1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT) 2 /* 3 * Amlogic Meson Nand Flash Controller Driver 4 * 5 * Copyright (c) 2018 Amlogic, inc. 6 * Author: Liang Yang <liang.yang@amlogic.com> 7 */ 8 9 #include <linux/platform_device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/mtd/rawnand.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mfd/syscon.h> 17 #include <linux/regmap.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/iopoll.h> 21 #include <linux/of.h> 22 #include <linux/sched/task_stack.h> 23 24 #define NFC_REG_CMD 0x00 25 #define NFC_CMD_IDLE (0xc << 14) 26 #define NFC_CMD_CLE (0x5 << 14) 27 #define NFC_CMD_ALE (0x6 << 14) 28 #define NFC_CMD_ADL ((0 << 16) | (3 << 20)) 29 #define NFC_CMD_ADH ((1 << 16) | (3 << 20)) 30 #define NFC_CMD_AIL ((2 << 16) | (3 << 20)) 31 #define NFC_CMD_AIH ((3 << 16) | (3 << 20)) 32 #define NFC_CMD_SEED ((8 << 16) | (3 << 20)) 33 #define NFC_CMD_M2N ((0 << 17) | (2 << 20)) 34 #define NFC_CMD_N2M ((1 << 17) | (2 << 20)) 35 #define NFC_CMD_RB BIT(20) 36 #define NFC_CMD_SCRAMBLER_ENABLE BIT(19) 37 #define NFC_CMD_SCRAMBLER_DISABLE 0 38 #define NFC_CMD_SHORTMODE_ENABLE 1 39 #define NFC_CMD_SHORTMODE_DISABLE 0 40 #define NFC_CMD_RB_INT BIT(14) 41 #define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16)) 42 43 #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) 44 45 #define NFC_REG_CFG 0x04 46 #define NFC_REG_DADR 0x08 47 #define NFC_REG_IADR 0x0c 48 #define NFC_REG_BUF 0x10 49 #define NFC_REG_INFO 0x14 50 #define NFC_REG_DC 0x18 51 #define NFC_REG_ADR 0x1c 52 #define NFC_REG_DL 0x20 53 #define NFC_REG_DH 0x24 54 #define NFC_REG_CADR 0x28 55 #define NFC_REG_SADR 0x2c 56 #define NFC_REG_PINS 0x30 57 #define NFC_REG_VER 0x38 58 59 #define NFC_RB_IRQ_EN BIT(21) 60 61 #define CLK_DIV_SHIFT 0 62 #define CLK_DIV_WIDTH 6 63 64 #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ 65 ( \ 66 (cmd_dir) | \ 67 (ran) | \ 68 ((bch) << 14) | \ 69 ((short_mode) << 13) | \ 70 (((page_size) & 0x7f) << 6) | \ 71 ((pages) & 0x3f) \ 72 ) 73 74 #define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) 75 #define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) 76 #define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) 77 #define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) 78 79 #define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) 80 #define DMA_ADDR_ALIGN 8 81 82 #define NFC_SHORT_MODE_ECC_SZ 384 83 84 #define ECC_CHECK_RETURN_FF (-1) 85 86 #define NAND_CE0 (0xe << 10) 87 #define NAND_CE1 (0xd << 10) 88 89 #define DMA_BUSY_TIMEOUT 0x100000 90 #define CMD_FIFO_EMPTY_TIMEOUT 1000 91 92 #define MAX_CE_NUM 2 93 94 /* eMMC clock register, misc control */ 95 #define CLK_SELECT_NAND BIT(31) 96 #define CLK_ALWAYS_ON_NAND BIT(24) 97 #define CLK_SELECT_FIX_PLL2 BIT(6) 98 99 #define NFC_CLK_CYCLE 6 100 101 /* nand flash controller delay 3 ns */ 102 #define NFC_DEFAULT_DELAY 3000 103 104 #define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) 105 #define MAX_CYCLE_ADDRS 5 106 #define DIRREAD 1 107 #define DIRWRITE 0 108 109 #define ECC_PARITY_BCH8_512B 14 110 #define ECC_COMPLETE BIT(31) 111 #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) 112 #define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0)) 113 #define ECC_UNCORRECTABLE 0x3f 114 115 #define PER_INFO_BYTE 8 116 117 #define NFC_CMD_RAW_LEN GENMASK(13, 0) 118 119 #define NFC_COLUMN_ADDR_0 0 120 #define NFC_COLUMN_ADDR_1 0 121 122 struct meson_nfc_nand_chip { 123 struct list_head node; 124 struct nand_chip nand; 125 unsigned long clk_rate; 126 unsigned long level1_divider; 127 u32 bus_timing; 128 u32 twb; 129 u32 tadl; 130 u32 tbers_max; 131 u32 boot_pages; 132 u32 boot_page_step; 133 134 u32 bch_mode; 135 u8 *data_buf; 136 __le64 *info_buf; 137 u32 nsels; 138 u8 sels[] __counted_by(nsels); 139 }; 140 141 struct meson_nand_ecc { 142 u32 bch; 143 u32 strength; 144 u32 size; 145 }; 146 147 struct meson_nfc_data { 148 const struct nand_ecc_caps *ecc_caps; 149 }; 150 151 struct meson_nfc_param { 152 u32 chip_select; 153 u32 rb_select; 154 }; 155 156 struct nand_rw_cmd { 157 u32 cmd0; 158 u32 addrs[MAX_CYCLE_ADDRS]; 159 u32 cmd1; 160 }; 161 162 struct nand_timing { 163 u32 twb; 164 u32 tadl; 165 u32 tbers_max; 166 }; 167 168 struct meson_nfc { 169 struct nand_controller controller; 170 struct clk *core_clk; 171 struct clk *device_clk; 172 struct clk *nand_clk; 173 struct clk_divider nand_divider; 174 175 unsigned long clk_rate; 176 u32 bus_timing; 177 178 struct device *dev; 179 void __iomem *reg_base; 180 void __iomem *reg_clk; 181 struct completion completion; 182 struct list_head chips; 183 const struct meson_nfc_data *data; 184 struct meson_nfc_param param; 185 struct nand_timing timing; 186 union { 187 int cmd[32]; 188 struct nand_rw_cmd rw; 189 } cmdfifo; 190 191 dma_addr_t daddr; 192 dma_addr_t iaddr; 193 u32 info_bytes; 194 195 unsigned long assigned_cs; 196 bool no_rb_pin; 197 }; 198 199 enum { 200 NFC_ECC_BCH8_512 = 1, 201 NFC_ECC_BCH8_1K, 202 NFC_ECC_BCH24_1K, 203 NFC_ECC_BCH30_1K, 204 NFC_ECC_BCH40_1K, 205 NFC_ECC_BCH50_1K, 206 NFC_ECC_BCH60_1K, 207 }; 208 209 #define MESON_ECC_DATA(b, s, sz) { .bch = (b), .strength = (s), .size = (sz) } 210 211 static struct meson_nand_ecc meson_ecc[] = { 212 MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, 512), 213 MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, 1024), 214 MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24, 1024), 215 MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30, 1024), 216 MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40, 1024), 217 MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50, 1024), 218 MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60, 1024), 219 }; 220 221 static int meson_nand_calc_ecc_bytes(int step_size, int strength) 222 { 223 int ecc_bytes; 224 225 if (step_size == 512 && strength == 8) 226 return ECC_PARITY_BCH8_512B; 227 228 ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); 229 ecc_bytes = ALIGN(ecc_bytes, 2); 230 231 return ecc_bytes; 232 } 233 234 NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, 235 meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); 236 237 static const int axg_stepinfo_strengths[] = { 8 }; 238 239 static const struct nand_ecc_step_info axg_stepinfo[] = { 240 { 241 .stepsize = 1024, 242 .strengths = axg_stepinfo_strengths, 243 .