1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for NAND MLC Controller in LPC32xx 4 * 5 * Author: Roland Stigge <stigge@antcom.de> 6 * 7 * Copyright © 2011 WORK Microwave GmbH 8 * Copyright © 2011, 2012 Roland Stigge 9 * 10 * NAND Flash Controller Operation: 11 * - Read: Auto Decode 12 * - Write: Auto Encode 13 * - Tested Page Sizes: 2048, 4096 14 */ 15 16 #include <linux/slab.h> 17 #include <linux/module.h> 18 #include <linux/platform_device.h> 19 #include <linux/mtd/mtd.h> 20 #include <linux/mtd/rawnand.h> 21 #include <linux/mtd/partitions.h> 22 #include <linux/clk.h> 23 #include <linux/err.h> 24 #include <linux/delay.h> 25 #include <linux/completion.h> 26 #include <linux/interrupt.h> 27 #include <linux/of.h> 28 #include <linux/gpio/consumer.h> 29 #include <linux/mtd/lpc32xx_mlc.h> 30 #include <linux/io.h> 31 #include <linux/mm.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/dmaengine.h> 34 35 #define DRV_NAME "lpc32xx_mlc" 36 37 /********************************************************************** 38 * MLC NAND controller register offsets 39 **********************************************************************/ 40 41 #define MLC_BUFF(x) (x + 0x00000) 42 #define MLC_DATA(x) (x + 0x08000) 43 #define MLC_CMD(x) (x + 0x10000) 44 #define MLC_ADDR(x) (x + 0x10004) 45 #define MLC_ECC_ENC_REG(x) (x + 0x10008) 46 #define MLC_ECC_DEC_REG(x) (x + 0x1000C) 47 #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) 48 #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) 49 #define MLC_RPR(x) (x + 0x10018) 50 #define MLC_WPR(x) (x + 0x1001C) 51 #define MLC_RUBP(x) (x + 0x10020) 52 #define MLC_ROBP(x) (x + 0x10024) 53 #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) 54 #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) 55 #define MLC_ICR(x) (x + 0x10030) 56 #define MLC_TIME_REG(x) (x + 0x10034) 57 #define MLC_IRQ_MR(x) (x + 0x10038) 58 #define MLC_IRQ_SR(x) (x + 0x1003C) 59 #define MLC_LOCK_PR(x) (x + 0x10044) 60 #define MLC_ISR(x) (x + 0x10048) 61 #define MLC_CEH(x) (x + 0x1004C) 62 63 /********************************************************************** 64 * MLC_CMD bit definitions 65 **********************************************************************/ 66 #define MLCCMD_RESET 0xFF 67 68 /********************************************************************** 69 * MLC_ICR bit definitions 70 **********************************************************************/ 71 #define MLCICR_WPROT (1 << 3) 72 #define MLCICR_LARGEBLOCK (1 << 2) 73 #define MLCICR_LONGADDR (1 << 1) 74 #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ 75 76 /********************************************************************** 77 * MLC_TIME_REG bit definitions 78 **********************************************************************/ 79 #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) 80 #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) 81 #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) 82 #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) 83 #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) 84 #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) 85 #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) 86 87 /********************************************************************** 88 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions 89 **********************************************************************/ 90 #define MLCIRQ_NAND_READY (1 << 5) 91 #define MLCIRQ_CONTROLLER_READY (1 << 4) 92 #define MLCIRQ_DECODE_FAILURE (1 << 3) 93 #define MLCIRQ_DECODE_ERROR (1 << 2) 94 #define MLCIRQ_ECC_READY (1 << 1) 95 #define MLCIRQ_WRPROT_FAULT (1 << 0) 96 97 /********************************************************************** 98 * MLC_LOCK_PR bit definitions 99 **********************************************************************/ 100 #define MLCLOCKPR_MAGIC 0xA25E 101 102 /********************************************************************** 103 * MLC_ISR bit definitions 104 **********************************************************************/ 105 #define MLCISR_DECODER_FAILURE (1 << 6) 106 #define MLCISR_ERRORS ((1 << 4) | (1 << 5)) 107 #define MLCISR_ERRORS_DETECTED (1 << 3) 108 #define MLCISR_ECC_READY (1 << 2) 109 #define MLCISR_CONTROLLER_READY (1 << 1) 110 #define MLCISR_NAND_READY (1 << 0) 111 112 /********************************************************************** 113 * MLC_CEH bit definitions 114 **********************************************************************/ 115 #define