xref: /linux/drivers/mtd/nand/raw/marvell_nand.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  *
9  * This NAND controller driver handles two versions of the hardware,
10  * one is called NFCv1 and is available on PXA SoCs and the other is
11  * called NFCv2 and is available on Armada SoCs.
12  *
13  * The main visible difference is that NFCv1 only has Hamming ECC
14  * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15  * is not used with NFCv2.
16  *
17  * The ECC layouts are depicted in details in Marvell AN-379, but here
18  * is a brief description.
19  *
20  * When using Hamming, the data is split in 512B chunks (either 1, 2
21  * or 4) and each chunk will have its own ECC "digest" of 6B at the
22  * beginning of the OOB area and eventually the remaining free OOB
23  * bytes (also called "spare" bytes in the driver). This engine
24  * corrects up to 1 bit per chunk and detects reliably an error if
25  * there are at most 2 bitflips. Here is the page layout used by the
26  * controller when Hamming is chosen:
27  *
28  * +-------------------------------------------------------------+
29  * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30  * +-------------------------------------------------------------+
31  *
32  * When using the BCH engine, there are N identical (data + free OOB +
33  * ECC) sections and potentially an extra one to deal with
34  * configurations where the chosen (data + free OOB + ECC) sizes do
35  * not align with the page (data + OOB) size. ECC bytes are always
36  * 30B per ECC chunk. Here is the page layout used by the controller
37  * when BCH is chosen:
38  *
39  * +-----------------------------------------
40  * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41  * +-----------------------------------------
42  *
43  *      -------------------------------------------
44  *       ... | Data N | Free OOB bytes N | ECC N |
45  *      -------------------------------------------
46  *
47  *           --------------------------------------------+
48  *            Last Data | Last Free OOB bytes | Last ECC |
49  *           --------------------------------------------+
50  *
51  * In both cases, the layout seen by the user is always: all data
52  * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53  * ECC bytes are 30B long and are padded with 0xFF to align on 32
54  * bytes.
55  *
56  * The controller has certain limitations that are handled by the
57  * driver:
58  *   - It can only read 2k at a time. To overcome this limitation, the
59  *     driver issues data cycles on the bus, without issuing new
60  *     CMD + ADDR cycles. The Marvell term is "naked" operations.
61  *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62  *     bits. What can be tuned is the ECC block size as long as it
63  *     stays between 512B and 2kiB. It's usually chosen based on the
64  *     chip ECC requirements. For instance, using 2kiB ECC chunks
65  *     provides 4b/512B correctability.
66  *   - The controller will always treat data bytes, free OOB bytes
67  *     and ECC bytes in that order, no matter what the real layout is
68  *     (which is usually all data then all OOB bytes). The
69  *     marvell_nfc_layouts array below contains the currently
70  *     supported layouts.
71  *   - Because of these weird layouts, the Bad Block Markers can be
72  *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73  *     option must be set to prevent scanning/writing bad block
74  *     markers.
75  */
76 
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
87 
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
92 
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
94 #define FIFO_DEPTH		8
95 #define FIFO_REP(x)		(x / sizeof(u32))
96 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE		2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN	7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD		0
103 #define POLL_TIMEOUT		100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT		1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT		3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1	5
110 #define MAX_ADDRESS_CYC_NFCV2	7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX	0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_CLK_GATING_CTRL	0x220
118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119 #define GENCONF_ND_CLK_CTRL	0x700
120 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
121 
122 /* NAND controller data flash control register */
123 #define NDCR			0x00
124 #define NDCR_ALL_INT		GENMASK(11, 0)
125 #define NDCR_CS1_CMDDM		BIT(7)
126 #define NDCR_CS0_CMDDM		BIT(8)
127 #define NDCR_RDYM		BIT(11)
128 #define NDCR_ND_ARB_EN		BIT(12)
129 #define NDCR_RA_START		BIT(15)
130 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
131 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
132 #define NDCR_DWIDTH_M		BIT(26)
133 #define NDCR_DWIDTH_C		BIT(27)
134 #define NDCR_ND_RUN		BIT(28)
135 #define NDCR_DMA_EN		BIT(29)
136 #define NDCR_ECC_EN		BIT(30)
137 #define NDCR_SPARE_EN		BIT(31)
138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
140 
141 /* NAND interface timing parameter 0 register */
142 #define NDTR0			0x04
143 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
145 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146 #define NDTR0_SEL_NRE_EDGE	BIT(7)
147 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
148 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
149 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
150 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
151 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
152 #define NDTR0_SELCNTR		BIT(26)
153 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
154 
155 /* NAND interface timing parameter 1 register */
156 #define NDTR1			0x0C
157 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
158 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
159 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
160 #define NDTR1_PRESCALE		BIT(14)
161 #define NDTR1_WAIT_MODE		BIT(15)
162 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
163 
164 /* NAND controller status register */
165 #define NDSR			0x14
166 #define NDSR_WRCMDREQ		BIT(0)
167 #define NDSR_RDDREQ		BIT(1)
168 #define NDSR_WRDREQ		BIT(2)
169 #define NDSR_CORERR		BIT(3)
170 #define NDSR_UNCERR		BIT(4)
171 #define NDSR_CMDD(cs)		BIT(8 - cs)
172 #define NDSR_RDY(rb)		BIT(11 + rb)
173 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
174 
175 /* NAND ECC control register */
176 #define NDECCCTRL		0x28
177 #define NDECCCTRL_BCH_EN	BIT(0)
178 
179 /* NAND controller data buffer register */
180 #define NDDB			0x40
181 
182 /* NAND controller command buffer 0 register */
183 #define NDCB0			0x48
184 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
185 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
186 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188 #define NDCB0_DBC		BIT(19)
189 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
190 #define NDCB0_CSEL		BIT(24)
191 #define NDCB0_RDY_BYP		BIT(27)
192 #define NDCB0_LEN_OVRD		BIT(28)
193 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
194 
195 /* NAND controller command buffer 1 register */
196 #define NDCB1			0x4C
197 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
198 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
199 
200 /* NAND controller command buffer 2 register */
201 #define NDCB2			0x50
202 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
203 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
204 
205 /* NAND controller command buffer 3 register */
206 #define NDCB3			0x54
207 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
208 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
209 
210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
211 #define TYPE_READ		0
212 #define TYPE_WRITE		1
213 #define TYPE_ERASE		2
214 #define TYPE_READ_ID		3
215 #define TYPE_STATUS		4
216 #define TYPE_RESET		5
217 #define TYPE_NAKED_CMD		6
218 #define TYPE_NAKED_ADDR		7
219 #define TYPE_MASK		7
220 #define XTYPE_MONOLITHIC_RW	0
221 #define XTYPE_LAST_NAKED_RW	1
222 #define XTYPE_FINAL_COMMAND	3
223 #define XTYPE_READ		4
224 #define XTYPE_WRITE_DISPATCH	4
225 #define XTYPE_NAKED_RW		5
226 #define XTYPE_COMMAND_DISPATCH	6
227 #define XTYPE_MASK		7
228 
229 /**
230  * struct marvell_hw_ecc_layout - layout of Marvell ECC
231  *
232  * Marvell ECC engine works differently than the others, in order to limit the
233  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
234  * per subpage, and depending on a the desired strength needed by the NAND chip,
235  * a particular layout mixing data/spare/ecc is defined, with a possible last
236  * chunk smaller that the others.
237  *
238  * @writesize:		Full page size on which the layout applies
239  * @chunk:		Desired ECC chunk size on which the layout applies
240  * @strength:		Desired ECC strength (per chunk size bytes) on which the
241  *			layout applies
242  * @nchunks:		Total number of chunks
243  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
244  *			repetitions of the pattern:
245  *			(data_bytes + spare_bytes + ecc_bytes).
246  * @data_bytes:		Number of data bytes per chunk
247  * @spare_bytes:	Number of spare bytes per chunk
248  * @ecc_bytes:		Number of ecc bytes per chunk
249  * @last_data_bytes:	Number of data bytes in the last chunk
250  * @last_spare_bytes:	Number of spare bytes in the last chunk
251  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
252  */
253 struct marvell_hw_ecc_layout {
254 	/* Constraints */
255 	int writesize;
256 	int chunk;
257 	int strength;
258 	/* Corresponding layout */
259 	int nchunks;
260 	int full_chunk_cnt;
261 	int data_bytes;
262 	int spare_bytes;
263 	int ecc_bytes;
264 	int last_data_bytes;
265 	int last_spare_bytes;
266 	int last_ecc_bytes;
267 };
268 
269 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
270 	{								\
271 		.writesize = ws,					\
272 		.chunk = dc,						\
273 		.strength = ds,						\
274 		.nchunks = nc,						\
275 		.full_chunk_cnt = fcc,					\
276 		.data_bytes = db,					\
277 		.spare_bytes = sb,					\
278 		.ecc_bytes = eb,					\
279 		.last_data_bytes = ldb,					\
280 		.last_spare_bytes = lsb,				\
281 		.last_ecc_bytes = leb,					\
282 	}
283 
284 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
285 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
286 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
287 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
288 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
289 	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
290 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
291 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
292 	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
293 	MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
294 };
295 
296 /**
297  * struct marvell_nand_chip_sel - CS line description
298  *
299  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
300  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
301  * The datasheet describes the logic with an error: ADDR5 field is once
302  * declared at the beginning of NDCB2, and another time at its end. Because the
303  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
304  * to use the last bit of this field instead of the first ones.
305  *
306  * @cs:			Wanted CE lane.
307  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
308  *			selecting the wanted CE lane. This is set once when
309  *			the Device Tree is probed.
