xref: /linux/drivers/mtd/nand/raw/marvell_nand.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  */
9 
10 #include <linux/module.h>
11 #include <linux/clk.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/of_platform.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/regmap.h>
19 #include <asm/unaligned.h>
20 
21 #include <linux/dmaengine.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dma/pxa-dma.h>
24 #include <linux/platform_data/mtd-nand-pxa3xx.h>
25 
26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27 #define FIFO_DEPTH		8
28 #define FIFO_REP(x)		(x / sizeof(u32))
29 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
30 /* NFC does not support transfers of larger chunks at a time */
31 #define MAX_CHUNK_SIZE		2112
32 /* NFCv1 cannot read more that 7 bytes of ID */
33 #define NFCV1_READID_LEN	7
34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35 #define POLL_PERIOD		0
36 #define POLL_TIMEOUT		100000
37 /* Interrupt maximum wait period in ms */
38 #define IRQ_TIMEOUT		1000
39 /* Latency in clock cycles between SoC pins and NFC logic */
40 #define MIN_RD_DEL_CNT		3
41 /* Maximum number of contiguous address cycles */
42 #define MAX_ADDRESS_CYC_NFCV1	5
43 #define MAX_ADDRESS_CYC_NFCV2	7
44 /* System control registers/bits to enable the NAND controller on some SoCs */
45 #define GENCONF_SOC_DEVICE_MUX	0x208
46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50 #define GENCONF_CLK_GATING_CTRL	0x220
51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52 #define GENCONF_ND_CLK_CTRL	0x700
53 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
54 
55 /* NAND controller data flash control register */
56 #define NDCR			0x00
57 #define NDCR_ALL_INT		GENMASK(11, 0)
58 #define NDCR_CS1_CMDDM		BIT(7)
59 #define NDCR_CS0_CMDDM		BIT(8)
60 #define NDCR_RDYM		BIT(11)
61 #define NDCR_ND_ARB_EN		BIT(12)
62 #define NDCR_RA_START		BIT(15)
63 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
64 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
65 #define NDCR_DWIDTH_M		BIT(26)
66 #define NDCR_DWIDTH_C		BIT(27)
67 #define NDCR_ND_RUN		BIT(28)
68 #define NDCR_DMA_EN		BIT(29)
69 #define NDCR_ECC_EN		BIT(30)
70 #define NDCR_SPARE_EN		BIT(31)
71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73 
74 /* NAND interface timing parameter 0 register */
75 #define NDTR0			0x04
76 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
78 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79 #define NDTR0_SEL_NRE_EDGE	BIT(7)
80 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
81 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
82 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
83 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
84 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
85 #define NDTR0_SELCNTR		BIT(26)
86 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
87 
88 /* NAND interface timing parameter 1 register */
89 #define NDTR1			0x0C
90 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
91 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
92 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
93 #define NDTR1_PRESCALE		BIT(14)
94 #define NDTR1_WAIT_MODE		BIT(15)
95 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
96 
97 /* NAND controller status register */
98 #define NDSR			0x14
99 #define NDSR_WRCMDREQ		BIT(0)
100 #define NDSR_RDDREQ		BIT(1)
101 #define NDSR_WRDREQ		BIT(2)
102 #define NDSR_CORERR		BIT(3)
103 #define NDSR_UNCERR		BIT(4)
104 #define NDSR_CMDD(cs)		BIT(8 - cs)
105 #define NDSR_RDY(rb)		BIT(11 + rb)
106 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
107 
108 /* NAND ECC control register */
109 #define NDECCCTRL		0x28
110 #define NDECCCTRL_BCH_EN	BIT(0)
111 
112 /* NAND controller data buffer register */
113 #define NDDB			0x40
114 
115 /* NAND controller command buffer 0 register */
116 #define NDCB0			0x48
117 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
118 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
119 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121 #define NDCB0_DBC		BIT(19)
122 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
123 #define NDCB0_CSEL		BIT(24)
124 #define NDCB0_RDY_BYP		BIT(27)
125 #define NDCB0_LEN_OVRD		BIT(28)
126 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
127 
128 /* NAND controller command buffer 1 register */
129 #define NDCB1			0x4C
130 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
131 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
132 
133 /* NAND controller command buffer 2 register */
134 #define NDCB2			0x50
135 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
136 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
137 
138 /* NAND controller command buffer 3 register */
139 #define NDCB3			0x54
140 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
141 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
142 
143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144 #define TYPE_READ		0
145 #define TYPE_WRITE		1
146 #define TYPE_ERASE		2
147 #define TYPE_READ_ID		3
148 #define TYPE_STATUS		4
149 #define TYPE_RESET		5
150 #define TYPE_NAKED_CMD		6
151 #define TYPE_NAKED_ADDR		7
152 #define TYPE_MASK		7
153 #define XTYPE_MONOLITHIC_RW	0
154 #define XTYPE_LAST_NAKED_RW	1
155 #define XTYPE_FINAL_COMMAND	3
156 #define XTYPE_READ		4
157 #define XTYPE_WRITE_DISPATCH	4
158 #define XTYPE_NAKED_RW		5
159 #define XTYPE_COMMAND_DISPATCH	6
160 #define XTYPE_MASK		7
161 
162 /**
163  * Marvell ECC engine works differently than the others, in order to limit the
164  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165  * per subpage, and depending on a the desired strength needed by the NAND chip,
166  * a particular layout mixing data/spare/ecc is defined, with a possible last
167  * chunk smaller that the others.
168  *
169  * @writesize:		Full page size on which the layout applies
170  * @chunk:		Desired ECC chunk size on which the layout applies
171  * @strength:		Desired ECC strength (per chunk size bytes) on which the
172  *			layout applies
173  * @nchunks:		Total number of chunks
174  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
175  *			repetitions of the pattern:
176  *			(data_bytes + spare_bytes + ecc_bytes).
177  * @data_bytes:		Number of data bytes per chunk
178  * @spare_bytes:	Number of spare bytes per chunk
179  * @ecc_bytes:		Number of ecc bytes per chunk
180  * @last_data_bytes:	Number of data bytes in the last chunk
181  * @last_spare_bytes:	Number of spare bytes in the last chunk
182  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
183  */
184 struct marvell_hw_ecc_layout {
185 	/* Constraints */
186 	int writesize;
187 	int chunk;
188 	int strength;
189 	/* Corresponding layout */
190 	int nchunks;
191 	int full_chunk_cnt;
192 	int data_bytes;
193 	int spare_bytes;
194 	int ecc_bytes;
195 	int last_data_bytes;
196 	int last_spare_bytes;
197 	int last_ecc_bytes;
198 };
199 
200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
201 	{								\
202 		.writesize = ws,					\
203 		.chunk = dc,						\
204 		.strength = ds,						\
205 		.nchunks = nc,						\
206 		.full_chunk_cnt = fcc,					\
207 		.data_bytes = db,					\
208 		.spare_bytes = sb,					\
209 		.ecc_bytes = eb,					\
210 		.last_data_bytes = ldb,					\
211 		.last_spare_bytes = lsb,				\
212 		.last_ecc_bytes = leb,					\
213 	}
214 
215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
218 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
219 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
220 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
221 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
222 };
223 
224 /**
225  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227  * The datasheet describes the logic with an error: ADDR5 field is once
228  * declared at the beginning of NDCB2, and another time at its end. Because the
229  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230  * to use the last bit of this field instead of the first ones.
231  *
232  * @cs:			Wanted CE lane.
233  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
234  *			selecting the wanted CE lane. This is set once when
235  *			the Device Tree is probed.
236  * @rb:			Ready/Busy pin for the flash chip
237  */
238 struct marvell_nand_chip_sel {
239 	unsigned int cs;
240 	u32 ndcb0_csel;
241 	unsigned int rb;
242 };
243 
244 /**
245  * NAND chip structure: stores NAND chip device related information
246  *
247  * @chip:		Base NAND chip structure
248  * @node:		Used to store NAND chips into a list
249  * @layout		NAND layout when using hardware ECC
250  * @ndcr:		Controller register value for this NAND chip
251  * @ndtr0:		Timing registers 0 value for this NAND chip
252  * @ndtr1:		Timing registers 1 value for this NAND chip
253  * @selected_die:	Current active CS
254  * @nsels:		Number of CS lines required by the NAND chip
255  * @sels:		Array of CS lines descriptions
256  */
257 struct marvell_nand_chip {
258 	struct nand_chip chip;
259 	struct list_head node;
260 	const struct marvell_hw_ecc_layout *layout;
261 	u32 ndcr;
262 	u32 ndtr0;
263 	u32 ndtr1;
264 	int addr_cyc;
265 	int selected_die;
266 	unsigned int nsels;
267 	struct marvell_nand_chip_sel sels[0];
268 };
269 
270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271 {
272 	return container_of(chip, struct marvell_nand_chip, chip);
273 }
274 
275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 							*nand)
277 {
278 	return &nand->sels[nand->selected_die];
279 }
280 
281 /**
282  * NAND controller capabilities for distinction between compatible strings
283  *
284  * @max_cs_nb:		Number of Chip Select lines available
285  * @max_rb_nb:		Number of Ready/Busy lines available
286  * @need_system_controller: Indicates if the SoC needs to have access to the
287  *                      system controller (ie. to enable the NAND controller)
288  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
289  *			fashion way
290  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
291  *			BCH error detection and correction algorithm,
292  *			NDCB3 register has been added
293  * @use_dma:		Use dma for data transfers
294  */
295 struct marvell_nfc_caps {
296 	unsigned int max_cs_nb;
297 	unsigned int max_rb_nb;
298 	bool need_system_controller;
299 	bool legacy_of_bindings;
300 	bool is_nfcv2;
301 	bool use_dma;
302 };
303 
304 /**
305  * NAND controller structure: stores Marvell NAND controller information
306  *
307  * @controller:		Base controller structure
308  * @dev:		Parent device (used to print error messages)
309  * @regs:		NAND controller registers
310  * @core_clk:		Core clock
311  * @reg_clk:		Regiters clock
312  * @complete:		Completion object to wait for NAND controller events
313  * @assigned_cs:	Bitmask describing already assigned CS lines
314  * @chips:		List containing all the NAND chips attached to
315  *			this NAND controller
316  * @caps:		NAND controller capabilities for each compatible string
317  * @dma_chan:		DMA channel (NFCv1 only)
318  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
319  */
320 struct marvell_nfc {
321 	struct nand_hw_control controller;
322 	struct device *dev;
323 	void __iomem *regs;
324 	struct clk *core_clk;
325 	struct clk *reg_clk;
326 	struct completion complete;
327 	unsigned long assigned_cs;
328 	struct list_head chips;
329 	struct nand_chip *selected_chip;
330 	const struct marvell_nfc_caps *caps;
331 
332 	/* DMA (NFCv1 only) */
333 	bool use_dma;
334 	struct dma_chan *dma_chan;
335 	u8 *dma_buf;
336 };
337 
338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
339 {
340 	return container_of(ctrl, struct marvell_nfc, controller);
341 }
342 
343 /**
344  * NAND controller timings expressed in NAND Controller clock cycles
345  *
346  * @tRP:		ND_nRE pulse width
347  * @tRH:		ND_nRE high duration
348  * @tWP:		ND_nWE pulse time
349  * @tWH:		ND_nWE high duration
350  * @tCS:		Enable signal setup time
351  * @tCH:		Enable signal hold time
352  * @tADL:		Address to write data delay
353  * @tAR:		ND_ALE low to ND_nRE low delay
354  * @tWHR:		ND_nWE high to ND_nRE low for status read
355  * @tRHW:		ND_nRE high duration, read to write delay
356  * @tR:			ND_nWE high to ND_nRE low for read
357  */
358 struct marvell_nfc_timings {
359 	/* NDTR0 fields */
360 	unsigned int tRP;
361 	unsigned int tRH;
362 	unsigned int tWP;
363 	unsigned int tWH;
364 	unsigned int tCS;
365 	unsigned int tCH;
366 	unsigned int tADL;
367 	/* NDTR1 fields */
368 	unsigned int tAR;
369 	unsigned int tWHR;
370 	unsigned int tRHW;
371 	unsigned int tR;
372 };
373 
374 /**
375  * Derives a duration in numbers of clock cycles.
