1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) 118 #define GENCONF_CLK_GATING_CTRL 0x220 119 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 120 #define GENCONF_ND_CLK_CTRL 0x700 121 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 122 123 /* NAND controller data flash control register */ 124 #define NDCR 0x00 125 #define NDCR_ALL_INT GENMASK(11, 0) 126 #define NDCR_CS1_CMDDM BIT(7) 127 #define NDCR_CS0_CMDDM BIT(8) 128 #define NDCR_RDYM BIT(11) 129 #define NDCR_ND_ARB_EN BIT(12) 130 #define NDCR_RA_START BIT(15) 131 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 132 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 133 #define NDCR_DWIDTH_M BIT(26) 134 #define NDCR_DWIDTH_C BIT(27) 135 #define NDCR_ND_RUN BIT(28) 136 #define NDCR_DMA_EN BIT(29) 137 #define NDCR_ECC_EN BIT(30) 138 #define NDCR_SPARE_EN BIT(31) 139 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 140 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 141 142 /* NAND interface timing parameter 0 register */ 143 #define NDTR0 0x04 144 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 145 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 146 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 147 #define NDTR0_SEL_NRE_EDGE BIT(7) 148 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 149 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 150 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 151 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 152 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 153 #define NDTR0_SELCNTR BIT(26) 154 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 155 156 /* NAND interface timing parameter 1 register */ 157 #define NDTR1 0x0C 158 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 159 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 160 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 161 #define NDTR1_PRESCALE BIT(14) 162 #define NDTR1_WAIT_MODE BIT(15) 163 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 164 165 /* NAND controller status register */ 166 #define NDSR 0x14 167 #define NDSR_WRCMDREQ BIT(0) 168 #define NDSR_RDDREQ BIT(1) 169 #define NDSR_WRDREQ BIT(2) 170 #define NDSR_CORERR BIT(3) 171 #define NDSR_UNCERR BIT(4) 172 #define NDSR_CMDD(cs) BIT(8 - cs) 173 #define NDSR_RDY(rb) BIT(11 + rb) 174 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 175 176 /* NAND ECC control register */ 177 #define NDECCCTRL 0x28 178 #define NDECCCTRL_BCH_EN BIT(0) 179 180 /* NAND controller data buffer register */ 181 #define NDDB 0x40 182 183 /* NAND controller command buffer 0 register */ 184 #define NDCB0 0x48 185 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 186 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 187 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 188 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 189 #define NDCB0_DBC BIT(19) 190 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 191 #define NDCB0_CSEL BIT(24) 192 #define NDCB0_RDY_BYP BIT(27) 193 #define NDCB0_LEN_OVRD BIT(28) 194 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 195 196 /* NAND controller command buffer 1 register */ 197 #define NDCB1 0x4C 198 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 199 #define NDCB1_ADDRS_PAGE(x) (x << 16) 200 201 /* NAND controller command buffer 2 register */ 202 #define NDCB2 0x50 203 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 204 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 205 206 /* NAND controller command buffer 3 register */ 207 #define NDCB3 0x54 208 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 209 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 210 211 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 212 #define TYPE_READ 0 213 #define TYPE_WRITE 1 214 #define TYPE_ERASE 2 215 #define TYPE_READ_ID 3 216 #define TYPE_STATUS 4 217 #define TYPE_RESET 5 218 #define TYPE_NAKED_CMD 6 219 #define TYPE_NAKED_ADDR 7 220 #define TYPE_MASK 7 221 #define XTYPE_MONOLITHIC_RW 0 222 #define XTYPE_LAST_NAKED_RW 1 223 #define XTYPE_FINAL_COMMAND 3 224 #define XTYPE_READ 4 225 #define XTYPE_WRITE_DISPATCH 4 226 #define XTYPE_NAKED_RW 5 227 #define XTYPE_COMMAND_DISPATCH 6 228 #define XTYPE_MASK 7 229 230 /** 231 * struct marvell_hw_ecc_layout - layout of Marvell ECC 232 * 233 * Marvell ECC engine works differently than the others, in order to limit the 234 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 235 * per subpage, and depending on a the desired strength needed by the NAND chip, 236 * a particular layout mixing data/spare/ecc is defined, with a possible last 237 * chunk smaller that the others. 238 * 239 * @writesize: Full page size on which the layout applies 240 * @chunk: Desired ECC chunk size on which the layout applies 241 * @strength: Desired ECC strength (per chunk size bytes) on which the 242 * layout applies 243 * @nchunks: Total number of chunks 244 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 245 * repetitions of the pattern: 246 * (data_bytes + spare_bytes + ecc_bytes). 247 * @data_bytes: Number of data bytes per chunk 248 * @spare_bytes: Number of spare bytes per chunk 249 * @ecc_bytes: Number of ecc bytes per chunk 250 * @last_data_bytes: Number of data bytes in the last chunk 251 * @last_spare_bytes: Number of spare bytes in the last chunk 252 * @last_ecc_bytes: Number of ecc bytes in the last chunk 253 */ 254 struct marvell_hw_ecc_layout { 255 /* Constraints */ 256 int writesize; 257 int chunk; 258 int strength; 259 /* Corresponding layout */ 260 int nchunks; 261 int full_chunk_cnt; 262 int data_bytes; 263 int spare_bytes; 264 int ecc_bytes; 265 int last_data_bytes; 266 int last_spare_bytes; 267 int last_ecc_bytes; 268 }; 269 270 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 271 { \ 272 .writesize = ws, \ 273 .chunk = dc, \ 274 .strength = ds, \ 275 .nchunks = nc, \ 276 .full_chunk_cnt = fcc, \ 277 .data_bytes = db, \ 278 .spare_bytes = sb, \ 279 .ecc_bytes = eb, \ 280 .last_data_bytes = ldb, \ 281 .last_spare_bytes = lsb, \ 282 .last_ecc_bytes = leb, \ 283 } 284 285 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 286 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 287 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 288 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 290 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 291 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 292 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 293 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 294 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 295 }; 296 297 /** 298 * struct marvell_nand_chip_sel - CS line description 299 * 300 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 301 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 302 * The datasheet describes the logic with an error: ADDR5 field is once 303 * declared at the beginning of NDCB2, and another time at its end. Because the 304 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 305 * to use the last bit of this field instead of the first ones. 306 * 307 * @cs: Wanted CE lane. 308 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 309 * selecting the wanted CE lane. This is set once when 310 * the Device Tree is probed. 311 * @rb: Ready/Busy pin for the flash chip 312 */ 313 struct marvell_nand_chip_sel { 314 unsigned int cs; 315 u32 ndcb0_csel; 316 unsigned int rb; 317 }; 318 319 /** 320 * struct marvell_nand_chip - stores NAND chip device related information 321 * 322 * @chip: Base NAND chip structure 323 * @node: Used to store NAND chips into a list 324 * @layout: NAND layout when using hardware ECC 325 * @ndcr: Controller register value for this NAND chip 326 * @ndtr0: Timing registers 0 value for this NAND chip 327 * @ndtr1: Timing registers 1 value for this NAND chip 328 * @addr_cyc: Amount of cycles needed to pass column address 329 * @selected_die: Current active CS 330 * @nsels: Number of CS lines required by the NAND chip 331 * @sels: Array of CS lines descriptions 332 */ 333 struct marvell_nand_chip { 334 struct nand_chip chip; 335 struct list_head node; 336 const struct marvell_hw_ecc_layout *layout; 337 u32 ndcr; 338 u32 ndtr0; 339 u32 ndtr1; 340 int addr_cyc; 341 int selected_die; 342 unsigned int nsels; 343 struct marvell_nand_chip_sel sels[]; 344 }; 345 346 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 347 { 348 return container_of(chip, struct marvell_nand_chip, chip); 349 } 350 351 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 352 *nand) 353 { 354 return &nand->sels[nand->selected_die]; 355 } 356 357 /** 358 * struct marvell_nfc_caps - NAND controller capabilities for distinction 359 * between compatible strings 360 * 361 * @max_cs_nb: Number of Chip Select lines available 362 * @max_rb_nb: Number of Ready/Busy lines available 363 * @need_system_controller: Indicates if the SoC needs to have access to the 364 * system controller (ie. to enable the NAND controller) 365 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 366 * fashion way 367 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 368 * BCH error detection and correction algorithm, 369 * NDCB3 register has been added 370 * @use_dma: Use dma for data transfers 371 */ 372 struct marvell_nfc_caps { 373 unsigned int max_cs_nb; 374 unsigned int max_rb_nb; 375 bool need_system_controller; 376 bool legacy_of_bindings; 377 bool is_nfcv2; 378 bool use_dma; 379 }; 380 381 /** 382 * struct marvell_nfc - stores Marvell NAND controller information 383 * 384 * @controller: Base controller structure 385 * @dev: Parent device (used to print error messages) 386 * @regs: NAND controller registers 387 * @core_clk: Core clock 388 * @reg_clk: Registers clock 389 * @complete: Completion object to wait for NAND controller events 390 * @assigned_cs: Bitmask describing already assigned CS lines 391 * @chips: List containing all the NAND chips attached to 392 * this NAND controller 393 * @selected_chip: Currently selected target chip 394 * @caps: NAND controller capabilities for each compatible string 395 * @use_dma: Whetner DMA is used 396 * @dma_chan: DMA channel (NFCv1 only) 397 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 398 */ 399 struct marvell_nfc { 400 struct nand_controller controller; 401 struct device *dev; 402 void __iomem *regs; 403 struct clk *core_clk; 404 struct clk *reg_clk; 405 struct completion complete; 406 unsigned long assigned_cs; 407 struct list_head chips; 408 struct nand_chip *selected_chip; 409 const struct marvell_nfc_caps *caps; 410 411 /* DMA (NFCv1 only) */ 412 bool use_dma; 413 struct dma_chan *dma_chan; 414 u8 *dma_buf; 415 }; 416 417 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 418 { 419 return container_of(ctrl, struct marvell_nfc, controller); 420 } 421 422 /** 423 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 424 * Controller clock cycles 425 * 426 * @tRP: ND_nRE pulse width 427 * @tRH: ND_nRE high duration 428 * @tWP: ND_nWE pulse time 429 * @tWH: ND_nWE high duration 430 * @tCS: Enable signal setup time 431 * @tCH: Enable signal hold time 432 * @tADL: Address to write data delay 433 * @tAR: ND_ALE low to ND_nRE low delay 434 * @tWHR: ND_nWE high to ND_nRE low for status read 435 * @tRHW: ND_nRE high duration, read to write delay 436 * @tR: ND_nWE high to ND_nRE low for read 437 */ 438 struct marvell_nfc_timings { 439 /* NDTR0 fields */ 440 unsigned int tRP; 441 unsigned int tRH; 442 unsigned int tWP; 443 unsigned int tWH; 444 unsigned int tCS; 445 unsigned int tCH; 446 unsigned int tADL; 447 /* NDTR1 fields */ 448 unsigned int tAR; 449 unsigned int tWHR; 450 unsigned int tRHW; 451 unsigned int tR; 452 }; 453 454 /** 455 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 456 * 457 * @ps: Duration in pico-seconds 458 * @period_ns: Clock period in nano-seconds 459 * 460 * Convert the duration in nano-seconds, then divide by the period and 461 * return the number of clock periods. 