310  * @rb:			Ready/Busy pin for the flash chip
311  */
312 struct marvell_nand_chip_sel {
313 	unsigned int cs;
314 	u32 ndcb0_csel;
315 	unsigned int rb;
316 };
317 
318 /**
319  * struct marvell_nand_chip - stores NAND chip device related information
320  *
321  * @chip:		Base NAND chip structure
322  * @node:		Used to store NAND chips into a list
323  * @layout:		NAND layout when using hardware ECC
324  * @ndcr:		Controller register value for this NAND chip
325  * @ndtr0:		Timing registers 0 value for this NAND chip
326  * @ndtr1:		Timing registers 1 value for this NAND chip
327  * @addr_cyc:		Amount of cycles needed to pass column address
328  * @selected_die:	Current active CS
329  * @nsels:		Number of CS lines required by the NAND chip
330  * @sels:		Array of CS lines descriptions
331  */
332 struct marvell_nand_chip {
333 	struct nand_chip chip;
334 	struct list_head node;
335 	const struct marvell_hw_ecc_layout *layout;
336 	u32 ndcr;
337 	u32 ndtr0;
338 	u32 ndtr1;
339 	int addr_cyc;
340 	int selected_die;
341 	unsigned int nsels;
342 	struct marvell_nand_chip_sel sels[];
343 };
344 
345 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
346 {
347 	return container_of(chip, struct marvell_nand_chip, chip);
348 }
349 
350 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
351 							*nand)
352 {
353 	return &nand->sels[nand->selected_die];
354 }
355 
356 /**
357  * struct marvell_nfc_caps - NAND controller capabilities for distinction
358  *                           between compatible strings
359  *
360  * @max_cs_nb:		Number of Chip Select lines available
361  * @max_rb_nb:		Number of Ready/Busy lines available
362  * @need_system_controller: Indicates if the SoC needs to have access to the
363  *                      system controller (ie. to enable the NAND controller)
364  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
365  *			fashion way
366  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
367  *			BCH error detection and correction algorithm,
368  *			NDCB3 register has been added
369  * @use_dma:		Use dma for data transfers
370  */
371 struct marvell_nfc_caps {
372 	unsigned int max_cs_nb;
373 	unsigned int max_rb_nb;
374 	bool need_system_controller;
375 	bool legacy_of_bindings;
376 	bool is_nfcv2;
377 	bool use_dma;
378 };
379 
380 /**
381  * struct marvell_nfc - stores Marvell NAND controller information
382  *
383  * @controller:		Base controller structure
384  * @dev:		Parent device (used to print error messages)
385  * @regs:		NAND controller registers
386  * @core_clk:		Core clock
387  * @reg_clk:		Registers clock
388  * @complete:		Completion object to wait for NAND controller events
389  * @assigned_cs:	Bitmask describing already assigned CS lines
390  * @chips:		List containing all the NAND chips attached to
391  *			this NAND controller
392  * @selected_chip:	Currently selected target chip
393  * @caps:		NAND controller capabilities for each compatible string
394  * @use_dma:		Whetner DMA is used
395  * @dma_chan:		DMA channel (NFCv1 only)
396  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
397  */
398 struct marvell_nfc {
399 	struct nand_controller controller;
400 	struct device *dev;
401 	void __iomem *regs;
402 	struct clk *core_clk;
403 	struct clk *reg_clk;
404 	struct completion complete;
405 	unsigned long assigned_cs;
406 	struct list_head chips;
407 	struct nand_chip *selected_chip;
408 	const struct marvell_nfc_caps *caps;
409 
410 	/* DMA (NFCv1 only) */
411 	bool use_dma;
412 	struct dma_chan *dma_chan;
413 	u8 *dma_buf;
414 };
415 
416 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
417 {
418 	return container_of(ctrl, struct marvell_nfc, controller);
419 }
420 
421 /**
422  * struct marvell_nfc_timings - NAND controller timings expressed in NAND
423  *                              Controller clock cycles
424  *
425  * @tRP:		ND_nRE pulse width
426  * @tRH:		ND_nRE high duration
427  * @tWP:		ND_nWE pulse time
428  * @tWH:		ND_nWE high duration
429  * @tCS:		Enable signal setup time
430  * @tCH:		Enable signal hold time
431  * @tADL:		Address to write data delay
432  * @tAR:		ND_ALE low to ND_nRE low delay
433  * @tWHR:		ND_nWE high to ND_nRE low for status read
434  * @tRHW:		ND_nRE high duration, read to write delay
435  * @tR:			ND_nWE high to ND_nRE low for read
436  */
437 struct marvell_nfc_timings {
438 	/* NDTR0 fields */
439 	unsigned int tRP;
440 	unsigned int tRH;
441 	unsigned int tWP;
442 	unsigned int tWH;
443 	unsigned int tCS;
444 	unsigned int tCH;
445 	unsigned int tADL;
446 	/* NDTR1 fields */
447 	unsigned int tAR;
448 	unsigned int tWHR;
449 	unsigned int tRHW;
450 	unsigned int tR;
451 };
452 
453 /**
454  * Derives a duration in numbers of clock cycles.
455  *
456  * @ps: Duration in pico-seconds
457  * @period_ns:  Clock period in nano-seconds
458  *
459  * Convert the duration in nano-seconds, then divide by the period and
460  * return the number of clock periods.
461  */
462 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
463 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
464 						     period_ns))
465 
466 /**
467  * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
468  *                         subop subset of instructions.
469  *
470  * @ndcb:		Array of values written to NDCBx registers
471  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
472  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
473  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
474  * @data_delay_ns:	Optional delay after the data xfer
475  * @data_instr_idx:	Index of the data instruction in the subop
476  * @data_instr:		Pointer to the data instruction in the subop
477  */
478 struct marvell_nfc_op {
479 	u32 ndcb[4];
480 	unsigned int cle_ale_delay_ns;
481 	unsigned int rdy_timeout_ms;
482 	unsigned int rdy_delay_ns;
483 	unsigned int data_delay_ns;
484 	unsigned int data_instr_idx;
485 	const struct nand_op_instr *data_instr;
486 };
487 
488 /*
489  * Internal helper to conditionnally apply a delay (from the above structure,
490  * most of the time).
491  */
492 static void cond_delay(unsigned int ns)
493 {
494 	if (!ns)
495 		return;
496 
497 	if (ns < 10000)
498 		ndelay(ns);
499 	else
500 		udelay(DIV_ROUND_UP(ns, 1000));
501 }
502 
503 /*
504  * The controller has many flags that could generate interrupts, most of them
505  * are disabled and polling is used. For the very slow signals, using interrupts
506  * may relax the CPU charge.
507  */
508 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
509 {
510 	u32 reg;
511 
512 	/* Writing 1 disables the interrupt */
513 	reg = readl_relaxed(nfc->regs + NDCR);
514 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
515 }
516 
517 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
518 {
519 	u32 reg;
520 
521 	/* Writing 0 enables the interrupt */
522 	reg = readl_relaxed(nfc->regs + NDCR);
523 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
524 }
525 
526 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
527 {
528 	u32 reg;
529 
530 	reg = readl_relaxed(nfc->regs + NDSR);
531 	writel_relaxed(int_mask, nfc->regs + NDSR);
532 
533 	return reg & int_mask;
534 }
535 
536 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
537 					  bool force_8bit)
538 {
539 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
540 	u32 ndcr;
541 
542 	/*
543 	 * Callers of this function do not verify if the NAND is using a 16-bit
544 	 * an 8-bit bus for normal operations, so we need to take care of that
545 	 * here by leaving the configuration unchanged if the NAND does not have
546 	 * the NAND_BUSWIDTH_16 flag set.
547 	 */
548 	if (!(chip->options & NAND_BUSWIDTH_16))
549 		return;
550 
551 	ndcr = readl_relaxed(nfc->regs + NDCR);
552 
553 	if (force_8bit)
554 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
555 	else
556 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
557 
558 	writel_relaxed(ndcr, nfc->regs + NDCR);
559 }
560 
561 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
562 {
563 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
564 	u32 val;
565 	int ret;
566 
567 	/*
568 	 * The command is being processed, wait for the ND_RUN bit to be
569 	 * cleared by the NFC. If not, we must clear it by hand.
570 	 */
571 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
572 					 (val & NDCR_ND_RUN) == 0,
573 					 POLL_PERIOD, POLL_TIMEOUT);
574 	if (ret) {
575 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
576 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
577 			       nfc->regs + NDCR);
578 		return ret;
579 	}
580 
581 	return 0;
582 }
583 
584 /*
585  * Any time a command has to be sent to the controller, the following sequence
586  * has to be followed:
587  * - call marvell_nfc_prepare_cmd()
588  *      -> activate the ND_RUN bit that will kind of 'start a job'
589  *      -> wait the signal indicating the NFC is waiting for a command
590  * - send the command (cmd and address cycles)
591  * - enventually send or receive the data
592  * - call marvell_nfc_end_cmd() with the corresponding flag
593  *      -> wait the flag to be triggered or cancel the job with a timeout
594  *
595  * The following helpers are here to factorize the code a bit so that
596  * specialized functions responsible for executing the actual NAND
597  * operations do not have to replicate the same code blocks.
598  */
599 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
600 {
601 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
602 	u32 ndcr, val;
603 	int ret;
604 
605 	/* Poll ND_RUN and clear NDSR before issuing any command */
606 	ret = marvell_nfc_wait_ndrun(chip);
607 	if (ret) {
608 		dev_err(nfc->dev, "Last operation did not succeed\n");
609 		return ret;
610 	}
611 
612 	ndcr = readl_relaxed(nfc->regs + NDCR);
613 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
614 
615 	/* Assert ND_RUN bit and wait the NFC to be ready */
616 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
617 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
618 					 val & NDSR_WRCMDREQ,
619 					 POLL_PERIOD, POLL_TIMEOUT);
620 	if (ret) {
621 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
622 		return -ETIMEDOUT;
623 	}
624 
625 	/* Command may be written, clear WRCMDREQ status bit */
626 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
627 
628 	return 0;
629 }
630 
631 static void marvell_nfc_send_cmd(struct nand_chip *chip,
632 				 struct marvell_nfc_op *nfc_op)
633 {
634 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
635 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
636 
637 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
638 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
639 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
640 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
641 
642 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
643 		       nfc->regs + NDCB0);
644 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
645 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
646 
647 	/*
648 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
649 	 * fields are used (only available on NFCv2).
650 	 */
651 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
652 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
653 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
654 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
655 	}
656 }
657 
658 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
659 			       const char *label)
660 {
661 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
662 	u32 val;
663 	int ret;
664 
665 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
666 					 val & flag,
667 					 POLL_PERIOD, POLL_TIMEOUT);
668 
669 	if (ret) {
670 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
671 			label, val);
672 		if (nfc->dma_chan)
673 			dmaengine_terminate_all(nfc->dma_chan);
674 		return ret;
675 	}
676 
677 	/*
678 	 * DMA function uses this helper to poll on CMDD bits without wanting
679 	 * them to be cleared.
680 	 */
681 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
682 		return 0;
683 
684 	writel_relaxed(flag, nfc->regs + NDSR);
685 
686 	return 0;
687 }
688 
689 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
690 {
691 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
692 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
693 
694 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
695 }
696 
697 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
698 				   u32 expected_val, unsigned long timeout_ms)
699 {
700 	unsigned long limit;
701 	u32 st;
702 
703 	limit = jiffies + msecs_to_jiffies(timeout_ms);
704 	do {
705 		st = readl_relaxed(nfc->regs + NDSR);
706 		if (st & NDSR_RDY(1))
707 			st |= NDSR_RDY(0);
708 
709 		if ((st & mask) == expected_val)
710 			return 0;
711 
712 		cpu_relax();
713 	} while (time_after(limit, jiffies));
714 
715 	return -ETIMEDOUT;
716 }
717 
718 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
719 {
720 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 	struct mtd_info *mtd = nand_to_mtd(chip);
722 	u32 pending;
723 	int ret;
724 
725 	/* Timeout is expressed in ms */
726 	if (!timeout_ms)
727 		timeout_ms = IRQ_TIMEOUT;
728 
729 	if (mtd->oops_panic_write) {
730 		ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
731 					      NDSR_RDY(0),
732 					      timeout_ms);
733 	} else {
734 		init_completion(&nfc->complete);
735 
736 		marvell_nfc_enable_int(nfc, NDCR_RDYM);
737 		ret = wait_for_completion_timeout(&nfc->complete,
738 						  msecs_to_jiffies(timeout_ms));
739 		marvell_nfc_disable_int(nfc, NDCR_RDYM);
740 	}
741 	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
742 
743 	/*
744 	 * In case the interrupt was not served in the required time frame,
745 	 * check if the ISR was not served or if something went actually wrong.
746 	 */
747 	if (!ret && !pending) {
748 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
749 		return -ETIMEDOUT;
750 	}
751 
752 	return 0;
753 }
754 
755 static void marvell_nfc_select_target(struct nand_chip *chip,
756 				      unsigned int die_nr)
757 {
758 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
759 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
760 	u32 ndcr_generic;
761 
762 	/*
763 	 * Reset the NDCR register to a clean state for this particular chip,
764 	 * also clear ND_RUN bit.