376  *
377  * @ps: Duration in pico-seconds
378  * @period_ns:  Clock period in nano-seconds
379  *
380  * Convert the duration in nano-seconds, then divide by the period and
381  * return the number of clock periods.
382  */
383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 						     period_ns))
386 
387 /**
388  * NAND driver structure filled during the parsing of the ->exec_op() subop
389  * subset of instructions.
390  *
391  * @ndcb:		Array of values written to NDCBx registers
392  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
393  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
394  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
395  * @data_delay_ns:	Optional delay after the data xfer
396  * @data_instr_idx:	Index of the data instruction in the subop
397  * @data_instr:		Pointer to the data instruction in the subop
398  */
399 struct marvell_nfc_op {
400 	u32 ndcb[4];
401 	unsigned int cle_ale_delay_ns;
402 	unsigned int rdy_timeout_ms;
403 	unsigned int rdy_delay_ns;
404 	unsigned int data_delay_ns;
405 	unsigned int data_instr_idx;
406 	const struct nand_op_instr *data_instr;
407 };
408 
409 /*
410  * Internal helper to conditionnally apply a delay (from the above structure,
411  * most of the time).
412  */
413 static void cond_delay(unsigned int ns)
414 {
415 	if (!ns)
416 		return;
417 
418 	if (ns < 10000)
419 		ndelay(ns);
420 	else
421 		udelay(DIV_ROUND_UP(ns, 1000));
422 }
423 
424 /*
425  * The controller has many flags that could generate interrupts, most of them
426  * are disabled and polling is used. For the very slow signals, using interrupts
427  * may relax the CPU charge.
428  */
429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430 {
431 	u32 reg;
432 
433 	/* Writing 1 disables the interrupt */
434 	reg = readl_relaxed(nfc->regs + NDCR);
435 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436 }
437 
438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439 {
440 	u32 reg;
441 
442 	/* Writing 0 enables the interrupt */
443 	reg = readl_relaxed(nfc->regs + NDCR);
444 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445 }
446 
447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448 {
449 	writel_relaxed(int_mask, nfc->regs + NDSR);
450 }
451 
452 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 					  bool force_8bit)
454 {
455 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 	u32 ndcr;
457 
458 	/*
459 	 * Callers of this function do not verify if the NAND is using a 16-bit
460 	 * an 8-bit bus for normal operations, so we need to take care of that
461 	 * here by leaving the configuration unchanged if the NAND does not have
462 	 * the NAND_BUSWIDTH_16 flag set.
463 	 */
464 	if (!(chip->options & NAND_BUSWIDTH_16))
465 		return;
466 
467 	ndcr = readl_relaxed(nfc->regs + NDCR);
468 
469 	if (force_8bit)
470 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 	else
472 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473 
474 	writel_relaxed(ndcr, nfc->regs + NDCR);
475 }
476 
477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478 {
479 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 	u32 val;
481 	int ret;
482 
483 	/*
484 	 * The command is being processed, wait for the ND_RUN bit to be
485 	 * cleared by the NFC. If not, we must clear it by hand.
486 	 */
487 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 					 (val & NDCR_ND_RUN) == 0,
489 					 POLL_PERIOD, POLL_TIMEOUT);
490 	if (ret) {
491 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 			       nfc->regs + NDCR);
494 		return ret;
495 	}
496 
497 	return 0;
498 }
499 
500 /*
501  * Any time a command has to be sent to the controller, the following sequence
502  * has to be followed:
503  * - call marvell_nfc_prepare_cmd()
504  *      -> activate the ND_RUN bit that will kind of 'start a job'
505  *      -> wait the signal indicating the NFC is waiting for a command
506  * - send the command (cmd and address cycles)
507  * - enventually send or receive the data
508  * - call marvell_nfc_end_cmd() with the corresponding flag
509  *      -> wait the flag to be triggered or cancel the job with a timeout
510  *
511  * The following helpers are here to factorize the code a bit so that
512  * specialized functions responsible for executing the actual NAND
513  * operations do not have to replicate the same code blocks.
514  */
515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516 {
517 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 	u32 ndcr, val;
519 	int ret;
520 
521 	/* Poll ND_RUN and clear NDSR before issuing any command */
522 	ret = marvell_nfc_wait_ndrun(chip);
523 	if (ret) {
524 		dev_err(nfc->dev, "Last operation did not succeed\n");
525 		return ret;
526 	}
527 
528 	ndcr = readl_relaxed(nfc->regs + NDCR);
529 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530 
531 	/* Assert ND_RUN bit and wait the NFC to be ready */
532 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 					 val & NDSR_WRCMDREQ,
535 					 POLL_PERIOD, POLL_TIMEOUT);
536 	if (ret) {
537 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 		return -ETIMEDOUT;
539 	}
540 
541 	/* Command may be written, clear WRCMDREQ status bit */
542 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543 
544 	return 0;
545 }
546 
547 static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 				 struct marvell_nfc_op *nfc_op)
549 {
550 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552 
553 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
554 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557 
558 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 		       nfc->regs + NDCB0);
560 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562 
563 	/*
564 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 	 * fields are used (only available on NFCv2).
566 	 */
567 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 	}
572 }
573 
574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 			       const char *label)
576 {
577 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 	u32 val;
579 	int ret;
580 
581 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 					 val & flag,
583 					 POLL_PERIOD, POLL_TIMEOUT);
584 
585 	if (ret) {
586 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 			label, val);
588 		if (nfc->dma_chan)
589 			dmaengine_terminate_all(nfc->dma_chan);
590 		return ret;
591 	}
592 
593 	/*
594 	 * DMA function uses this helper to poll on CMDD bits without wanting
595 	 * them to be cleared.
596 	 */
597 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 		return 0;
599 
600 	writel_relaxed(flag, nfc->regs + NDSR);
601 
602 	return 0;
603 }
604 
605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606 {
607 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609 
610 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611 }
612 
613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614 {
615 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 	int ret;
617 
618 	/* Timeout is expressed in ms */
619 	if (!timeout_ms)
620 		timeout_ms = IRQ_TIMEOUT;
621 
622 	init_completion(&nfc->complete);
623 
624 	marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 	ret = wait_for_completion_timeout(&nfc->complete,
626 					  msecs_to_jiffies(timeout_ms));
627 	marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 	marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 	if (!ret) {
630 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 		return -ETIMEDOUT;
632 	}
633 
634 	return 0;
635 }
636 
637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638 {
639 	struct nand_chip *chip = mtd_to_nand(mtd);
640 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 	u32 ndcr_generic;
643 
644 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 		return;
646 
647 	if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 		nfc->selected_chip = NULL;
649 		marvell_nand->selected_die = -1;
650 		return;
651 	}
652 
653 	/*
654 	 * Do not change the timing registers when using the DT property
655 	 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
656 	 * marvell_nand structure are supposedly empty.
657 	 */
658 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
659 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
660 
661 	/*
662 	 * Reset the NDCR register to a clean state for this particular chip,
663 	 * also clear ND_RUN bit.
664 	 */
665 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
666 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
667 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
668 
669 	/* Also reset the interrupt status register */
670 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
671 
672 	nfc->selected_chip = chip;
673 	marvell_nand->selected_die = die_nr;
674 }
675 
676 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
677 {
678 	struct marvell_nfc *nfc = dev_id;
679 	u32 st = readl_relaxed(nfc->regs + NDSR);
680 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
681 
682 	/*
683 	 * RDY interrupt mask is one bit in NDCR while there are two status
684 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
685 	 */
686 	if (st & NDSR_RDY(1))
687 		st |= NDSR_RDY(0);
688 
689 	if (!(st & ien))
690 		return IRQ_NONE;
691 
692 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
693 
694 	if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
695 		complete(&nfc->complete);
696 
697 	return IRQ_HANDLED;
698 }
699 
700 /* HW ECC related functions */
701 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
702 {
703 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
704 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
705 
706 	if (!(ndcr & NDCR_ECC_EN)) {
707 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
708 
709 		/*
710 		 * When enabling BCH, set threshold to 0 to always know the
711 		 * number of corrected bitflips.
712 		 */
713 		if (chip->ecc.algo == NAND_ECC_BCH)
714 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
715 	}
716 }
717 
718 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
719 {
720 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
722 
723 	if (ndcr & NDCR_ECC_EN) {
724 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
725 		if (chip->ecc.algo == NAND_ECC_BCH)
726 			writel_relaxed(0, nfc->regs + NDECCCTRL);
727 	}
728 }
729 
730 /* DMA related helpers */
731 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
732 {
733 	u32 reg;
734 
735 	reg = readl_relaxed(nfc->regs + NDCR);
736 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
737 }
738 
739 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
740 {
741 	u32 reg;
742 
743 	reg = readl_relaxed(nfc->regs + NDCR);
744 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
745 }
746 
747 /* Read/write PIO/DMA accessors */
748 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
749 				     enum dma_data_direction direction,
750 				     unsigned int len)
751 {
752 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
753 	struct dma_async_tx_descriptor *tx;
754 	struct scatterlist sg;
755 	dma_cookie_t cookie;
756 	int ret;
757 
758 	marvell_nfc_enable_dma(nfc);
759 	/* Prepare the DMA transfer */
760 	sg_init_one(&sg, nfc->dma_buf, dma_len);
761 	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
762 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
763 				     direction == DMA_FROM_DEVICE ?