MLCCEH_NORMAL (1 << 0) 116 117 struct lpc32xx_nand_cfg_mlc { 118 uint32_t tcea_delay; 119 uint32_t busy_delay; 120 uint32_t nand_ta; 121 uint32_t rd_high; 122 uint32_t rd_low; 123 uint32_t wr_high; 124 uint32_t wr_low; 125 struct mtd_partition *parts; 126 unsigned num_parts; 127 }; 128 129 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, 130 struct mtd_oob_region *oobregion) 131 { 132 struct nand_chip *nand_chip = mtd_to_nand(mtd); 133 134 if (section >= nand_chip->ecc.steps) 135 return -ERANGE; 136 137 oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes; 138 oobregion->length = nand_chip->ecc.bytes; 139 140 return 0; 141 } 142 143 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, 144 struct mtd_oob_region *oobregion) 145 { 146 struct nand_chip *nand_chip = mtd_to_nand(mtd); 147 148 if (section >= nand_chip->ecc.steps) 149 return -ERANGE; 150 151 oobregion->offset = 16 * section; 152 oobregion->length = 16 - nand_chip->ecc.bytes; 153 154 return 0; 155 } 156 157 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { 158 .ecc = lpc32xx_ooblayout_ecc, 159 .free = lpc32xx_ooblayout_free, 160 }; 161 162 static struct nand_bbt_descr lpc32xx_nand_bbt = { 163 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | 164 NAND_BBT_WRITE, 165 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, 166 }; 167 168 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { 169 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | 170 NAND_BBT_WRITE, 171 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, 172 }; 173 174 struct lpc32xx_nand_host { 175 struct platform_device *pdev; 176 struct nand_chip nand_chip; 177 struct lpc32xx_mlc_platform_data *pdata; 178 struct clk *clk; 179 struct gpio_desc *wp_gpio; 180 void __iomem *io_base; 181 int irq; 182 struct lpc32xx_nand_cfg_mlc *ncfg; 183 struct completion comp_nand; 184 struct completion comp_controller; 185 uint32_t llptr; 186 /* 187 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer 188 */ 189 dma_addr_t oob_buf_phy; 190 /* 191 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer 192 */ 193 uint8_t *oob_buf; 194 /* Physical address of DMA base address */ 195 dma_addr_t io_base_phy; 196 197 struct completion comp_dma; 198 struct dma_chan *dma_chan; 199 struct dma_slave_config dma_slave_config; 200 struct scatterlist sgl; 201 uint8_t *dma_buf; 202 uint8_t *dummy_buf; 203 int mlcsubpages; /* number of 512bytes-subpages */ 204 }; 205 206 /* 207 * Activate/Deactivate DMA Operation: 208 * 209 * Using the PL080 DMA Controller for transferring the 512 byte subpages 210 * instead of doing readl() / writel() in a loop slows it down significantly. 211 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: 212 * 213 * - readl() of 128 x 32 bits in a loop: ~20us 214 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us 215 * - DMA read of 512 bytes (32 bit, no bursts): ~100us 216 * 217 * This applies to the transfer itself. In the DMA case: only the 218 * wait_for_completion() (DMA setup _not_ included). 219 * 220 * Note that the 512 bytes subpage transfer is done directly from/to a 221 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a 222 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND 223 * controller transferring data between its internal buffer to/from the NAND 224 * chip.) 225 * 226 * Therefore, using the PL080 DMA is disabled by default, for now. 227 * 228 */ 229 static int use_dma; 230 231 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) 232 { 233 uint32_t clkrate, tmp; 234 235 /* Reset MLC controller */ 236 writel(MLCCMD_RESET, MLC_CMD(host->io_base)); 237 udelay(1000); 238 239 /* Get base clock for MLC block */ 240 clkrate = clk_get_rate(host->clk); 241 if (clkrate == 0) 242 clkrate = 104000000; 243 244 /* Unlock MLC_ICR 245 * (among others, will be locked again automatically) */ 246 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); 247 248 /* Configure MLC Controller: Large Block, 5 Byte Address */ 249 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; 250 writel(tmp, MLC_ICR(host->io_base)); 251 252 /* Unlock MLC_TIME_REG 253 * (among others, will be locked again automatically) */ 254 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); 255 256 /* Compute clock setup values, see LPC and NAND manual */ 257 tmp = 0; 258 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); 259 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); 260 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); 261 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); 