765 	 */
766 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
767 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
768 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
769 
770 	/* Also reset the interrupt status register */
771 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
772 
773 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
774 		return;
775 
776 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
777 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
778 
779 	nfc->selected_chip = chip;
780 	marvell_nand->selected_die = die_nr;
781 }
782 
783 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
784 {
785 	struct marvell_nfc *nfc = dev_id;
786 	u32 st = readl_relaxed(nfc->regs + NDSR);
787 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
788 
789 	/*
790 	 * RDY interrupt mask is one bit in NDCR while there are two status
791 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
792 	 */
793 	if (st & NDSR_RDY(1))
794 		st |= NDSR_RDY(0);
795 
796 	if (!(st & ien))
797 		return IRQ_NONE;
798 
799 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
800 
801 	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
802 		complete(&nfc->complete);
803 
804 	return IRQ_HANDLED;
805 }
806 
807 /* HW ECC related functions */
808 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
809 {
810 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
811 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
812 
813 	if (!(ndcr & NDCR_ECC_EN)) {
814 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
815 
816 		/*
817 		 * When enabling BCH, set threshold to 0 to always know the
818 		 * number of corrected bitflips.
819 		 */
820 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
821 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
822 	}
823 }
824 
825 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
826 {
827 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
828 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
829 
830 	if (ndcr & NDCR_ECC_EN) {
831 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
832 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
833 			writel_relaxed(0, nfc->regs + NDECCCTRL);
834 	}
835 }
836 
837 /* DMA related helpers */
838 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
839 {
840 	u32 reg;
841 
842 	reg = readl_relaxed(nfc->regs + NDCR);
843 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
844 }
845 
846 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
847 {
848 	u32 reg;
849 
850 	reg = readl_relaxed(nfc->regs + NDCR);
851 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
852 }
853 
854 /* Read/write PIO/DMA accessors */
855 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
856 				     enum dma_data_direction direction,
857 				     unsigned int len)
858 {
859 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
860 	struct dma_async_tx_descriptor *tx;
861 	struct scatterlist sg;
862 	dma_cookie_t cookie;
863 	int ret;
864 
865 	marvell_nfc_enable_dma(nfc);
866 	/* Prepare the DMA transfer */
867 	sg_init_one(&sg, nfc->dma_buf, dma_len);
868 	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
869 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
870 				     direction == DMA_FROM_DEVICE ?
871 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
872 				     DMA_PREP_INTERRUPT);
873 	if (!tx) {
874 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
875 		return -ENXIO;
876 	}
877 
878 	/* Do the task and wait for it to finish */
879 	cookie = dmaengine_submit(tx);
880 	ret = dma_submit_error(cookie);
881 	if (ret)
882 		return -EIO;
883 
884 	dma_async_issue_pending(nfc->dma_chan);
885 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
886 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
887 	marvell_nfc_disable_dma(nfc);
888 	if (ret) {
889 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
890 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
891 		dmaengine_terminate_all(nfc->dma_chan);
892 		return -ETIMEDOUT;
893 	}
894 
895 	return 0;
896 }
897 
898 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
899 					unsigned int len)
900 {
901 	unsigned int last_len = len % FIFO_DEPTH;
902 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
903 	int i;
904 
905 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
906 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
907 
908 	if (last_len) {
909 		u8 tmp_buf[FIFO_DEPTH];
910 
911 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
912 		memcpy(in + last_full_offset, tmp_buf, last_len);
913 	}
914 
915 	return 0;
916 }
917 
918 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
919 					 unsigned int len)
920 {
921 	unsigned int last_len = len % FIFO_DEPTH;
922 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
923 	int i;
924 
925 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
926 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
927 
928 	if (last_len) {
929 		u8 tmp_buf[FIFO_DEPTH];
930 
931 		memcpy(tmp_buf, out + last_full_offset, last_len);
932 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
933 	}
934 
935 	return 0;
936 }
937 
938 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
939 					  u8 *data, int data_len,
940 					  u8 *spare, int spare_len,
941 					  u8 *ecc, int ecc_len,
942 					  unsigned int *max_bitflips)
943 {
944 	struct mtd_info *mtd = nand_to_mtd(chip);
945 	int bf;
946 
947 	/*
948 	 * Blank pages (all 0xFF) that have not been written may be recognized
949 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
950 	 * check if the entire page (with ECC bytes) is actually blank or not.
951 	 */
952 	if (!data)
953 		data_len = 0;
954 	if (!spare)
955 		spare_len = 0;
956 	if (!ecc)
957 		ecc_len = 0;
958 
959 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
960 					 spare, spare_len, chip->ecc.strength);
961 	if (bf < 0) {
962 		mtd->ecc_stats.failed++;
963 		return;
964 	}
965 
966 	/* Update the stats and max_bitflips */
967 	mtd->ecc_stats.corrected += bf;
968 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
969 }
970 
971 /*
972  * Check if a chunk is correct or not according to the hardware ECC engine.
973  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
974  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
975  * value indicating that a check on the emptyness of the subpage must be
976  * performed before actually declaring the subpage as "corrupted".
977  */
978 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
979 					     unsigned int *max_bitflips)
980 {
981 	struct mtd_info *mtd = nand_to_mtd(chip);
982 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
983 	int bf = 0;
984 	u32 ndsr;
985 
986 	ndsr = readl_relaxed(nfc->regs + NDSR);
987 
988 	/* Check uncorrectable error flag */
989 	if (ndsr & NDSR_UNCERR) {
990 		writel_relaxed(ndsr, nfc->regs + NDSR);
991 
992 		/*
993 		 * Do not increment ->ecc_stats.failed now, instead, return a
994 		 * non-zero value to indicate that this chunk was apparently
995 		 * bad, and it should be check to see if it empty or not. If
996 		 * the chunk (with ECC bytes) is not declared empty, the calling
997 		 * function must increment the failure count.
998 		 */
999 		return -EBADMSG;
1000 	}
1001 
1002 	/* Check correctable error flag */
1003 	if (ndsr & NDSR_CORERR) {
1004 		writel_relaxed(ndsr, nfc->regs + NDSR);
1005 
1006 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1007 			bf = NDSR_ERRCNT(ndsr);
1008 		else
1009 			bf = 1;
1010 	}
1011 
1012 	/* Update the stats and max_bitflips */
1013 	mtd->ecc_stats.corrected += bf;
1014 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1015 
1016 	return 0;
1017 }
1018 
1019 /* Hamming read helpers */
1020 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1021 					       u8 *data_buf, u8 *oob_buf,
1022 					       bool raw, int page)
1023 {
1024 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1025 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1026 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1027 	struct marvell_nfc_op nfc_op = {
1028 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1029 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1030 			   NDCB0_DBC |
1031 			   NDCB0_CMD1(NAND_CMD_READ0) |
1032 			   NDCB0_CMD2(NAND_CMD_READSTART),
1033 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1034 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1035 	};
1036 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1037 	int ret;
1038 
1039 	/* NFCv2 needs more information about the operation being executed */
1040 	if (nfc->caps->is_nfcv2)
1041 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1042 
1043 	ret = marvell_nfc_prepare_cmd(chip);
1044 	if (ret)
1045 		return ret;
1046 
1047 	marvell_nfc_send_cmd(chip, &nfc_op);
1048 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1049 				  "RDDREQ while draining FIFO (data/oob)");
1050 	if (ret)
1051 		return ret;
1052 
1053 	/*
1054 	 * Read the page then the OOB area. Unlike what is shown in current
1055 	 * documentation, spare bytes are protected by the ECC engine, and must
1056 	 * be at the beginning of the OOB area or running this driver on legacy
1057 	 * systems will prevent the discovery of the BBM/BBT.
1058 	 */
1059 	if (nfc->use_dma) {
1060 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1061 					  lt->data_bytes + oob_bytes);
1062 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1063 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1064 	} else {
1065 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1066 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1067 	}
1068 
1069 	ret = marvell_nfc_wait_cmdd(chip);
1070 	return ret;
1071 }
1072 
1073 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1074 						int oob_required, int page)
1075 {
1076 	marvell_nfc_select_target(chip, chip->cur_cs);
1077 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1078 						   true, page);
1079 }
1080 
1081 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1082 					    int oob_required, int page)
1083 {
1084 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1085 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1086 	int max_bitflips = 0, ret;
1087 	u8 *raw_buf;
1088 
1089 	marvell_nfc_select_target(chip, chip->cur_cs);
1090 	marvell_nfc_enable_hw_ecc(chip);
1091 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1092 					    page);
1093 	ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1094 	marvell_nfc_disable_hw_ecc(chip);
1095 
1096 	if (!ret)
1097 		return max_bitflips;
1098 
1099 	/*
1100 	 * When ECC failures are detected, check if the full page has been
1101 	 * written or not. Ignore the failure if it is actually empty.
1102 	 */
1103 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
1104 	if (!raw_buf)
1105 		return -ENOMEM;
1106 
1107 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1108 					    lt->data_bytes, true, page);
1109 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1110 				      &max_bitflips);
1111 	kfree(raw_buf);
1112 
1113 	return max_bitflips;
1114 }
1115 
1116 /*
1117  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1118  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1119  * also stands for ->read_oob().
1120  */
1121 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1122 {
1123 	u8 *buf = nand_get_data_buf(chip);
1124 
1125 	marvell_nfc_select_target(chip, chip->cur_cs);
1126 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1127 						   true, page);
1128 }
1129 
1130 /* Hamming write helpers */
1131 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1132 						const u8 *data_buf,
1133 						const u8 *oob_buf, bool raw,
1134 						int page)
1135 {
1136 	const struct nand_sdr_timings *sdr =
1137 		nand_get_sdr_timings(nand_get_interface_config(chip));
1138 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1139 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1140 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1141 	struct marvell_nfc_op nfc_op = {
1142 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1143 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1144 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1145 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1146 			   NDCB0_DBC,
1147 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1148 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1149 	};
1150 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1151 	int ret;
1152 
1153 	/* NFCv2 needs more information about the operation being executed */
1154 	if (nfc->caps->is_nfcv2)
1155 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1156 
1157 	ret = marvell_nfc_prepare_cmd(chip);
1158 	if (ret)
1159 		return ret;
1160 
1161 	marvell_nfc_send_cmd(chip, &nfc_op);
1162 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1163 				  "WRDREQ while loading FIFO (data)");
1164 	if (ret)
1165 		return ret;
1166 
1167 	/* Write the page then the OOB area */
1168 	if (nfc->use_dma) {
1169 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1170 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1171 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1172 					  lt->ecc_bytes + lt->spare_bytes);
1173 	} else {
1174 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1175 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1176 	}
1177 
1178 	ret = marvell_nfc_wait_cmdd(chip);
1179 	if (ret)
1180 		return ret;
1181 
1182 	ret = marvell_nfc_wait_op(chip,
1183 				  PSEC_TO_MSEC(sdr->tPROG_max));
1184 	return ret;
1185 }
1186 
1187 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1188 						 const u8 *buf,
1189 						 int oob_required, int page)
1190 {
1191 	marvell_nfc_select_target(chip, chip->cur_cs);
1192 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1193 						    true, page);
1194 }
1195 
1196 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1197 					     const u8 *buf,
1198 					     int oob_required, int page)
1199 {
1200 	int ret;
1201 
1202 	marvell_nfc_select_target(chip, chip->cur_cs);
1203 	marvell_nfc_enable_hw_ecc(chip);
1204 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1205 						   false, page);
1206 	marvell_nfc_disable_hw_ecc(chip);
1207 
1208 	return ret;
1209 }
1210 
1211 /*
1212  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1213  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1214  * also stands for ->write_oob().