764 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
765 				     DMA_PREP_INTERRUPT);
766 	if (!tx) {
767 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
768 		return -ENXIO;
769 	}
770 
771 	/* Do the task and wait for it to finish */
772 	cookie = dmaengine_submit(tx);
773 	ret = dma_submit_error(cookie);
774 	if (ret)
775 		return -EIO;
776 
777 	dma_async_issue_pending(nfc->dma_chan);
778 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
779 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
780 	marvell_nfc_disable_dma(nfc);
781 	if (ret) {
782 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
783 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
784 		dmaengine_terminate_all(nfc->dma_chan);
785 		return -ETIMEDOUT;
786 	}
787 
788 	return 0;
789 }
790 
791 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
792 					unsigned int len)
793 {
794 	unsigned int last_len = len % FIFO_DEPTH;
795 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
796 	int i;
797 
798 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
799 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
800 
801 	if (last_len) {
802 		u8 tmp_buf[FIFO_DEPTH];
803 
804 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
805 		memcpy(in + last_full_offset, tmp_buf, last_len);
806 	}
807 
808 	return 0;
809 }
810 
811 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
812 					 unsigned int len)
813 {
814 	unsigned int last_len = len % FIFO_DEPTH;
815 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
816 	int i;
817 
818 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
819 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
820 
821 	if (last_len) {
822 		u8 tmp_buf[FIFO_DEPTH];
823 
824 		memcpy(tmp_buf, out + last_full_offset, last_len);
825 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
826 	}
827 
828 	return 0;
829 }
830 
831 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
832 					  u8 *data, int data_len,
833 					  u8 *spare, int spare_len,
834 					  u8 *ecc, int ecc_len,
835 					  unsigned int *max_bitflips)
836 {
837 	struct mtd_info *mtd = nand_to_mtd(chip);
838 	int bf;
839 
840 	/*
841 	 * Blank pages (all 0xFF) that have not been written may be recognized
842 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
843 	 * check if the entire page (with ECC bytes) is actually blank or not.
844 	 */
845 	if (!data)
846 		data_len = 0;
847 	if (!spare)
848 		spare_len = 0;
849 	if (!ecc)
850 		ecc_len = 0;
851 
852 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
853 					 spare, spare_len, chip->ecc.strength);
854 	if (bf < 0) {
855 		mtd->ecc_stats.failed++;
856 		return;
857 	}
858 
859 	/* Update the stats and max_bitflips */
860 	mtd->ecc_stats.corrected += bf;
861 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
862 }
863 
864 /*
865  * Check a chunk is correct or not according to hardware ECC engine.
866  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
867  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
868  * value indicating that a check on the emptyness of the subpage must be
869  * performed before declaring the subpage corrupted.
870  */
871 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
872 				      unsigned int *max_bitflips)
873 {
874 	struct mtd_info *mtd = nand_to_mtd(chip);
875 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
876 	int bf = 0;
877 	u32 ndsr;
878 
879 	ndsr = readl_relaxed(nfc->regs + NDSR);
880 
881 	/* Check uncorrectable error flag */
882 	if (ndsr & NDSR_UNCERR) {
883 		writel_relaxed(ndsr, nfc->regs + NDSR);
884 
885 		/*
886 		 * Do not increment ->ecc_stats.failed now, instead, return a
887 		 * non-zero value to indicate that this chunk was apparently
888 		 * bad, and it should be check to see if it empty or not. If
889 		 * the chunk (with ECC bytes) is not declared empty, the calling
890 		 * function must increment the failure count.
891 		 */
892 		return -EBADMSG;
893 	}
894 
895 	/* Check correctable error flag */
896 	if (ndsr & NDSR_CORERR) {
897 		writel_relaxed(ndsr, nfc->regs + NDSR);
898 
899 		if (chip->ecc.algo == NAND_ECC_BCH)
900 			bf = NDSR_ERRCNT(ndsr);
901 		else
902 			bf = 1;
903 	}
904 
905 	/* Update the stats and max_bitflips */
906 	mtd->ecc_stats.corrected += bf;
907 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
908 
909 	return 0;
910 }
911 
912 /* Hamming read helpers */
913 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
914 					       u8 *data_buf, u8 *oob_buf,
915 					       bool raw, int page)
916 {
917 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
918 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
919 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
920 	struct marvell_nfc_op nfc_op = {
921 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
922 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
923 			   NDCB0_DBC |
924 			   NDCB0_CMD1(NAND_CMD_READ0) |
925 			   NDCB0_CMD2(NAND_CMD_READSTART),
926 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
927 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
928 	};
929 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
930 	int ret;
931 
932 	/* NFCv2 needs more information about the operation being executed */
933 	if (nfc->caps->is_nfcv2)
934 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
935 
936 	ret = marvell_nfc_prepare_cmd(chip);
937 	if (ret)
938 		return ret;
939 
940 	marvell_nfc_send_cmd(chip, &nfc_op);
941 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
942 				  "RDDREQ while draining FIFO (data/oob)");
943 	if (ret)
944 		return ret;
945 
946 	/*
947 	 * Read the page then the OOB area. Unlike what is shown in current
948 	 * documentation, spare bytes are protected by the ECC engine, and must
949 	 * be at the beginning of the OOB area or running this driver on legacy
950 	 * systems will prevent the discovery of the BBM/BBT.
951 	 */
952 	if (nfc->use_dma) {
953 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
954 					  lt->data_bytes + oob_bytes);
955 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
956 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
957 	} else {
958 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
959 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
960 	}
961 
962 	ret = marvell_nfc_wait_cmdd(chip);
963 
964 	return ret;
965 }
966 
967 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
968 						struct nand_chip *chip, u8 *buf,
969 						int oob_required, int page)
970 {
971 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
972 						   true, page);
973 }
974 
975 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
976 					    struct nand_chip *chip,
977 					    u8 *buf, int oob_required,
978 					    int page)
979 {
980 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
981 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
982 	int max_bitflips = 0, ret;
983 	u8 *raw_buf;
984 
985 	marvell_nfc_enable_hw_ecc(chip);
986 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
987 					    page);
988 	ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
989 	marvell_nfc_disable_hw_ecc(chip);
990 
991 	if (!ret)
992 		return max_bitflips;
993 
994 	/*
995 	 * When ECC failures are detected, check if the full page has been
996 	 * written or not. Ignore the failure if it is actually empty.
997 	 */
998 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
999 	if (!raw_buf)
1000 		return -ENOMEM;
1001 
1002 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1003 					    lt->data_bytes, true, page);
1004 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1005 				      &max_bitflips);
1006 	kfree(raw_buf);
1007 
1008 	return max_bitflips;
1009 }
1010 
1011 /*
1012  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1013  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1014  * also stands for ->read_oob().
1015  */
1016 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1017 					       struct nand_chip *chip, int page)
1018 {
1019 	/* Invalidate page cache */
1020 	chip->pagebuf = -1;
1021 
1022 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1023 						   chip->oob_poi, true, page);
1024 }
1025 
1026 /* Hamming write helpers */
1027 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1028 						const u8 *data_buf,
1029 						const u8 *oob_buf, bool raw,
1030 						int page)
1031 {
1032 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1033 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1034 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1035 	struct marvell_nfc_op nfc_op = {
1036 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1037 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1038 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1039 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1040 			   NDCB0_DBC,
1041 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1042 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1043 	};
1044 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1045 	int ret;
1046 
1047 	/* NFCv2 needs more information about the operation being executed */
1048 	if (nfc->caps->is_nfcv2)
1049 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1050 
1051 	ret = marvell_nfc_prepare_cmd(chip);
1052 	if (ret)
1053 		return ret;
1054 
1055 	marvell_nfc_send_cmd(chip, &nfc_op);
1056 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1057 				  "WRDREQ while loading FIFO (data)");
1058 	if (ret)
1059 		return ret;
1060 
1061 	/* Write the page then the OOB area */
1062 	if (nfc->use_dma) {
1063 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1064 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1065 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1066 					  lt->ecc_bytes + lt->spare_bytes);
1067 	} else {
1068 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1069 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1070 	}
1071 
1072 	ret = marvell_nfc_wait_cmdd(chip);
1073 	if (ret)
1074 		return ret;
1075 
1076 	ret = marvell_nfc_wait_op(chip,
1077 				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1078 	return ret;
1079 }
1080 
1081 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1082 						 struct nand_chip *chip,
1083 						 const u8 *buf,
1084 						 int oob_required, int page)
1085 {
1086 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1087 						    true, page);
1088 }
1089 
1090 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1091 					     struct nand_chip *chip,
1092 					     const u8 *buf,
1093 					     int oob_required, int page)
1094 {
1095 	int ret;
1096 
1097 	marvell_nfc_enable_hw_ecc(chip);
1098 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1099 						   false, page);
1100 	marvell_nfc_disable_hw_ecc(chip);
1101 
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1107  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1108  * also stands for ->write_oob().