462 */ 463 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 464 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 465 period_ns)) 466 467 /** 468 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 469 * subop subset of instructions. 470 * 471 * @ndcb: Array of values written to NDCBx registers 472 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 473 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 474 * @rdy_delay_ns: Optional delay after waiting for the RB pin 475 * @data_delay_ns: Optional delay after the data xfer 476 * @data_instr_idx: Index of the data instruction in the subop 477 * @data_instr: Pointer to the data instruction in the subop 478 */ 479 struct marvell_nfc_op { 480 u32 ndcb[4]; 481 unsigned int cle_ale_delay_ns; 482 unsigned int rdy_timeout_ms; 483 unsigned int rdy_delay_ns; 484 unsigned int data_delay_ns; 485 unsigned int data_instr_idx; 486 const struct nand_op_instr *data_instr; 487 }; 488 489 /* 490 * Internal helper to conditionnally apply a delay (from the above structure, 491 * most of the time). 492 */ 493 static void cond_delay(unsigned int ns) 494 { 495 if (!ns) 496 return; 497 498 if (ns < 10000) 499 ndelay(ns); 500 else 501 udelay(DIV_ROUND_UP(ns, 1000)); 502 } 503 504 /* 505 * The controller has many flags that could generate interrupts, most of them 506 * are disabled and polling is used. For the very slow signals, using interrupts 507 * may relax the CPU charge. 508 */ 509 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 510 { 511 u32 reg; 512 513 /* Writing 1 disables the interrupt */ 514 reg = readl_relaxed(nfc->regs + NDCR); 515 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 516 } 517 518 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 519 { 520 u32 reg; 521 522 /* Writing 0 enables the interrupt */ 523 reg = readl_relaxed(nfc->regs + NDCR); 524 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 525 } 526 527 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 528 { 529 u32 reg; 530 531 reg = readl_relaxed(nfc->regs + NDSR); 532 writel_relaxed(int_mask, nfc->regs + NDSR); 533 534 return reg & int_mask; 535 } 536 537 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 538 bool force_8bit) 539 { 540 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 541 u32 ndcr; 542 543 /* 544 * Callers of this function do not verify if the NAND is using a 16-bit 545 * an 8-bit bus for normal operations, so we need to take care of that 546 * here by leaving the configuration unchanged if the NAND does not have 547 * the NAND_BUSWIDTH_16 flag set. 548 */ 549 if (!(chip->options & NAND_BUSWIDTH_16)) 550 return; 551 552 ndcr = readl_relaxed(nfc->regs + NDCR); 553 554 if (force_8bit) 555 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 556 else 557 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 558 559 writel_relaxed(ndcr, nfc->regs + NDCR); 560 } 561 562 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 563 { 564 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 565 u32 val; 566 int ret; 567 568 /* 569 * The command is being processed, wait for the ND_RUN bit to be 570 * cleared by the NFC. If not, we must clear it by hand. 571 */ 572 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 573 (val & NDCR_ND_RUN) == 0, 574 POLL_PERIOD, POLL_TIMEOUT); 575 if (ret) { 576 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 577 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 578 nfc->regs + NDCR); 579 return ret; 580 } 581 582 return 0; 583 } 584 585 /* 586 * Any time a command has to be sent to the controller, the following sequence 587 * has to be followed: 588 * - call marvell_nfc_prepare_cmd() 589 * -> activate the ND_RUN bit that will kind of 'start a job' 590 * -> wait the signal indicating the NFC is waiting for a command 591 * - send the command (cmd and address cycles) 592 * - enventually send or receive the data 593 * - call marvell_nfc_end_cmd() with the corresponding flag 594 * -> wait the flag to be triggered or cancel the job with a timeout 595 * 596 * The following helpers are here to factorize the code a bit so that 597 * specialized functions responsible for executing the actual NAND 598 * operations do not have to replicate the same code blocks. 599 */ 600 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 601 { 602 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 603 u32 ndcr, val; 604 int ret; 605 606 /* Poll ND_RUN and clear NDSR before issuing any command */ 607 ret = marvell_nfc_wait_ndrun(chip); 608 if (ret) { 609 dev_err(nfc->dev, "Last operation did not succeed\n"); 610 return ret; 611 } 612 613 ndcr = readl_relaxed(nfc->regs + NDCR); 614 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 615 616 /* Assert ND_RUN bit and wait the NFC to be ready */ 617 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 618 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 619 val & NDSR_WRCMDREQ, 620 POLL_PERIOD, POLL_TIMEOUT); 621 if (ret) { 622 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 623 return -ETIMEDOUT; 624 } 625 626 /* Command may be written, clear WRCMDREQ status bit */ 627 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 628 629 return 0; 630 } 631 632 static void marvell_nfc_send_cmd(struct nand_chip *chip, 633 struct marvell_nfc_op *nfc_op) 634 { 635 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 636 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 637 638 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 639 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 640 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 641 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 642 643 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 644 nfc->regs + NDCB0); 645 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 646 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 647 648 /* 649 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 650 * fields are used (only available on NFCv2). 651 */ 652 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 653 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 654 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 655 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 656 } 657 } 658 659 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 660 const char *label) 661 { 662 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 663 u32 val; 664 int ret; 665 666 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 667 val & flag, 668 POLL_PERIOD, POLL_TIMEOUT); 669 670 if (ret) { 671 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 672 label, val); 673 if (nfc->dma_chan) 674 dmaengine_terminate_all(nfc->dma_chan); 675 return ret; 676 } 677 678 /* 679 * DMA function uses this helper to poll on CMDD bits without wanting 680 * them to be cleared. 681 */ 682 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 683 return 0; 684 685 writel_relaxed(flag, nfc->regs + NDSR); 686 687 return 0; 688 } 689 690 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 691 { 692 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 693 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 694 695 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 696 } 697 698 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 699 u32 expected_val, unsigned long timeout_ms) 700 { 701 unsigned long limit; 702 u32 st; 703 704 limit = jiffies + msecs_to_jiffies(timeout_ms); 705 do { 706 st = readl_relaxed(nfc->regs + NDSR); 707 if (st & NDSR_RDY(1)) 708 st |= NDSR_RDY(0); 709 710 if ((st & mask) == expected_val) 711 return 0; 712 713 cpu_relax(); 714 } while (time_after(limit, jiffies)); 715 716 return -ETIMEDOUT; 717 } 718 719 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 720 { 721 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 722 struct mtd_info *mtd = nand_to_mtd(chip); 723 u32 pending; 724 int ret; 725 726 /* Timeout is expressed in ms */ 727 if (!timeout_ms) 728 timeout_ms = IRQ_TIMEOUT; 729 730 if (mtd->oops_panic_write) { 731 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 732 NDSR_RDY(0), 733 timeout_ms); 734 } else { 735 init_completion(&nfc->complete); 736 737 marvell_nfc_enable_int(nfc, NDCR_RDYM); 738 ret = wait_for_completion_timeout(&nfc->complete, 739 msecs_to_jiffies(timeout_ms)); 740 marvell_nfc_disable_int(nfc, NDCR_RDYM); 741 } 742 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 743 744 /* 745 * In case the interrupt was not served in the required time frame, 746 * check if the ISR was not served or if something went actually wrong. 747 */ 748 if (!ret && !pending) { 749 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 750 return -ETIMEDOUT; 751 } 752 753 return 0; 754 } 755 756 static void marvell_nfc_select_target(struct nand_chip *chip, 757 unsigned int die_nr) 758 { 759 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 760 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 761 u32 ndcr_generic; 762 763 /* 764 * Reset the NDCR register to a clean state for this particular chip, 765 * also clear ND_RUN bit. 766 */ 767 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 768 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 769 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 770 771 /* Also reset the interrupt status register */ 772 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 773 774 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 775 return; 776 777 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 778 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 779 780 nfc->selected_chip = chip; 781 marvell_nand->selected_die = die_nr; 782 } 783 784 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 785 { 786 struct marvell_nfc *nfc = dev_id; 787 u32 st = readl_relaxed(nfc->regs + NDSR); 788 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 789 790 /* 791 * RDY interrupt mask is one bit in NDCR while there are two status 792 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 793 */ 794 if (st & NDSR_RDY(1)) 795 st |= NDSR_RDY(0); 796 797 if (!(st & ien)) 798 return IRQ_NONE; 799 800 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 801 802 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 803 complete(&nfc->complete); 804 805 return IRQ_HANDLED; 806 } 807 808 /* HW ECC related functions */ 809 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 810 { 811 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 812 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 813 814 if (!(ndcr & NDCR_ECC_EN)) { 815 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 816 817 /* 818 * When enabling BCH, set threshold to 0 to always know the 819 * number of corrected bitflips. 