1215  */
1216 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1217 						int page)
1218 {
1219 	struct mtd_info *mtd = nand_to_mtd(chip);
1220 	u8 *buf = nand_get_data_buf(chip);
1221 
1222 	memset(buf, 0xFF, mtd->writesize);
1223 
1224 	marvell_nfc_select_target(chip, chip->cur_cs);
1225 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1226 						    true, page);
1227 }
1228 
1229 /* BCH read helpers */
1230 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1231 						int oob_required, int page)
1232 {
1233 	struct mtd_info *mtd = nand_to_mtd(chip);
1234 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1235 	u8 *oob = chip->oob_poi;
1236 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1237 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1238 		lt->last_spare_bytes;
1239 	int data_len = lt->data_bytes;
1240 	int spare_len = lt->spare_bytes;
1241 	int ecc_len = lt->ecc_bytes;
1242 	int chunk;
1243 
1244 	marvell_nfc_select_target(chip, chip->cur_cs);
1245 
1246 	if (oob_required)
1247 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1248 
1249 	nand_read_page_op(chip, page, 0, NULL, 0);
1250 
1251 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1252 		/* Update last chunk length */
1253 		if (chunk >= lt->full_chunk_cnt) {
1254 			data_len = lt->last_data_bytes;
1255 			spare_len = lt->last_spare_bytes;
1256 			ecc_len = lt->last_ecc_bytes;
1257 		}
1258 
1259 		/* Read data bytes*/
1260 		nand_change_read_column_op(chip, chunk * chunk_size,
1261 					   buf + (lt->data_bytes * chunk),
1262 					   data_len, false);
1263 
1264 		/* Read spare bytes */
1265 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1266 				  spare_len, false, false);
1267 
1268 		/* Read ECC bytes */
1269 		nand_read_data_op(chip, oob + ecc_offset +
1270 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1271 				  ecc_len, false, false);
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1278 					      u8 *data, unsigned int data_len,
1279 					      u8 *spare, unsigned int spare_len,
1280 					      int page)
1281 {
1282 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1283 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1284 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1285 	int i, ret;
1286 	struct marvell_nfc_op nfc_op = {
1287 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1288 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1289 			   NDCB0_LEN_OVRD,
1290 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1291 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1292 		.ndcb[3] = data_len + spare_len,
1293 	};
1294 
1295 	ret = marvell_nfc_prepare_cmd(chip);
1296 	if (ret)
1297 		return;
1298 
1299 	if (chunk == 0)
1300 		nfc_op.ndcb[0] |= NDCB0_DBC |
1301 				  NDCB0_CMD1(NAND_CMD_READ0) |
1302 				  NDCB0_CMD2(NAND_CMD_READSTART);
1303 
1304 	/*
1305 	 * Trigger the monolithic read on the first chunk, then naked read on
1306 	 * intermediate chunks and finally a last naked read on the last chunk.
1307 	 */
1308 	if (chunk == 0)
1309 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1310 	else if (chunk < lt->nchunks - 1)
1311 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1312 	else
1313 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1314 
1315 	marvell_nfc_send_cmd(chip, &nfc_op);
1316 
1317 	/*
1318 	 * According to the datasheet, when reading from NDDB
1319 	 * with BCH enabled, after each 32 bytes reads, we
1320 	 * have to make sure that the NDSR.RDDREQ bit is set.
1321 	 *
1322 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1323 	 * the polling on the last read.
1324 	 *
1325 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1326 	 */
1327 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1328 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1329 				    "RDDREQ while draining FIFO (data)");
1330 		marvell_nfc_xfer_data_in_pio(nfc, data,
1331 					     FIFO_DEPTH * BCH_SEQ_READS);
1332 		data += FIFO_DEPTH * BCH_SEQ_READS;
1333 	}
1334 
1335 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1336 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1337 				    "RDDREQ while draining FIFO (OOB)");
1338 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1339 					     FIFO_DEPTH * BCH_SEQ_READS);
1340 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1341 	}
1342 }
1343 
1344 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1345 					    u8 *buf, int oob_required,
1346 					    int page)
1347 {
1348 	struct mtd_info *mtd = nand_to_mtd(chip);
1349 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1350 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1351 	u8 *data = buf, *spare = chip->oob_poi;
1352 	int max_bitflips = 0;
1353 	u32 failure_mask = 0;
1354 	int chunk, ret;
1355 
1356 	marvell_nfc_select_target(chip, chip->cur_cs);
1357 
1358 	/*
1359 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1360 	 * expected bytes could show up at the end of the OOB buffer if not
1361 	 * explicitly erased.
1362 	 */
1363 	if (oob_required)
1364 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1365 
1366 	marvell_nfc_enable_hw_ecc(chip);
1367 
1368 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1369 		/* Update length for the last chunk */
1370 		if (chunk >= lt->full_chunk_cnt) {
1371 			data_len = lt->last_data_bytes;
1372 			spare_len = lt->last_spare_bytes;
1373 		}
1374 
1375 		/* Read the chunk and detect number of bitflips */
1376 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1377 						  spare, spare_len, page);
1378 		ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1379 		if (ret)
1380 			failure_mask |= BIT(chunk);
1381 
1382 		data += data_len;
1383 		spare += spare_len;
1384 	}
1385 
1386 	marvell_nfc_disable_hw_ecc(chip);
1387 
1388 	if (!failure_mask)
1389 		return max_bitflips;
1390 
1391 	/*
1392 	 * Please note that dumping the ECC bytes during a normal read with OOB
1393 	 * area would add a significant overhead as ECC bytes are "consumed" by
1394 	 * the controller in normal mode and must be re-read in raw mode. To
1395 	 * avoid dropping the performances, we prefer not to include them. The
1396 	 * user should re-read the page in raw mode if ECC bytes are required.
1397 	 */
1398 
1399 	/*
1400 	 * In case there is any subpage read error, we usually re-read only ECC
1401 	 * bytes in raw mode and check if the whole page is empty. In this case,
1402 	 * it is normal that the ECC check failed and we just ignore the error.
1403 	 *
1404 	 * However, it has been empirically observed that for some layouts (e.g
1405 	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1406 	 * bits and may create itself bitflips in the erased area. To overcome
1407 	 * this strange behavior, the whole page is re-read in raw mode, not
1408 	 * only the ECC bytes.
1409 	 */
1410 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1411 		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1412 		int data_off, spare_off, ecc_off;
1413 		int data_len, spare_len, ecc_len;
1414 
1415 		/* No failure reported for this chunk, move to the next one */
1416 		if (!(failure_mask & BIT(chunk)))
1417 			continue;
1418 
1419 		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1420 					    lt->ecc_bytes);
1421 		spare_off_in_page = data_off_in_page +
1422 			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
1423 						      lt->last_data_bytes);
1424 		ecc_off_in_page = spare_off_in_page +
1425 			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1426 						      lt->last_spare_bytes);
1427 
1428 		data_off = chunk * lt->data_bytes;
1429 		spare_off = chunk * lt->spare_bytes;
1430 		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1431 			  lt->last_spare_bytes +
1432 			  (chunk * (lt->ecc_bytes + 2));
1433 
1434 		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1435 							lt->last_data_bytes;
1436 		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1437 							 lt->last_spare_bytes;
1438 		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1439 						       lt->last_ecc_bytes;
1440 
1441 		/*
1442 		 * Only re-read the ECC bytes, unless we are using the 2k/8b
1443 		 * layout which is buggy in the sense that the ECC engine will
1444 		 * try to correct data bytes anyway, creating bitflips. In this
1445 		 * case, re-read the entire page.
1446 		 */
1447 		if (lt->writesize == 2048 && lt->strength == 8) {
1448 			nand_change_read_column_op(chip, data_off_in_page,
1449 						   buf + data_off, data_len,
1450 						   false);
1451 			nand_change_read_column_op(chip, spare_off_in_page,
1452 						   chip->oob_poi + spare_off, spare_len,
1453 						   false);
1454 		}
1455 
1456 		nand_change_read_column_op(chip, ecc_off_in_page,
1457 					   chip->oob_poi + ecc_off, ecc_len,
1458 					   false);
1459 
1460 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1461 		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1462 					      chip->oob_poi + spare_off, spare_len,
1463 					      chip->oob_poi + ecc_off, ecc_len,
1464 					      &max_bitflips);
1465 	}
1466 
1467 	return max_bitflips;
1468 }
1469 
1470 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1471 {
1472 	u8 *buf = nand_get_data_buf(chip);
1473 
1474 	return chip->ecc.read_page_raw(chip, buf, true, page);
1475 }
1476 
1477 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1478 {
1479 	u8 *buf = nand_get_data_buf(chip);
1480 
1481 	return chip->ecc.read_page(chip, buf, true, page);
1482 }
1483 
1484 /* BCH write helpers */
1485 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1486 						 const u8 *buf,
1487 						 int oob_required, int page)
1488 {
1489 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1490 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1491 	int data_len = lt->data_bytes;
1492 	int spare_len = lt->spare_bytes;
1493 	int ecc_len = lt->ecc_bytes;
1494 	int spare_offset = 0;
1495 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1496 		lt->last_spare_bytes;
1497 	int chunk;
1498 
1499 	marvell_nfc_select_target(chip, chip->cur_cs);
1500 
1501 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1502 
1503 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1504 		if (chunk >= lt->full_chunk_cnt) {
1505 			data_len = lt->last_data_bytes;
1506 			spare_len = lt->last_spare_bytes;
1507 			ecc_len = lt->last_ecc_bytes;
1508 		}
1509 
1510 		/* Point to the column of the next chunk */
1511 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1512 					    NULL, 0, false);
1513 
1514 		/* Write the data */
1515 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1516 				   data_len, false);
1517 
1518 		if (!oob_required)
1519 			continue;
1520 
1521 		/* Write the spare bytes */
1522 		if (spare_len)
1523 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1524 					   spare_len, false);
1525 
1526 		/* Write the ECC bytes */
1527 		if (ecc_len)
1528 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1529 					   ecc_len, false);
1530 
1531 		spare_offset += spare_len;
1532 		ecc_offset += ALIGN(ecc_len, 32);
1533 	}
1534 
1535 	return nand_prog_page_end_op(chip);
1536 }
1537 
1538 static int
1539 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1540 				   const u8 *data, unsigned int data_len,
1541 				   const u8 *spare, unsigned int spare_len,
1542 				   int page)
1543 {
1544 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1545 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1546 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1547 	u32 xtype;
1548 	int ret;
1549 	struct marvell_nfc_op nfc_op = {
1550 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1551 		.ndcb[3] = data_len + spare_len,
1552 	};
1553 
1554 	/*
1555 	 * First operation dispatches the CMD_SEQIN command, issue the address
1556 	 * cycles and asks for the first chunk of data.
1557 	 * All operations in the middle (if any) will issue a naked write and
1558 	 * also ask for data.
1559 	 * Last operation (if any) asks for the last chunk of data through a
1560 	 * last naked write.