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) 244 }, 245 { 246 .stepsize = 512, 247 .strengths = axg_stepinfo_strengths, 248 .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) 249 }, 250 }; 251 252 static const struct nand_ecc_caps meson_axg_ecc_caps = { 253 .stepinfos = axg_stepinfo, 254 .nstepinfos = ARRAY_SIZE(axg_stepinfo), 255 .calc_ecc_bytes = meson_nand_calc_ecc_bytes, 256 }; 257 258 static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) 259 { 260 return container_of(nand, struct meson_nfc_nand_chip, nand); 261 } 262 263 static void meson_nfc_select_chip(struct nand_chip *nand, int chip) 264 { 265 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 266 struct meson_nfc *nfc = nand_get_controller_data(nand); 267 int ret, value; 268 269 if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels)) 270 return; 271 272 nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; 273 nfc->param.rb_select = nfc->param.chip_select; 274 nfc->timing.twb = meson_chip->twb; 275 nfc->timing.tadl = meson_chip->tadl; 276 nfc->timing.tbers_max = meson_chip->tbers_max; 277 278 if (nfc->clk_rate != meson_chip->clk_rate) { 279 ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate); 280 if (ret) { 281 dev_err(nfc->dev, "failed to set clock rate\n"); 282 return; 283 } 284 nfc->clk_rate = meson_chip->clk_rate; 285 } 286 if (nfc->bus_timing != meson_chip->bus_timing) { 287 value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5); 288 writel(value, nfc->reg_base + NFC_REG_CFG); 289 writel((1 << 31), nfc->reg_base + NFC_REG_CMD); 290 nfc->bus_timing = meson_chip->bus_timing; 291 } 292 } 293 294 static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) 295 { 296 writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), 297 nfc->reg_base + NFC_REG_CMD); 298 } 299 300 static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) 301 { 302 writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), 303 nfc->reg_base + NFC_REG_CMD); 304 } 305 306 static int meson_nfc_is_boot_page(struct nand_chip *nand, int page) 307 { 308 const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 309 310 return (nand->options & NAND_IS_BOOT_MEDIUM) && 311 !(page % meson_chip->boot_page_step) && 312 (page < meson_chip->boot_pages); 313 } 314 315 static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir, int page) 316 { 317 const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 318 struct mtd_info *mtd = nand_to_mtd(nand); 319 struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); 320 int len = mtd->writesize, pagesize, pages; 321 int scrambler; 322 u32 cmd; 323 324 if (nand->options & NAND_NEED_SCRAMBLING) 325 scrambler = NFC_CMD_SCRAMBLER_ENABLE; 326 else 327 scrambler = NFC_CMD_SCRAMBLER_DISABLE; 328 329 if (raw) { 330 len = mtd->writesize + mtd->oobsize; 331 cmd = len | scrambler | DMA_DIR(dir); 332 } else if (meson_nfc_is_boot_page(nand, page)) { 333 pagesize = NFC_SHORT_MODE_ECC_SZ >> 3; 334 pages = mtd->writesize / 512; 335 336 scrambler = NFC_CMD_SCRAMBLER_ENABLE; 337 cmd = CMDRWGEN(DMA_DIR(dir), scrambler, NFC_ECC_BCH8_1K, 338 NFC_CMD_SHORTMODE_ENABLE, pagesize, pages); 339 } else { 340 pagesize = nand->ecc.size >> 3; 341 pages = len / nand->ecc.size; 342 343 cmd = CMDRWGEN(DMA_DIR(dir), scrambler, meson_chip->bch_mode, 344 NFC_CMD_SHORTMODE_DISABLE, pagesize, pages); 345 } 346 347 if (scrambler == NFC_CMD_SCRAMBLER_ENABLE) 348 meson_nfc_cmd_seed(nfc, page); 349 350 writel(cmd, nfc->reg_base + NFC_REG_CMD); 351 } 352 353 static void meson_nfc_drain_cmd(struct meson_nfc *nfc) 354 { 355 /* 356 * Insert two commands to make sure all valid commands are finished. 357 * 358 * The Nand flash controller is designed as two stages pipleline - 359 * a) fetch and b) excute. 360 * There might be cases when the driver see command queue is empty, 361 * but the Nand flash controller still has two commands buffered, 362 * one is fetched into NFC request queue (ready to run), and another 363 * is actively executing. So pushing 2 "IDLE" commands guarantees that 364 * the pipeline is emptied. 365 */ 366 meson_nfc_cmd_idle(nfc, 0); 367 meson_nfc_cmd_idle(nfc, 0); 368 } 369 370 static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, 371 unsigned int timeout_ms) 372 { 373 u32 cmd_size = 0; 374 int ret; 375 376 /* wait cmd fifo is empty */ 377 ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, 378 !NFC_CMD_GET_SIZE(cmd_size), 379 10, timeout_ms * 1000); 380 if (ret) 381 dev_err(nfc->dev, "wait for empty CMD FIFO time out\n"); 382 383 return ret; 384 } 385 386 static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) 387 { 388 meson_nfc_drain_cmd(nfc); 389 390 return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); 391 } 392 393 static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i) 394 { 395 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 396 int len; 397 398 len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; 399 400 return meson_chip->data_buf + len; 401 } 402 403 static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i) 404 { 405 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 