262 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); 263 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); 264 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); 265 writel(tmp, MLC_TIME_REG(host->io_base)); 266 267 /* Enable IRQ for CONTROLLER_READY and NAND_READY */ 268 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, 269 MLC_IRQ_MR(host->io_base)); 270 271 /* Normal nCE operation: nCE controlled by controller */ 272 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); 273 } 274 275 /* 276 * Hardware specific access to control lines 277 */ 278 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd, 279 unsigned int ctrl) 280 { 281 struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); 282 283 if (cmd != NAND_CMD_NONE) { 284 if (ctrl & NAND_CLE) 285 writel(cmd, MLC_CMD(host->io_base)); 286 else 287 writel(cmd, MLC_ADDR(host->io_base)); 288 } 289 } 290 291 /* 292 * Read Device Ready (NAND device _and_ controller ready) 293 */ 294 static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip) 295 { 296 struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); 297 298 if ((readb(MLC_ISR(host->io_base)) & 299 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == 300 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) 301 return 1; 302 303 return 0; 304 } 305 306 static irqreturn_t lpc3xxx_nand_irq(int irq, void *data) 307 { 308 struct lpc32xx_nand_host *host = data; 309 uint8_t sr; 310 311 /* Clear interrupt flag by reading status */ 312 sr = readb(MLC_IRQ_SR(host->io_base)); 313 if (sr & MLCIRQ_NAND_READY) 314 complete(&host->comp_nand); 315 if (sr & MLCIRQ_CONTROLLER_READY) 316 complete(&host->comp_controller); 317 318 return IRQ_HANDLED; 319 } 320 321 static int lpc32xx_waitfunc_nand(struct nand_chip *chip) 322 { 323 struct mtd_info *mtd = nand_to_mtd(chip); 324 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 325 326 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) 327 goto exit; 328 329 wait_for_completion(&host->comp_nand); 330 331 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { 332 /* Seems to be delayed sometimes by controller */ 333 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); 334 cpu_relax(); 335 } 336 337 exit: 338 return NAND_STATUS_READY; 339 } 340 341 static int lpc32xx_waitfunc_controller(struct nand_chip *chip) 342 { 343 struct mtd_info *mtd = nand_to_mtd(chip); 344 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 345 346 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) 347 goto exit; 348 349 wait_for_completion(&host->comp_controller); 350 351 while (!(readb(MLC_ISR(host->io_base)) & 352 MLCISR_CONTROLLER_READY)) { 353 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); 354 cpu_relax(); 355 } 356 357 exit: 358 return NAND_STATUS_READY; 359 } 360 361 static int lpc32xx_waitfunc(struct nand_chip *chip) 362 { 363 lpc32xx_waitfunc_nand(chip); 364 lpc32xx_waitfunc_controller(chip); 365 366 return NAND_STATUS_READY; 367 } 368 369 /* 370 * Enable NAND write protect 371 */ 372 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) 373 { 374 if (host->wp_gpio) 375 gpiod_set_value_cansleep(host->wp_gpio, 1); 376 } 377 378 /* 379 * Disable NAND write protect 380 */ 381 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) 382 { 383 if (host->wp_gpio) 384 gpiod_set_value_cansleep(host->wp_gpio, 0); 385 } 386 387 static void lpc32xx_dma_complete_func(void *completion) 388 { 389 complete(completion); 390 } 391 392 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, 393 enum dma_transfer_direction dir) 394 { 395 struct nand_chip *chip = mtd_to_nand(mtd); 396 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 397 struct dma_async_tx_descriptor *desc; 398 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; 399 int res; 400 401 sg_init_one(&host->sgl, mem, len); 402 403 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, 404 DMA_BIDIRECTIONAL); 405 if (res != 1) { 406 dev_err(mtd->dev.parent, "Failed to map sg list\n"); 407 return -ENXIO; 408 } 409 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, 410 flags); 411 if (!desc) { 412 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); 413 goto out1; 414 } 415 416 init_completion(&host->comp_dma); 417 desc->callback = lpc32xx_dma_complete_func; 418 desc->callback_param = &host->comp_dma; 419 420 dmaengine_submit(desc); 421 dma_async_issue_pending(host->dma_chan); 422 423 wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); 424 425 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, 