1561 	 */
1562 	if (chunk == 0) {
1563 		if (lt->nchunks == 1)
1564 			xtype = XTYPE_MONOLITHIC_RW;
1565 		else
1566 			xtype = XTYPE_WRITE_DISPATCH;
1567 
1568 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1569 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1570 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1571 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1572 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1573 	} else if (chunk < lt->nchunks - 1) {
1574 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1575 	} else {
1576 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1577 	}
1578 
1579 	/* Always dispatch the PAGEPROG command on the last chunk */
1580 	if (chunk == lt->nchunks - 1)
1581 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1582 
1583 	ret = marvell_nfc_prepare_cmd(chip);
1584 	if (ret)
1585 		return ret;
1586 
1587 	marvell_nfc_send_cmd(chip, &nfc_op);
1588 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1589 				  "WRDREQ while loading FIFO (data)");
1590 	if (ret)
1591 		return ret;
1592 
1593 	/* Transfer the contents */
1594 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1595 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1596 
1597 	return 0;
1598 }
1599 
1600 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1601 					     const u8 *buf,
1602 					     int oob_required, int page)
1603 {
1604 	const struct nand_sdr_timings *sdr =
1605 		nand_get_sdr_timings(nand_get_interface_config(chip));
1606 	struct mtd_info *mtd = nand_to_mtd(chip);
1607 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1608 	const u8 *data = buf;
1609 	const u8 *spare = chip->oob_poi;
1610 	int data_len = lt->data_bytes;
1611 	int spare_len = lt->spare_bytes;
1612 	int chunk, ret;
1613 
1614 	marvell_nfc_select_target(chip, chip->cur_cs);
1615 
1616 	/* Spare data will be written anyway, so clear it to avoid garbage */
1617 	if (!oob_required)
1618 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1619 
1620 	marvell_nfc_enable_hw_ecc(chip);
1621 
1622 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1623 		if (chunk >= lt->full_chunk_cnt) {
1624 			data_len = lt->last_data_bytes;
1625 			spare_len = lt->last_spare_bytes;
1626 		}
1627 
1628 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1629 						   spare, spare_len, page);
1630 		data += data_len;
1631 		spare += spare_len;
1632 
1633 		/*
1634 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1635 		 * partially written. No flag is set once the operation is
1636 		 * really finished but the ND_RUN bit is cleared, so wait for it
1637 		 * before stepping into the next command.
1638 		 */
1639 		marvell_nfc_wait_ndrun(chip);
1640 	}
1641 
1642 	ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1643 
1644 	marvell_nfc_disable_hw_ecc(chip);
1645 
1646 	if (ret)
1647 		return ret;
1648 
1649 	return 0;
1650 }
1651 
1652 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1653 						int page)
1654 {
1655 	struct mtd_info *mtd = nand_to_mtd(chip);
1656 	u8 *buf = nand_get_data_buf(chip);
1657 
1658 	memset(buf, 0xFF, mtd->writesize);
1659 
1660 	return chip->ecc.write_page_raw(chip, buf, true, page);
1661 }
1662 
1663 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1664 {
1665 	struct mtd_info *mtd = nand_to_mtd(chip);
1666 	u8 *buf = nand_get_data_buf(chip);
1667 
1668 	memset(buf, 0xFF, mtd->writesize);
1669 
1670 	return chip->ecc.write_page(chip, buf, true, page);
1671 }
1672 
1673 /* NAND framework ->exec_op() hooks and related helpers */
1674 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1675 					   const struct nand_subop *subop,
1676 					   struct marvell_nfc_op *nfc_op)
1677 {
1678 	const struct nand_op_instr *instr = NULL;
1679 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1680 	bool first_cmd = true;
1681 	unsigned int op_id;
1682 	int i;
1683 
1684 	/* Reset the input structure as most of its fields will be OR'ed */
1685 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1686 
1687 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1688 		unsigned int offset, naddrs;
1689 		const u8 *addrs;
1690 		int len;
1691 
1692 		instr = &subop->instrs[op_id];
1693 
1694 		switch (instr->type) {
1695 		case NAND_OP_CMD_INSTR:
1696 			if (first_cmd)
1697 				nfc_op->ndcb[0] |=
1698 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1699 			else
1700 				nfc_op->ndcb[0] |=
1701 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1702 					NDCB0_DBC;
1703 
1704 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1705 			first_cmd = false;
1706 			break;
1707 
1708 		case NAND_OP_ADDR_INSTR:
1709 			offset = nand_subop_get_addr_start_off(subop, op_id);
1710 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1711 			addrs = &instr->ctx.addr.addrs[offset];
1712 
1713 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1714 
1715 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1716 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1717 
1718 			if (naddrs >= 5)
1719 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1720 			if (naddrs >= 6)
1721 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1722 			if (naddrs == 7)
1723 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1724 
1725 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1726 			break;
1727 
1728 		case NAND_OP_DATA_IN_INSTR:
1729 			nfc_op->data_instr = instr;
1730 			nfc_op->data_instr_idx = op_id;
1731 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1732 			if (nfc->caps->is_nfcv2) {
1733 				nfc_op->ndcb[0] |=
1734 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1735 					NDCB0_LEN_OVRD;
1736 				len = nand_subop_get_data_len(subop, op_id);
1737 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1738 			}
1739 			nfc_op->data_delay_ns = instr->delay_ns;
1740 			break;
1741 
1742 		case NAND_OP_DATA_OUT_INSTR:
1743 			nfc_op->data_instr = instr;
1744 			nfc_op->data_instr_idx = op_id;
1745 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1746 			if (nfc->caps->is_nfcv2) {
1747 				nfc_op->ndcb[0] |=
1748 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1749 					NDCB0_LEN_OVRD;
1750 				len = nand_subop_get_data_len(subop, op_id);
1751 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1752 			}
1753 			nfc_op->data_delay_ns = instr->delay_ns;
1754 			break;
1755 
1756 		case NAND_OP_WAITRDY_INSTR:
1757 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1758 			nfc_op->rdy_delay_ns = instr->delay_ns;
1759 			break;
1760 		}
1761 	}
1762 }
1763 
1764 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1765 				     const struct nand_subop *subop,
1766 				     struct marvell_nfc_op *nfc_op)
1767 {
1768 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1769 	const struct nand_op_instr *instr = nfc_op->data_instr;
1770 	unsigned int op_id = nfc_op->data_instr_idx;
1771 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1772 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1773 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1774 	int ret;
1775 
1776 	if (instr->ctx.data.force_8bit)
1777 		marvell_nfc_force_byte_access(chip, true);
1778 
1779 	if (reading) {
1780 		u8 *in = instr->ctx.data.buf.in + offset;
1781 
1782 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1783 	} else {
1784 		const u8 *out = instr->ctx.data.buf.out + offset;
1785 
1786 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1787 	}
1788 
1789 	if (instr->ctx.data.force_8bit)
1790 		marvell_nfc_force_byte_access(chip, false);
1791 
1792 	return ret;
1793 }
1794 
1795 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1796 					      const struct nand_subop *subop)
1797 {
1798 	struct marvell_nfc_op nfc_op;
1799 	bool reading;
1800 	int ret;
1801 
1802 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1803 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1804 
1805 	ret = marvell_nfc_prepare_cmd(chip);
1806 	if (ret)
1807 		return ret;
1808 
1809 	marvell_nfc_send_cmd(chip, &nfc_op);
1810 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1811 				  "RDDREQ/WRDREQ while draining raw data");
1812 	if (ret)
1813 		return ret;
1814 
1815 	cond_delay(nfc_op.cle_ale_delay_ns);
1816 
1817 	if (reading) {
1818 		if (nfc_op.rdy_timeout_ms) {
1819 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1820 			if (ret)
1821 				return ret;
1822 		}
1823 
1824 		cond_delay(nfc_op.rdy_delay_ns);
1825 	}
1826 
1827 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1828 	ret = marvell_nfc_wait_cmdd(chip);
1829 	if (ret)
1830 		return ret;
1831 
1832 	cond_delay(nfc_op.data_delay_ns);
1833 
1834 	if (!reading) {
1835 		if (nfc_op.rdy_timeout_ms) {
1836 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1837 			if (ret)
1838 				return ret;
1839 		}
1840 
1841 		cond_delay(nfc_op.rdy_delay_ns);
1842 	}
1843 
1844 	/*
1845 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1846 	 * operation but experience shows that the behavior is buggy when it
1847 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1848 	 */
1849 	if (!reading) {
1850 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1851 
1852 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1853 			       nfc->regs + NDCR);
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1860 					 const struct nand_subop *subop)
1861 {
1862 	struct marvell_nfc_op nfc_op;
1863 	int ret;
1864 
1865 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1866 
1867 	/*
1868 	 * Naked access are different in that they need to be flagged as naked
1869 	 * by the controller. Reset the controller registers fields that inform
1870 	 * on the type and refill them according to the ongoing operation.