1109  */
1110 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1111 						struct nand_chip *chip,
1112 						int page)
1113 {
1114 	/* Invalidate page cache */
1115 	chip->pagebuf = -1;
1116 
1117 	memset(chip->data_buf, 0xFF, mtd->writesize);
1118 
1119 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1120 						    chip->oob_poi, true, page);
1121 }
1122 
1123 /* BCH read helpers */
1124 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1125 						struct nand_chip *chip, u8 *buf,
1126 						int oob_required, int page)
1127 {
1128 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1129 	u8 *oob = chip->oob_poi;
1130 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1131 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1132 		lt->last_spare_bytes;
1133 	int data_len = lt->data_bytes;
1134 	int spare_len = lt->spare_bytes;
1135 	int ecc_len = lt->ecc_bytes;
1136 	int chunk;
1137 
1138 	if (oob_required)
1139 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1140 
1141 	nand_read_page_op(chip, page, 0, NULL, 0);
1142 
1143 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1144 		/* Update last chunk length */
1145 		if (chunk >= lt->full_chunk_cnt) {
1146 			data_len = lt->last_data_bytes;
1147 			spare_len = lt->last_spare_bytes;
1148 			ecc_len = lt->last_ecc_bytes;
1149 		}
1150 
1151 		/* Read data bytes*/
1152 		nand_change_read_column_op(chip, chunk * chunk_size,
1153 					   buf + (lt->data_bytes * chunk),
1154 					   data_len, false);
1155 
1156 		/* Read spare bytes */
1157 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1158 				  spare_len, false);
1159 
1160 		/* Read ECC bytes */
1161 		nand_read_data_op(chip, oob + ecc_offset +
1162 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1163 				  ecc_len, false);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1170 					      u8 *data, unsigned int data_len,
1171 					      u8 *spare, unsigned int spare_len,
1172 					      int page)
1173 {
1174 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1175 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1176 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1177 	int i, ret;
1178 	struct marvell_nfc_op nfc_op = {
1179 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1180 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1181 			   NDCB0_LEN_OVRD,
1182 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1183 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1184 		.ndcb[3] = data_len + spare_len,
1185 	};
1186 
1187 	ret = marvell_nfc_prepare_cmd(chip);
1188 	if (ret)
1189 		return;
1190 
1191 	if (chunk == 0)
1192 		nfc_op.ndcb[0] |= NDCB0_DBC |
1193 				  NDCB0_CMD1(NAND_CMD_READ0) |
1194 				  NDCB0_CMD2(NAND_CMD_READSTART);
1195 
1196 	/*
1197 	 * Trigger the naked read operation only on the last chunk.
1198 	 * Otherwise, use monolithic read.
1199 	 */
1200 	if (lt->nchunks == 1 || (chunk < lt->nchunks - 1))
1201 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1202 	else
1203 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1204 
1205 	marvell_nfc_send_cmd(chip, &nfc_op);
1206 
1207 	/*
1208 	 * According to the datasheet, when reading from NDDB
1209 	 * with BCH enabled, after each 32 bytes reads, we
1210 	 * have to make sure that the NDSR.RDDREQ bit is set.
1211 	 *
1212 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1213 	 * the polling on the last read.
1214 	 *
1215 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1216 	 */
1217 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1218 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1219 				    "RDDREQ while draining FIFO (data)");
1220 		marvell_nfc_xfer_data_in_pio(nfc, data,
1221 					     FIFO_DEPTH * BCH_SEQ_READS);
1222 		data += FIFO_DEPTH * BCH_SEQ_READS;
1223 	}
1224 
1225 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1226 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1227 				    "RDDREQ while draining FIFO (OOB)");
1228 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1229 					     FIFO_DEPTH * BCH_SEQ_READS);
1230 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1231 	}
1232 }
1233 
1234 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1235 					    struct nand_chip *chip,
1236 					    u8 *buf, int oob_required,
1237 					    int page)
1238 {
1239 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1240 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1241 	u8 *data = buf, *spare = chip->oob_poi, *ecc;
1242 	int max_bitflips = 0;
1243 	u32 failure_mask = 0;
1244 	int chunk, ecc_offset_in_page, ret;
1245 
1246 	/*
1247 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1248 	 * expected bytes could show up at the end of the OOB buffer if not
1249 	 * explicitly erased.
1250 	 */
1251 	if (oob_required)
1252 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1253 
1254 	marvell_nfc_enable_hw_ecc(chip);
1255 
1256 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1257 		/* Update length for the last chunk */
1258 		if (chunk >= lt->full_chunk_cnt) {
1259 			data_len = lt->last_data_bytes;
1260 			spare_len = lt->last_spare_bytes;
1261 		}
1262 
1263 		/* Read the chunk and detect number of bitflips */
1264 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1265 						  spare, spare_len, page);
1266 		ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1267 		if (ret)
1268 			failure_mask |= BIT(chunk);
1269 
1270 		data += data_len;
1271 		spare += spare_len;
1272 	}
1273 
1274 	marvell_nfc_disable_hw_ecc(chip);
1275 
1276 	if (!failure_mask)
1277 		return max_bitflips;
1278 
1279 	/*
1280 	 * Please note that dumping the ECC bytes during a normal read with OOB
1281 	 * area would add a significant overhead as ECC bytes are "consumed" by
1282 	 * the controller in normal mode and must be re-read in raw mode. To
1283 	 * avoid dropping the performances, we prefer not to include them. The
1284 	 * user should re-read the page in raw mode if ECC bytes are required.
1285 	 *
1286 	 * However, for any subpage read error reported by ->correct(), the ECC
1287 	 * bytes must be read in raw mode and the full subpage must be checked
1288 	 * to see if it is entirely empty of if there was an actual error.
1289 	 */
1290 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1291 		/* No failure reported for this chunk, move to the next one */
1292 		if (!(failure_mask & BIT(chunk)))
1293 			continue;
1294 
1295 		/* Derive ECC bytes positions (in page/buffer) and length */
1296 		ecc = chip->oob_poi +
1297 			(lt->full_chunk_cnt * lt->spare_bytes) +
1298 			lt->last_spare_bytes +
1299 			(chunk * ALIGN(lt->ecc_bytes, 32));
1300 		ecc_offset_in_page =
1301 			(chunk * (lt->data_bytes + lt->spare_bytes +
1302 				  lt->ecc_bytes)) +
1303 			(chunk < lt->full_chunk_cnt ?
1304 			 lt->data_bytes + lt->spare_bytes :
1305 			 lt->last_data_bytes + lt->last_spare_bytes);
1306 		ecc_len = chunk < lt->full_chunk_cnt ?
1307 			lt->ecc_bytes : lt->last_ecc_bytes;
1308 
1309 		/* Do the actual raw read of the ECC bytes */
1310 		nand_change_read_column_op(chip, ecc_offset_in_page,
1311 					   ecc, ecc_len, false);
1312 
1313 		/* Derive data/spare bytes positions (in buffer) and length */
1314 		data = buf + (chunk * lt->data_bytes);
1315 		data_len = chunk < lt->full_chunk_cnt ?
1316 			lt->data_bytes : lt->last_data_bytes;
1317 		spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1318 						  lt->ecc_bytes));
1319 		spare_len = chunk < lt->full_chunk_cnt ?
1320 			lt->spare_bytes : lt->last_spare_bytes;
1321 
1322 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1323 		marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1324 					      spare_len, ecc, ecc_len,
1325 					      &max_bitflips);
1326 	}
1327 
1328 	return max_bitflips;
1329 }
1330 
1331 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1332 					       struct nand_chip *chip, int page)
1333 {
1334 	/* Invalidate page cache */
1335 	chip->pagebuf = -1;
1336 
1337 	return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1338 }
1339 
1340 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1341 					   struct nand_chip *chip, int page)
1342 {
1343 	/* Invalidate page cache */
1344 	chip->pagebuf = -1;
1345 
1346 	return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1347 }
1348 
1349 /* BCH write helpers */
1350 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1351 						 struct nand_chip *chip,
1352 						 const u8 *buf,
1353 						 int oob_required, int page)
1354 {
1355 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1356 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1357 	int data_len = lt->data_bytes;
1358 	int spare_len = lt->spare_bytes;
1359 	int ecc_len = lt->ecc_bytes;
1360 	int spare_offset = 0;
1361 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1362 		lt->last_spare_bytes;
1363 	int chunk;
1364 
1365 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1366 
1367 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1368 		if (chunk >= lt->full_chunk_cnt) {
1369 			data_len = lt->last_data_bytes;
1370 			spare_len = lt->last_spare_bytes;
1371 			ecc_len = lt->last_ecc_bytes;
1372 		}
1373 
1374 		/* Point to the column of the next chunk */
1375 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1376 					    NULL, 0, false);
1377 
1378 		/* Write the data */
1379 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1380 				   data_len, false);
1381 
1382 		if (!oob_required)
1383 			continue;
1384 
1385 		/* Write the spare bytes */
1386 		if (spare_len)
1387 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1388 					   spare_len, false);
1389 
1390 		/* Write the ECC bytes */
1391 		if (ecc_len)
1392 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1393 					   ecc_len, false);
1394 
1395 		spare_offset += spare_len;
1396 		ecc_offset += ALIGN(ecc_len, 32);
1397 	}
1398 
1399 	return nand_prog_page_end_op(chip);
1400 }
1401 
1402 static int
1403 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1404 				   const u8 *data, unsigned int data_len,
1405 				   const u8 *spare, unsigned int spare_len,
1406 				   int page)
1407 {
1408 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1409 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1410 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1411 	u32 xtype;
1412 	int ret;
1413 	struct marvell_nfc_op nfc_op = {
1414 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1415 		.ndcb[3] = data_len + spare_len,
1416 	};
1417 
1418 	/*
1419 	 * First operation dispatches the CMD_SEQIN command, issue the address
1420 	 * cycles and asks for the first chunk of data.
1421 	 * All operations in the middle (if any) will issue a naked write and
1422 	 * also ask for data.
1423 	 * Last operation (if any) asks for the last chunk of data through a
1424 	 * last naked write.
1425 	 */
1426 	if (chunk == 0) {
1427 		if (lt->nchunks == 1)
1428 			xtype = XTYPE_MONOLITHIC_RW;
1429 		else
1430 			xtype = XTYPE_WRITE_DISPATCH;
1431 
1432 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1433 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1434 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1435 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1436 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1437 	} else if (chunk < lt->nchunks - 1) {
1438 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1439 	} else {
1440 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1441 	}
1442 
1443 	/* Always dispatch the PAGEPROG command on the last chunk */
1444 	if (chunk == lt->nchunks - 1)
1445 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1446 
1447 	ret = marvell_nfc_prepare_cmd(chip);
1448 	if (ret)
1449 		return ret;
1450 
1451 	marvell_nfc_send_cmd(chip, &nfc_op);
1452 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1453 				  "WRDREQ while loading FIFO (data)");
1454 	if (ret)
1455 		return ret;
1456 
1457 	/* Transfer the contents */
1458 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1459 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1460 
1461 	return 0;
1462 }
1463 
1464 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1465 					     struct nand_chip *chip,
1466 					     const u8 *buf,
1467 					     int oob_required, int page)
1468 {
1469 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1470 	const u8 *data = buf;
1471 	const u8 *spare = chip->oob_poi;
1472 	int data_len = lt->data_bytes;
1473 	int spare_len = lt->spare_bytes;
1474 	int chunk, ret;
1475 
1476 	/* Spare data will be written anyway, so clear it to avoid garbage */
1477 	if (!oob_required)
1478 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1479 
1480 	marvell_nfc_enable_hw_ecc(chip);
1481 
1482 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1483 		if (chunk >= lt->full_chunk_cnt) {
1484 			data_len = lt->last_data_bytes;
1485 			spare_len = lt->last_spare_bytes;
1486 		}
1487 
1488 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1489 						   spare, spare_len, page);
1490 		data += data_len;
1491 		spare += spare_len;
1492 
1493 		/*
1494 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1495 		 * partially written. No flag is set once the operation is
1496 		 * really finished but the ND_RUN bit is cleared, so wait for it
1497 		 * before stepping into the next command.