820 */ 821 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 822 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 823 } 824 } 825 826 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 827 { 828 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 829 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 830 831 if (ndcr & NDCR_ECC_EN) { 832 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 833 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 834 writel_relaxed(0, nfc->regs + NDECCCTRL); 835 } 836 } 837 838 /* DMA related helpers */ 839 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 840 { 841 u32 reg; 842 843 reg = readl_relaxed(nfc->regs + NDCR); 844 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 845 } 846 847 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 848 { 849 u32 reg; 850 851 reg = readl_relaxed(nfc->regs + NDCR); 852 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 853 } 854 855 /* Read/write PIO/DMA accessors */ 856 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 857 enum dma_data_direction direction, 858 unsigned int len) 859 { 860 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 861 struct dma_async_tx_descriptor *tx; 862 struct scatterlist sg; 863 dma_cookie_t cookie; 864 int ret; 865 866 marvell_nfc_enable_dma(nfc); 867 /* Prepare the DMA transfer */ 868 sg_init_one(&sg, nfc->dma_buf, dma_len); 869 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 870 if (!ret) { 871 dev_err(nfc->dev, "Could not map DMA S/G list\n"); 872 return -ENXIO; 873 } 874 875 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 876 direction == DMA_FROM_DEVICE ? 877 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 878 DMA_PREP_INTERRUPT); 879 if (!tx) { 880 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 881 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 882 return -ENXIO; 883 } 884 885 /* Do the task and wait for it to finish */ 886 cookie = dmaengine_submit(tx); 887 ret = dma_submit_error(cookie); 888 if (ret) 889 return -EIO; 890 891 dma_async_issue_pending(nfc->dma_chan); 892 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 893 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 894 marvell_nfc_disable_dma(nfc); 895 if (ret) { 896 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 897 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 898 dmaengine_terminate_all(nfc->dma_chan); 899 return -ETIMEDOUT; 900 } 901 902 return 0; 903 } 904 905 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 906 unsigned int len) 907 { 908 unsigned int last_len = len % FIFO_DEPTH; 909 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 910 int i; 911 912 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 913 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 914 915 if (last_len) { 916 u8 tmp_buf[FIFO_DEPTH]; 917 918 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 919 memcpy(in + last_full_offset, tmp_buf, last_len); 920 } 921 922 return 0; 923 } 924 925 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 926 unsigned int len) 927 { 928 unsigned int last_len = len % FIFO_DEPTH; 929 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 930 int i; 931 932 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 933 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 934 935 if (last_len) { 936 u8 tmp_buf[FIFO_DEPTH]; 937 938 memcpy(tmp_buf, out + last_full_offset, last_len); 939 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 940 } 941 942 return 0; 943 } 944 945 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 946 u8 *data, int data_len, 947 u8 *spare, int spare_len, 948 u8 *ecc, int ecc_len, 949 unsigned int *max_bitflips) 950 { 951 struct mtd_info *mtd = nand_to_mtd(chip); 952 int bf; 953 954 /* 955 * Blank pages (all 0xFF) that have not been written may be recognized 956 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 957 * check if the entire page (with ECC bytes) is actually blank or not. 958 */ 959 if (!data) 960 data_len = 0; 961 if (!spare) 962 spare_len = 0; 963 if (!ecc) 964 ecc_len = 0; 965 966 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 967 spare, spare_len, chip->ecc.strength); 968 if (bf < 0) { 969 mtd->ecc_stats.failed++; 970 return; 971 } 972 973 /* Update the stats and max_bitflips */ 974 mtd->ecc_stats.corrected += bf; 975 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 976 } 977 978 /* 979 * Check if a chunk is correct or not according to the hardware ECC engine. 980 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 981 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 982 * value indicating that a check on the emptyness of the subpage must be 983 * performed before actually declaring the subpage as "corrupted". 984 */ 985 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 986 unsigned int *max_bitflips) 987 { 988 struct mtd_info *mtd = nand_to_mtd(chip); 989 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 990 int bf = 0; 991 u32 ndsr; 992 993 ndsr = readl_relaxed(nfc->regs + NDSR); 994 995 /* Check uncorrectable error flag */ 996 if (ndsr & NDSR_UNCERR) { 997 writel_relaxed(ndsr, nfc->regs + NDSR); 998 999 /* 1000 * Do not increment ->ecc_stats.failed now, instead, return a 1001 * non-zero value to indicate that this chunk was apparently 1002 * bad, and it should be check to see if it empty or not. If 1003 * the chunk (with ECC bytes) is not declared empty, the calling 1004 * function must increment the failure count. 1005 */ 1006 return -EBADMSG; 1007 } 1008 1009 /* Check correctable error flag */ 1010 if (ndsr & NDSR_CORERR) { 1011 writel_relaxed(ndsr, nfc->regs + NDSR); 1012 1013 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1014 bf = NDSR_ERRCNT(ndsr); 1015 else 1016 bf = 1; 1017 } 1018 1019 /* Update the stats and max_bitflips */ 1020 mtd->ecc_stats.corrected += bf; 1021 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1022 1023 return 0; 1024 } 1025 1026 /* Hamming read helpers */ 1027 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1028 u8 *data_buf, u8 *oob_buf, 1029 bool raw, int page) 1030 { 1031 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1032 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1033 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1034 struct marvell_nfc_op nfc_op = { 1035 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1036 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1037 NDCB0_DBC | 1038 NDCB0_CMD1(NAND_CMD_READ0) | 1039 NDCB0_CMD2(NAND_CMD_READSTART), 1040 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1041 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1042 }; 1043 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1044 int ret; 1045 1046 /* NFCv2 needs more information about the operation being executed */ 1047 if (nfc->caps->is_nfcv2) 1048 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1049 1050 ret = marvell_nfc_prepare_cmd(chip); 1051 if (ret) 1052 return ret; 1053 1054 marvell_nfc_send_cmd(chip, &nfc_op); 1055 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1056 "RDDREQ while draining FIFO (data/oob)"); 1057 if (ret) 1058 return ret; 1059 1060 /* 1061 * Read the page then the OOB area. Unlike what is shown in current 1062 * documentation, spare bytes are protected by the ECC engine, and must 1063 * be at the beginning of the OOB area or running this driver on legacy 1064 * systems will prevent the discovery of the BBM/BBT. 1065 */ 1066 if (nfc->use_dma) { 1067 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1068 lt->data_bytes + oob_bytes); 1069 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1070 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1071 } else { 1072 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1073 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1074 } 1075 1076 ret = marvell_nfc_wait_cmdd(chip); 1077 return ret; 1078 } 1079 1080 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1081 int oob_required, int page) 1082 { 1083 marvell_nfc_select_target(chip, chip->cur_cs); 1084 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1085 true, page); 1086 } 1087 1088 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1089 int oob_required, int page) 1090 { 1091 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1092 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1093 int max_bitflips = 0, ret; 1094 u8 *raw_buf; 1095 1096 marvell_nfc_select_target(chip, chip->cur_cs); 1097 marvell_nfc_enable_hw_ecc(chip); 1098 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1099 page); 1100 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1101 marvell_nfc_disable_hw_ecc(chip); 1102 1103 if (!ret) 1104 return max_bitflips; 1105 1106 /* 1107 * When ECC failures are detected, check if the full page has been 1108 * written or not. Ignore the failure if it is actually empty. 1109 */ 1110 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1111 if (!raw_buf) 1112 return -ENOMEM; 1113 1114 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1115 lt->data_bytes, true, page); 1116 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1117 &max_bitflips); 1118 kfree(raw_buf); 1119 1120 return max_bitflips; 1121 } 1122 1123 /* 1124 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1125 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1126 * also stands for ->read_oob(). 1127 */ 1128 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1129 { 1130 u8 *buf = nand_get_data_buf(chip); 1131 1132 marvell_nfc_select_target(chip, chip->cur_cs); 1133 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1134 true, page); 1135 } 1136 1137 /* Hamming write helpers */ 1138 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1139 const u8 *data_buf, 1140 const u8 *oob_buf, bool raw, 1141 int page) 1142 { 1143 const struct nand_sdr_timings *sdr = 1144 nand_get_sdr_timings(nand_get_interface_config(chip)); 1145 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1146 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1147 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1148 struct marvell_nfc_op nfc_op = { 1149 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1150 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1151 NDCB0_CMD1(NAND_CMD_SEQIN) | 1152 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1153 NDCB0_DBC, 1154 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1155 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1156 }; 1157 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1158 int ret; 1159 1160 /* NFCv2 needs more information about the operation being executed */ 1161 if (nfc->caps->is_nfcv2) 1162 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1163 1164 ret = marvell_nfc_prepare_cmd(chip); 1165 if (ret) 1166 return ret; 1167 1168 marvell_nfc_send_cmd(chip, &nfc_op); 1169 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1170 "WRDREQ while loading FIFO (data)"); 1171 if (ret) 1172 return ret; 1173 1174 /* Write the page then the OOB area */ 1175 if (nfc->use_dma) { 1176 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1177 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1178 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1179 lt->ecc_bytes + lt->spare_bytes); 1180 } else { 1181 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1182 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1183 } 1184 1185 ret = marvell_nfc_wait_cmdd(chip); 1186 if (ret) 1187 return ret; 1188 1189 ret = marvell_nfc_wait_op(chip, 1190 PSEC_TO_MSEC(sdr->tPROG_max)); 1191 return ret; 1192 } 1193 1194 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1195 const u8 *buf, 1196 int oob_required, int page) 1197 { 1198 marvell_nfc_select_target(chip, chip->cur_cs); 1199 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1200 true, page); 1201 } 1202 1203 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1204 const u8 *buf, 1205 int oob_required, int page) 1206 { 1207 int ret; 1208 1209 marvell_nfc_select_target(chip, chip->cur_cs); 1210 marvell_nfc_enable_hw_ecc(chip); 1211 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1212 false, page); 1213 marvell_nfc_disable_hw_ecc(chip); 1214 1215 return ret; 1216 } 1217 1218 /* 1219 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1220 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1221 * also stands for ->write_oob(). 