1871 	 */
1872 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1873 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1874 	switch (subop->instrs[0].type) {
1875 	case NAND_OP_CMD_INSTR:
1876 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1877 		break;
1878 	case NAND_OP_ADDR_INSTR:
1879 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1880 		break;
1881 	case NAND_OP_DATA_IN_INSTR:
1882 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1883 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1884 		break;
1885 	case NAND_OP_DATA_OUT_INSTR:
1886 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1887 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1888 		break;
1889 	default:
1890 		/* This should never happen */
1891 		break;
1892 	}
1893 
1894 	ret = marvell_nfc_prepare_cmd(chip);
1895 	if (ret)
1896 		return ret;
1897 
1898 	marvell_nfc_send_cmd(chip, &nfc_op);
1899 
1900 	if (!nfc_op.data_instr) {
1901 		ret = marvell_nfc_wait_cmdd(chip);
1902 		cond_delay(nfc_op.cle_ale_delay_ns);
1903 		return ret;
1904 	}
1905 
1906 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1907 				  "RDDREQ/WRDREQ while draining raw data");
1908 	if (ret)
1909 		return ret;
1910 
1911 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1912 	ret = marvell_nfc_wait_cmdd(chip);
1913 	if (ret)
1914 		return ret;
1915 
1916 	/*
1917 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1918 	 * operation but experience shows that the behavior is buggy when it
1919 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1920 	 */
1921 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1922 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1923 
1924 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1925 			       nfc->regs + NDCR);
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1932 					  const struct nand_subop *subop)
1933 {
1934 	struct marvell_nfc_op nfc_op;
1935 	int ret;
1936 
1937 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1938 
1939 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1940 	cond_delay(nfc_op.rdy_delay_ns);
1941 
1942 	return ret;
1943 }
1944 
1945 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1946 					 const struct nand_subop *subop)
1947 {
1948 	struct marvell_nfc_op nfc_op;
1949 	int ret;
1950 
1951 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1952 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1953 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1954 
1955 	ret = marvell_nfc_prepare_cmd(chip);
1956 	if (ret)
1957 		return ret;
1958 
1959 	marvell_nfc_send_cmd(chip, &nfc_op);
1960 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1961 				  "RDDREQ while reading ID");
1962 	if (ret)
1963 		return ret;
1964 
1965 	cond_delay(nfc_op.cle_ale_delay_ns);
1966 
1967 	if (nfc_op.rdy_timeout_ms) {
1968 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1969 		if (ret)
1970 			return ret;
1971 	}
1972 
1973 	cond_delay(nfc_op.rdy_delay_ns);
1974 
1975 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1976 	ret = marvell_nfc_wait_cmdd(chip);
1977 	if (ret)
1978 		return ret;
1979 
1980 	cond_delay(nfc_op.data_delay_ns);
1981 
1982 	return 0;
1983 }
1984 
1985 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1986 					const struct nand_subop *subop)
1987 {
1988 	struct marvell_nfc_op nfc_op;
1989 	int ret;
1990 
1991 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1992 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1993 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1994 
1995 	ret = marvell_nfc_prepare_cmd(chip);
1996 	if (ret)
1997 		return ret;
1998 
1999 	marvell_nfc_send_cmd(chip, &nfc_op);
2000 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2001 				  "RDDREQ while reading status");
2002 	if (ret)
2003 		return ret;
2004 
2005 	cond_delay(nfc_op.cle_ale_delay_ns);
2006 
2007 	if (nfc_op.rdy_timeout_ms) {
2008 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2009 		if (ret)
2010 			return ret;
2011 	}
2012 
2013 	cond_delay(nfc_op.rdy_delay_ns);
2014 
2015 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2016 	ret = marvell_nfc_wait_cmdd(chip);
2017 	if (ret)
2018 		return ret;
2019 
2020 	cond_delay(nfc_op.data_delay_ns);
2021 
2022 	return 0;
2023 }
2024 
2025 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2026 					   const struct nand_subop *subop)
2027 {
2028 	struct marvell_nfc_op nfc_op;
2029 	int ret;
2030 
2031 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2032 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2033 
2034 	ret = marvell_nfc_prepare_cmd(chip);
2035 	if (ret)
2036 		return ret;
2037 
2038 	marvell_nfc_send_cmd(chip, &nfc_op);
2039 	ret = marvell_nfc_wait_cmdd(chip);
2040 	if (ret)
2041 		return ret;
2042 
2043 	cond_delay(nfc_op.cle_ale_delay_ns);
2044 
2045 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2046 	if (ret)
2047 		return ret;
2048 
2049 	cond_delay(nfc_op.rdy_delay_ns);
2050 
2051 	return 0;
2052 }
2053 
2054 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2055 					   const struct nand_subop *subop)
2056 {
2057 	struct marvell_nfc_op nfc_op;
2058 	int ret;
2059 
2060 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2061 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2062 
2063 	ret = marvell_nfc_prepare_cmd(chip);
2064 	if (ret)
2065 		return ret;
2066 
2067 	marvell_nfc_send_cmd(chip, &nfc_op);
2068 	ret = marvell_nfc_wait_cmdd(chip);
2069 	if (ret)
2070 		return ret;
2071 
2072 	cond_delay(nfc_op.cle_ale_delay_ns);
2073 
2074 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2075 	if (ret)
2076 		return ret;
2077 
2078 	cond_delay(nfc_op.rdy_delay_ns);
2079 
2080 	return 0;
2081 }
2082 
2083 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2084 	/* Monolithic reads/writes */
2085 	NAND_OP_PARSER_PATTERN(
2086 		marvell_nfc_monolithic_access_exec,
2087 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2088 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2089 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2090 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2091 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2092 	NAND_OP_PARSER_PATTERN(
2093 		marvell_nfc_monolithic_access_exec,
2094 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2095 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2096 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2097 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2098 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2099 	/* Naked commands */
2100 	NAND_OP_PARSER_PATTERN(
2101 		marvell_nfc_naked_access_exec,
2102 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2103 	NAND_OP_PARSER_PATTERN(
2104 		marvell_nfc_naked_access_exec,
2105 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2106 	NAND_OP_PARSER_PATTERN(
2107 		marvell_nfc_naked_access_exec,
2108 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2109 	NAND_OP_PARSER_PATTERN(
2110 		marvell_nfc_naked_access_exec,
2111 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2112 	NAND_OP_PARSER_PATTERN(
2113 		marvell_nfc_naked_waitrdy_exec,
2114 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2115 	);
2116 
2117 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2118 	/* Naked commands not supported, use a function for each pattern */
2119 	NAND_OP_PARSER_PATTERN(
2120 		marvell_nfc_read_id_type_exec,
2121 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2122 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2123 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2124 	NAND_OP_PARSER_PATTERN(
2125 		marvell_nfc_erase_cmd_type_exec,
2126 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2127 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2128 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2129 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2130 	NAND_OP_PARSER_PATTERN(
2131 		marvell_nfc_read_status_exec,
2132 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2133 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2134 	NAND_OP_PARSER_PATTERN(
2135 		marvell_nfc_reset_cmd_type_exec,
2136 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2137 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2138 	NAND_OP_PARSER_PATTERN(
2139 		marvell_nfc_naked_waitrdy_exec,
2140 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2141 	);
2142 
2143 static int marvell_nfc_exec_op(struct nand_chip *chip,
2144 			       const struct nand_operation *op,
2145 			       bool check_only)
2146 {
2147 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2148 
2149 	if (!check_only)
2150 		marvell_nfc_select_target(chip, op->cs);
2151 
2152 	if (nfc->caps->is_nfcv2)
2153 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2154 					      op, check_only);
2155 	else
2156 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2157 					      op, check_only);
2158 }
2159 
2160 /*
2161  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2162  * usable.
2163  */
2164 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2165 				      struct mtd_oob_region *oobregion)
2166 {
2167 	struct nand_chip *chip = mtd_to_nand(mtd);
2168 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2169 
2170 	if (section)
2171 		return -ERANGE;
2172 
2173 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2174 			    lt->last_ecc_bytes;
2175 	oobregion->offset = mtd->oobsize - oobregion->length;
2176 
2177 	return 0;
2178 }
2179 
2180 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2181 				       struct mtd_oob_region *oobregion)
2182 {
2183 	struct nand_chip *chip = mtd_to_nand(mtd);
2184 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2185 
2186 	if (section)
2187 		return -ERANGE;
2188 
2189 	/*
2190 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2191 	 * 4KB page / 4bit BCH combination.
2192 	 */
2193 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2194 		oobregion->offset = 6;
2195 	else
2196 		oobregion->offset = 2;
2197 
2198 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2199 			    lt->last_spare_bytes - oobregion->offset;
2200 
2201 	return 0;
2202 }
2203 
2204 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2205 	.ecc = marvell_nand_ooblayout_ecc,
2206 	.free = marvell_nand_ooblayout_free,
2207 };
2208 
2209 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2210 					       struct nand_ecc_ctrl *ecc)
2211 {
2212 	struct nand_chip *chip = mtd_to_nand(mtd);
2213 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2214 	const struct marvell_hw_ecc_layout *l;
2215 	int i;
2216 
2217 	if (!nfc->caps->is_nfcv2 &&
2218 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2219 		dev_err(nfc->dev,
2220 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2221 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2222 		return -ENOTSUPP;
2223 	}
2224 
2225 	to_marvell_nand(chip)->layout = NULL;
2226 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2227 		l = &marvell_nfc_layouts[i];
2228 		if (mtd->writesize == l->writesize &&
2229 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2230 			to_marvell_nand(chip)->layout = l;
2231 			break;
2232 		}
2233 	}
2234 
2235 	if (!to_marvell_nand(chip)->layout ||
2236 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2237 		dev_err(nfc->dev,
2238 			"ECC strength %d at page size %d is not supported\n",
2239 			ecc->strength, mtd->writesize);
2240 		return -ENOTSUPP;
2241 	}
2242 
2243 	/* Special care for the layout 2k/8-bit/512B  */
2244 	if (l->writesize == 2048 && l->strength == 8) {
2245 		if (mtd->oobsize < 128) {
2246 			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2247 			return -ENOTSUPP;
2248 		} else {
2249 			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2250 		}
2251 	}
2252 
2253 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2254 	ecc->steps = l->nchunks;
2255 	ecc->size = l->data_bytes;
2256 
2257 	if (ecc->strength == 1) {
2258 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2259 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2260 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2261 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2262 		ecc->read_oob = ecc->read_oob_raw;
2263 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2264 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2265 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2266 		ecc->write_oob = ecc->write_oob_raw;
2267 	} else {
2268 		chip->ecc.algo = NAND_ECC_ALGO_BCH;
2269 		ecc->strength = 16;
2270 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2271 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2272 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2273 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2274 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2275 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2276 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2277 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2284 				 struct nand_ecc_ctrl *ecc)
2285 {
2286 	struct nand_chip *chip = mtd_to_nand(mtd);
2287 	const struct nand_ecc_props *requirements =
2288 		nanddev_get_ecc_requirements(&chip->base);
2289 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2290 	int ret;
2291 
2292 	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2293 	    (!ecc->size || !ecc->strength)) {
2294 		if (requirements->step_size && requirements->strength) {
2295 			ecc->size = requirements->step_size;
2296 			ecc->strength = requirements->strength;
2297 		} else {
2298 			dev_info(nfc->dev,
2299 				 "No minimum ECC strength, using 1b/512B\n");
2300 			ecc->size = 512;
2301 			ecc->strength = 1;
2302 		}
2303 	}
2304 
2305 	switch (ecc->engine_type) {
2306 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
2307 		ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2308 		if (ret)
2309 			return ret;
2310 		break;
2311 	case NAND_ECC_ENGINE_TYPE_NONE:
2312 	case NAND_ECC_ENGINE_TYPE_SOFT:
2313 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
2314 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2315 		    mtd->writesize != SZ_2K) {
2316 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2317 				mtd->writesize);
2318 			return -EINVAL;
2319 		}
2320 		break;
2321 	default:
2322 		return -EINVAL;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2329 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2330 
2331 static struct nand_bbt_descr bbt_main_descr = {
2332 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2333 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2334 	.offs =	8,
2335 	.len = 6,
2336 	.veroffs = 14,
2337 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2338 	.pattern = bbt_pattern
2339 };
2340 
2341 static struct nand_bbt_descr bbt_mirror_descr = {
2342 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2343 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2344 	.offs =	8,
2345 	.len = 6,
2346 	.veroffs = 14,
2347 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2348 	.pattern = bbt_mirror_pattern
2349 };
2350 
2351 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2352 				       const struct nand_interface_config *conf)
2353 {
2354 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2355 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2356 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2357 	const struct nand_sdr_timings *sdr;
2358 	struct marvell_nfc_timings nfc_tmg;
2359 	int read_delay;
2360 
2361 	sdr = nand_get_sdr_timings(conf);
2362 	if (IS_ERR(sdr))
2363 		return PTR_ERR(sdr);
2364 
2365 	/*
2366 	 * SDR timings are given in pico-seconds while NFC timings must be
2367 	 * expressed in NAND controller clock cycles, which is half of the
2368 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2369 	 * This is not written anywhere in the datasheet but was observed
2370 	 * with an oscilloscope.
2371 	 *
2372 	 * NFC datasheet gives equations from which thoses calculations
2373 	 * are derived, they tend to be slightly more restrictives than the
2374 	 * given core timings and may improve the overall speed.
2375 	 */
2376 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2377 	nfc_tmg.tRH = nfc_tmg.tRP;
2378 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2379 	nfc_tmg.tWH = nfc_tmg.tWP;
2380 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2381 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2382 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2383 	/*
2384 	 * Read delay is the time of propagation from SoC pins to NFC internal
2385 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2386 	 * EDO mode, an additional delay of tRH must be taken into account so
2387 	 * the data is sampled on the falling edge instead of the rising edge.
2388 	 */
2389 	read_delay = sdr->tRC_min >= 30000 ?
2390 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2391 
2392 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2393 	/*
2394 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2395 	 * versa) but in some cases, ie. when doing a change column, they must
2396 	 * be greater than that to be sure tCCS delay is respected.