1498 		 */
1499 		marvell_nfc_wait_ndrun(chip);
1500 	}
1501 
1502 	ret = marvell_nfc_wait_op(chip,
1503 				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1504 
1505 	marvell_nfc_disable_hw_ecc(chip);
1506 
1507 	if (ret)
1508 		return ret;
1509 
1510 	return 0;
1511 }
1512 
1513 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1514 						struct nand_chip *chip,
1515 						int page)
1516 {
1517 	/* Invalidate page cache */
1518 	chip->pagebuf = -1;
1519 
1520 	memset(chip->data_buf, 0xFF, mtd->writesize);
1521 
1522 	return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1523 }
1524 
1525 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1526 					    struct nand_chip *chip, int page)
1527 {
1528 	/* Invalidate page cache */
1529 	chip->pagebuf = -1;
1530 
1531 	memset(chip->data_buf, 0xFF, mtd->writesize);
1532 
1533 	return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1534 }
1535 
1536 /* NAND framework ->exec_op() hooks and related helpers */
1537 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1538 					   const struct nand_subop *subop,
1539 					   struct marvell_nfc_op *nfc_op)
1540 {
1541 	const struct nand_op_instr *instr = NULL;
1542 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1543 	bool first_cmd = true;
1544 	unsigned int op_id;
1545 	int i;
1546 
1547 	/* Reset the input structure as most of its fields will be OR'ed */
1548 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1549 
1550 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1551 		unsigned int offset, naddrs;
1552 		const u8 *addrs;
1553 		int len = nand_subop_get_data_len(subop, op_id);
1554 
1555 		instr = &subop->instrs[op_id];
1556 
1557 		switch (instr->type) {
1558 		case NAND_OP_CMD_INSTR:
1559 			if (first_cmd)
1560 				nfc_op->ndcb[0] |=
1561 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1562 			else
1563 				nfc_op->ndcb[0] |=
1564 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1565 					NDCB0_DBC;
1566 
1567 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1568 			first_cmd = false;
1569 			break;
1570 
1571 		case NAND_OP_ADDR_INSTR:
1572 			offset = nand_subop_get_addr_start_off(subop, op_id);
1573 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1574 			addrs = &instr->ctx.addr.addrs[offset];
1575 
1576 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1577 
1578 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1579 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1580 
1581 			if (naddrs >= 5)
1582 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1583 			if (naddrs >= 6)
1584 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1585 			if (naddrs == 7)
1586 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1587 
1588 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1589 			break;
1590 
1591 		case NAND_OP_DATA_IN_INSTR:
1592 			nfc_op->data_instr = instr;
1593 			nfc_op->data_instr_idx = op_id;
1594 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1595 			if (nfc->caps->is_nfcv2) {
1596 				nfc_op->ndcb[0] |=
1597 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1598 					NDCB0_LEN_OVRD;
1599 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1600 			}
1601 			nfc_op->data_delay_ns = instr->delay_ns;
1602 			break;
1603 
1604 		case NAND_OP_DATA_OUT_INSTR:
1605 			nfc_op->data_instr = instr;
1606 			nfc_op->data_instr_idx = op_id;
1607 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1608 			if (nfc->caps->is_nfcv2) {
1609 				nfc_op->ndcb[0] |=
1610 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1611 					NDCB0_LEN_OVRD;
1612 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1613 			}
1614 			nfc_op->data_delay_ns = instr->delay_ns;
1615 			break;
1616 
1617 		case NAND_OP_WAITRDY_INSTR:
1618 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1619 			nfc_op->rdy_delay_ns = instr->delay_ns;
1620 			break;
1621 		}
1622 	}
1623 }
1624 
1625 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1626 				     const struct nand_subop *subop,
1627 				     struct marvell_nfc_op *nfc_op)
1628 {
1629 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1630 	const struct nand_op_instr *instr = nfc_op->data_instr;
1631 	unsigned int op_id = nfc_op->data_instr_idx;
1632 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1633 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1634 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1635 	int ret;
1636 
1637 	if (instr->ctx.data.force_8bit)
1638 		marvell_nfc_force_byte_access(chip, true);
1639 
1640 	if (reading) {
1641 		u8 *in = instr->ctx.data.buf.in + offset;
1642 
1643 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1644 	} else {
1645 		const u8 *out = instr->ctx.data.buf.out + offset;
1646 
1647 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1648 	}
1649 
1650 	if (instr->ctx.data.force_8bit)
1651 		marvell_nfc_force_byte_access(chip, false);
1652 
1653 	return ret;
1654 }
1655 
1656 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1657 					      const struct nand_subop *subop)
1658 {
1659 	struct marvell_nfc_op nfc_op;
1660 	bool reading;
1661 	int ret;
1662 
1663 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1664 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1665 
1666 	ret = marvell_nfc_prepare_cmd(chip);
1667 	if (ret)
1668 		return ret;
1669 
1670 	marvell_nfc_send_cmd(chip, &nfc_op);
1671 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1672 				  "RDDREQ/WRDREQ while draining raw data");
1673 	if (ret)
1674 		return ret;
1675 
1676 	cond_delay(nfc_op.cle_ale_delay_ns);
1677 
1678 	if (reading) {
1679 		if (nfc_op.rdy_timeout_ms) {
1680 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1681 			if (ret)
1682 				return ret;
1683 		}
1684 
1685 		cond_delay(nfc_op.rdy_delay_ns);
1686 	}
1687 
1688 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1689 	ret = marvell_nfc_wait_cmdd(chip);
1690 	if (ret)
1691 		return ret;
1692 
1693 	cond_delay(nfc_op.data_delay_ns);
1694 
1695 	if (!reading) {
1696 		if (nfc_op.rdy_timeout_ms) {
1697 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1698 			if (ret)
1699 				return ret;
1700 		}
1701 
1702 		cond_delay(nfc_op.rdy_delay_ns);
1703 	}
1704 
1705 	/*
1706 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1707 	 * operation but experience shows that the behavior is buggy when it
1708 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1709 	 */
1710 	if (!reading) {
1711 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1712 
1713 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1714 			       nfc->regs + NDCR);
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1721 					 const struct nand_subop *subop)
1722 {
1723 	struct marvell_nfc_op nfc_op;
1724 	int ret;
1725 
1726 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1727 
1728 	/*
1729 	 * Naked access are different in that they need to be flagged as naked
1730 	 * by the controller. Reset the controller registers fields that inform
1731 	 * on the type and refill them according to the ongoing operation.
1732 	 */
1733 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1734 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1735 	switch (subop->instrs[0].type) {
1736 	case NAND_OP_CMD_INSTR:
1737 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1738 		break;
1739 	case NAND_OP_ADDR_INSTR:
1740 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1741 		break;
1742 	case NAND_OP_DATA_IN_INSTR:
1743 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1744 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1745 		break;
1746 	case NAND_OP_DATA_OUT_INSTR:
1747 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1748 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1749 		break;
1750 	default:
1751 		/* This should never happen */
1752 		break;
1753 	}
1754 
1755 	ret = marvell_nfc_prepare_cmd(chip);
1756 	if (ret)
1757 		return ret;
1758 
1759 	marvell_nfc_send_cmd(chip, &nfc_op);
1760 
1761 	if (!nfc_op.data_instr) {
1762 		ret = marvell_nfc_wait_cmdd(chip);
1763 		cond_delay(nfc_op.cle_ale_delay_ns);
1764 		return ret;
1765 	}
1766 
1767 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1768 				  "RDDREQ/WRDREQ while draining raw data");
1769 	if (ret)
1770 		return ret;
1771 
1772 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1773 	ret = marvell_nfc_wait_cmdd(chip);
1774 	if (ret)
1775 		return ret;
1776 
1777 	/*
1778 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1779 	 * operation but experience shows that the behavior is buggy when it
1780 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1781 	 */
1782 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1783 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1784 
1785 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1786 			       nfc->regs + NDCR);
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1793 					  const struct nand_subop *subop)
1794 {
1795 	struct marvell_nfc_op nfc_op;
1796 	int ret;
1797 
1798 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1799 
1800 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1801 	cond_delay(nfc_op.rdy_delay_ns);
1802 
1803 	return ret;
1804 }
1805 
1806 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1807 					 const struct nand_subop *subop)
1808 {
1809 	struct marvell_nfc_op nfc_op;
1810 	int ret;
1811 
1812 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1813 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1814 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1815 
1816 	ret = marvell_nfc_prepare_cmd(chip);
1817 	if (ret)
1818 		return ret;
1819 
1820 	marvell_nfc_send_cmd(chip, &nfc_op);
1821 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1822 				  "RDDREQ while reading ID");
1823 	if (ret)
1824 		return ret;
1825 
1826 	cond_delay(nfc_op.cle_ale_delay_ns);
1827 
1828 	if (nfc_op.rdy_timeout_ms) {
1829 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1830 		if (ret)
1831 			return ret;
1832 	}
1833 
1834 	cond_delay(nfc_op.rdy_delay_ns);
1835 
1836 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1837 	ret = marvell_nfc_wait_cmdd(chip);
1838 	if (ret)
1839 		return ret;
1840 
1841 	cond_delay(nfc_op.data_delay_ns);
1842 
1843 	return 0;
1844 }
1845 
1846 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1847 					const struct nand_subop *subop)
1848 {
1849 	struct marvell_nfc_op nfc_op;
1850 	int ret;
1851 
1852 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1853 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1854 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1855 
1856 	ret = marvell_nfc_prepare_cmd(chip);
1857 	if (ret)
1858 		return ret;
1859 
1860 	marvell_nfc_send_cmd(chip, &nfc_op);
1861 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1862 				  "RDDREQ while reading status");
1863 	if (ret)
1864 		return ret;
1865 
1866 	cond_delay(nfc_op.cle_ale_delay_ns);
1867 
1868 	if (nfc_op.rdy_timeout_ms) {
1869 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1870 		if (ret)
1871 			return ret;
1872 	}
1873 
1874 	cond_delay(nfc_op.rdy_delay_ns);
1875 
1876 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1877 	ret = marvell_nfc_wait_cmdd(chip);
1878 	if (ret)
1879 		return ret;
1880 
1881 	cond_delay(nfc_op.data_delay_ns);
1882 
1883 	return 0;
1884 }
1885 
1886 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1887 					   const struct nand_subop *subop)
1888 {
1889 	struct marvell_nfc_op nfc_op;
1890 	int ret;
1891 
1892 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1893 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1894 
1895 	ret = marvell_nfc_prepare_cmd(chip);
1896 	if (ret)
1897 		return ret;
1898 
1899 	marvell_nfc_send_cmd(chip, &nfc_op);
1900 	ret = marvell_nfc_wait_cmdd(chip);