1222 */ 1223 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1224 int page) 1225 { 1226 struct mtd_info *mtd = nand_to_mtd(chip); 1227 u8 *buf = nand_get_data_buf(chip); 1228 1229 memset(buf, 0xFF, mtd->writesize); 1230 1231 marvell_nfc_select_target(chip, chip->cur_cs); 1232 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1233 true, page); 1234 } 1235 1236 /* BCH read helpers */ 1237 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1238 int oob_required, int page) 1239 { 1240 struct mtd_info *mtd = nand_to_mtd(chip); 1241 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1242 u8 *oob = chip->oob_poi; 1243 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1244 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1245 lt->last_spare_bytes; 1246 int data_len = lt->data_bytes; 1247 int spare_len = lt->spare_bytes; 1248 int ecc_len = lt->ecc_bytes; 1249 int chunk; 1250 1251 marvell_nfc_select_target(chip, chip->cur_cs); 1252 1253 if (oob_required) 1254 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1255 1256 nand_read_page_op(chip, page, 0, NULL, 0); 1257 1258 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1259 /* Update last chunk length */ 1260 if (chunk >= lt->full_chunk_cnt) { 1261 data_len = lt->last_data_bytes; 1262 spare_len = lt->last_spare_bytes; 1263 ecc_len = lt->last_ecc_bytes; 1264 } 1265 1266 /* Read data bytes*/ 1267 nand_change_read_column_op(chip, chunk * chunk_size, 1268 buf + (lt->data_bytes * chunk), 1269 data_len, false); 1270 1271 /* Read spare bytes */ 1272 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1273 spare_len, false, false); 1274 1275 /* Read ECC bytes */ 1276 nand_read_data_op(chip, oob + ecc_offset + 1277 (ALIGN(lt->ecc_bytes, 32) * chunk), 1278 ecc_len, false, false); 1279 } 1280 1281 return 0; 1282 } 1283 1284 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1285 u8 *data, unsigned int data_len, 1286 u8 *spare, unsigned int spare_len, 1287 int page) 1288 { 1289 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1290 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1291 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1292 int i, ret; 1293 struct marvell_nfc_op nfc_op = { 1294 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1295 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1296 NDCB0_LEN_OVRD, 1297 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1298 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1299 .ndcb[3] = data_len + spare_len, 1300 }; 1301 1302 ret = marvell_nfc_prepare_cmd(chip); 1303 if (ret) 1304 return; 1305 1306 if (chunk == 0) 1307 nfc_op.ndcb[0] |= NDCB0_DBC | 1308 NDCB0_CMD1(NAND_CMD_READ0) | 1309 NDCB0_CMD2(NAND_CMD_READSTART); 1310 1311 /* 1312 * Trigger the monolithic read on the first chunk, then naked read on 1313 * intermediate chunks and finally a last naked read on the last chunk. 1314 */ 1315 if (chunk == 0) 1316 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1317 else if (chunk < lt->nchunks - 1) 1318 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1319 else 1320 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1321 1322 marvell_nfc_send_cmd(chip, &nfc_op); 1323 1324 /* 1325 * According to the datasheet, when reading from NDDB 1326 * with BCH enabled, after each 32 bytes reads, we 1327 * have to make sure that the NDSR.RDDREQ bit is set. 1328 * 1329 * Drain the FIFO, 8 32-bit reads at a time, and skip 1330 * the polling on the last read. 1331 * 1332 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1333 */ 1334 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1335 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1336 "RDDREQ while draining FIFO (data)"); 1337 marvell_nfc_xfer_data_in_pio(nfc, data, 1338 FIFO_DEPTH * BCH_SEQ_READS); 1339 data += FIFO_DEPTH * BCH_SEQ_READS; 1340 } 1341 1342 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1343 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1344 "RDDREQ while draining FIFO (OOB)"); 1345 marvell_nfc_xfer_data_in_pio(nfc, spare, 1346 FIFO_DEPTH * BCH_SEQ_READS); 1347 spare += FIFO_DEPTH * BCH_SEQ_READS; 1348 } 1349 } 1350 1351 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1352 u8 *buf, int oob_required, 1353 int page) 1354 { 1355 struct mtd_info *mtd = nand_to_mtd(chip); 1356 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1357 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1358 u8 *data = buf, *spare = chip->oob_poi; 1359 int max_bitflips = 0; 1360 u32 failure_mask = 0; 1361 int chunk, ret; 1362 1363 marvell_nfc_select_target(chip, chip->cur_cs); 1364 1365 /* 1366 * With BCH, OOB is not fully used (and thus not read entirely), not 1367 * expected bytes could show up at the end of the OOB buffer if not 1368 * explicitly erased. 1369 */ 1370 if (oob_required) 1371 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1372 1373 marvell_nfc_enable_hw_ecc(chip); 1374 1375 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1376 /* Update length for the last chunk */ 1377 if (chunk >= lt->full_chunk_cnt) { 1378 data_len = lt->last_data_bytes; 1379 spare_len = lt->last_spare_bytes; 1380 } 1381 1382 /* Read the chunk and detect number of bitflips */ 1383 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1384 spare, spare_len, page); 1385 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1386 if (ret) 1387 failure_mask |= BIT(chunk); 1388 1389 data += data_len; 1390 spare += spare_len; 1391 } 1392 1393 marvell_nfc_disable_hw_ecc(chip); 1394 1395 if (!failure_mask) 1396 return max_bitflips; 1397 1398 /* 1399 * Please note that dumping the ECC bytes during a normal read with OOB 1400 * area would add a significant overhead as ECC bytes are "consumed" by 1401 * the controller in normal mode and must be re-read in raw mode. To 1402 * avoid dropping the performances, we prefer not to include them. The 1403 * user should re-read the page in raw mode if ECC bytes are required. 1404 */ 1405 1406 /* 1407 * In case there is any subpage read error, we usually re-read only ECC 1408 * bytes in raw mode and check if the whole page is empty. In this case, 1409 * it is normal that the ECC check failed and we just ignore the error. 1410 * 1411 * However, it has been empirically observed that for some layouts (e.g 1412 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1413 * bits and may create itself bitflips in the erased area. To overcome 1414 * this strange behavior, the whole page is re-read in raw mode, not 1415 * only the ECC bytes. 1416 */ 1417 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1418 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1419 int data_off, spare_off, ecc_off; 1420 int data_len, spare_len, ecc_len; 1421 1422 /* No failure reported for this chunk, move to the next one */ 1423 if (!(failure_mask & BIT(chunk))) 1424 continue; 1425 1426 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1427 lt->ecc_bytes); 1428 spare_off_in_page = data_off_in_page + 1429 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1430 lt->last_data_bytes); 1431 ecc_off_in_page = spare_off_in_page + 1432 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1433 lt->last_spare_bytes); 1434 1435 data_off = chunk * lt->data_bytes; 1436 spare_off = chunk * lt->spare_bytes; 1437 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1438 lt->last_spare_bytes + 1439 (chunk * (lt->ecc_bytes + 2)); 1440 1441 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1442 lt->last_data_bytes; 1443 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1444 lt->last_spare_bytes; 1445 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1446 lt->last_ecc_bytes; 1447 1448 /* 1449 * Only re-read the ECC bytes, unless we are using the 2k/8b 1450 * layout which is buggy in the sense that the ECC engine will 1451 * try to correct data bytes anyway, creating bitflips. In this 1452 * case, re-read the entire page. 1453 */ 1454 if (lt->writesize == 2048 && lt->strength == 8) { 1455 nand_change_read_column_op(chip, data_off_in_page, 1456 buf + data_off, data_len, 1457 false); 1458 nand_change_read_column_op(chip, spare_off_in_page, 1459 chip->oob_poi + spare_off, spare_len, 1460 false); 1461 } 1462 1463 nand_change_read_column_op(chip, ecc_off_in_page, 1464 chip->oob_poi + ecc_off, ecc_len, 1465 false); 1466 1467 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1468 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1469 chip->oob_poi + spare_off, spare_len, 1470 chip->oob_poi + ecc_off, ecc_len, 1471 &max_bitflips); 1472 } 1473 1474 return max_bitflips; 1475 } 1476 1477 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1478 { 1479 u8 *buf = nand_get_data_buf(chip); 1480 1481 return chip->ecc.read_page_raw(chip, buf, true, page); 1482 } 1483 1484 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1485 { 1486 u8 *buf = nand_get_data_buf(chip); 1487 1488 return chip->ecc.read_page(chip, buf, true, page); 1489 } 1490 1491 /* BCH write helpers */ 1492 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1493 const u8 *buf, 1494 int oob_required, int page) 1495 { 1496 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1497 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1498 int data_len = lt->data_bytes; 1499 int spare_len = lt->spare_bytes; 1500 int ecc_len = lt->ecc_bytes; 1501 int spare_offset = 0; 1502 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1503 lt->last_spare_bytes; 1504 int chunk; 1505 1506 marvell_nfc_select_target(chip, chip->cur_cs); 1507 1508 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1509 1510 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1511 if (chunk >= lt->full_chunk_cnt) { 1512 data_len = lt->last_data_bytes; 1513 spare_len = lt->last_spare_bytes; 1514 ecc_len = lt->last_ecc_bytes; 1515 } 1516 1517 /* Point to the column of the next chunk */ 1518 nand_change_write_column_op(chip, chunk * full_chunk_size, 1519 NULL, 0, false); 1520 1521 /* Write the data */ 1522 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1523 data_len, false); 1524 1525 if (!oob_required) 1526 continue; 1527 1528 /* Write the spare bytes */ 1529 if (spare_len) 1530 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1531 spare_len, false); 1532 1533 /* Write the ECC bytes */ 1534 if (ecc_len) 1535 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1536 ecc_len, false); 1537 1538 spare_offset += spare_len; 1539 ecc_offset += ALIGN(ecc_len, 32); 1540 } 1541 1542 return nand_prog_page_end_op(chip); 1543 } 1544 1545 static int 1546 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1547 const u8 *data, unsigned int data_len, 1548 const u8 *spare, unsigned int spare_len, 1549 int page) 1550 { 1551 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1552 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1553 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1554 u32 xtype; 1555 int ret; 1556 struct marvell_nfc_op nfc_op = { 1557 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1558 .ndcb[3] = data_len + spare_len, 1559 }; 1560 1561 /* 1562 * First operation dispatches the CMD_SEQIN command, issue the address 1563 * cycles and asks for the first chunk of data. 1564 * All operations in the middle (if any) will issue a naked write and 1565 * also ask for data. 1566 * Last operation (if any) asks for the last chunk of data through a 1567 * last naked write. 