406 int len, temp; 407 408 temp = nand->ecc.size + nand->ecc.bytes; 409 len = (temp + 2) * i; 410 411 return meson_chip->data_buf + len; 412 } 413 414 static void meson_nfc_get_data_oob(struct nand_chip *nand, 415 u8 *buf, u8 *oobbuf) 416 { 417 int i, oob_len = 0; 418 u8 *dsrc, *osrc; 419 420 oob_len = nand->ecc.bytes + 2; 421 for (i = 0; i < nand->ecc.steps; i++) { 422 if (buf) { 423 dsrc = meson_nfc_data_ptr(nand, i); 424 memcpy(buf, dsrc, nand->ecc.size); 425 buf += nand->ecc.size; 426 } 427 osrc = meson_nfc_oob_ptr(nand, i); 428 memcpy(oobbuf, osrc, oob_len); 429 oobbuf += oob_len; 430 } 431 } 432 433 static void meson_nfc_set_data_oob(struct nand_chip *nand, 434 const u8 *buf, u8 *oobbuf) 435 { 436 int i, oob_len = 0; 437 u8 *dsrc, *osrc; 438 439 oob_len = nand->ecc.bytes + 2; 440 for (i = 0; i < nand->ecc.steps; i++) { 441 if (buf) { 442 dsrc = meson_nfc_data_ptr(nand, i); 443 memcpy(dsrc, buf, nand->ecc.size); 444 buf += nand->ecc.size; 445 } 446 osrc = meson_nfc_oob_ptr(nand, i); 447 memcpy(osrc, oobbuf, oob_len); 448 oobbuf += oob_len; 449 } 450 } 451 452 static int meson_nfc_wait_no_rb_pin(struct nand_chip *nand, int timeout_ms, 453 bool need_cmd_read0) 454 { 455 struct meson_nfc *nfc = nand_get_controller_data(nand); 456 u32 cmd, cfg; 457 458 meson_nfc_cmd_idle(nfc, nfc->timing.twb); 459 meson_nfc_drain_cmd(nfc); 460 meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); 461 462 cfg = readl(nfc->reg_base + NFC_REG_CFG); 463 cfg |= NFC_RB_IRQ_EN; 464 writel(cfg, nfc->reg_base + NFC_REG_CFG); 465 466 reinit_completion(&nfc->completion); 467 nand_status_op(nand, NULL); 468 469 /* use the max erase time as the maximum clock for waiting R/B */ 470 cmd = NFC_CMD_RB | NFC_CMD_RB_INT_NO_PIN | nfc->timing.tbers_max; 471 writel(cmd, nfc->reg_base + NFC_REG_CMD); 472 473 if (!wait_for_completion_timeout(&nfc->completion, 474 msecs_to_jiffies(timeout_ms))) 475 return -ETIMEDOUT; 476 477 if (need_cmd_read0) 478 nand_exit_status_op(nand); 479 480 return 0; 481 } 482 483 static int meson_nfc_wait_rb_pin(struct meson_nfc *nfc, int timeout_ms) 484 { 485 u32 cmd, cfg; 486 int ret = 0; 487 488 meson_nfc_cmd_idle(nfc, nfc->timing.twb); 489 meson_nfc_drain_cmd(nfc); 490 meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); 491 492 cfg = readl(nfc->reg_base + NFC_REG_CFG); 493 cfg |= NFC_RB_IRQ_EN; 494 writel(cfg, nfc->reg_base + NFC_REG_CFG); 495 496 reinit_completion(&nfc->completion); 497 498 /* use the max erase time as the maximum clock for waiting R/B */ 499 cmd = NFC_CMD_RB | NFC_CMD_RB_INT 500 | nfc->param.chip_select | nfc->timing.tbers_max; 501 writel(cmd, nfc->reg_base + NFC_REG_CMD); 502 503 ret = wait_for_completion_timeout(&nfc->completion, 504 msecs_to_jiffies(timeout_ms)); 505 if (ret == 0) 506 ret = -1; 507 508 return ret; 509 } 510 511 static int meson_nfc_queue_rb(struct nand_chip *nand, int timeout_ms, 512 bool need_cmd_read0) 513 { 514 struct meson_nfc *nfc = nand_get_controller_data(nand); 515 516 if (nfc->no_rb_pin) { 517 /* This mode is used when there is no wired R/B pin. 518 * It works like 'nand_soft_waitrdy()', but instead of 519 * polling NAND_CMD_STATUS bit in the software loop, 520 * it will wait for interrupt - controllers checks IO 521 * bus and when it detects NAND_CMD_STATUS on it, it 522 * raises interrupt. After interrupt, NAND_CMD_READ0 is 523 * sent as terminator of the ready waiting procedure if 524 * needed (for all cases except page programming - this 525 * is reason of 'need_cmd_read0' flag). 526 */ 527 return meson_nfc_wait_no_rb_pin(nand, timeout_ms, 528 need_cmd_read0); 529 } else { 530 return meson_nfc_wait_rb_pin(nfc, timeout_ms); 531 } 532 } 533 534 static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf) 535 { 536 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 537 __le64 *info; 538 int i, count; 539 540 for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) { 541 info = &meson_chip->info_buf[i]; 542 *info |= oob_buf[count]; 543 *info |= oob_buf[count + 1] << 8; 544 } 545 } 546 547 static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf) 548 { 549 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 550 __le64 *info; 551 int i, count; 552 553 for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) { 554 info = &meson_chip->info_buf[i]; 555 oob_buf[count] = *info; 556 oob_buf[count + 1] = *info >> 8; 557 } 558 } 559 560 static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips, 561 u64 *correct_bitmap) 562 { 563 struct mtd_info *mtd = nand_to_mtd(nand); 564 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 565 __le64 *info; 566 int ret = 0, i; 567 568 for (i = 0; i < nand->ecc.steps; i++) { 569 info = &meson_chip->info_buf[i]; 570 if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) { 571 mtd->ecc_stats.corrected += ECC_ERR_CNT(*info); 572 *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info)); 573 *correct_bitmap |= BIT_ULL(i); 574 continue; 575 } 576 if ((nand->options & NAND_NEED_SCRAMBLING) && 577 ECC_ZERO_CNT(*info) < nand->ecc.strength) { 578 mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info); 579 *bitflips = max_t(u32, *bitflips, 580 ECC_ZERO_CNT(*info)); 581 ret = ECC_CHECK_RETURN_FF; 582 } else { 583 ret = -EBADMSG; 584 } 585 } 586 return ret; 587 } 588 589 static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf, 590 int datalen, void *infobuf, int infolen, 591 enum dma_data_direction dir) 592 { 593 struct meson_nfc *nfc = nand_get_controller_data(nand); 594 u32 cmd; 595 int ret = 0; 596 597 nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir); 598 ret = dma_mapping_error(nfc->dev, nfc->daddr); 599 if (ret) { 600 dev_err(nfc->dev, "DMA mapping error\n"); 601 return ret; 602 } 603 cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr); 