1901 	if (ret)
1902 		return ret;
1903 
1904 	cond_delay(nfc_op.cle_ale_delay_ns);
1905 
1906 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1907 	if (ret)
1908 		return ret;
1909 
1910 	cond_delay(nfc_op.rdy_delay_ns);
1911 
1912 	return 0;
1913 }
1914 
1915 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1916 					   const struct nand_subop *subop)
1917 {
1918 	struct marvell_nfc_op nfc_op;
1919 	int ret;
1920 
1921 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1922 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1923 
1924 	ret = marvell_nfc_prepare_cmd(chip);
1925 	if (ret)
1926 		return ret;
1927 
1928 	marvell_nfc_send_cmd(chip, &nfc_op);
1929 	ret = marvell_nfc_wait_cmdd(chip);
1930 	if (ret)
1931 		return ret;
1932 
1933 	cond_delay(nfc_op.cle_ale_delay_ns);
1934 
1935 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1936 	if (ret)
1937 		return ret;
1938 
1939 	cond_delay(nfc_op.rdy_delay_ns);
1940 
1941 	return 0;
1942 }
1943 
1944 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1945 	/* Monolithic reads/writes */
1946 	NAND_OP_PARSER_PATTERN(
1947 		marvell_nfc_monolithic_access_exec,
1948 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1949 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1950 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
1951 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1952 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1953 	NAND_OP_PARSER_PATTERN(
1954 		marvell_nfc_monolithic_access_exec,
1955 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1956 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1957 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1958 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
1959 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1960 	/* Naked commands */
1961 	NAND_OP_PARSER_PATTERN(
1962 		marvell_nfc_naked_access_exec,
1963 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1964 	NAND_OP_PARSER_PATTERN(
1965 		marvell_nfc_naked_access_exec,
1966 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1967 	NAND_OP_PARSER_PATTERN(
1968 		marvell_nfc_naked_access_exec,
1969 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1970 	NAND_OP_PARSER_PATTERN(
1971 		marvell_nfc_naked_access_exec,
1972 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1973 	NAND_OP_PARSER_PATTERN(
1974 		marvell_nfc_naked_waitrdy_exec,
1975 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1976 	);
1977 
1978 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1979 	/* Naked commands not supported, use a function for each pattern */
1980 	NAND_OP_PARSER_PATTERN(
1981 		marvell_nfc_read_id_type_exec,
1982 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1983 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1984 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1985 	NAND_OP_PARSER_PATTERN(
1986 		marvell_nfc_erase_cmd_type_exec,
1987 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1988 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1989 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1990 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1991 	NAND_OP_PARSER_PATTERN(
1992 		marvell_nfc_read_status_exec,
1993 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1994 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1995 	NAND_OP_PARSER_PATTERN(
1996 		marvell_nfc_reset_cmd_type_exec,
1997 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1998 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1999 	NAND_OP_PARSER_PATTERN(
2000 		marvell_nfc_naked_waitrdy_exec,
2001 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2002 	);
2003 
2004 static int marvell_nfc_exec_op(struct nand_chip *chip,
2005 			       const struct nand_operation *op,
2006 			       bool check_only)
2007 {
2008 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2009 
2010 	if (nfc->caps->is_nfcv2)
2011 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2012 					      op, check_only);
2013 	else
2014 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2015 					      op, check_only);
2016 }
2017 
2018 /*
2019  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2020  * usable.
2021  */
2022 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2023 				      struct mtd_oob_region *oobregion)
2024 {
2025 	struct nand_chip *chip = mtd_to_nand(mtd);
2026 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2027 
2028 	if (section)
2029 		return -ERANGE;
2030 
2031 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2032 			    lt->last_ecc_bytes;
2033 	oobregion->offset = mtd->oobsize - oobregion->length;
2034 
2035 	return 0;
2036 }
2037 
2038 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2039 				       struct mtd_oob_region *oobregion)
2040 {
2041 	struct nand_chip *chip = mtd_to_nand(mtd);
2042 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2043 
2044 	if (section)
2045 		return -ERANGE;
2046 
2047 	/*
2048 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2049 	 * 4KB page / 4bit BCH combination.
2050 	 */
2051 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2052 		oobregion->offset = 6;
2053 	else
2054 		oobregion->offset = 2;
2055 
2056 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2057 			    lt->last_spare_bytes - oobregion->offset;
2058 
2059 	return 0;
2060 }
2061 
2062 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2063 	.ecc = marvell_nand_ooblayout_ecc,
2064 	.free = marvell_nand_ooblayout_free,
2065 };
2066 
2067 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2068 					 struct nand_ecc_ctrl *ecc)
2069 {
2070 	struct nand_chip *chip = mtd_to_nand(mtd);
2071 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2072 	const struct marvell_hw_ecc_layout *l;
2073 	int i;
2074 
2075 	if (!nfc->caps->is_nfcv2 &&
2076 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2077 		dev_err(nfc->dev,
2078 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2079 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2080 		return -ENOTSUPP;
2081 	}
2082 
2083 	to_marvell_nand(chip)->layout = NULL;
2084 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2085 		l = &marvell_nfc_layouts[i];
2086 		if (mtd->writesize == l->writesize &&
2087 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2088 			to_marvell_nand(chip)->layout = l;
2089 			break;
2090 		}
2091 	}
2092 
2093 	if (!to_marvell_nand(chip)->layout ||
2094 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2095 		dev_err(nfc->dev,
2096 			"ECC strength %d at page size %d is not supported\n",
2097 			ecc->strength, mtd->writesize);
2098 		return -ENOTSUPP;
2099 	}
2100 
2101 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2102 	ecc->steps = l->nchunks;
2103 	ecc->size = l->data_bytes;
2104 
2105 	if (ecc->strength == 1) {
2106 		chip->ecc.algo = NAND_ECC_HAMMING;
2107 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2108 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2109 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2110 		ecc->read_oob = ecc->read_oob_raw;
2111 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2112 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2113 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2114 		ecc->write_oob = ecc->write_oob_raw;
2115 	} else {
2116 		chip->ecc.algo = NAND_ECC_BCH;
2117 		ecc->strength = 16;
2118 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2119 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2120 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2121 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2122 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2123 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2124 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2125 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2132 				 struct nand_ecc_ctrl *ecc)
2133 {
2134 	struct nand_chip *chip = mtd_to_nand(mtd);
2135 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2136 	int ret;
2137 
2138 	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2139 		if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2140 			ecc->size = chip->ecc_step_ds;
2141 			ecc->strength = chip->ecc_strength_ds;
2142 		} else {
2143 			dev_info(nfc->dev,
2144 				 "No minimum ECC strength, using 1b/512B\n");
2145 			ecc->size = 512;
2146 			ecc->strength = 1;
2147 		}
2148 	}
2149 
2150 	switch (ecc->mode) {
2151 	case NAND_ECC_HW:
2152 		ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2153 		if (ret)
2154 			return ret;
2155 		break;
2156 	case NAND_ECC_NONE:
2157 	case NAND_ECC_SOFT:
2158 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2159 		    mtd->writesize != SZ_2K) {
2160 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2161 				mtd->writesize);
2162 			return -EINVAL;
2163 		}
2164 		break;
2165 	default:
2166 		return -EINVAL;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2173 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2174 
2175 static struct nand_bbt_descr bbt_main_descr = {
2176 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2177 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2178 	.offs =	8,
2179 	.len = 6,
2180 	.veroffs = 14,
2181 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2182 	.pattern = bbt_pattern
2183 };
2184 
2185 static struct nand_bbt_descr bbt_mirror_descr = {
2186 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2187 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2188 	.offs =	8,
2189 	.len = 6,
2190 	.veroffs = 14,
2191 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2192 	.pattern = bbt_mirror_pattern
2193 };
2194 
2195 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2196 					    const struct nand_data_interface
2197 					    *conf)
2198 {
2199 	struct nand_chip *chip = mtd_to_nand(mtd);
2200 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2201 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2202 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2203 	const struct nand_sdr_timings *sdr;
2204 	struct marvell_nfc_timings nfc_tmg;
2205 	int read_delay;
2206 
2207 	sdr = nand_get_sdr_timings(conf);
2208 	if (IS_ERR(sdr))
2209 		return PTR_ERR(sdr);
2210 
2211 	/*
2212 	 * SDR timings are given in pico-seconds while NFC timings must be
2213 	 * expressed in NAND controller clock cycles, which is half of the
2214 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2215 	 * This is not written anywhere in the datasheet but was observed
2216 	 * with an oscilloscope.
2217 	 *
2218 	 * NFC datasheet gives equations from which thoses calculations
2219 	 * are derived, they tend to be slightly more restrictives than the
2220 	 * given core timings and may improve the overall speed.
2221 	 */
2222 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2223 	nfc_tmg.tRH = nfc_tmg.tRP;
2224 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2225 	nfc_tmg.tWH = nfc_tmg.tWP;
2226 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2227 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2228 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2229 	/*
2230 	 * Read delay is the time of propagation from SoC pins to NFC internal
2231 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2232 	 * EDO mode, an additional delay of tRH must be taken into account so
2233 	 * the data is sampled on the falling edge instead of the rising edge.
2234 	 */
2235 	read_delay = sdr->tRC_min >= 30000 ?
2236 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2237 
2238 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2239 	/*
2240 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2241 	 * versa) but in some cases, ie. when doing a change column, they must
2242 	 * be greater than that to be sure tCCS delay is respected.