2397 	 */
2398 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2399 				 period_ns) - 2,
2400 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2401 				 period_ns);
2402 
2403 	/*
2404 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2405 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2406 	 */
2407 	if (nfc->caps->is_nfcv2) {
2408 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2409 	} else {
2410 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2411 					 period_ns);
2412 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2413 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2414 		else
2415 			nfc_tmg.tR = 0;
2416 	}
2417 
2418 	if (chipnr < 0)
2419 		return 0;
2420 
2421 	marvell_nand->ndtr0 =
2422 		NDTR0_TRP(nfc_tmg.tRP) |
2423 		NDTR0_TRH(nfc_tmg.tRH) |
2424 		NDTR0_ETRP(nfc_tmg.tRP) |
2425 		NDTR0_TWP(nfc_tmg.tWP) |
2426 		NDTR0_TWH(nfc_tmg.tWH) |
2427 		NDTR0_TCS(nfc_tmg.tCS) |
2428 		NDTR0_TCH(nfc_tmg.tCH);
2429 
2430 	marvell_nand->ndtr1 =
2431 		NDTR1_TAR(nfc_tmg.tAR) |
2432 		NDTR1_TWHR(nfc_tmg.tWHR) |
2433 		NDTR1_TR(nfc_tmg.tR);
2434 
2435 	if (nfc->caps->is_nfcv2) {
2436 		marvell_nand->ndtr0 |=
2437 			NDTR0_RD_CNT_DEL(read_delay) |
2438 			NDTR0_SELCNTR |
2439 			NDTR0_TADL(nfc_tmg.tADL);
2440 
2441 		marvell_nand->ndtr1 |=
2442 			NDTR1_TRHW(nfc_tmg.tRHW) |
2443 			NDTR1_WAIT_MODE;
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 static int marvell_nand_attach_chip(struct nand_chip *chip)
2450 {
2451 	struct mtd_info *mtd = nand_to_mtd(chip);
2452 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2453 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2454 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2455 	int ret;
2456 
2457 	if (pdata && pdata->flash_bbt)
2458 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2459 
2460 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2461 		/*
2462 		 * We'll use a bad block table stored in-flash and don't
2463 		 * allow writing the bad block marker to the flash.
2464 		 */
2465 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2466 		chip->bbt_td = &bbt_main_descr;
2467 		chip->bbt_md = &bbt_mirror_descr;
2468 	}
2469 
2470 	/* Save the chip-specific fields of NDCR */
2471 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2472 	if (chip->options & NAND_BUSWIDTH_16)
2473 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2474 
2475 	/*
2476 	 * On small page NANDs, only one cycle is needed to pass the
2477 	 * column address.
2478 	 */
2479 	if (mtd->writesize <= 512) {
2480 		marvell_nand->addr_cyc = 1;
2481 	} else {
2482 		marvell_nand->addr_cyc = 2;
2483 		marvell_nand->ndcr |= NDCR_RA_START;
2484 	}
2485 
2486 	/*
2487 	 * Now add the number of cycles needed to pass the row
2488 	 * address.
2489 	 *
2490 	 * Addressing a chip using CS 2 or 3 should also need the third row
2491 	 * cycle but due to inconsistance in the documentation and lack of
2492 	 * hardware to test this situation, this case is not supported.
2493 	 */
2494 	if (chip->options & NAND_ROW_ADDR_3)
2495 		marvell_nand->addr_cyc += 3;
2496 	else
2497 		marvell_nand->addr_cyc += 2;
2498 
2499 	if (pdata) {
2500 		chip->ecc.size = pdata->ecc_step_size;
2501 		chip->ecc.strength = pdata->ecc_strength;
2502 	}
2503 
2504 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2505 	if (ret) {
2506 		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2507 		return ret;
2508 	}
2509 
2510 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2511 		/*
2512 		 * Subpage write not available with hardware ECC, prohibit also
2513 		 * subpage read as in userspace subpage access would still be
2514 		 * allowed and subpage write, if used, would lead to numerous
2515 		 * uncorrectable ECC errors.
2516 		 */
2517 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2518 	}
2519 
2520 	if (pdata || nfc->caps->legacy_of_bindings) {
2521 		/*
2522 		 * We keep the MTD name unchanged to avoid breaking platforms
2523 		 * where the MTD cmdline parser is used and the bootloader
2524 		 * has not been updated to use the new naming scheme.
2525 		 */
2526 		mtd->name = "pxa3xx_nand-0";
2527 	} else if (!mtd->name) {
2528 		/*
2529 		 * If the new bindings are used and the bootloader has not been
2530 		 * updated to pass a new mtdparts parameter on the cmdline, you
2531 		 * should define the following property in your NAND node, ie:
2532 		 *
2533 		 *	label = "main-storage";
2534 		 *
2535 		 * This way, mtd->name will be set by the core when
2536 		 * nand_set_flash_node() is called.
2537 		 */
2538 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2539 					   "%s:nand.%d", dev_name(nfc->dev),
2540 					   marvell_nand->sels[0].cs);
2541 		if (!mtd->name) {
2542 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2543 			return -ENOMEM;
2544 		}
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 static const struct nand_controller_ops marvell_nand_controller_ops = {
2551 	.attach_chip = marvell_nand_attach_chip,
2552 	.exec_op = marvell_nfc_exec_op,
2553 	.setup_interface = marvell_nfc_setup_interface,
2554 };
2555 
2556 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2557 				  struct device_node *np)
2558 {
2559 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2560 	struct marvell_nand_chip *marvell_nand;
2561 	struct mtd_info *mtd;
2562 	struct nand_chip *chip;
2563 	int nsels, ret, i;
2564 	u32 cs, rb;
2565 
2566 	/*
2567 	 * The legacy "num-cs" property indicates the number of CS on the only
2568 	 * chip connected to the controller (legacy bindings does not support
2569 	 * more than one chip). The CS and RB pins are always the #0.
2570 	 *
2571 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2572 	 * properties must be filled. For each chip, expressed as a subnode,
2573 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2574 	 */
2575 	if (pdata || nfc->caps->legacy_of_bindings) {
2576 		nsels = 1;
2577 	} else {
2578 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2579 		if (nsels <= 0) {
2580 			dev_err(dev, "missing/invalid reg property\n");
2581 			return -EINVAL;
2582 		}
2583 	}
2584 
2585 	/* Alloc the nand chip structure */
2586 	marvell_nand = devm_kzalloc(dev,
2587 				    struct_size(marvell_nand, sels, nsels),
2588 				    GFP_KERNEL);
2589 	if (!marvell_nand) {
2590 		dev_err(dev, "could not allocate chip structure\n");
2591 		return -ENOMEM;
2592 	}
2593 
2594 	marvell_nand->nsels = nsels;
2595 	marvell_nand->selected_die = -1;
2596 
2597 	for (i = 0; i < nsels; i++) {
2598 		if (pdata || nfc->caps->legacy_of_bindings) {
2599 			/*
2600 			 * Legacy bindings use the CS lines in natural
2601 			 * order (0, 1, ...)
2602 			 */
2603 			cs = i;
2604 		} else {
2605 			/* Retrieve CS id */
2606 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2607 			if (ret) {
2608 				dev_err(dev, "could not retrieve reg property: %d\n",
2609 					ret);
2610 				return ret;
2611 			}
2612 		}
2613 
2614 		if (cs >= nfc->caps->max_cs_nb) {
2615 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2616 				cs, nfc->caps->max_cs_nb);
2617 			return -EINVAL;
2618 		}
2619 
2620 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2621 			dev_err(dev, "CS %d already assigned\n", cs);
2622 			return -EINVAL;
2623 		}
2624 
2625 		/*
2626 		 * The cs variable represents the chip select id, which must be
2627 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2628 		 * right chip. Unfortunately, due to a lack of information on
2629 		 * the subject and incoherent documentation, the user should not
2630 		 * use CS1 and CS3 at all as asserting them is not supported in
2631 		 * a reliable way (due to multiplexing inside ADDR5 field).
2632 		 */
2633 		marvell_nand->sels[i].cs = cs;
2634 		switch (cs) {
2635 		case 0:
2636 		case 2:
2637 			marvell_nand->sels[i].ndcb0_csel = 0;
2638 			break;
2639 		case 1:
2640 		case 3:
2641 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2642 			break;
2643 		default:
2644 			return -EINVAL;
2645 		}
2646 
2647 		/* Retrieve RB id */
2648 		if (pdata || nfc->caps->legacy_of_bindings) {
2649 			/* Legacy bindings always use RB #0 */
2650 			rb = 0;
2651 		} else {
2652 			ret = of_property_read_u32_index(np, "nand-rb", i,
2653 							 &rb);
2654 			if (ret) {
2655 				dev_err(dev,
2656 					"could not retrieve RB property: %d\n",
2657 					ret);
2658 				return ret;
2659 			}
2660 		}
2661 
2662 		if (rb >= nfc->caps->max_rb_nb) {
2663 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2664 				rb, nfc->caps->max_rb_nb);
2665 			return -EINVAL;
2666 		}
2667 
2668 		marvell_nand->sels[i].rb = rb;
2669 	}
2670 
2671 	chip = &marvell_nand->chip;
2672 	chip->controller = &nfc->controller;
2673 	nand_set_flash_node(chip, np);
2674 
2675 	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2676 		chip->options |= NAND_KEEP_TIMINGS;
2677 
2678 	mtd = nand_to_mtd(chip);
2679 	mtd->dev.parent = dev;
2680 
2681 	/*
2682 	 * Save a reference value for timing registers before
2683 	 * ->setup_interface() is called.
2684 	 */
2685 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2686 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2687 
2688 	chip->options |= NAND_BUSWIDTH_AUTO;
2689 
2690 	ret = nand_scan(chip, marvell_nand->nsels);
2691 	if (ret) {
2692 		dev_err(dev, "could not scan the nand chip\n");
2693 		return ret;
2694 	}
2695 
2696 	if (pdata)
2697 		/* Legacy bindings support only one chip */
2698 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2699 	else
2700 		ret = mtd_device_register(mtd, NULL, 0);
2701 	if (ret) {
2702 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2703 		nand_cleanup(chip);
2704 		return ret;
2705 	}
2706 
2707 	list_add_tail(&marvell_nand->node, &nfc->chips);
2708 
2709 	return 0;
2710 }
2711 
2712 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2713 {
2714 	struct marvell_nand_chip *entry, *temp;
2715 	struct nand_chip *chip;
2716 	int ret;
2717 
2718 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2719 		chip = &entry->chip;
2720 		ret = mtd_device_unregister(nand_to_mtd(chip));
2721 		WARN_ON(ret);
2722 		nand_cleanup(chip);
2723 		list_del(&entry->node);
2724 	}
2725 }
2726 
2727 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2728 {
2729 	struct device_node *np = dev->of_node;
2730 	struct device_node *nand_np;
2731 	int max_cs = nfc->caps->max_cs_nb;
2732 	int nchips;
2733 	int ret;
2734 
2735 	if (!np)
2736 		nchips = 1;
2737 	else
2738 		nchips = of_get_child_count(np);
2739 
2740 	if (nchips > max_cs) {
2741 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2742 			max_cs);
2743 		return -EINVAL;
2744 	}
2745 
2746 	/*
2747 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2748 	 * properties and layout. Instead, NAND properties are mixed with the
2749 	 * controller ones, and partitions are defined as direct subnodes of the
2750 	 * NAND controller node.