604 writel(cmd, nfc->reg_base + NFC_REG_CMD); 605 606 cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr); 607 writel(cmd, nfc->reg_base + NFC_REG_CMD); 608 609 if (infobuf) { 610 nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir); 611 ret = dma_mapping_error(nfc->dev, nfc->iaddr); 612 if (ret) { 613 dev_err(nfc->dev, "DMA mapping error\n"); 614 dma_unmap_single(nfc->dev, 615 nfc->daddr, datalen, dir); 616 return ret; 617 } 618 nfc->info_bytes = infolen; 619 cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr); 620 writel(cmd, nfc->reg_base + NFC_REG_CMD); 621 622 cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr); 623 writel(cmd, nfc->reg_base + NFC_REG_CMD); 624 } 625 626 return ret; 627 } 628 629 static void meson_nfc_dma_buffer_release(struct nand_chip *nand, 630 int datalen, int infolen, 631 enum dma_data_direction dir) 632 { 633 struct meson_nfc *nfc = nand_get_controller_data(nand); 634 635 dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir); 636 if (infolen) { 637 dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir); 638 nfc->info_bytes = 0; 639 } 640 } 641 642 static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len) 643 { 644 struct meson_nfc *nfc = nand_get_controller_data(nand); 645 int ret = 0; 646 u32 cmd; 647 u8 *info; 648 649 info = kzalloc(PER_INFO_BYTE, GFP_KERNEL); 650 if (!info) 651 return -ENOMEM; 652 653 ret = meson_nfc_dma_buffer_setup(nand, buf, len, info, 654 PER_INFO_BYTE, DMA_FROM_DEVICE); 655 if (ret) 656 goto out; 657 658 cmd = NFC_CMD_N2M | len; 659 writel(cmd, nfc->reg_base + NFC_REG_CMD); 660 661 meson_nfc_drain_cmd(nfc); 662 meson_nfc_wait_cmd_finish(nfc, 1000); 663 meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE); 664 665 out: 666 kfree(info); 667 668 return ret; 669 } 670 671 static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len) 672 { 673 struct meson_nfc *nfc = nand_get_controller_data(nand); 674 int ret = 0; 675 u32 cmd; 676 677 ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL, 678 0, DMA_TO_DEVICE); 679 if (ret) 680 return ret; 681 682 cmd = NFC_CMD_M2N | len; 683 writel(cmd, nfc->reg_base + NFC_REG_CMD); 684 685 meson_nfc_drain_cmd(nfc); 686 meson_nfc_wait_cmd_finish(nfc, 1000); 687 meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE); 688 689 return ret; 690 } 691 692 static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand, 693 int page, bool in) 694 { 695 const struct nand_sdr_timings *sdr = 696 nand_get_sdr_timings(nand_get_interface_config(nand)); 697 struct mtd_info *mtd = nand_to_mtd(nand); 698 struct meson_nfc *nfc = nand_get_controller_data(nand); 699 u32 *addrs = nfc->cmdfifo.rw.addrs; 700 u32 cs = nfc->param.chip_select; 701 u32 cmd0, cmd_num, row_start; 702 int i; 703 704 cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int); 705 706 cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN; 707 nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0; 708 709 addrs[0] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_0; 710 if (mtd->writesize <= 512) { 711 cmd_num--; 712 row_start = 1; 713 } else { 714 addrs[1] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_1; 715 row_start = 2; 716 } 717 718 addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0); 719 addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1); 720 721 if (nand->options & NAND_ROW_ADDR_3) 722 addrs[row_start + 2] = 723 cs | NFC_CMD_ALE | ROW_ADDER(page, 2); 724 else 725 cmd_num--; 726 727 /* subtract cmd1 */ 728 cmd_num--; 729 730 for (i = 0; i < cmd_num; i++) 731 writel_relaxed(nfc->cmdfifo.cmd[i], 732 nfc->reg_base + NFC_REG_CMD); 733 734 if (in) { 735 nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART; 736 writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD); 737 meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tR_max), true); 738 } else { 739 meson_nfc_cmd_idle(nfc, nfc->timing.tadl); 740 } 741 742 return 0; 743 } 744 745 static int meson_nfc_write_page_sub(struct nand_chip *nand, 746 int page, int raw) 747 { 748 const struct nand_sdr_timings *sdr = 749 nand_get_sdr_timings(nand_get_interface_config(nand)); 750 struct mtd_info *mtd = nand_to_mtd(nand); 751 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 752 struct meson_nfc *nfc = nand_get_controller_data(nand); 753 int data_len, info_len; 754 u32 cmd; 755 int ret; 756 757 meson_nfc_select_chip(nand, nand->cur_cs); 758 759 data_len = mtd->writesize + mtd->oobsize; 760 info_len = nand->ecc.steps * PER_INFO_BYTE; 761 762 ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE); 763 if (ret) 764 return ret; 765 766 ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, 767 data_len, meson_chip->info_buf, 768 info_len, DMA_TO_DEVICE); 769 if (ret) 770 return ret; 771 772 meson_nfc_cmd_access(nand, raw, DIRWRITE, page); 773 774 cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; 775 writel(cmd, nfc->reg_base + NFC_REG_CMD); 776 meson_nfc_queue_rb(nand, PSEC_TO_MSEC(sdr->tPROG_max), false); 777 778 meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE); 779 780 return ret; 781 } 782 783 static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf, 784 int oob_required, int page) 785 { 786 u8 *oob_buf = nand->oob_poi; 787 788 meson_nfc_set_data_oob(nand, buf, oob_buf); 789 790 return meson_nfc_write_page_sub(nand, page, 1); 791 } 792 793 static int meson_nfc_write_page_hwecc(struct nand_chip *nand, 794 const u8 *buf, int oob_required, int page) 795 { 796 struct mtd_info *mtd = nand_to_mtd(nand); 797 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 798 u8 *oob_buf = nand->oob_poi; 799 800 memcpy(meson_chip->data_buf, buf, mtd->writesize); 801 memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE); 802 meson_nfc_set_user_byte(nand, oob_buf); 803 804 return meson_nfc_write_page_sub(nand, page, 0); 805 } 806 807 static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, 808 struct nand_chip *nand, int raw) 809 { 810 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 811 __le64 *info; 812 u32 neccpages; 813 int ret; 814 815 neccpages = raw ? 