1568 */ 1569 if (chunk == 0) { 1570 if (lt->nchunks == 1) 1571 xtype = XTYPE_MONOLITHIC_RW; 1572 else 1573 xtype = XTYPE_WRITE_DISPATCH; 1574 1575 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1576 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1577 NDCB0_CMD1(NAND_CMD_SEQIN); 1578 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1579 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1580 } else if (chunk < lt->nchunks - 1) { 1581 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1582 } else { 1583 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1584 } 1585 1586 /* Always dispatch the PAGEPROG command on the last chunk */ 1587 if (chunk == lt->nchunks - 1) 1588 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1589 1590 ret = marvell_nfc_prepare_cmd(chip); 1591 if (ret) 1592 return ret; 1593 1594 marvell_nfc_send_cmd(chip, &nfc_op); 1595 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1596 "WRDREQ while loading FIFO (data)"); 1597 if (ret) 1598 return ret; 1599 1600 /* Transfer the contents */ 1601 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1602 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1603 1604 return 0; 1605 } 1606 1607 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1608 const u8 *buf, 1609 int oob_required, int page) 1610 { 1611 const struct nand_sdr_timings *sdr = 1612 nand_get_sdr_timings(nand_get_interface_config(chip)); 1613 struct mtd_info *mtd = nand_to_mtd(chip); 1614 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1615 const u8 *data = buf; 1616 const u8 *spare = chip->oob_poi; 1617 int data_len = lt->data_bytes; 1618 int spare_len = lt->spare_bytes; 1619 int chunk, ret; 1620 1621 marvell_nfc_select_target(chip, chip->cur_cs); 1622 1623 /* Spare data will be written anyway, so clear it to avoid garbage */ 1624 if (!oob_required) 1625 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1626 1627 marvell_nfc_enable_hw_ecc(chip); 1628 1629 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1630 if (chunk >= lt->full_chunk_cnt) { 1631 data_len = lt->last_data_bytes; 1632 spare_len = lt->last_spare_bytes; 1633 } 1634 1635 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1636 spare, spare_len, page); 1637 data += data_len; 1638 spare += spare_len; 1639 1640 /* 1641 * Waiting only for CMDD or PAGED is not enough, ECC are 1642 * partially written. No flag is set once the operation is 1643 * really finished but the ND_RUN bit is cleared, so wait for it 1644 * before stepping into the next command. 1645 */ 1646 marvell_nfc_wait_ndrun(chip); 1647 } 1648 1649 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1650 1651 marvell_nfc_disable_hw_ecc(chip); 1652 1653 if (ret) 1654 return ret; 1655 1656 return 0; 1657 } 1658 1659 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1660 int page) 1661 { 1662 struct mtd_info *mtd = nand_to_mtd(chip); 1663 u8 *buf = nand_get_data_buf(chip); 1664 1665 memset(buf, 0xFF, mtd->writesize); 1666 1667 return chip->ecc.write_page_raw(chip, buf, true, page); 1668 } 1669 1670 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1671 { 1672 struct mtd_info *mtd = nand_to_mtd(chip); 1673 u8 *buf = nand_get_data_buf(chip); 1674 1675 memset(buf, 0xFF, mtd->writesize); 1676 1677 return chip->ecc.write_page(chip, buf, true, page); 1678 } 1679 1680 /* NAND framework ->exec_op() hooks and related helpers */ 1681 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1682 const struct nand_subop *subop, 1683 struct marvell_nfc_op *nfc_op) 1684 { 1685 const struct nand_op_instr *instr = NULL; 1686 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1687 bool first_cmd = true; 1688 unsigned int op_id; 1689 int i; 1690 1691 /* Reset the input structure as most of its fields will be OR'ed */ 1692 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1693 1694 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1695 unsigned int offset, naddrs; 1696 const u8 *addrs; 1697 int len; 1698 1699 instr = &subop->instrs[op_id]; 1700 1701 switch (instr->type) { 1702 case NAND_OP_CMD_INSTR: 1703 if (first_cmd) 1704 nfc_op->ndcb[0] |= 1705 NDCB0_CMD1(instr->ctx.cmd.opcode); 1706 else 1707 nfc_op->ndcb[0] |= 1708 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1709 NDCB0_DBC; 1710 1711 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1712 first_cmd = false; 1713 break; 1714 1715 case NAND_OP_ADDR_INSTR: 1716 offset = nand_subop_get_addr_start_off(subop, op_id); 1717 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1718 addrs = &instr->ctx.addr.addrs[offset]; 1719 1720 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1721 1722 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1723 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1724 1725 if (naddrs >= 5) 1726 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1727 if (naddrs >= 6) 1728 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1729 if (naddrs == 7) 1730 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1731 1732 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1733 break; 1734 1735 case NAND_OP_DATA_IN_INSTR: 1736 nfc_op->data_instr = instr; 1737 nfc_op->data_instr_idx = op_id; 1738 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1739 if (nfc->caps->is_nfcv2) { 1740 nfc_op->ndcb[0] |= 1741 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1742 NDCB0_LEN_OVRD; 1743 len = nand_subop_get_data_len(subop, op_id); 1744 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1745 } 1746 nfc_op->data_delay_ns = instr->delay_ns; 1747 break; 1748 1749 case NAND_OP_DATA_OUT_INSTR: 1750 nfc_op->data_instr = instr; 1751 nfc_op->data_instr_idx = op_id; 1752 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1753 if (nfc->caps->is_nfcv2) { 1754 nfc_op->ndcb[0] |= 1755 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1756 NDCB0_LEN_OVRD; 1757 len = nand_subop_get_data_len(subop, op_id); 1758 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1759 } 1760 nfc_op->data_delay_ns = instr->delay_ns; 1761 break; 1762 1763 case NAND_OP_WAITRDY_INSTR: 1764 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1765 nfc_op->rdy_delay_ns = instr->delay_ns; 1766 break; 1767 } 1768 } 1769 } 1770 1771 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1772 const struct nand_subop *subop, 1773 struct marvell_nfc_op *nfc_op) 1774 { 1775 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1776 const struct nand_op_instr *instr = nfc_op->data_instr; 1777 unsigned int op_id = nfc_op->data_instr_idx; 1778 unsigned int len = nand_subop_get_data_len(subop, op_id); 1779 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1780 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1781 int ret; 1782 1783 if (instr->ctx.data.force_8bit) 1784 marvell_nfc_force_byte_access(chip, true); 1785 1786 if (reading) { 1787 u8 *in = instr->ctx.data.buf.in + offset; 1788 1789 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1790 } else { 1791 const u8 *out = instr->ctx.data.buf.out + offset; 1792 1793 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1794 } 1795 1796 if (instr->ctx.data.force_8bit) 1797 marvell_nfc_force_byte_access(chip, false); 1798 1799 return ret; 1800 } 1801 1802 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1803 const struct nand_subop *subop) 1804 { 1805 struct marvell_nfc_op nfc_op; 1806 bool reading; 1807 int ret; 1808 1809 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1810 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1811 1812 ret = marvell_nfc_prepare_cmd(chip); 1813 if (ret) 1814 return ret; 1815 1816 marvell_nfc_send_cmd(chip, &nfc_op); 1817 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1818 "RDDREQ/WRDREQ while draining raw data"); 1819 if (ret) 1820 return ret; 1821 1822 cond_delay(nfc_op.cle_ale_delay_ns); 1823 1824 if (reading) { 1825 if (nfc_op.rdy_timeout_ms) { 1826 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1827 if (ret) 1828 return ret; 1829 } 1830 1831 cond_delay(nfc_op.rdy_delay_ns); 1832 } 1833 1834 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1835 ret = marvell_nfc_wait_cmdd(chip); 1836 if (ret) 1837 return ret; 1838 1839 cond_delay(nfc_op.data_delay_ns); 1840 1841 if (!reading) { 1842 if (nfc_op.rdy_timeout_ms) { 1843 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1844 if (ret) 1845 return ret; 1846 } 1847 1848 cond_delay(nfc_op.rdy_delay_ns); 1849 } 1850 1851 /* 1852 * NDCR ND_RUN bit should be cleared automatically at the end of each 1853 * operation but experience shows that the behavior is buggy when it 1854 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1855 */ 1856 if (!reading) { 1857 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1858 1859 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1860 nfc->regs + NDCR); 1861 } 1862 1863 return 0; 1864 } 1865 1866 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1867 const struct nand_subop *subop) 1868 { 1869 struct marvell_nfc_op nfc_op; 1870 int ret; 1871 1872 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1873 1874 /* 1875 * Naked access are different in that they need to be flagged as naked 1876 * by the controller. Reset the controller registers fields that inform 1877 * on the type and refill them according to the ongoing operation. 1878 */ 1879 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1880 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1881 switch (subop->instrs[0].type) { 1882 case NAND_OP_CMD_INSTR: 1883 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1884 break; 1885 case NAND_OP_ADDR_INSTR: 1886 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1887 break; 1888 case NAND_OP_DATA_IN_INSTR: 1889 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1890 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1891 break; 1892 case NAND_OP_DATA_OUT_INSTR: 1893 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1894 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1895 break; 1896 default: 1897 /* This should never happen */ 1898 break; 1899 } 1900 1901 ret = marvell_nfc_prepare_cmd(chip); 1902 if (ret) 1903 return ret; 1904 1905 marvell_nfc_send_cmd(chip, &nfc_op); 1906 1907 if (!nfc_op.data_instr) { 1908 ret = marvell_nfc_wait_cmdd(chip); 1909 cond_delay(nfc_op.cle_ale_delay_ns); 1910 return ret; 1911 } 1912 1913 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1914 "RDDREQ/WRDREQ while draining raw data"); 1915 if (ret) 1916 return ret; 1917 1918 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1919 ret = marvell_nfc_wait_cmdd(chip); 1920 if (ret) 1921 return ret; 1922 1923 /* 1924 * NDCR ND_RUN bit should be cleared automatically at the end of each 1925 * operation but experience shows that the behavior is buggy when it 1926 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1927 */ 1928 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1929 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1930 1931 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1932 nfc->regs + NDCR); 1933 } 1934 1935 return 0; 1936 } 1937 1938 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1939 const struct nand_subop *subop) 1940 { 1941 struct marvell_nfc_op nfc_op; 1942 int ret; 1943 1944 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1945 1946 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1947 cond_delay(nfc_op.rdy_delay_ns); 1948 1949 return ret; 1950 } 1951 1952 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1953 const struct nand_subop *subop) 1954 { 1955 struct marvell_nfc_op nfc_op; 1956 int ret; 1957 1958 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1959 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1960 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1961 1962 ret = marvell_nfc_prepare_cmd(chip); 1963 if (ret) 1964 return ret; 1965 1966 marvell_nfc_send_cmd(chip, &nfc_op); 1967 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1968 "RDDREQ while reading ID"); 1969 if (ret) 1970 return ret; 1971 1972 cond_delay(nfc_op.cle_ale_delay_ns); 1973 1974 if (nfc_op.rdy_timeout_ms) { 1975 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1976 if (ret) 1977 return ret; 1978 } 1979 1980 cond_delay(nfc_op.rdy_delay_ns); 