2243 	 */
2244 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2245 				 period_ns) - 2,
2246 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2247 				 period_ns);
2248 
2249 	/*
2250 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2251 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2252 	 */
2253 	if (nfc->caps->is_nfcv2) {
2254 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2255 	} else {
2256 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2257 					 period_ns);
2258 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2259 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2260 		else
2261 			nfc_tmg.tR = 0;
2262 	}
2263 
2264 	if (chipnr < 0)
2265 		return 0;
2266 
2267 	marvell_nand->ndtr0 =
2268 		NDTR0_TRP(nfc_tmg.tRP) |
2269 		NDTR0_TRH(nfc_tmg.tRH) |
2270 		NDTR0_ETRP(nfc_tmg.tRP) |
2271 		NDTR0_TWP(nfc_tmg.tWP) |
2272 		NDTR0_TWH(nfc_tmg.tWH) |
2273 		NDTR0_TCS(nfc_tmg.tCS) |
2274 		NDTR0_TCH(nfc_tmg.tCH);
2275 
2276 	marvell_nand->ndtr1 =
2277 		NDTR1_TAR(nfc_tmg.tAR) |
2278 		NDTR1_TWHR(nfc_tmg.tWHR) |
2279 		NDTR1_TR(nfc_tmg.tR);
2280 
2281 	if (nfc->caps->is_nfcv2) {
2282 		marvell_nand->ndtr0 |=
2283 			NDTR0_RD_CNT_DEL(read_delay) |
2284 			NDTR0_SELCNTR |
2285 			NDTR0_TADL(nfc_tmg.tADL);
2286 
2287 		marvell_nand->ndtr1 |=
2288 			NDTR1_TRHW(nfc_tmg.tRHW) |
2289 			NDTR1_WAIT_MODE;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2296 				  struct device_node *np)
2297 {
2298 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2299 	struct marvell_nand_chip *marvell_nand;
2300 	struct mtd_info *mtd;
2301 	struct nand_chip *chip;
2302 	int nsels, ret, i;
2303 	u32 cs, rb;
2304 
2305 	/*
2306 	 * The legacy "num-cs" property indicates the number of CS on the only
2307 	 * chip connected to the controller (legacy bindings does not support
2308 	 * more than one chip). The CS and RB pins are always the #0.
2309 	 *
2310 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2311 	 * properties must be filled. For each chip, expressed as a subnode,
2312 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2313 	 */
2314 	if (pdata || nfc->caps->legacy_of_bindings) {
2315 		nsels = 1;
2316 	} else {
2317 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2318 		if (nsels <= 0) {
2319 			dev_err(dev, "missing/invalid reg property\n");
2320 			return -EINVAL;
2321 		}
2322 	}
2323 
2324 	/* Alloc the nand chip structure */
2325 	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2326 				    (nsels *
2327 				     sizeof(struct marvell_nand_chip_sel)),
2328 				    GFP_KERNEL);
2329 	if (!marvell_nand) {
2330 		dev_err(dev, "could not allocate chip structure\n");
2331 		return -ENOMEM;
2332 	}
2333 
2334 	marvell_nand->nsels = nsels;
2335 	marvell_nand->selected_die = -1;
2336 
2337 	for (i = 0; i < nsels; i++) {
2338 		if (pdata || nfc->caps->legacy_of_bindings) {
2339 			/*
2340 			 * Legacy bindings use the CS lines in natural
2341 			 * order (0, 1, ...)
2342 			 */
2343 			cs = i;
2344 		} else {
2345 			/* Retrieve CS id */
2346 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2347 			if (ret) {
2348 				dev_err(dev, "could not retrieve reg property: %d\n",
2349 					ret);
2350 				return ret;
2351 			}
2352 		}
2353 
2354 		if (cs >= nfc->caps->max_cs_nb) {
2355 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2356 				cs, nfc->caps->max_cs_nb);
2357 			return -EINVAL;
2358 		}
2359 
2360 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2361 			dev_err(dev, "CS %d already assigned\n", cs);
2362 			return -EINVAL;
2363 		}
2364 
2365 		/*
2366 		 * The cs variable represents the chip select id, which must be
2367 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2368 		 * right chip. Unfortunately, due to a lack of information on
2369 		 * the subject and incoherent documentation, the user should not
2370 		 * use CS1 and CS3 at all as asserting them is not supported in
2371 		 * a reliable way (due to multiplexing inside ADDR5 field).
2372 		 */
2373 		marvell_nand->sels[i].cs = cs;
2374 		switch (cs) {
2375 		case 0:
2376 		case 2:
2377 			marvell_nand->sels[i].ndcb0_csel = 0;
2378 			break;
2379 		case 1:
2380 		case 3:
2381 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2382 			break;
2383 		default:
2384 			return -EINVAL;
2385 		}
2386 
2387 		/* Retrieve RB id */
2388 		if (pdata || nfc->caps->legacy_of_bindings) {
2389 			/* Legacy bindings always use RB #0 */
2390 			rb = 0;
2391 		} else {
2392 			ret = of_property_read_u32_index(np, "nand-rb", i,
2393 							 &rb);
2394 			if (ret) {
2395 				dev_err(dev,
2396 					"could not retrieve RB property: %d\n",
2397 					ret);
2398 				return ret;
2399 			}
2400 		}
2401 
2402 		if (rb >= nfc->caps->max_rb_nb) {
2403 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2404 				rb, nfc->caps->max_rb_nb);
2405 			return -EINVAL;
2406 		}
2407 
2408 		marvell_nand->sels[i].rb = rb;
2409 	}
2410 
2411 	chip = &marvell_nand->chip;
2412 	chip->controller = &nfc->controller;
2413 	nand_set_flash_node(chip, np);
2414 
2415 	chip->exec_op = marvell_nfc_exec_op;
2416 	chip->select_chip = marvell_nfc_select_chip;
2417 	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2418 		chip->setup_data_interface = marvell_nfc_setup_data_interface;
2419 
2420 	mtd = nand_to_mtd(chip);
2421 	mtd->dev.parent = dev;
2422 
2423 	/*
2424 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2425 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2426 	 */
2427 	chip->ecc.mode = NAND_ECC_HW;
2428 
2429 	/*
2430 	 * Save a reference value for timing registers before
2431 	 * ->setup_data_interface() is called.
2432 	 */
2433 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2434 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2435 
2436 	chip->options |= NAND_BUSWIDTH_AUTO;
2437 	ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2438 	if (ret) {
2439 		dev_err(dev, "could not identify the nand chip\n");
2440 		return ret;
2441 	}
2442 
2443 	if (pdata && pdata->flash_bbt)
2444 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2445 
2446 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2447 		/*
2448 		 * We'll use a bad block table stored in-flash and don't
2449 		 * allow writing the bad block marker to the flash.
2450 		 */
2451 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2452 		chip->bbt_td = &bbt_main_descr;
2453 		chip->bbt_md = &bbt_mirror_descr;
2454 	}
2455 
2456 	/* Save the chip-specific fields of NDCR */
2457 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2458 	if (chip->options & NAND_BUSWIDTH_16)
2459 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2460 
2461 	/*
2462 	 * On small page NANDs, only one cycle is needed to pass the
2463 	 * column address.
2464 	 */
2465 	if (mtd->writesize <= 512) {
2466 		marvell_nand->addr_cyc = 1;
2467 	} else {
2468 		marvell_nand->addr_cyc = 2;
2469 		marvell_nand->ndcr |= NDCR_RA_START;
2470 	}
2471 
2472 	/*
2473 	 * Now add the number of cycles needed to pass the row
2474 	 * address.
2475 	 *
2476 	 * Addressing a chip using CS 2 or 3 should also need the third row
2477 	 * cycle but due to inconsistance in the documentation and lack of
2478 	 * hardware to test this situation, this case is not supported.
2479 	 */
2480 	if (chip->options & NAND_ROW_ADDR_3)
2481 		marvell_nand->addr_cyc += 3;
2482 	else
2483 		marvell_nand->addr_cyc += 2;
2484 
2485 	if (pdata) {
2486 		chip->ecc.size = pdata->ecc_step_size;
2487 		chip->ecc.strength = pdata->ecc_strength;
2488 	}
2489 
2490 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2491 	if (ret) {
2492 		dev_err(dev, "ECC init failed: %d\n", ret);
2493 		return ret;
2494 	}
2495 
2496 	if (chip->ecc.mode == NAND_ECC_HW) {
2497 		/*
2498 		 * Subpage write not available with hardware ECC, prohibit also
2499 		 * subpage read as in userspace subpage access would still be
2500 		 * allowed and subpage write, if used, would lead to numerous
2501 		 * uncorrectable ECC errors.
2502 		 */
2503 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2504 	}
2505 
2506 	if (pdata || nfc->caps->legacy_of_bindings) {
2507 		/*
2508 		 * We keep the MTD name unchanged to avoid breaking platforms
2509 		 * where the MTD cmdline parser is used and the bootloader
2510 		 * has not been updated to use the new naming scheme.
2511 		 */
2512 		mtd->name = "pxa3xx_nand-0";
2513 	} else if (!mtd->name) {
2514 		/*
2515 		 * If the new bindings are used and the bootloader has not been
2516 		 * updated to pass a new mtdparts parameter on the cmdline, you
2517 		 * should define the following property in your NAND node, ie:
2518 		 *
2519 		 *	label = "main-storage";
2520 		 *
2521 		 * This way, mtd->name will be set by the core when
2522 		 * nand_set_flash_node() is called.
2523 		 */
2524 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2525 					   "%s:nand.%d", dev_name(nfc->dev),
2526 					   marvell_nand->sels[0].cs);
2527 		if (!mtd->name) {
2528 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2529 			return -ENOMEM;
2530 		}
2531 	}
2532 
2533 	ret = nand_scan_tail(mtd);
2534 	if (ret) {
2535 		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2536 		return ret;
2537 	}
2538 
2539 	if (pdata)
2540 		/* Legacy bindings support only one chip */
2541 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2542 	else
2543 		ret = mtd_device_register(mtd, NULL, 0);
2544 	if (ret) {
2545 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2546 		nand_release(mtd);
2547 		return ret;
2548 	}
2549 
2550 	list_add_tail(&marvell_nand->node, &nfc->chips);
2551 
2552 	return 0;
2553 }
2554 
2555 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2556 {
2557 	struct device_node *np = dev->of_node;
2558 	struct device_node *nand_np;
2559 	int max_cs = nfc->caps->max_cs_nb;
2560 	int nchips;
2561 	int ret;
2562 
2563 	if (!np)
2564 		nchips = 1;
2565 	else
2566 		nchips = of_get_child_count(np);
2567 
2568 	if (nchips > max_cs) {
2569 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2570 			max_cs);
2571 		return -EINVAL;
2572 	}
2573 
2574 	/*
2575 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2576 	 * properties and layout. Instead, NAND properties are mixed with the
2577 	 * controller ones, and partitions are defined as direct subnodes of the
2578 	 * NAND controller node.