1 : nand->ecc.steps; 816 info = &meson_chip->info_buf[neccpages - 1]; 817 do { 818 usleep_range(10, 15); 819 /* info is updated by nfc dma engine*/ 820 smp_rmb(); 821 dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes, 822 DMA_FROM_DEVICE); 823 ret = *info & ECC_COMPLETE; 824 } while (!ret); 825 } 826 827 static int meson_nfc_read_page_sub(struct nand_chip *nand, 828 int page, int raw) 829 { 830 struct mtd_info *mtd = nand_to_mtd(nand); 831 struct meson_nfc *nfc = nand_get_controller_data(nand); 832 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 833 int data_len, info_len; 834 int ret; 835 836 meson_nfc_select_chip(nand, nand->cur_cs); 837 838 data_len = mtd->writesize + mtd->oobsize; 839 info_len = nand->ecc.steps * PER_INFO_BYTE; 840 841 ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD); 842 if (ret) 843 return ret; 844 845 ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, 846 data_len, meson_chip->info_buf, 847 info_len, DMA_FROM_DEVICE); 848 if (ret) 849 return ret; 850 851 meson_nfc_cmd_access(nand, raw, DIRREAD, page); 852 853 ret = meson_nfc_wait_dma_finish(nfc); 854 meson_nfc_check_ecc_pages_valid(nfc, nand, raw); 855 856 meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE); 857 858 return ret; 859 } 860 861 static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf, 862 int oob_required, int page) 863 { 864 u8 *oob_buf = nand->oob_poi; 865 int ret; 866 867 ret = meson_nfc_read_page_sub(nand, page, 1); 868 if (ret) 869 return ret; 870 871 meson_nfc_get_data_oob(nand, buf, oob_buf); 872 873 return 0; 874 } 875 876 static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf, 877 int oob_required, int page) 878 { 879 struct mtd_info *mtd = nand_to_mtd(nand); 880 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 881 struct nand_ecc_ctrl *ecc = &nand->ecc; 882 u64 correct_bitmap = 0; 883 u32 bitflips = 0; 884 u8 *oob_buf = nand->oob_poi; 885 int ret, i; 886 887 ret = meson_nfc_read_page_sub(nand, page, 0); 888 if (ret) 889 return ret; 890 891 meson_nfc_get_user_byte(nand, oob_buf); 892 ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap); 893 if (ret == ECC_CHECK_RETURN_FF) { 894 if (buf) 895 memset(buf, 0xff, mtd->writesize); 896 memset(oob_buf, 0xff, mtd->oobsize); 897 } else if (ret < 0) { 898 if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) { 899 mtd->ecc_stats.failed++; 900 return bitflips; 901 } 902 ret = meson_nfc_read_page_raw(nand, buf, 0, page); 903 if (ret) 904 return ret; 905 906 for (i = 0; i < nand->ecc.steps ; i++) { 907 u8 *data = buf + i * ecc->size; 908 u8 *oob = nand->oob_poi + i * (ecc->bytes + 2); 909 910 if (correct_bitmap & BIT_ULL(i)) 911 continue; 912 ret = nand_check_erased_ecc_chunk(data, ecc->size, 913 oob, ecc->bytes + 2, 914 NULL, 0, 915 ecc->strength); 916 if (ret < 0) { 917 mtd->ecc_stats.failed++; 918 } else { 919 mtd->ecc_stats.corrected += ret; 920 bitflips = max_t(u32, bitflips, ret); 921 } 922 } 923 } else if (buf && buf != meson_chip->data_buf) { 924 memcpy(buf, meson_chip->data_buf, mtd->writesize); 925 } 926 927 return bitflips; 928 } 929 930 static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page) 931 { 932 return meson_nfc_read_page_raw(nand, NULL, 1, page); 933 } 934 935 static int meson_nfc_read_oob(struct nand_chip *nand, int page) 936 { 937 return meson_nfc_read_page_hwecc(nand, NULL, 1, page); 938 } 939 940 static bool meson_nfc_is_buffer_dma_safe(const void *buffer) 941 { 942 if ((uintptr_t)buffer % DMA_ADDR_ALIGN) 943 return false; 944 945 if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer))) 946 return true; 947 return false; 948 } 949 950 static void * 951 meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr) 952 { 953 if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR)) 954 return NULL; 955 956 if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in)) 957 return instr->ctx.data.buf.in; 958 959 return kzalloc(instr->ctx.data.len, GFP_KERNEL); 960 } 961 962 static void 963 meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr, 964 void *buf) 965 { 966 if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) || 967 WARN_ON(!buf)) 968 return; 969 970 if (buf == instr->ctx.data.buf.in) 971 return; 972 973 memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len); 974 kfree(buf); 975 } 976 977 static void * 978 meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr) 979 { 980 if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR)) 981 return NULL; 982 983 if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out)) 984 return (void *)instr->ctx.data.buf.out; 985 986 return kmemdup(instr->ctx.data.buf.out, 987 instr->ctx.data.len, GFP_KERNEL); 988 } 989 990 static void 991 meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr, 992 const void *buf) 993 { 994 if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) || 995 WARN_ON(!buf)) 996 return; 997 998 if (buf != instr->ctx.data.buf.out) 999 kfree(buf); 1000 } 1001 1002 static int meson_nfc_check_op(struct nand_chip *chip, 1003 const struct nand_operation *op) 1004 { 1005 int op_id; 1006 1007 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1008 const struct nand_op_instr *instr; 1009 1010 instr = &op->instrs[op_id]; 1011 1012 switch (instr->type) { 1013 case NAND_OP_DATA_IN_INSTR: 1014 case NAND_OP_DATA_OUT_INSTR: 1015 if (instr->ctx.data.len > NFC_CMD_RAW_LEN) 1016 return -ENOTSUPP; 1017 1018 break; 