1981 1982 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1983 ret = marvell_nfc_wait_cmdd(chip); 1984 if (ret) 1985 return ret; 1986 1987 cond_delay(nfc_op.data_delay_ns); 1988 1989 return 0; 1990 } 1991 1992 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1993 const struct nand_subop *subop) 1994 { 1995 struct marvell_nfc_op nfc_op; 1996 int ret; 1997 1998 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1999 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 2000 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2001 2002 ret = marvell_nfc_prepare_cmd(chip); 2003 if (ret) 2004 return ret; 2005 2006 marvell_nfc_send_cmd(chip, &nfc_op); 2007 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2008 "RDDREQ while reading status"); 2009 if (ret) 2010 return ret; 2011 2012 cond_delay(nfc_op.cle_ale_delay_ns); 2013 2014 if (nfc_op.rdy_timeout_ms) { 2015 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2016 if (ret) 2017 return ret; 2018 } 2019 2020 cond_delay(nfc_op.rdy_delay_ns); 2021 2022 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2023 ret = marvell_nfc_wait_cmdd(chip); 2024 if (ret) 2025 return ret; 2026 2027 cond_delay(nfc_op.data_delay_ns); 2028 2029 return 0; 2030 } 2031 2032 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2033 const struct nand_subop *subop) 2034 { 2035 struct marvell_nfc_op nfc_op; 2036 int ret; 2037 2038 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2039 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2040 2041 ret = marvell_nfc_prepare_cmd(chip); 2042 if (ret) 2043 return ret; 2044 2045 marvell_nfc_send_cmd(chip, &nfc_op); 2046 ret = marvell_nfc_wait_cmdd(chip); 2047 if (ret) 2048 return ret; 2049 2050 cond_delay(nfc_op.cle_ale_delay_ns); 2051 2052 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2053 if (ret) 2054 return ret; 2055 2056 cond_delay(nfc_op.rdy_delay_ns); 2057 2058 return 0; 2059 } 2060 2061 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2062 const struct nand_subop *subop) 2063 { 2064 struct marvell_nfc_op nfc_op; 2065 int ret; 2066 2067 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2068 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2069 2070 ret = marvell_nfc_prepare_cmd(chip); 2071 if (ret) 2072 return ret; 2073 2074 marvell_nfc_send_cmd(chip, &nfc_op); 2075 ret = marvell_nfc_wait_cmdd(chip); 2076 if (ret) 2077 return ret; 2078 2079 cond_delay(nfc_op.cle_ale_delay_ns); 2080 2081 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2082 if (ret) 2083 return ret; 2084 2085 cond_delay(nfc_op.rdy_delay_ns); 2086 2087 return 0; 2088 } 2089 2090 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2091 /* Monolithic reads/writes */ 2092 NAND_OP_PARSER_PATTERN( 2093 marvell_nfc_monolithic_access_exec, 2094 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2095 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2096 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2097 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2098 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2099 NAND_OP_PARSER_PATTERN( 2100 marvell_nfc_monolithic_access_exec, 2101 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2102 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2103 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2104 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2105 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2106 /* Naked commands */ 2107 NAND_OP_PARSER_PATTERN( 2108 marvell_nfc_naked_access_exec, 2109 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2110 NAND_OP_PARSER_PATTERN( 2111 marvell_nfc_naked_access_exec, 2112 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2113 NAND_OP_PARSER_PATTERN( 2114 marvell_nfc_naked_access_exec, 2115 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2116 NAND_OP_PARSER_PATTERN( 2117 marvell_nfc_naked_access_exec, 2118 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2119 NAND_OP_PARSER_PATTERN( 2120 marvell_nfc_naked_waitrdy_exec, 2121 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2122 ); 2123 2124 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2125 /* Naked commands not supported, use a function for each pattern */ 2126 NAND_OP_PARSER_PATTERN( 2127 marvell_nfc_read_id_type_exec, 2128 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2129 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2130 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2131 NAND_OP_PARSER_PATTERN( 2132 marvell_nfc_erase_cmd_type_exec, 2133 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2134 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2135 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2136 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2137 NAND_OP_PARSER_PATTERN( 2138 marvell_nfc_read_status_exec, 2139 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2140 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2141 NAND_OP_PARSER_PATTERN( 2142 marvell_nfc_reset_cmd_type_exec, 2143 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2144 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2145 NAND_OP_PARSER_PATTERN( 2146 marvell_nfc_naked_waitrdy_exec, 2147 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2148 ); 2149 2150 static int marvell_nfc_exec_op(struct nand_chip *chip, 2151 const struct nand_operation *op, 2152 bool check_only) 2153 { 2154 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2155 2156 if (!check_only) 2157 marvell_nfc_select_target(chip, op->cs); 2158 2159 if (nfc->caps->is_nfcv2) 2160 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2161 op, check_only); 2162 else 2163 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2164 op, check_only); 2165 } 2166 2167 /* 2168 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2169 * usable. 2170 */ 2171 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2172 struct mtd_oob_region *oobregion) 2173 { 2174 struct nand_chip *chip = mtd_to_nand(mtd); 2175 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2176 2177 if (section) 2178 return -ERANGE; 2179 2180 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2181 lt->last_ecc_bytes; 2182 oobregion->offset = mtd->oobsize - oobregion->length; 2183 2184 return 0; 2185 } 2186 2187 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2188 struct mtd_oob_region *oobregion) 2189 { 2190 struct nand_chip *chip = mtd_to_nand(mtd); 2191 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2192 2193 if (section) 2194 return -ERANGE; 2195 2196 /* 2197 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2198 * 4KB page / 4bit BCH combination. 2199 */ 2200 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2201 oobregion->offset = 6; 2202 else 2203 oobregion->offset = 2; 2204 2205 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2206 lt->last_spare_bytes - oobregion->offset; 2207 2208 return 0; 2209 } 2210 2211 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2212 .ecc = marvell_nand_ooblayout_ecc, 2213 .free = marvell_nand_ooblayout_free, 2214 }; 2215 2216 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2217 struct nand_ecc_ctrl *ecc) 2218 { 2219 struct nand_chip *chip = mtd_to_nand(mtd); 2220 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2221 const struct marvell_hw_ecc_layout *l; 2222 int i; 2223 2224 if (!nfc->caps->is_nfcv2 && 2225 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2226 dev_err(nfc->dev, 2227 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2228 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2229 return -ENOTSUPP; 2230 } 2231 2232 to_marvell_nand(chip)->layout = NULL; 2233 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2234 l = &marvell_nfc_layouts[i]; 2235 if (mtd->writesize == l->writesize && 2236 ecc->size == l->chunk && ecc->strength == l->strength) { 2237 to_marvell_nand(chip)->layout = l; 2238 break; 2239 } 2240 } 2241 2242 if (!to_marvell_nand(chip)->layout || 2243 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2244 dev_err(nfc->dev, 2245 "ECC strength %d at page size %d is not supported\n", 2246 ecc->strength, mtd->writesize); 2247 return -ENOTSUPP; 2248 } 2249 2250 /* Special care for the layout 2k/8-bit/512B */ 2251 if (l->writesize == 2048 && l->strength == 8) { 2252 if (mtd->oobsize < 128) { 2253 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2254 return -ENOTSUPP; 2255 } else { 2256 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2257 } 2258 } 2259 2260 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2261 ecc->steps = l->nchunks; 2262 ecc->size = l->data_bytes; 2263 2264 if (ecc->strength == 1) { 2265 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2266 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2267 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2268 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2269 ecc->read_oob = ecc->read_oob_raw; 2270 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2271 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2272 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2273 ecc->write_oob = ecc->write_oob_raw; 2274 } else { 2275 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2276 ecc->strength = 16; 2277 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2278 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2279 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2280 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2281 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2282 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2283 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2284 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2285 } 2286 2287 return 0; 2288 } 2289 2290 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2291 struct nand_ecc_ctrl *ecc) 2292 { 2293 struct nand_chip *chip = mtd_to_nand(mtd); 2294 const struct nand_ecc_props *requirements = 2295 nanddev_get_ecc_requirements(&chip->base); 2296 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2297 int ret; 2298 2299 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2300 (!ecc->size || !ecc->strength)) { 2301 if (requirements->step_size && requirements->strength) { 2302 ecc->size = requirements->step_size; 2303 ecc->strength = requirements->strength; 2304 } else { 2305 dev_info(nfc->dev, 2306 "No minimum ECC strength, using 1b/512B\n"); 2307 ecc->size = 512; 2308 ecc->strength = 1; 2309 } 2310 } 2311 2312 switch (ecc->engine_type) { 2313 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2314 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2315 if (ret) 2316 return ret; 2317 break; 2318 case NAND_ECC_ENGINE_TYPE_NONE: 2319 case NAND_ECC_ENGINE_TYPE_SOFT: 2320 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2321 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2322 mtd->writesize != SZ_2K) { 2323 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2324 mtd->writesize); 2325 return -EINVAL; 2326 } 2327 break; 2328 default: 2329 return -EINVAL; 2330 } 2331 2332 return 0; 2333 } 2334 2335 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2336 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2337 2338 static struct nand_bbt_descr bbt_main_descr = { 2339 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2340 NAND_BBT_2BIT | NAND_BBT_VERSION, 2341 .offs = 8, 2342 .len = 6, 2343 .veroffs = 14, 2344 .maxblocks = 8, /* Last 8 blocks in each chip */ 2345 .pattern = bbt_pattern 2346 }; 2347 2348 static struct nand_bbt_descr bbt_mirror_descr = { 2349 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2350 NAND_BBT_2BIT | NAND_BBT_VERSION, 2351 .offs = 8, 2352 .len = 6, 2353 .veroffs = 14, 2354 .maxblocks = 8, /* Last 8 blocks in each chip */ 2355 .pattern = bbt_mirror_pattern 2356 }; 2357 2358 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2359 const struct nand_interface_config *conf) 2360 { 2361 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2362 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2363 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2364 const struct nand_sdr_timings *sdr; 2365 struct marvell_nfc_timings nfc_tmg; 2366 int read_delay; 2367 2368 sdr = nand_get_sdr_timings(conf); 2369 if (IS_ERR(sdr)) 2370 return PTR_ERR(sdr); 2371 2372 /* 2373 * SDR timings are given in pico-seconds while NFC timings must be 2374 * expressed in NAND controller clock cycles, which is half of the 2375 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2376 * This is not written anywhere in the datasheet but was observed 2377 * with an oscilloscope. 