2579 	 */
2580 	if (nfc->caps->legacy_of_bindings) {
2581 		ret = marvell_nand_chip_init(dev, nfc, np);
2582 		return ret;
2583 	}
2584 
2585 	for_each_child_of_node(np, nand_np) {
2586 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2587 		if (ret) {
2588 			of_node_put(nand_np);
2589 			return ret;
2590 		}
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2597 {
2598 	struct marvell_nand_chip *entry, *temp;
2599 
2600 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2601 		nand_release(nand_to_mtd(&entry->chip));
2602 		list_del(&entry->node);
2603 	}
2604 }
2605 
2606 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2607 {
2608 	struct platform_device *pdev = container_of(nfc->dev,
2609 						    struct platform_device,
2610 						    dev);
2611 	struct dma_slave_config config = {};
2612 	struct resource *r;
2613 	dma_cap_mask_t mask;
2614 	struct pxad_param param;
2615 	int ret;
2616 
2617 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2618 		dev_warn(nfc->dev,
2619 			 "DMA not enabled in configuration\n");
2620 		return -ENOTSUPP;
2621 	}
2622 
2623 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2624 	if (ret)
2625 		return ret;
2626 
2627 	r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2628 	if (!r) {
2629 		dev_err(nfc->dev, "No resource defined for data DMA\n");
2630 		return -ENXIO;
2631 	}
2632 
2633 	param.drcmr = r->start;
2634 	param.prio = PXAD_PRIO_LOWEST;
2635 	dma_cap_zero(mask);
2636 	dma_cap_set(DMA_SLAVE, mask);
2637 	nfc->dma_chan =
2638 		dma_request_slave_channel_compat(mask, pxad_filter_fn,
2639 						 &param, nfc->dev,
2640 						 "data");
2641 	if (!nfc->dma_chan) {
2642 		dev_err(nfc->dev,
2643 			"Unable to request data DMA channel\n");
2644 		return -ENODEV;
2645 	}
2646 
2647 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2648 	if (!r)
2649 		return -ENXIO;
2650 
2651 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2652 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2653 	config.src_addr = r->start + NDDB;
2654 	config.dst_addr = r->start + NDDB;
2655 	config.src_maxburst = 32;
2656 	config.dst_maxburst = 32;
2657 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2658 	if (ret < 0) {
2659 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2660 		return ret;
2661 	}
2662 
2663 	/*
2664 	 * DMA must act on length multiple of 32 and this length may be
2665 	 * bigger than the destination buffer. Use this buffer instead
2666 	 * for DMA transfers and then copy the desired amount of data to
2667 	 * the provided buffer.
2668 	 */
2669 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2670 	if (!nfc->dma_buf)
2671 		return -ENOMEM;
2672 
2673 	nfc->use_dma = true;
2674 
2675 	return 0;
2676 }
2677 
2678 static int marvell_nfc_init(struct marvell_nfc *nfc)
2679 {
2680 	struct device_node *np = nfc->dev->of_node;
2681 
2682 	/*
2683 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2684 	 * controller, gated clocks and reset bits to avoid being bootloader
2685 	 * dependent. This is done through the use of the System Functions
2686 	 * registers.
2687 	 */
2688 	if (nfc->caps->need_system_controller) {
2689 		struct regmap *sysctrl_base =
2690 			syscon_regmap_lookup_by_phandle(np,
2691 							"marvell,system-controller");
2692 		u32 reg;
2693 
2694 		if (IS_ERR(sysctrl_base))
2695 			return PTR_ERR(sysctrl_base);
2696 
2697 		reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2698 		      GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2699 		      GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2700 		      GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2701 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2702 
2703 		regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2704 		reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2705 		regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2706 
2707 		regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2708 		reg |= GENCONF_ND_CLK_CTRL_EN;
2709 		regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2710 	}
2711 
2712 	/* Configure the DMA if appropriate */
2713 	if (!nfc->caps->is_nfcv2)
2714 		marvell_nfc_init_dma(nfc);
2715 
2716 	/*
2717 	 * ECC operations and interruptions are only enabled when specifically
2718 	 * needed. ECC shall not be activated in the early stages (fails probe).
2719 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2720 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2721 	 * offset in the read page and this will fail the protection.
2722 	 */
2723 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2724 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2725 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2726 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2727 
2728 	return 0;
2729 }
2730 
2731 static int marvell_nfc_probe(struct platform_device *pdev)
2732 {
2733 	struct device *dev = &pdev->dev;
2734 	struct resource *r;
2735 	struct marvell_nfc *nfc;
2736 	int ret;
2737 	int irq;
2738 
2739 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2740 			   GFP_KERNEL);
2741 	if (!nfc)
2742 		return -ENOMEM;
2743 
2744 	nfc->dev = dev;
2745 	nand_hw_control_init(&nfc->controller);
2746 	INIT_LIST_HEAD(&nfc->chips);
2747 
2748 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2749 	nfc->regs = devm_ioremap_resource(dev, r);
2750 	if (IS_ERR(nfc->regs))
2751 		return PTR_ERR(nfc->regs);
2752 
2753 	irq = platform_get_irq(pdev, 0);
2754 	if (irq < 0) {
2755 		dev_err(dev, "failed to retrieve irq\n");
2756 		return irq;
2757 	}
2758 
2759 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2760 
2761 	/* Managed the legacy case (when the first clock was not named) */
2762 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2763 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2764 
2765 	if (IS_ERR(nfc->core_clk))
2766 		return PTR_ERR(nfc->core_clk);
2767 
2768 	ret = clk_prepare_enable(nfc->core_clk);
2769 	if (ret)
2770 		return ret;
2771 
2772 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2773 	if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2774 		if (!IS_ERR(nfc->reg_clk)) {
2775 			ret = clk_prepare_enable(nfc->reg_clk);
2776 			if (ret)
2777 				goto unprepare_core_clk;
2778 		} else {
2779 			ret = PTR_ERR(nfc->reg_clk);
2780 			goto unprepare_core_clk;
2781 		}
2782 	}
2783 
2784 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2785 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2786 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2787 			       0, "marvell-nfc", nfc);
2788 	if (ret)
2789 		goto unprepare_reg_clk;
2790 
2791 	/* Get NAND controller capabilities */
2792 	if (pdev->id_entry)
2793 		nfc->caps = (void *)pdev->id_entry->driver_data;
2794 	else
2795 		nfc->caps = of_device_get_match_data(&pdev->dev);
2796 
2797 	if (!nfc->caps) {
2798 		dev_err(dev, "Could not retrieve NFC caps\n");
2799 		ret = -EINVAL;
2800 		goto unprepare_reg_clk;
2801 	}
2802 
2803 	/* Init the controller and then probe the chips */
2804 	ret = marvell_nfc_init(nfc);
2805 	if (ret)
2806 		goto unprepare_reg_clk;
2807 
2808 	platform_set_drvdata(pdev, nfc);
2809 
2810 	ret = marvell_nand_chips_init(dev, nfc);
2811 	if (ret)
2812 		goto unprepare_reg_clk;
2813 
2814 	return 0;
2815 
2816 unprepare_reg_clk:
2817 	clk_disable_unprepare(nfc->reg_clk);
2818 unprepare_core_clk:
2819 	clk_disable_unprepare(nfc->core_clk);
2820 
2821 	return ret;
2822 }
2823 
2824 static int marvell_nfc_remove(struct platform_device *pdev)
2825 {
2826 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2827 
2828 	marvell_nand_chips_cleanup(nfc);
2829 
2830 	if (nfc->use_dma) {
2831 		dmaengine_terminate_all(nfc->dma_chan);
2832 		dma_release_channel(nfc->dma_chan);
2833 	}
2834 
2835 	clk_disable_unprepare(nfc->reg_clk);
2836 	clk_disable_unprepare(nfc->core_clk);
2837 
2838 	return 0;
2839 }
2840 
2841 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2842 	.max_cs_nb = 4,
2843 	.max_rb_nb = 2,
2844 	.need_system_controller = true,
2845 	.is_nfcv2 = true,
2846 };
2847 
2848 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2849 	.max_cs_nb = 4,
2850 	.max_rb_nb = 2,
2851 	.is_nfcv2 = true,
2852 };
2853 
2854 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2855 	.max_cs_nb = 2,
2856 	.max_rb_nb = 1,
2857 	.use_dma = true,
2858 };
2859 
2860 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2861 	.max_cs_nb = 4,
2862 	.max_rb_nb = 2,
2863 	.need_system_controller = true,
2864 	.legacy_of_bindings = true,
2865 	.is_nfcv2 = true,
2866 };
2867 
2868 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2869 	.max_cs_nb = 4,
2870 	.max_rb_nb = 2,
2871 	.legacy_of_bindings = true,
2872 	.is_nfcv2 = true,
2873 };
2874 
2875 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2876 	.max_cs_nb = 2,
2877 	.max_rb_nb = 1,
2878 	.legacy_of_bindings = true,
2879 	.use_dma = true,
2880 };
2881 
2882 static const struct platform_device_id marvell_nfc_platform_ids[] = {
2883 	{
2884 		.name = "pxa3xx-nand",
2885 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2886 	},
2887 	{ /* sentinel */ },
2888 };
2889 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2890 
2891 static const struct of_device_id marvell_nfc_of_ids[] = {
2892 	{
2893 		.compatible = "marvell,armada-8k-nand-controller",
2894 		.data = &marvell_armada_8k_nfc_caps,
2895 	},
2896 	{
2897 		.compatible = "marvell,armada370-nand-controller",
2898 		.data = &marvell_armada370_nfc_caps,
2899 	},
2900 	{
2901 		.compatible = "marvell,pxa3xx-nand-controller",
2902 		.data = &marvell_pxa3xx_nfc_caps,
2903 	},
2904 	/* Support for old/deprecated bindings: */
2905 	{
2906 		.compatible = "marvell,armada-8k-nand",
2907 		.data = &marvell_armada_8k_nfc_legacy_caps,
2908 	},
2909 	{
2910 		.compatible = "marvell,armada370-nand",
2911 		.data = &marvell_armada370_nfc_legacy_caps,
2912 	},
2913 	{
2914 		.compatible = "marvell,pxa3xx-nand",
2915 		.data = &marvell_pxa3xx_nfc_legacy_caps,
2916 	},
2917 	{ /* sentinel */ },
2918 };
2919 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2920 
2921 static struct platform_driver marvell_nfc_driver = {
2922 	.driver	= {
2923 		.name		= "marvell-nfc",
2924 		.of_match_table = marvell_nfc_of_ids,
2925 	},
2926 	.id_table = marvell_nfc_platform_ids,
2927 	.probe = marvell_nfc_probe,
2928 	.remove	= marvell_nfc_remove,
2929 };
2930 module_platform_driver(marvell_nfc_driver);
2931 
2932 MODULE_LICENSE("GPL");
2933 MODULE_DESCRIPTION("Marvell NAND controller driver");
2934