1019 default: 1020 break; 1021 } 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int meson_nfc_exec_op(struct nand_chip *nand, 1028 const struct nand_operation *op, bool check_only) 1029 { 1030 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 1031 struct meson_nfc *nfc = nand_get_controller_data(nand); 1032 const struct nand_op_instr *instr = NULL; 1033 void *buf; 1034 u32 op_id, delay_idle, cmd; 1035 int err; 1036 int i; 1037 1038 err = meson_nfc_check_op(nand, op); 1039 if (err) 1040 return err; 1041 1042 if (check_only) 1043 return 0; 1044 1045 meson_nfc_select_chip(nand, op->cs); 1046 for (op_id = 0; op_id < op->ninstrs; op_id++) { 1047 instr = &op->instrs[op_id]; 1048 delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns), 1049 meson_chip->level1_divider * 1050 NFC_CLK_CYCLE); 1051 switch (instr->type) { 1052 case NAND_OP_CMD_INSTR: 1053 cmd = nfc->param.chip_select | NFC_CMD_CLE; 1054 cmd |= instr->ctx.cmd.opcode & 0xff; 1055 writel(cmd, nfc->reg_base + NFC_REG_CMD); 1056 meson_nfc_cmd_idle(nfc, delay_idle); 1057 break; 1058 1059 case NAND_OP_ADDR_INSTR: 1060 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 1061 cmd = nfc->param.chip_select | NFC_CMD_ALE; 1062 cmd |= instr->ctx.addr.addrs[i] & 0xff; 1063 writel(cmd, nfc->reg_base + NFC_REG_CMD); 1064 } 1065 meson_nfc_cmd_idle(nfc, delay_idle); 1066 break; 1067 1068 case NAND_OP_DATA_IN_INSTR: 1069 buf = meson_nand_op_get_dma_safe_input_buf(instr); 1070 if (!buf) 1071 return -ENOMEM; 1072 meson_nfc_read_buf(nand, buf, instr->ctx.data.len); 1073 meson_nand_op_put_dma_safe_input_buf(instr, buf); 1074 break; 1075 1076 case NAND_OP_DATA_OUT_INSTR: 1077 buf = meson_nand_op_get_dma_safe_output_buf(instr); 1078 if (!buf) 1079 return -ENOMEM; 1080 meson_nfc_write_buf(nand, buf, instr->ctx.data.len); 1081 meson_nand_op_put_dma_safe_output_buf(instr, buf); 1082 break; 1083 1084 case NAND_OP_WAITRDY_INSTR: 1085 meson_nfc_queue_rb(nand, instr->ctx.waitrdy.timeout_ms, 1086 true); 1087 if (instr->delay_ns) 1088 meson_nfc_cmd_idle(nfc, delay_idle); 1089 break; 1090 } 1091 } 1092 meson_nfc_wait_cmd_finish(nfc, 1000); 1093 return 0; 1094 } 1095 1096 static int meson_ooblayout_ecc(struct mtd_info *mtd, int section, 1097 struct mtd_oob_region *oobregion) 1098 { 1099 struct nand_chip *nand = mtd_to_nand(mtd); 1100 1101 if (section >= nand->ecc.steps) 1102 return -ERANGE; 1103 1104 oobregion->offset = 2 + (section * (2 + nand->ecc.bytes)); 1105 oobregion->length = nand->ecc.bytes; 1106 1107 return 0; 1108 } 1109 1110 static int meson_ooblayout_free(struct mtd_info *mtd, int section, 1111 struct mtd_oob_region *oobregion) 1112 { 1113 struct nand_chip *nand = mtd_to_nand(mtd); 1114 1115 if (section >= nand->ecc.steps) 1116 return -ERANGE; 1117 1118 oobregion->offset = section * (2 + nand->ecc.bytes); 1119 oobregion->length = 2; 1120 1121 return 0; 1122 } 1123 1124 static const struct mtd_ooblayout_ops meson_ooblayout_ops = { 1125 .ecc = meson_ooblayout_ecc, 1126 .free = meson_ooblayout_free, 1127 }; 1128 1129 static int meson_nfc_clk_init(struct meson_nfc *nfc) 1130 { 1131 struct clk_parent_data nfc_divider_parent_data[1] = {0}; 1132 struct clk_init_data init = {0}; 1133 int ret; 1134 1135 /* request core clock */ 1136 nfc->core_clk = devm_clk_get(nfc->dev, "core"); 1137 if (IS_ERR(nfc->core_clk)) { 1138 dev_err(nfc->dev, "failed to get core clock\n"); 1139 return PTR_ERR(nfc->core_clk); 1140 } 1141 1142 nfc->device_clk = devm_clk_get(nfc->dev, "device"); 1143 if (IS_ERR(nfc->device_clk)) { 1144 dev_err(nfc->dev, "failed to get device clock\n"); 1145 return PTR_ERR(nfc->device_clk); 1146 } 1147 1148 init.name = devm_kasprintf(nfc->dev, 1149 GFP_KERNEL, "%s#div", 1150 dev_name(nfc->dev)); 1151 if (!init.name) 1152 return -ENOMEM; 1153 1154 init.ops = &clk_divider_ops; 1155 nfc_divider_parent_data[0].fw_name = "device"; 1156 init.parent_data = nfc_divider_parent_data; 1157 init.num_parents = 1; 1158 nfc->nand_divider.reg = nfc->reg_clk; 1159 nfc->nand_divider.shift = CLK_DIV_SHIFT; 1160 nfc->nand_divider.width = CLK_DIV_WIDTH; 1161 nfc->nand_divider.hw.init = &init; 1162 nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED | 1163 CLK_DIVIDER_ROUND_CLOSEST | 1164 CLK_DIVIDER_ALLOW_ZERO; 1165 1166 nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw); 1167 if (IS_ERR(nfc->nand_clk)) 1168 return PTR_ERR(nfc->nand_clk); 1169 1170 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 1171 writel(CLK_ALWAYS_ON_NAND | CLK_SELECT_NAND | CLK_SELECT_FIX_PLL2, 1172 nfc->reg_clk); 1173 1174 ret = clk_prepare_enable(nfc->core_clk); 1175 if (ret) { 1176 dev_err(nfc->dev, "failed to enable core clock\n"); 1177 return ret; 1178 } 1179 1180 ret = clk_prepare_enable(nfc->device_clk); 1181 if (ret) { 1182 dev_err(nfc->dev, "failed to enable device clock\n"); 1183 goto err_device_clk; 1184 } 1185 1186 ret = clk_prepare_enable(nfc->nand_clk); 1187 if (ret) { 1188 dev_err(nfc->dev, "pre enable NFC divider fail\n"); 1189 goto err_nand_clk; 1190 } 1191 1192 ret = clk_set_rate(nfc->nand_clk, 24000000); 1193 if (ret) 1194 goto err_disable_clk; 1195 1196 return 0; 1197 1198 err_disable_clk: 1199 clk_disable_unprepare(nfc->nand_clk); 1200 err_nand_clk: 1201 clk_disable_unprepare(nfc->device_clk); 1202 err_device_clk: 1203 clk_disable_unprepare(nfc->core_clk); 1204 return ret; 1205 } 1206 1207 static void meson_nfc_disable_clk(struct meson_nfc *nfc) 1208 { 1209 clk_disable_unprepare(nfc->nand_clk); 1210 clk_disable_unprepare(nfc->device_clk); 1211 clk_disable_unprepare(nfc->core_clk); 1212 } 1213 1214 static void meson_nfc_free_buffer(struct nand_chip *nand) 1215 { 1216 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 1217 1218 kfree(meson_chip->info_buf); 1219 kfree(meson_chip->data_buf); 