xref: /linux/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = pm_runtime_resume_and_get(this->dev);
152 	if (ret < 0)
153 		return ret;
154 
155 	ret = gpmi_reset_block(r->gpmi_regs, false);
156 	if (ret)
157 		goto err_out;
158 
159 	/*
160 	 * Reset BCH here, too. We got failures otherwise :(
161 	 * See later BCH reset for explanation of MX23 and MX28 handling
162 	 */
163 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
164 	if (ret)
165 		goto err_out;
166 
167 	/* Choose NAND mode. */
168 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
169 
170 	/* Set the IRQ polarity. */
171 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
172 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
173 
174 	/* Disable Write-Protection. */
175 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176 
177 	/* Select BCH ECC. */
178 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
179 
180 	/*
181 	 * Decouple the chip select from dma channel. We use dma0 for all
182 	 * the chips, force all NAND RDY_BUSY inputs to be sourced from
183 	 * RDY_BUSY0.
184 	 */
185 	writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
186 	       r->gpmi_regs + HW_GPMI_CTRL1_SET);
187 
188 err_out:
189 	pm_runtime_mark_last_busy(this->dev);
190 	pm_runtime_put_autosuspend(this->dev);
191 	return ret;
192 }
193 
194 /* This function is very useful. It is called only when the bug occur. */
195 static void gpmi_dump_info(struct gpmi_nand_data *this)
196 {
197 	struct resources *r = &this->resources;
198 	struct bch_geometry *geo = &this->bch_geometry;
199 	u32 reg;
200 	int i;
201 
202 	dev_err(this->dev, "Show GPMI registers :\n");
203 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
204 		reg = readl(r->gpmi_regs + i * 0x10);
205 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
206 	}
207 
208 	/* start to print out the BCH info */
209 	dev_err(this->dev, "Show BCH registers :\n");
210 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
211 		reg = readl(r->bch_regs + i * 0x10);
212 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
213 	}
214 	dev_err(this->dev, "BCH Geometry :\n"
215 		"GF length              : %u\n"
216 		"ECC Strength           : %u\n"
217 		"Page Size in Bytes     : %u\n"
218 		"Metadata Size in Bytes : %u\n"
219 		"ECC0 Chunk Size in Bytes: %u\n"
220 		"ECCn Chunk Size in Bytes: %u\n"
221 		"ECC Chunk Count        : %u\n"
222 		"Payload Size in Bytes  : %u\n"
223 		"Auxiliary Size in Bytes: %u\n"
224 		"Auxiliary Status Offset: %u\n"
225 		"Block Mark Byte Offset : %u\n"
226 		"Block Mark Bit Offset  : %u\n",
227 		geo->gf_len,
228 		geo->ecc_strength,
229 		geo->page_size,
230 		geo->metadata_size,
231 		geo->ecc0_chunk_size,
232 		geo->eccn_chunk_size,
233 		geo->ecc_chunk_count,
234 		geo->payload_size,
235 		geo->auxiliary_size,
236 		geo->auxiliary_status_offset,
237 		geo->block_mark_byte_offset,
238 		geo->block_mark_bit_offset);
239 }
240 
241 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
242 {
243 	struct nand_chip *chip = &this->nand;
244 	struct bch_geometry *geo = &this->bch_geometry;
245 	struct nand_device *nand = &chip->base;
246 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
247 
248 	conf->step_size = geo->eccn_chunk_size;
249 	conf->strength = geo->ecc_strength;
250 
251 	/* Do the sanity check. */
252 	if (GPMI_IS_MXS(this)) {
253 		/* The mx23/mx28 only support the GF13. */
254 		if (geo->gf_len == 14)
255 			return false;
256 	}
257 
258 	if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
259 		return false;
260 
261 	if (!nand_ecc_is_strong_enough(nand))
262 		return false;
263 
264 	return true;
265 }
266 
267 /* check if bbm locates in data chunk rather than ecc chunk */
268 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
269 			unsigned int *chunk_num)
270 {
271 	struct bch_geometry *geo = &this->bch_geometry;
272 	struct nand_chip *chip = &this->nand;
273 	struct mtd_info *mtd = nand_to_mtd(chip);
274 	unsigned int i, j;
275 
276 	if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
277 		dev_err(this->dev,
278 			"The size of ecc0_chunk must equal to eccn_chunk\n");
279 		return false;
280 	}
281 
282 	i = (mtd->writesize * 8 - geo->metadata_size * 8) /
283 		(geo->gf_len * geo->ecc_strength +
284 			geo->eccn_chunk_size * 8);
285 
286 	j = (mtd->writesize * 8 - geo->metadata_size * 8) -
287 		(geo->gf_len * geo->ecc_strength +
288 			geo->eccn_chunk_size * 8) * i;
289 
290 	if (j < geo->eccn_chunk_size * 8) {
291 		*chunk_num = i+1;
292 		dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
293 				geo->ecc_strength, *chunk_num);
294 		return true;
295 	}
296 
297 	return false;
298 }
299 
300 /*
301  * If we can get the ECC information from the nand chip, we do not
302  * need to calculate them ourselves.