2378 * 2379 * NFC datasheet gives equations from which thoses calculations 2380 * are derived, they tend to be slightly more restrictives than the 2381 * given core timings and may improve the overall speed. 2382 */ 2383 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2384 nfc_tmg.tRH = nfc_tmg.tRP; 2385 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2386 nfc_tmg.tWH = nfc_tmg.tWP; 2387 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2388 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2389 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2390 /* 2391 * Read delay is the time of propagation from SoC pins to NFC internal 2392 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2393 * EDO mode, an additional delay of tRH must be taken into account so 2394 * the data is sampled on the falling edge instead of the rising edge. 2395 */ 2396 read_delay = sdr->tRC_min >= 30000 ? 2397 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2398 2399 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2400 /* 2401 * tWHR and tRHW are supposed to be read to write delays (and vice 2402 * versa) but in some cases, ie. when doing a change column, they must 2403 * be greater than that to be sure tCCS delay is respected. 2404 */ 2405 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2406 period_ns) - 2; 2407 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2408 period_ns); 2409 2410 /* 2411 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2412 * NFCv1: No WAIT_MODE, tR must be maximal. 2413 */ 2414 if (nfc->caps->is_nfcv2) { 2415 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2416 } else { 2417 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2418 period_ns); 2419 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2420 nfc_tmg.tR = nfc_tmg.tCH - 3; 2421 else 2422 nfc_tmg.tR = 0; 2423 } 2424 2425 if (chipnr < 0) 2426 return 0; 2427 2428 marvell_nand->ndtr0 = 2429 NDTR0_TRP(nfc_tmg.tRP) | 2430 NDTR0_TRH(nfc_tmg.tRH) | 2431 NDTR0_ETRP(nfc_tmg.tRP) | 2432 NDTR0_TWP(nfc_tmg.tWP) | 2433 NDTR0_TWH(nfc_tmg.tWH) | 2434 NDTR0_TCS(nfc_tmg.tCS) | 2435 NDTR0_TCH(nfc_tmg.tCH); 2436 2437 marvell_nand->ndtr1 = 2438 NDTR1_TAR(nfc_tmg.tAR) | 2439 NDTR1_TWHR(nfc_tmg.tWHR) | 2440 NDTR1_TR(nfc_tmg.tR); 2441 2442 if (nfc->caps->is_nfcv2) { 2443 marvell_nand->ndtr0 |= 2444 NDTR0_RD_CNT_DEL(read_delay) | 2445 NDTR0_SELCNTR | 2446 NDTR0_TADL(nfc_tmg.tADL); 2447 2448 marvell_nand->ndtr1 |= 2449 NDTR1_TRHW(nfc_tmg.tRHW) | 2450 NDTR1_WAIT_MODE; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static int marvell_nand_attach_chip(struct nand_chip *chip) 2457 { 2458 struct mtd_info *mtd = nand_to_mtd(chip); 2459 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2460 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2461 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2462 int ret; 2463 2464 if (pdata && pdata->flash_bbt) 2465 chip->bbt_options |= NAND_BBT_USE_FLASH; 2466 2467 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2468 /* 2469 * We'll use a bad block table stored in-flash and don't 2470 * allow writing the bad block marker to the flash. 2471 */ 2472 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2473 chip->bbt_td = &bbt_main_descr; 2474 chip->bbt_md = &bbt_mirror_descr; 2475 } 2476 2477 /* Save the chip-specific fields of NDCR */ 2478 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2479 if (chip->options & NAND_BUSWIDTH_16) 2480 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2481 2482 /* 2483 * On small page NANDs, only one cycle is needed to pass the 2484 * column address. 2485 */ 2486 if (mtd->writesize <= 512) { 2487 marvell_nand->addr_cyc = 1; 2488 } else { 2489 marvell_nand->addr_cyc = 2; 2490 marvell_nand->ndcr |= NDCR_RA_START; 2491 } 2492 2493 /* 2494 * Now add the number of cycles needed to pass the row 2495 * address. 2496 * 2497 * Addressing a chip using CS 2 or 3 should also need the third row 2498 * cycle but due to inconsistance in the documentation and lack of 2499 * hardware to test this situation, this case is not supported. 2500 */ 2501 if (chip->options & NAND_ROW_ADDR_3) 2502 marvell_nand->addr_cyc += 3; 2503 else 2504 marvell_nand->addr_cyc += 2; 2505 2506 if (pdata) { 2507 chip->ecc.size = pdata->ecc_step_size; 2508 chip->ecc.strength = pdata->ecc_strength; 2509 } 2510 2511 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2512 if (ret) { 2513 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2514 return ret; 2515 } 2516 2517 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2518 /* 2519 * Subpage write not available with hardware ECC, prohibit also 2520 * subpage read as in userspace subpage access would still be 2521 * allowed and subpage write, if used, would lead to numerous 2522 * uncorrectable ECC errors. 2523 */ 2524 chip->options |= NAND_NO_SUBPAGE_WRITE; 2525 } 2526 2527 if (pdata || nfc->caps->legacy_of_bindings) { 2528 /* 2529 * We keep the MTD name unchanged to avoid breaking platforms 2530 * where the MTD cmdline parser is used and the bootloader 2531 * has not been updated to use the new naming scheme. 2532 */ 2533 mtd->name = "pxa3xx_nand-0"; 2534 } else if (!mtd->name) { 2535 /* 2536 * If the new bindings are used and the bootloader has not been 2537 * updated to pass a new mtdparts parameter on the cmdline, you 2538 * should define the following property in your NAND node, ie: 2539 * 2540 * label = "main-storage"; 2541 * 2542 * This way, mtd->name will be set by the core when 2543 * nand_set_flash_node() is called. 2544 */ 2545 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2546 "%s:nand.%d", dev_name(nfc->dev), 2547 marvell_nand->sels[0].cs); 2548 if (!mtd->name) { 2549 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2550 return -ENOMEM; 2551 } 2552 } 2553 2554 return 0; 2555 } 2556 2557 static const struct nand_controller_ops marvell_nand_controller_ops = { 2558 .attach_chip = marvell_nand_attach_chip, 2559 .exec_op = marvell_nfc_exec_op, 2560 .setup_interface = marvell_nfc_setup_interface, 2561 }; 2562 2563 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2564 struct device_node *np) 2565 { 2566 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2567 struct marvell_nand_chip *marvell_nand; 2568 struct mtd_info *mtd; 2569 struct nand_chip *chip; 2570 int nsels, ret, i; 2571 u32 cs, rb; 2572 2573 /* 2574 * The legacy "num-cs" property indicates the number of CS on the only 2575 * chip connected to the controller (legacy bindings does not support 2576 * more than one chip). The CS and RB pins are always the #0. 2577 * 2578 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2579 * properties must be filled. For each chip, expressed as a subnode, 2580 * "reg" points to the CS lines and "nand-rb" to the RB line. 2581 */ 2582 if (pdata || nfc->caps->legacy_of_bindings) { 2583 nsels = 1; 2584 } else { 2585 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2586 if (nsels <= 0) { 2587 dev_err(dev, "missing/invalid reg property\n"); 2588 return -EINVAL; 2589 } 2590 } 2591 2592 /* Alloc the nand chip structure */ 2593 marvell_nand = devm_kzalloc(dev, 2594 struct_size(marvell_nand, sels, nsels), 2595 GFP_KERNEL); 2596 if (!marvell_nand) { 2597 dev_err(dev, "could not allocate chip structure\n"); 2598 return -ENOMEM; 2599 } 2600 2601 marvell_nand->nsels = nsels; 2602 marvell_nand->selected_die = -1; 2603 2604 for (i = 0; i < nsels; i++) { 2605 if (pdata || nfc->caps->legacy_of_bindings) { 2606 /* 2607 * Legacy bindings use the CS lines in natural 2608 * order (0, 1, ...) 2609 */ 2610 cs = i; 2611 } else { 2612 /* Retrieve CS id */ 2613 ret = of_property_read_u32_index(np, "reg", i, &cs); 2614 if (ret) { 2615 dev_err(dev, "could not retrieve reg property: %d\n", 2616 ret); 2617 return ret; 2618 } 2619 } 2620 2621 if (cs >= nfc->caps->max_cs_nb) { 2622 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2623 cs, nfc->caps->max_cs_nb); 2624 return -EINVAL; 2625 } 2626 2627 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2628 dev_err(dev, "CS %d already assigned\n", cs); 2629 return -EINVAL; 2630 } 2631 2632 /* 2633 * The cs variable represents the chip select id, which must be 2634 * converted in bit fields for NDCB0 and NDCB2 to select the 2635 * right chip. Unfortunately, due to a lack of information on 2636 * the subject and incoherent documentation, the user should not 2637 * use CS1 and CS3 at all as asserting them is not supported in 2638 * a reliable way (due to multiplexing inside ADDR5 field). 2639 */ 2640 marvell_nand->sels[i].cs = cs; 2641 switch (cs) { 2642 case 0: 2643 case 2: 2644 marvell_nand->sels[i].ndcb0_csel = 0; 2645 break; 2646 case 1: 2647 case 3: 2648 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2649 break; 2650 default: 2651 return -EINVAL; 2652 } 2653 2654 /* Retrieve RB id */ 2655 if (pdata || nfc->caps->legacy_of_bindings) { 2656 /* Legacy bindings always use RB #0 */ 2657 rb = 0; 2658 } else { 2659 ret = of_property_read_u32_index(np, "nand-rb", i, 2660 &rb); 2661 if (ret) { 2662 dev_err(dev, 2663 "could not retrieve RB property: %d\n", 2664 ret); 2665 return ret; 2666 } 2667 } 2668 2669 if (rb >= nfc->caps->max_rb_nb) { 2670 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2671 rb, nfc->caps->max_rb_nb); 2672 return -EINVAL; 2673 } 2674 2675 marvell_nand->sels[i].rb = rb; 2676 } 2677 2678 chip = &marvell_nand->chip; 2679 chip->controller = &nfc->controller; 2680 nand_set_flash_node(chip, np); 2681 2682 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2683 chip->options |= NAND_KEEP_TIMINGS; 2684 2685 mtd = nand_to_mtd(chip); 2686 mtd->dev.parent = dev; 2687 2688 /* 2689 * Save a reference value for timing registers before 2690 * ->setup_interface() is called. 