1220 } 1221 1222 static int meson_chip_buffer_init(struct nand_chip *nand) 1223 { 1224 struct mtd_info *mtd = nand_to_mtd(nand); 1225 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 1226 u32 page_bytes, info_bytes, nsectors; 1227 1228 nsectors = mtd->writesize / nand->ecc.size; 1229 1230 page_bytes = mtd->writesize + mtd->oobsize; 1231 info_bytes = nsectors * PER_INFO_BYTE; 1232 1233 meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL); 1234 if (!meson_chip->data_buf) 1235 return -ENOMEM; 1236 1237 meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL); 1238 if (!meson_chip->info_buf) { 1239 kfree(meson_chip->data_buf); 1240 return -ENOMEM; 1241 } 1242 1243 return 0; 1244 } 1245 1246 static 1247 int meson_nfc_setup_interface(struct nand_chip *nand, int csline, 1248 const struct nand_interface_config *conf) 1249 { 1250 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 1251 const struct nand_sdr_timings *timings; 1252 u32 div, bt_min, bt_max, tbers_clocks; 1253 1254 timings = nand_get_sdr_timings(conf); 1255 if (IS_ERR(timings)) 1256 return -ENOTSUPP; 1257 1258 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1259 return 0; 1260 1261 div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); 1262 bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; 1263 bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min + 1264 timings->tRC_min / 2) / div; 1265 1266 meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), 1267 div * NFC_CLK_CYCLE); 1268 meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), 1269 div * NFC_CLK_CYCLE); 1270 tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max), 1271 div * NFC_CLK_CYCLE); 1272 meson_chip->tbers_max = ilog2(tbers_clocks); 1273 if (!is_power_of_2(tbers_clocks)) 1274 meson_chip->tbers_max++; 1275 1276 bt_min = DIV_ROUND_UP(bt_min, 1000); 1277 bt_max = DIV_ROUND_UP(bt_max, 1000); 1278 1279 if (bt_max < bt_min) 1280 return -EINVAL; 1281 1282 meson_chip->level1_divider = div; 1283 meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider; 1284 meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1; 1285 1286 return 0; 1287 } 1288 1289 static int meson_nand_bch_mode(struct nand_chip *nand) 1290 { 1291 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 1292 int i; 1293 1294 if (nand->ecc.strength > 60 || nand->ecc.strength < 8) 1295 return -EINVAL; 1296 1297 for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) { 1298 if (meson_ecc[i].strength == nand->ecc.strength && 1299 meson_ecc[i].size == nand->ecc.size) { 1300 meson_chip->bch_mode = meson_ecc[i].bch; 1301 return 0; 1302 } 1303 } 1304 1305 return -EINVAL; 1306 } 1307 1308 static void meson_nand_detach_chip(struct nand_chip *nand) 1309 { 1310 meson_nfc_free_buffer(nand); 1311 } 1312 1313 static int meson_nand_attach_chip(struct nand_chip *nand) 1314 { 1315 struct meson_nfc *nfc = nand_get_controller_data(nand); 1316 struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); 1317 struct mtd_info *mtd = nand_to_mtd(nand); 1318 int raw_writesize; 1319 int ret; 1320 1321 if (!mtd->name) { 1322 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 1323 "%s:nand%d", 1324 dev_name(nfc->dev), 1325 meson_chip->sels[0]); 1326 if (!mtd->name) 1327 return -ENOMEM; 1328 } 1329 1330 raw_writesize = mtd->writesize + mtd->oobsize; 1331 if (raw_writesize > NFC_CMD_RAW_LEN) { 1332 dev_err(nfc->dev, "too big write size in raw mode: %d > %ld\n", 1333 raw_writesize, NFC_CMD_RAW_LEN); 1334 return -EINVAL; 1335 } 1336 1337 if (nand->bbt_options & NAND_BBT_USE_FLASH) 1338 nand->bbt_options |= NAND_BBT_NO_OOB; 1339 1340 nand->options |= NAND_NO_SUBPAGE_WRITE; 1341 1342 ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps, 1343 mtd->oobsize - 2); 1344 if (ret) { 1345 dev_err(nfc->dev, "failed to ECC init\n"); 1346 return -EINVAL; 1347 } 1348 1349 mtd_set_ooblayout(mtd, &meson_ooblayout_ops); 1350 1351 ret = meson_nand_bch_mode(nand); 1352 if (ret) 1353 return -EINVAL; 1354 1355 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1356 nand->ecc.write_page_raw = meson_nfc_write_page_raw; 1357 nand->ecc.write_page = meson_nfc_write_page_hwecc; 1358 nand->ecc.write_oob_raw = nand_write_oob_std; 1359 nand->ecc.write_oob = nand_write_oob_std; 1360 1361 nand->ecc.read_page_raw = meson_nfc_read_page_raw; 1362 nand->ecc.read_page = meson_nfc_read_page_hwecc; 1363 nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; 1364 nand->ecc.read_oob = meson_nfc_read_oob; 1365 1366 if (nand->options & NAND_BUSWIDTH_16) { 1367 dev_err(nfc->dev, "16bits bus width not supported"); 1368 return -EINVAL; 1369 } 1370 ret = meson_chip_buffer_init(nand); 1371 if (ret) 1372 return -ENOMEM; 1373 1374 return ret; 1375 } 1376 1377 static const struct nand_controller_ops meson_nand_controller_ops = { 1378 .attach_chip = meson_nand_attach_chip, 1379 .detach_chip = meson_nand_detach_chip, 1380 .setup_interface = meson_nfc_setup_interface, 1381 .exec_op = meson_nfc_exec_op, 1382 }; 1383 1384 static int 1385 meson_nfc_nand_chip_init(struct device *dev, 1386 struct meson_nfc *nfc, struct device_node *np) 1387 { 1388 struct meson_nfc_nand_chip *meson_chip; 1389 struct nand_chip *nand; 1390 struct mtd_info *mtd; 1391 int ret, i; 1392 u32 tmp, nsels; 1393 u32 nand_rb_val = 0; 1394 1395 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 1396 if (!nsels || nsels > MAX_CE_NUM) { 1397 dev_err(dev, "invalid register property size\n"); 1398 return -EINVAL; 1399 } 1400 1401 meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels), 1402 GFP_KERNEL); 1403 if (!meson_chip) 1404 return -ENOMEM; 1405 1406 meson_chip->nsels = nsels; 1407 1408 for (i = 0; i < nsels; i++) { 1409 ret = of_property_read_u32_index(np, "reg", i, &tmp); 1410 if (ret) { 1411 dev_err(dev, "could