426 DMA_BIDIRECTIONAL); 427 return 0; 428 out1: 429 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, 430 DMA_BIDIRECTIONAL); 431 return -ENXIO; 432 } 433 434 static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf, 435 int oob_required, int page) 436 { 437 struct mtd_info *mtd = nand_to_mtd(chip); 438 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 439 int i, j; 440 uint8_t *oobbuf = chip->oob_poi; 441 uint32_t mlc_isr; 442 int res; 443 uint8_t *dma_buf; 444 bool dma_mapped; 445 446 if ((void *)buf <= high_memory) { 447 dma_buf = buf; 448 dma_mapped = true; 449 } else { 450 dma_buf = host->dma_buf; 451 dma_mapped = false; 452 } 453 454 /* Writing Command and Address */ 455 nand_read_page_op(chip, page, 0, NULL, 0); 456 457 /* For all sub-pages */ 458 for (i = 0; i < host->mlcsubpages; i++) { 459 /* Start Auto Decode Command */ 460 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); 461 462 /* Wait for Controller Ready */ 463 lpc32xx_waitfunc_controller(chip); 464 465 /* Check ECC Error status */ 466 mlc_isr = readl(MLC_ISR(host->io_base)); 467 if (mlc_isr & MLCISR_DECODER_FAILURE) { 468 mtd->ecc_stats.failed++; 469 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); 470 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { 471 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; 472 } 473 474 /* Read 512 + 16 Bytes */ 475 if (use_dma) { 476 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, 477 DMA_DEV_TO_MEM); 478 if (res) 479 return res; 480 } else { 481 for (j = 0; j < (512 >> 2); j++) { 482 *((uint32_t *)(buf)) = 483 readl(MLC_BUFF(host->io_base)); 484 buf += 4; 485 } 486 } 487 for (j = 0; j < (16 >> 2); j++) { 488 *((uint32_t *)(oobbuf)) = 489 readl(MLC_BUFF(host->io_base)); 490 oobbuf += 4; 491 } 492 } 493 494 if (use_dma && !dma_mapped) 495 memcpy(buf, dma_buf, mtd->writesize); 496 497 return 0; 498 } 499 500 static int lpc32xx_write_page_lowlevel(struct nand_chip *chip, 501 const uint8_t *buf, int oob_required, 502 int page) 503 { 504 struct mtd_info *mtd = nand_to_mtd(chip); 505 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 506 const uint8_t *oobbuf = chip->oob_poi; 507 uint8_t *dma_buf = (uint8_t *)buf; 508 int res; 509 int i, j; 510 511 if (use_dma && (void *)buf >= high_memory) { 512 dma_buf = host->dma_buf; 513 memcpy(dma_buf, buf, mtd->writesize); 514 } 515 516 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 517 518 for (i = 0; i < host->mlcsubpages; i++) { 519 /* Start Encode */ 520 writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); 521 522 /* Write 512 + 6 Bytes to Buffer */ 523 if (use_dma) { 524 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, 525 DMA_MEM_TO_DEV); 526 if (res) 527 return res; 528 } else { 529 for (j = 0; j < (512 >> 2); j++) { 530 writel(*((uint32_t *)(buf)), 531 MLC_BUFF(host->io_base)); 532 buf += 4; 533 } 534 } 535 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); 536 oobbuf += 4; 537 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); 538 oobbuf += 12; 539 540 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ 541 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); 542 543 /* Wait for Controller Ready */ 544 lpc32xx_waitfunc_controller(chip); 545 } 546 547 return nand_prog_page_end_op(chip); 548 } 549 550 static int lpc32xx_read_oob(struct nand_chip *chip, int page) 551 { 552 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 553 554 /* Read whole page - necessary with MLC controller! */ 555 lpc32xx_read_page(chip, host->dummy_buf, 1, page); 556 557 return 0; 558 } 559 560 static int lpc32xx_write_oob(struct nand_chip *chip, int page) 561 { 562 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ 563 return 0; 564 } 565 566 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ 567 static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode) 568 { 569 /* Always enabled! */ 570 } 571 572 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) 573 { 574 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); 575 dma_cap_mask_t mask; 576 577 host->dma_chan = dma_request_chan(mtd->dev.parent, "rx-tx"); 578 if (IS_ERR(host->dma_chan)) { 579 /* fallback to request using platform data */ 580 if (!host->pdata || !host->pdata->dma_filter) { 581 dev_err(mtd->dev.parent, "no DMA platform data\n"); 582 return -ENOENT; 583 } 584 585 dma_cap_zero(mask); 586 dma_cap_set(DMA_SLAVE, mask); 587 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, "nand-mlc"); 588 589 if (!host->dma_chan) { 590 dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); 591 return -EBUSY; 592 } 593 } 594 595 /* 596 * Set direction to a sensible value even if the dmaengine driver 597 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x 598 * driver criticizes it as "alien transfer direction". 