2691 */ 2692 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2693 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2694 2695 chip->options |= NAND_BUSWIDTH_AUTO; 2696 2697 ret = nand_scan(chip, marvell_nand->nsels); 2698 if (ret) { 2699 dev_err(dev, "could not scan the nand chip\n"); 2700 return ret; 2701 } 2702 2703 if (pdata) 2704 /* Legacy bindings support only one chip */ 2705 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2706 else 2707 ret = mtd_device_register(mtd, NULL, 0); 2708 if (ret) { 2709 dev_err(dev, "failed to register mtd device: %d\n", ret); 2710 nand_cleanup(chip); 2711 return ret; 2712 } 2713 2714 list_add_tail(&marvell_nand->node, &nfc->chips); 2715 2716 return 0; 2717 } 2718 2719 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2720 { 2721 struct marvell_nand_chip *entry, *temp; 2722 struct nand_chip *chip; 2723 int ret; 2724 2725 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2726 chip = &entry->chip; 2727 ret = mtd_device_unregister(nand_to_mtd(chip)); 2728 WARN_ON(ret); 2729 nand_cleanup(chip); 2730 list_del(&entry->node); 2731 } 2732 } 2733 2734 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2735 { 2736 struct device_node *np = dev->of_node; 2737 struct device_node *nand_np; 2738 int max_cs = nfc->caps->max_cs_nb; 2739 int nchips; 2740 int ret; 2741 2742 if (!np) 2743 nchips = 1; 2744 else 2745 nchips = of_get_child_count(np); 2746 2747 if (nchips > max_cs) { 2748 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2749 max_cs); 2750 return -EINVAL; 2751 } 2752 2753 /* 2754 * Legacy bindings do not use child nodes to exhibit NAND chip 2755 * properties and layout. Instead, NAND properties are mixed with the 2756 * controller ones, and partitions are defined as direct subnodes of the 2757 * NAND controller node. 2758 */ 2759 if (nfc->caps->legacy_of_bindings) { 2760 ret = marvell_nand_chip_init(dev, nfc, np); 2761 return ret; 2762 } 2763 2764 for_each_child_of_node(np, nand_np) { 2765 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2766 if (ret) { 2767 of_node_put(nand_np); 2768 goto cleanup_chips; 2769 } 2770 } 2771 2772 return 0; 2773 2774 cleanup_chips: 2775 marvell_nand_chips_cleanup(nfc); 2776 2777 return ret; 2778 } 2779 2780 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2781 { 2782 struct platform_device *pdev = container_of(nfc->dev, 2783 struct platform_device, 2784 dev); 2785 struct dma_slave_config config = {}; 2786 struct resource *r; 2787 int ret; 2788 2789 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2790 dev_warn(nfc->dev, 2791 "DMA not enabled in configuration\n"); 2792 return -ENOTSUPP; 2793 } 2794 2795 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2796 if (ret) 2797 return ret; 2798 2799 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2800 if (IS_ERR(nfc->dma_chan)) { 2801 ret = PTR_ERR(nfc->dma_chan); 2802 nfc->dma_chan = NULL; 2803 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2804 } 2805 2806 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2807 if (!r) { 2808 ret = -ENXIO; 2809 goto release_channel; 2810 } 2811 2812 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2813 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2814 config.src_addr = r->start + NDDB; 2815 config.dst_addr = r->start + NDDB; 2816 config.src_maxburst = 32; 2817 config.dst_maxburst = 32; 2818 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2819 if (ret < 0) { 2820 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2821 goto release_channel; 2822 } 2823 2824 /* 2825 * DMA must act on length multiple of 32 and this length may be 2826 * bigger than the destination buffer. Use this buffer instead 2827 * for DMA transfers and then copy the desired amount of data to 2828 * the provided buffer. 2829 */ 2830 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2831 if (!nfc->dma_buf) { 2832 ret = -ENOMEM; 2833 goto release_channel; 2834 } 2835 2836 nfc->use_dma = true; 2837 2838 return 0; 2839 2840 release_channel: 2841 dma_release_channel(nfc->dma_chan); 2842 nfc->dma_chan = NULL; 2843 2844 return ret; 2845 } 2846 2847 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2848 { 2849 /* 2850 * ECC operations and interruptions are only enabled when specifically 2851 * needed. ECC shall not be activated in the early stages (fails probe). 2852 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2853 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2854 * offset in the read page and this will fail the protection. 2855 */ 2856 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2857 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2858 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2859 writel_relaxed(0, nfc->regs + NDECCCTRL); 2860 } 2861 2862 static int marvell_nfc_init(struct marvell_nfc *nfc) 2863 { 2864 struct device_node *np = nfc->dev->of_node; 2865 2866 /* 2867 * Some SoCs like A7k/A8k need to enable manually the NAND 2868 * controller, gated clocks and reset bits to avoid being bootloader 2869 * dependent. This is done through the use of the System Functions 2870 * registers. 2871 */ 2872 if (nfc->caps->need_system_controller) { 2873 struct regmap *sysctrl_base = 2874 syscon_regmap_lookup_by_phandle(np, 2875 "marvell,system-controller"); 2876 2877 if (IS_ERR(sysctrl_base)) 2878 return PTR_ERR(sysctrl_base); 2879 2880 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2881 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2882 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2883 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2884 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | 2885 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); 2886 2887 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2888 GENCONF_CLK_GATING_CTRL_ND_GATE, 2889 GENCONF_CLK_GATING_CTRL_ND_GATE); 2890 2891 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, 2892 GENCONF_ND_CLK_CTRL_EN, 2893 GENCONF_ND_CLK_CTRL_EN); 2894 } 2895 2896 /* Configure the DMA if appropriate */ 2897 if (!nfc->caps->is_nfcv2) 2898 marvell_nfc_init_dma(nfc); 2899 2900 marvell_nfc_reset(nfc); 2901 2902 return 0; 2903 } 2904 2905 static int marvell_nfc_probe(struct platform_device *pdev) 2906 { 2907 struct device *dev = &pdev->dev; 2908 struct marvell_nfc *nfc; 2909 int ret; 2910 int irq; 2911 2912 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2913 GFP_KERNEL); 2914 if (!nfc) 2915 return -ENOMEM; 2916 2917 nfc->dev = dev; 2918 nand_controller_init(&nfc->controller); 2919 nfc->controller.ops = &marvell_nand_controller_ops; 2920 INIT_LIST_HEAD(&nfc->chips); 2921 2922 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2923 if (IS_ERR(nfc->regs)) 2924 return PTR_ERR(nfc->regs); 2925 2926 irq = platform_get_irq(pdev, 0); 2927 if (irq < 0) 2928 return irq; 2929 2930 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2931 2932 /* Managed the legacy case (when the first clock was not named) */ 2933 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2934 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2935 2936 if (IS_ERR(nfc->core_clk)) 2937 return PTR_ERR(nfc->core_clk); 2938 2939 ret = clk_prepare_enable(nfc->core_clk); 2940 if (ret) 2941 return ret; 2942 2943 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2944 if (IS_ERR(nfc->reg_clk)) { 2945 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2946 ret = PTR_ERR(nfc->reg_clk); 2947 goto unprepare_core_clk; 2948 } 2949 2950 nfc->reg_clk = NULL; 2951 } 2952 2953 ret = clk_prepare_enable(nfc->reg_clk); 2954 if (ret) 2955 goto unprepare_core_clk; 2956 2957 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2958 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2959 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2960 0, "marvell-nfc", nfc); 2961 if (ret) 2962 goto unprepare_reg_clk; 2963 2964 /* Get NAND controller capabilities */ 2965 if (pdev->id_entry) 2966 nfc->caps = (void *)pdev->id_entry->driver_data; 2967 else 2968 nfc->caps = of_device_get_match_data(&pdev->dev); 2969 2970 if (!nfc->caps) { 2971 dev_err(dev, "Could not retrieve NFC caps\n"); 2972 ret = -EINVAL; 2973 goto unprepare_reg_clk; 2974 } 2975 2976 /* Init the controller and then probe the chips */ 2977 ret = marvell_nfc_init(nfc); 2978 if (ret) 2979 goto unprepare_reg_clk; 2980 2981 platform_set_drvdata(pdev, nfc); 2982 2983 ret = marvell_nand_chips_init(dev, nfc); 2984 if (ret) 2985 goto release_dma; 2986 2987 return 0; 2988 2989 release_dma: 2990 if (nfc->use_dma) 2991 dma_release_channel(nfc->dma_chan); 2992 unprepare_reg_clk: 2993 clk_disable_unprepare(nfc->reg_clk); 2994 unprepare_core_clk: 2995 clk_disable_unprepare(nfc->core_clk); 2996 2997 return ret; 2998 } 2999 3000 static int marvell_nfc_remove(struct platform_device *pdev) 3001 { 3002 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3003 3004 marvell_nand_chips_cleanup(nfc); 3005 3006 if (nfc->use_dma) { 3007 dmaengine_terminate_all(nfc->dma_chan); 3008 dma_release_channel(nfc->dma_chan); 3009 } 3010 3011 clk_disable_unprepare(nfc->reg_clk); 3012 clk_disable_unprepare(nfc->core_clk); 3013 3014 return 0; 3015 } 3016 3017 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3018 { 3019 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3020 struct marvell_nand_chip *chip; 3021 3022 list_for_each_entry(chip, &nfc->chips, node) 3023 marvell_nfc_wait_ndrun(&chip->chip); 3024 3025 clk_disable_unprepare(nfc->reg_clk); 3026 clk_disable_unprepare(nfc->core_clk); 3027 3028 return 0; 3029 } 3030 3031 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3032 { 3033 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3034 int ret; 3035 3036 ret = clk_prepare_enable(nfc->core_clk); 3037 if (ret < 0) 3038 return ret; 3039 3040 ret = clk_prepare_enable(nfc->reg_clk); 3041 if (ret < 0) { 3042 clk_disable_unprepare(nfc->core_clk); 3043 return ret; 3044 } 3045 3046 /* 3047 * Reset nfc->selected_chip so the next command will cause the timing 3048 * registers to be restored in marvell_nfc_select_target(). 3049 */ 3050 nfc->selected_chip = NULL; 3051 3052 /* Reset registers that have lost their contents */ 3053 marvell_nfc_reset(nfc); 3054 3055 return 0; 3056 } 3057 3058 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3059 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3060 }; 3061 3062 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3063 .max_cs_nb = 4, 3064 .max_rb_nb = 2, 3065 .need_system_controller = true, 3066 .is_nfcv2 = true, 3067 }; 3068 3069 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3070 .max_cs_nb = 4, 3071 .max_rb_nb = 2, 3072 .is_nfcv2 = true, 3073 }; 3074 3075 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3076 .max_cs_nb = 2, 3077 .max_rb_nb = 1, 3078 .use_dma = true, 3079 }; 3080 3081 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3082 .max_cs_nb = 4, 3083 .max_rb_nb = 2, 3084 .need_system_controller = true, 3085 .legacy_of_bindings = true, 3086 .is_nfcv2 = true, 3087 }; 3088 3089 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3090 .max_cs_nb = 4, 3091 .max_rb_nb = 2, 3092 .legacy_of_bindings = true, 3093 .is_nfcv2 = true, 3094 }; 3095 3096 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3097 .max_cs_nb = 2, 3098 .max_rb_nb = 1, 3099 .legacy_of_bindings = true, 3100 .use_dma = true, 3101 }; 3102 3103 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3104 { 3105 .name = "pxa3xx-nand", 3106 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3107 }, 3108 { /* sentinel */ }, 3109 }; 3110 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3111 3112 static const struct of_device_id marvell_nfc_of_ids[] = { 3113 { 3114 .compatible = "marvell,armada-8k-nand-controller", 3115 .data = &marvell_armada_8k_nfc_caps, 3116 }, 3117 { 3118 .compatible = "marvell,armada370-nand-controller", 3119 .data = &marvell_armada370_nfc_caps, 3120 }, 3121 { 3122 .compatible = "marvell,pxa3xx-nand-controller", 3123 .data = &marvell_pxa3xx_nfc_caps, 3124 }, 3125 /* Support for old/deprecated bindings: */ 3126 { 3127 .compatible = "marvell,armada-8k-nand", 3128 .data = &marvell_armada_8k_nfc_legacy_caps, 3129 }, 3130 { 3131 .compatible = "marvell,armada370-nand", 3132 .data = &marvell_armada370_nfc_legacy_caps, 3133 }, 3134 { 3135 .compatible = "marvell,pxa3xx-nand", 3136 .data = &marvell_pxa3xx_nfc_legacy_caps, 3137 }, 3138 { /* sentinel */ }, 3139 }; 3140 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3141 3142 static struct platform_driver marvell_nfc_driver = { 3143 .driver = { 3144 .name = "marvell-nfc", 3145 .of_match_table = marvell_nfc_of_ids, 3146 .pm = &marvell_nfc_pm_ops, 3147 }, 3148 .id_table = marvell_nfc_platform_ids, 3149 .probe = marvell_nfc_probe, 3150 .remove = marvell_nfc_remove, 3151 }; 3152 module_platform_driver(marvell_nfc_driver); 3153 3154 MODULE_LICENSE("GPL"); 3155 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3156