not retrieve register property: %d\n", 1412 ret); 1413 return ret; 1414 } 1415 1416 if (test_and_set_bit(tmp, &nfc->assigned_cs)) { 1417 dev_err(dev, "CS %d already assigned\n", tmp); 1418 return -EINVAL; 1419 } 1420 } 1421 1422 nand = &meson_chip->nand; 1423 nand->controller = &nfc->controller; 1424 nand->controller->ops = &meson_nand_controller_ops; 1425 nand_set_flash_node(nand, np); 1426 nand_set_controller_data(nand, nfc); 1427 1428 nand->options |= NAND_USES_DMA; 1429 mtd = nand_to_mtd(nand); 1430 mtd->owner = THIS_MODULE; 1431 mtd->dev.parent = dev; 1432 1433 ret = of_property_read_u32(np, "nand-rb", &nand_rb_val); 1434 if (ret == -EINVAL) 1435 nfc->no_rb_pin = true; 1436 else if (ret) 1437 return ret; 1438 1439 if (nand_rb_val) 1440 return -EINVAL; 1441 1442 ret = nand_scan(nand, nsels); 1443 if (ret) 1444 return ret; 1445 1446 if (nand->options & NAND_IS_BOOT_MEDIUM) { 1447 ret = of_property_read_u32(np, "amlogic,boot-pages", 1448 &meson_chip->boot_pages); 1449 if (ret) { 1450 dev_err(dev, "could not retrieve 'amlogic,boot-pages' property: %d", 1451 ret); 1452 nand_cleanup(nand); 1453 return ret; 1454 } 1455 1456 ret = of_property_read_u32(np, "amlogic,boot-page-step", 1457 &meson_chip->boot_page_step); 1458 if (ret) { 1459 dev_err(dev, "could not retrieve 'amlogic,boot-page-step' property: %d", 1460 ret); 1461 nand_cleanup(nand); 1462 return ret; 1463 } 1464 } 1465 1466 ret = mtd_device_register(mtd, NULL, 0); 1467 if (ret) { 1468 dev_err(dev, "failed to register MTD device: %d\n", ret); 1469 nand_cleanup(nand); 1470 return ret; 1471 } 1472 1473 list_add_tail(&meson_chip->node, &nfc->chips); 1474 1475 return 0; 1476 } 1477 1478 static void meson_nfc_nand_chips_cleanup(struct meson_nfc *nfc) 1479 { 1480 struct meson_nfc_nand_chip *meson_chip; 1481 struct mtd_info *mtd; 1482 1483 while (!list_empty(&nfc->chips)) { 1484 meson_chip = list_first_entry(&nfc->chips, 1485 struct meson_nfc_nand_chip, node); 1486 mtd = nand_to_mtd(&meson_chip->nand); 1487 WARN_ON(mtd_device_unregister(mtd)); 1488 1489 nand_cleanup(&meson_chip->nand); 1490 list_del(&meson_chip->node); 1491 } 1492 } 1493 1494 static int meson_nfc_nand_chips_init(struct device *dev, 1495 struct meson_nfc *nfc) 1496 { 1497 struct device_node *np = dev->of_node; 1498 int ret; 1499 1500 for_each_child_of_node_scoped(np, nand_np) { 1501 ret = meson_nfc_nand_chip_init(dev, nfc, nand_np); 1502 if (ret) { 1503 meson_nfc_nand_chips_cleanup(nfc); 1504 return ret; 1505 } 1506 } 1507 1508 return 0; 1509 } 1510 1511 static irqreturn_t meson_nfc_irq(int irq, void *id) 1512 { 1513 struct meson_nfc *nfc = id; 1514 u32 cfg; 1515 1516 cfg = readl(nfc->reg_base + NFC_REG_CFG); 1517 if (!(cfg & NFC_RB_IRQ_EN)) 1518 return IRQ_NONE; 1519 1520 cfg &= ~(NFC_RB_IRQ_EN); 1521 writel(cfg, nfc->reg_base + NFC_REG_CFG); 1522 1523 complete(&nfc->completion); 1524 return IRQ_HANDLED; 1525 } 1526 1527 static const struct meson_nfc_data meson_gxl_data = { 1528 .ecc_caps = &meson_gxl_ecc_caps, 1529 }; 1530 1531 static const struct meson_nfc_data meson_axg_data = { 1532 .ecc_caps = &meson_axg_ecc_caps, 1533 }; 1534 1535 static const struct of_device_id meson_nfc_id_table[] = { 1536 { 1537 .compatible = "amlogic,meson-gxl-nfc", 1538 .data = &meson_gxl_data, 1539 }, { 1540 .compatible = "amlogic,meson-axg-nfc", 1541 .data = &meson_axg_data, 1542 }, 1543 {} 1544 }; 1545 MODULE_DEVICE_TABLE(of, meson_nfc_id_table); 1546 1547 static int meson_nfc_probe(struct platform_device *pdev) 1548 { 1549 struct device *dev = &pdev->dev; 1550 struct meson_nfc *nfc; 1551 int ret, irq; 1552 1553 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1554 if (!nfc) 1555 return -ENOMEM; 1556 1557 nfc->data = of_device_get_match_data(&pdev->dev); 1558 if (!nfc->data) 1559 return -ENODEV; 1560 1561 nand_controller_init(&nfc->controller); 1562 INIT_LIST_HEAD(&nfc->chips); 1563 init_completion(&nfc->completion); 1564 1565 nfc->dev = dev; 1566 1567 nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc"); 1568 if (IS_ERR(nfc->reg_base)) 1569 return PTR_ERR(nfc->reg_base); 1570 1571 nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc"); 1572 if (IS_ERR(nfc->reg_clk)) 1573 return PTR_ERR(nfc->reg_clk); 1574 1575 irq = platform_get_irq(pdev, 0); 1576 if (irq < 0) 1577 return -EINVAL; 1578 1579 ret = meson_nfc_clk_init(nfc); 1580 if (ret) { 1581 dev_err(dev, "failed to initialize NAND clock\n"); 1582 return ret; 1583 } 1584 1585 writel(0, nfc->reg_base + NFC_REG_CFG); 1586 ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc); 1587 if (ret) { 1588 dev_err(dev, "failed to request NFC IRQ\n"); 1589 ret = -EINVAL; 1590 goto err_clk; 1591 } 1592 1593 ret = dma_set_mask(dev, DMA_BIT_MASK(32)); 1594 if (ret) { 1595 dev_err(dev, "failed to set DMA mask\n"); 1596 goto err_clk; 1597 } 1598 1599 platform_set_drvdata(pdev, nfc); 1600 1601 ret = meson_nfc_nand_chips_init(dev, nfc); 1602 if (ret) { 1603 dev_err(dev, "failed to init NAND chips\n"); 1604 goto err_clk; 1605 } 1606 1607 return 0; 1608 err_clk: 1609 meson_nfc_disable_clk(nfc); 1610 return ret; 1611 } 1612 1613 static void meson_nfc_remove(struct platform_device *pdev) 1614 { 1615 struct meson_nfc *nfc = platform_get_drvdata(pdev); 1616 1617 meson_nfc_nand_chips_cleanup(nfc); 1618 1619 meson_nfc_disable_clk(nfc); 1620 } 1621 1622 static struct platform_driver meson_nfc_driver = { 1623 .probe = meson_nfc_probe, 1624 .remove_new = meson_nfc_remove, 1625 .driver = { 1626 .name = "meson-nand", 1627 .of_match_table = meson_nfc_id_table, 1628 }, 1629 }; 1630 module_platform_driver(meson_nfc_driver); 1631 1632 MODULE_LICENSE("Dual MIT/GPL"); 1633 MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>"); 1634 MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver"); 1635