599 */ 600 host->dma_slave_config.direction = DMA_DEV_TO_MEM; 601 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 602 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 603 host->dma_slave_config.src_maxburst = 128; 604 host->dma_slave_config.dst_maxburst = 128; 605 /* DMA controller does flow control: */ 606 host->dma_slave_config.device_fc = false; 607 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); 608 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); 609 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { 610 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); 611 goto out1; 612 } 613 614 return 0; 615 out1: 616 dma_release_channel(host->dma_chan); 617 return -ENXIO; 618 } 619 620 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) 621 { 622 struct lpc32xx_nand_cfg_mlc *ncfg; 623 struct device_node *np = dev->of_node; 624 625 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); 626 if (!ncfg) 627 return NULL; 628 629 of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); 630 of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); 631 of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); 632 of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); 633 of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); 634 of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); 635 of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); 636 637 if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || 638 !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || 639 !ncfg->wr_low) { 640 dev_err(dev, "chip parameters not specified correctly\n"); 641 return NULL; 642 } 643 644 return ncfg; 645 } 646 647 static int lpc32xx_nand_attach_chip(struct nand_chip *chip) 648 { 649 struct mtd_info *mtd = nand_to_mtd(chip); 650 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 651 struct device *dev = &host->pdev->dev; 652 653 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 654 return 0; 655 656 host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL); 657 if (!host->dma_buf) 658 return -ENOMEM; 659 660 host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL); 661 if (!host->dummy_buf) 662 return -ENOMEM; 663 664 chip->ecc.size = 512; 665 chip->ecc.hwctl = lpc32xx_ecc_enable; 666 chip->ecc.read_page_raw = lpc32xx_read_page; 667 chip->ecc.read_page = lpc32xx_read_page; 668 chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; 669 chip->ecc.write_page = lpc32xx_write_page_lowlevel; 670 chip->ecc.write_oob = lpc32xx_write_oob; 671 chip->ecc.read_oob = lpc32xx_read_oob; 672 chip->ecc.strength = 4; 673 chip->ecc.bytes = 10; 674 675 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); 676 host->mlcsubpages = mtd->writesize / 512; 677 678 return 0; 679 } 680 681 static const struct nand_controller_ops lpc32xx_nand_controller_ops = { 682 .attach_chip = lpc32xx_nand_attach_chip, 683 }; 684 685 /* 686 * Probe for NAND controller 687 */ 688 static int lpc32xx_nand_probe(struct platform_device *pdev) 689 { 690 struct lpc32xx_nand_host *host; 691 struct mtd_info *mtd; 692 struct nand_chip *nand_chip; 693 struct resource *rc; 694 int res; 695 696 /* Allocate memory for the device structure (and zero it) */ 697 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); 698 if (!host) 699 return -ENOMEM; 700 701 host->pdev = pdev; 702 703 host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc); 704 if (IS_ERR(host->io_base)) 705 return PTR_ERR(host->io_base); 706 707 host->io_base_phy = rc->start; 708 709 nand_chip = &host->nand_chip; 710 mtd = nand_to_mtd(nand_chip); 711 if (pdev->dev.of_node) 712 host->ncfg = lpc32xx_parse_dt(&pdev->dev); 713 if (!host->ncfg) { 714 dev_err(&pdev->dev, 715 "Missing or bad NAND config from device tree\n"); 716 return -ENOENT; 717 } 718 719 /* Start with WP disabled, if available */ 720 host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW); 721 res = PTR_ERR_OR_ZERO(host->wp_gpio); 722 if (res) { 723 if (res != -EPROBE_DEFER) 724 dev_err(&pdev->dev, "WP GPIO is not available: %d\n", 725 res); 726 return res; 727 } 728 729 gpiod_set_consumer_name(host->wp_gpio, "NAND WP"); 730 731 host->pdata = dev_get_platdata(&pdev->dev); 732 733 /* link the private data structures */ 734 nand_set_controller_data(nand_chip, host); 