2751 	 */
2752 	if (nfc->caps->legacy_of_bindings) {
2753 		ret = marvell_nand_chip_init(dev, nfc, np);
2754 		return ret;
2755 	}
2756 
2757 	for_each_child_of_node(np, nand_np) {
2758 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2759 		if (ret) {
2760 			of_node_put(nand_np);
2761 			goto cleanup_chips;
2762 		}
2763 	}
2764 
2765 	return 0;
2766 
2767 cleanup_chips:
2768 	marvell_nand_chips_cleanup(nfc);
2769 
2770 	return ret;
2771 }
2772 
2773 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2774 {
2775 	struct platform_device *pdev = container_of(nfc->dev,
2776 						    struct platform_device,
2777 						    dev);
2778 	struct dma_slave_config config = {};
2779 	struct resource *r;
2780 	int ret;
2781 
2782 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2783 		dev_warn(nfc->dev,
2784 			 "DMA not enabled in configuration\n");
2785 		return -ENOTSUPP;
2786 	}
2787 
2788 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2789 	if (ret)
2790 		return ret;
2791 
2792 	nfc->dma_chan =	dma_request_chan(nfc->dev, "data");
2793 	if (IS_ERR(nfc->dma_chan)) {
2794 		ret = PTR_ERR(nfc->dma_chan);
2795 		nfc->dma_chan = NULL;
2796 		return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2797 	}
2798 
2799 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2800 	if (!r) {
2801 		ret = -ENXIO;
2802 		goto release_channel;
2803 	}
2804 
2805 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2806 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2807 	config.src_addr = r->start + NDDB;
2808 	config.dst_addr = r->start + NDDB;
2809 	config.src_maxburst = 32;
2810 	config.dst_maxburst = 32;
2811 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2812 	if (ret < 0) {
2813 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2814 		goto release_channel;
2815 	}
2816 
2817 	/*
2818 	 * DMA must act on length multiple of 32 and this length may be
2819 	 * bigger than the destination buffer. Use this buffer instead
2820 	 * for DMA transfers and then copy the desired amount of data to
2821 	 * the provided buffer.
2822 	 */
2823 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2824 	if (!nfc->dma_buf) {
2825 		ret = -ENOMEM;
2826 		goto release_channel;
2827 	}
2828 
2829 	nfc->use_dma = true;
2830 
2831 	return 0;
2832 
2833 release_channel:
2834 	dma_release_channel(nfc->dma_chan);
2835 	nfc->dma_chan = NULL;
2836 
2837 	return ret;
2838 }
2839 
2840 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2841 {
2842 	/*
2843 	 * ECC operations and interruptions are only enabled when specifically
2844 	 * needed. ECC shall not be activated in the early stages (fails probe).
2845 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2846 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2847 	 * offset in the read page and this will fail the protection.
2848 	 */
2849 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2850 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2851 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2852 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2853 }
2854 
2855 static int marvell_nfc_init(struct marvell_nfc *nfc)
2856 {
2857 	struct device_node *np = nfc->dev->of_node;
2858 
2859 	/*
2860 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2861 	 * controller, gated clocks and reset bits to avoid being bootloader
2862 	 * dependent. This is done through the use of the System Functions
2863 	 * registers.
2864 	 */
2865 	if (nfc->caps->need_system_controller) {
2866 		struct regmap *sysctrl_base =
2867 			syscon_regmap_lookup_by_phandle(np,
2868 							"marvell,system-controller");
2869 
2870 		if (IS_ERR(sysctrl_base))
2871 			return PTR_ERR(sysctrl_base);
2872 
2873 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2874 			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
2875 			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2876 			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2877 			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2878 
2879 		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2880 				   GENCONF_CLK_GATING_CTRL_ND_GATE,
2881 				   GENCONF_CLK_GATING_CTRL_ND_GATE);
2882 
2883 		regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2884 				   GENCONF_ND_CLK_CTRL_EN,
2885 				   GENCONF_ND_CLK_CTRL_EN);
2886 	}
2887 
2888 	/* Configure the DMA if appropriate */
2889 	if (!nfc->caps->is_nfcv2)
2890 		marvell_nfc_init_dma(nfc);
2891 
2892 	marvell_nfc_reset(nfc);
2893 
2894 	return 0;
2895 }
2896 
2897 static int marvell_nfc_probe(struct platform_device *pdev)
2898 {
2899 	struct device *dev = &pdev->dev;
2900 	struct marvell_nfc *nfc;
2901 	int ret;
2902 	int irq;
2903 
2904 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2905 			   GFP_KERNEL);
2906 	if (!nfc)
2907 		return -ENOMEM;
2908 
2909 	nfc->dev = dev;
2910 	nand_controller_init(&nfc->controller);
2911 	nfc->controller.ops = &marvell_nand_controller_ops;
2912 	INIT_LIST_HEAD(&nfc->chips);
2913 
2914 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2915 	if (IS_ERR(nfc->regs))
2916 		return PTR_ERR(nfc->regs);
2917 
2918 	irq = platform_get_irq(pdev, 0);
2919 	if (irq < 0)
2920 		return irq;
2921 
2922 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2923 
2924 	/* Managed the legacy case (when the first clock was not named) */
2925 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2926 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2927 
2928 	if (IS_ERR(nfc->core_clk))
2929 		return PTR_ERR(nfc->core_clk);
2930 
2931 	ret = clk_prepare_enable(nfc->core_clk);
2932 	if (ret)
2933 		return ret;
2934 
2935 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2936 	if (IS_ERR(nfc->reg_clk)) {
2937 		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2938 			ret = PTR_ERR(nfc->reg_clk);
2939 			goto unprepare_core_clk;
2940 		}
2941 
2942 		nfc->reg_clk = NULL;
2943 	}
2944 
2945 	ret = clk_prepare_enable(nfc->reg_clk);
2946 	if (ret)
2947 		goto unprepare_core_clk;
2948 
2949 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2950 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2951 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2952 			       0, "marvell-nfc", nfc);
2953 	if (ret)
2954 		goto unprepare_reg_clk;
2955 
2956 	/* Get NAND controller capabilities */
2957 	if (pdev->id_entry)
2958 		nfc->caps = (void *)pdev->id_entry->driver_data;
2959 	else
2960 		nfc->caps = of_device_get_match_data(&pdev->dev);
2961 
2962 	if (!nfc->caps) {
2963 		dev_err(dev, "Could not retrieve NFC caps\n");
2964 		ret = -EINVAL;
2965 		goto unprepare_reg_clk;
2966 	}
2967 
2968 	/* Init the controller and then probe the chips */
2969 	ret = marvell_nfc_init(nfc);
2970 	if (ret)
2971 		goto unprepare_reg_clk;
2972 
2973 	platform_set_drvdata(pdev, nfc);
2974 
2975 	ret = marvell_nand_chips_init(dev, nfc);
2976 	if (ret)
2977 		goto release_dma;
2978 
2979 	return 0;
2980 
2981 release_dma:
2982 	if (nfc->use_dma)
2983 		dma_release_channel(nfc->dma_chan);
2984 unprepare_reg_clk:
2985 	clk_disable_unprepare(nfc->reg_clk);
2986 unprepare_core_clk:
2987 	clk_disable_unprepare(nfc->core_clk);
2988 
2989 	return ret;
2990 }
2991 
2992 static int marvell_nfc_remove(struct platform_device *pdev)
2993 {
2994 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2995 
2996 	marvell_nand_chips_cleanup(nfc);
2997 
2998 	if (nfc->use_dma) {
2999 		dmaengine_terminate_all(nfc->dma_chan);
3000 		dma_release_channel(nfc->dma_chan);
3001 	}
3002 
3003 	clk_disable_unprepare(nfc->reg_clk);
3004 	clk_disable_unprepare(nfc->core_clk);
3005 
3006 	return 0;
3007 }
3008 
3009 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3010 {
3011 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3012 	struct marvell_nand_chip *chip;
3013 
3014 	list_for_each_entry(chip, &nfc->chips, node)
3015 		marvell_nfc_wait_ndrun(&chip->chip);
3016 
3017 	clk_disable_unprepare(nfc->reg_clk);
3018 	clk_disable_unprepare(nfc->core_clk);
3019 
3020 	return 0;
3021 }
3022 
3023 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3024 {
3025 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3026 	int ret;
3027 
3028 	ret = clk_prepare_enable(nfc->core_clk);
3029 	if (ret < 0)
3030 		return ret;
3031 
3032 	ret = clk_prepare_enable(nfc->reg_clk);
3033 	if (ret < 0)
3034 		return ret;
3035 
3036 	/*
3037 	 * Reset nfc->selected_chip so the next command will cause the timing
3038 	 * registers to be restored in marvell_nfc_select_target().
3039 	 */
3040 	nfc->selected_chip = NULL;
3041 
3042 	/* Reset registers that have lost their contents */
3043 	marvell_nfc_reset(nfc);
3044 
3045 	return 0;
3046 }
3047 
3048 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3049 	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3050 };
3051 
3052 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3053 	.max_cs_nb = 4,
3054 	.max_rb_nb = 2,
3055 	.need_system_controller = true,
3056 	.is_nfcv2 = true,
3057 };
3058 
3059 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3060 	.max_cs_nb = 4,
3061 	.max_rb_nb = 2,
3062 	.is_nfcv2 = true,
3063 };
3064 
3065 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3066 	.max_cs_nb = 2,
3067 	.max_rb_nb = 1,
3068 	.use_dma = true,
3069 };
3070 
3071 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3072 	.max_cs_nb = 4,
3073 	.max_rb_nb = 2,
3074 	.need_system_controller = true,
3075 	.legacy_of_bindings = true,
3076 	.is_nfcv2 = true,
3077 };
3078 
3079 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3080 	.max_cs_nb = 4,
3081 	.max_rb_nb = 2,
3082 	.legacy_of_bindings = true,
3083 	.is_nfcv2 = true,
3084 };
3085 
3086 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3087 	.max_cs_nb = 2,
3088 	.max_rb_nb = 1,
3089 	.legacy_of_bindings = true,
3090 	.use_dma = true,
3091 };
3092 
3093 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3094 	{
3095 		.name = "pxa3xx-nand",
3096 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3097 	},
3098 	{ /* sentinel */ },
3099 };
3100 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3101 
3102 static const struct of_device_id marvell_nfc_of_ids[] = {
3103 	{
3104 		.compatible = "marvell,armada-8k-nand-controller",
3105 		.data = &marvell_armada_8k_nfc_caps,
3106 	},
3107 	{
3108 		.compatible = "marvell,armada370-nand-controller",
3109 		.data = &marvell_armada370_nfc_caps,
3110 	},
3111 	{
3112 		.compatible = "marvell,pxa3xx-nand-controller",
3113 		.data = &marvell_pxa3xx_nfc_caps,
3114 	},
3115 	/* Support for old/deprecated bindings: */
3116 	{
3117 		.compatible = "marvell,armada-8k-nand",
3118 		.data = &marvell_armada_8k_nfc_legacy_caps,
3119 	},
3120 	{
3121 		.compatible = "marvell,armada370-nand",
3122 		.data = &marvell_armada370_nfc_legacy_caps,
3123 	},
3124 	{
3125 		.compatible = "marvell,pxa3xx-nand",
3126 		.data = &marvell_pxa3xx_nfc_legacy_caps,
3127 	},
3128 	{ /* sentinel */ },
3129 };
3130 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3131 
3132 static struct platform_driver marvell_nfc_driver = {
3133 	.driver	= {
3134 		.name		= "marvell-nfc",
3135 		.of_match_table = marvell_nfc_of_ids,
3136 		.pm		= &marvell_nfc_pm_ops,
3137 	},
3138 	.id_table = marvell_nfc_platform_ids,
3139 	.probe = marvell_nfc_probe,
3140 	.remove	= marvell_nfc_remove,
3141 };
3142 module_platform_driver(marvell_nfc_driver);
3143 
3144 MODULE_LICENSE("GPL");
3145 MODULE_DESCRIPTION("Marvell NAND controller driver");
3146