_cleanup(nfc);
1473 			of_node_put(nand_np);
1474 			return ret;
1475 		}
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static irqreturn_t meson_nfc_irq(int irq, void *id)
1482 {
1483 	struct meson_nfc *nfc = id;
1484 	u32 cfg;
1485 
1486 	cfg = readl(nfc->reg_base + NFC_REG_CFG);
1487 	if (!(cfg & NFC_RB_IRQ_EN))
1488 		return IRQ_NONE;
1489 
1490 	cfg &= ~(NFC_RB_IRQ_EN);
1491 	writel(cfg, nfc->reg_base + NFC_REG_CFG);
1492 
1493 	complete(&nfc->completion);
1494 	return IRQ_HANDLED;
1495 }
1496 
1497 static const struct meson_nfc_data meson_gxl_data = {
1498 	.ecc_caps = &meson_gxl_ecc_caps,
1499 };
1500 
1501 static const struct meson_nfc_data meson_axg_data = {
1502 	.ecc_caps = &meson_axg_ecc_caps,
1503 };
1504 
1505 static const struct of_device_id meson_nfc_id_table[] = {
1506 	{
1507 		.compatible = "amlogic,meson-gxl-nfc",
1508 		.data = &meson_gxl_data,
1509 	}, {
1510 		.compatible = "amlogic,meson-axg-nfc",
1511 		.data = &meson_axg_data,
1512 	},
1513 	{}
1514 };
1515 MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
1516 
1517 static int meson_nfc_probe(struct platform_device *pdev)
1518 {
1519 	struct device *dev = &pdev->dev;
1520 	struct meson_nfc *nfc;
1521 	int ret, irq;
1522 
1523 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1524 	if (!nfc)
1525 		return -ENOMEM;
1526 
1527 	nfc->data = of_device_get_match_data(&pdev->dev);
1528 	if (!nfc->data)
1529 		return -ENODEV;
1530 
1531 	nand_controller_init(&nfc->controller);
1532 	INIT_LIST_HEAD(&nfc->chips);
1533 	init_completion(&nfc->completion);
1534 
1535 	nfc->dev = dev;
1536 
1537 	nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc");
1538 	if (IS_ERR(nfc->reg_base))
1539 		return PTR_ERR(nfc->reg_base);
1540 
1541 	nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc");
1542 	if (IS_ERR(nfc->reg_clk))
1543 		return PTR_ERR(nfc->reg_clk);
1544 
1545 	irq = platform_get_irq(pdev, 0);
1546 	if (irq < 0)
1547 		return -EINVAL;
1548 
1549 	ret = meson_nfc_clk_init(nfc);
1550 	if (ret) {
1551 		dev_err(dev, "failed to initialize NAND clock\n");
1552 		return ret;
1553 	}
1554 
1555 	writel(0, nfc->reg_base + NFC_REG_CFG);
1556 	ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc);
1557 	if (ret) {
1558 		dev_err(dev, "failed to request NFC IRQ\n");
1559 		ret = -EINVAL;
1560 		goto err_clk;
1561 	}
1562 
1563 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1564 	if (ret) {
1565 		dev_err(dev, "failed to set DMA mask\n");
1566 		goto err_clk;
1567 	}
1568 
1569 	platform_set_drvdata(pdev, nfc);
1570 
1571 	ret = meson_nfc_nand_chips_init(dev, nfc);
1572 	if (ret) {
1573 		dev_err(dev, "failed to init NAND chips\n");
1574 		goto err_clk;
1575 	}
1576 
1577 	return 0;
1578 err_clk:
1579 	meson_nfc_disable_clk(nfc);
1580 	return ret;
1581 }
1582 
1583 static void meson_nfc_remove(struct platform_device *pdev)
1584 {
1585 	struct meson_nfc *nfc = platform_get_drvdata(pdev);
1586 
1587 	meson_nfc_nand_chip_cleanup(nfc);
1588 
1589 	meson_nfc_disable_clk(nfc);
1590 }
1591 
1592 static struct platform_driver meson_nfc_driver = {
1593 	.probe  = meson_nfc_probe,
1594 	.remove_new = meson_nfc_remove,
1595 	.driver = {
1596 		.name  = "meson-nand",
1597 		.of_match_table = meson_nfc_id_table,
1598 	},
1599 };
1600 module_platform_driver(meson_nfc_driver);
1601 
1602 MODULE_LICENSE("Dual MIT/GPL");
1603 MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>");
1604 MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");
1605