735 nand_set_flash_node(nand_chip, pdev->dev.of_node); 736 mtd->dev.parent = &pdev->dev; 737 738 /* Get NAND clock */ 739 host->clk = clk_get(&pdev->dev, NULL); 740 if (IS_ERR(host->clk)) { 741 dev_err(&pdev->dev, "Clock initialization failure\n"); 742 res = -ENOENT; 743 goto free_gpio; 744 } 745 res = clk_prepare_enable(host->clk); 746 if (res) 747 goto put_clk; 748 749 nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl; 750 nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready; 751 nand_chip->legacy.chip_delay = 25; /* us */ 752 nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base); 753 nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base); 754 755 /* Init NAND controller */ 756 lpc32xx_nand_setup(host); 757 758 platform_set_drvdata(pdev, host); 759 760 /* Initialize function pointers */ 761 nand_chip->legacy.waitfunc = lpc32xx_waitfunc; 762 763 nand_chip->options = NAND_NO_SUBPAGE_WRITE; 764 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; 765 nand_chip->bbt_td = &lpc32xx_nand_bbt; 766 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; 767 768 if (use_dma) { 769 res = lpc32xx_dma_setup(host); 770 if (res) { 771 res = -EIO; 772 goto unprepare_clk; 773 } 774 } 775 776 /* initially clear interrupt status */ 777 readb(MLC_IRQ_SR(host->io_base)); 778 779 init_completion(&host->comp_nand); 780 init_completion(&host->comp_controller); 781 782 host->irq = platform_get_irq(pdev, 0); 783 if (host->irq < 0) { 784 res = -EINVAL; 785 goto release_dma_chan; 786 } 787 788 if (request_irq(host->irq, &lpc3xxx_nand_irq, 789 IRQF_TRIGGER_HIGH, DRV_NAME, host)) { 790 dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); 791 res = -ENXIO; 792 goto release_dma_chan; 793 } 794 795 /* 796 * Scan to find existence of the device and get the type of NAND device: 797 * SMALL block or LARGE block. 798 */ 799 nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops; 800 res = nand_scan(nand_chip, 1); 801 if (res) 802 goto free_irq; 803 804 mtd->name = DRV_NAME; 805 806 res = mtd_device_register(mtd, host->ncfg->parts, 807 host->ncfg->num_parts); 808 if (res) 809 goto cleanup_nand; 810 811 return 0; 812 813 cleanup_nand: 814 nand_cleanup(nand_chip); 815 free_irq: 816 free_irq(host->irq, host); 817 release_dma_chan: 818 if (use_dma) 819 dma_release_channel(host->dma_chan); 820 unprepare_clk: 821 clk_disable_unprepare(host->clk); 822 put_clk: 823 clk_put(host->clk); 824 free_gpio: 825 lpc32xx_wp_enable(host); 826 gpiod_put(host->wp_gpio); 827 828 return res; 829 } 830 831 /* 832 * Remove NAND device 833 */ 834 static void lpc32xx_nand_remove(struct platform_device *pdev) 835 { 836 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); 837 struct nand_chip *chip = &host->nand_chip; 838 int ret; 839 840 ret = mtd_device_unregister(nand_to_mtd(chip)); 841 WARN_ON(ret); 842 nand_cleanup(chip); 843 844 free_irq(host->irq, host); 845 if (use_dma) 846 dma_release_channel(host->dma_chan); 847 848 clk_disable_unprepare(host->clk); 849 clk_put(host->clk); 850 851 lpc32xx_wp_enable(host); 852 gpiod_put(host->wp_gpio); 853 } 854 855 static int lpc32xx_nand_resume(struct platform_device *pdev) 856 { 857 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); 858 int ret; 859 860 /* Re-enable NAND clock */ 861 ret = clk_prepare_enable(host->clk); 862 if (ret) 863 return ret; 864 865 /* Fresh init of NAND controller */ 866 lpc32xx_nand_setup(host); 867 868 /* Disable write protect */ 869 lpc32xx_wp_disable(host); 870 871 return 0; 872 } 873 874 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) 875 { 876 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); 877 878 /* Enable write protect for safety */ 879 lpc32xx_wp_enable(host); 880 881 /* Disable clock */ 882 clk_disable_unprepare(host->clk); 883 return 0; 884 } 885 886 static const struct of_device_id lpc32xx_nand_match[] = { 887 { .compatible = "nxp,lpc3220-mlc" }, 888 { /* sentinel */ }, 889 }; 890 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); 891 892 static struct platform_driver lpc32xx_nand_driver = { 893 .probe = lpc32xx_nand_probe, 894 .remove_new = lpc32xx_nand_remove, 895 .resume = pm_ptr(lpc32xx_nand_resume), 896 .suspend = pm_ptr(lpc32xx_nand_suspend), 897 .driver = { 898 .name = DRV_NAME, 899 .of_match_table = lpc32xx_nand_match, 900 }, 901 }; 902 903 module_platform_driver(lpc32xx_nand_driver); 904 905 MODULE_LICENSE("GPL"); 906 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); 907 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); 908