303  *
304  * We may have available oob space in this case.
305  */
306 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
307 				    unsigned int ecc_strength,
308 				    unsigned int ecc_step)
309 {
310 	struct bch_geometry *geo = &this->bch_geometry;
311 	struct nand_chip *chip = &this->nand;
312 	struct mtd_info *mtd = nand_to_mtd(chip);
313 	unsigned int block_mark_bit_offset;
314 
315 	switch (ecc_step) {
316 	case SZ_512:
317 		geo->gf_len = 13;
318 		break;
319 	case SZ_1K:
320 		geo->gf_len = 14;
321 		break;
322 	default:
323 		dev_err(this->dev,
324 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
325 			nanddev_get_ecc_requirements(&chip->base)->strength,
326 			nanddev_get_ecc_requirements(&chip->base)->step_size);
327 		return -EINVAL;
328 	}
329 	geo->ecc0_chunk_size = ecc_step;
330 	geo->eccn_chunk_size = ecc_step;
331 	geo->ecc_strength = round_up(ecc_strength, 2);
332 	if (!gpmi_check_ecc(this))
333 		return -EINVAL;
334 
335 	/* Keep the C >= O */
336 	if (geo->eccn_chunk_size < mtd->oobsize) {
337 		dev_err(this->dev,
338 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
339 			ecc_step, mtd->oobsize);
340 		return -EINVAL;
341 	}
342 
343 	/* The default value, see comment in the legacy_set_geometry(). */
344 	geo->metadata_size = 10;
345 
346 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
347 
348 	/*
349 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
350 	 *
351 	 *    |                          P                            |
352 	 *    |<----------------------------------------------------->|
353 	 *    |                                                       |
354 	 *    |                                        (Block Mark)   |
355 	 *    |                      P'                      |      | |     |
356 	 *    |<-------------------------------------------->|  D   | |  O' |
357 	 *    |                                              |<---->| |<--->|
358 	 *    V                                              V      V V     V
359 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
360 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
361 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
362 	 *                                                   ^              ^
363 	 *                                                   |      O       |
364 	 *                                                   |<------------>|
365 	 *                                                   |              |
366 	 *
367 	 *	P : the page size for BCH module.
368 	 *	E : The ECC strength.
369 	 *	G : the length of Galois Field.
370 	 *	N : The chunk count of per page.
371 	 *	M : the metasize of per page.
372 	 *	C : the ecc chunk size, aka the "data" above.
373 	 *	P': the nand chip's page size.
374 	 *	O : the nand chip's oob size.
375 	 *	O': the free oob.
376 	 *
377 	 *	The formula for P is :
378 	 *
379 	 *	            E * G * N
380 	 *	       P = ------------ + P' + M
381 	 *                      8
382 	 *
383 	 * The position of block mark moves forward in the ECC-based view
384 	 * of page, and the delta is:
385 	 *
386 	 *                   E * G * (N - 1)
387 	 *             D = (---------------- + M)
388 	 *                          8
389 	 *
390 	 * Please see the comment in legacy_set_geometry().
391 	 * With the condition C >= O , we still can get same result.
392 	 * So the bit position of the physical block mark within the ECC-based
393 	 * view of the page is :
394 	 *             (P' - D) * 8
395 	 */
396 	geo->page_size = mtd->writesize + geo->metadata_size +
397 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
398 
399 	geo->payload_size = mtd->writesize;
400 
401 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
402 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
403 				+ ALIGN(geo->ecc_chunk_count, 4);
404 
405 	if (!this->swap_block_mark)
406 		return 0;
407 
408 	/* For bit swap. */
409 	block_mark_bit_offset = mtd->writesize * 8 -
410 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
411 				+ geo->metadata_size * 8);
412 
413 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
414 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
415 	return 0;
416 }
417 
418 /*
419  *  Calculate the ECC strength by hand:
420  *	E : The ECC strength.
421  *	G : the length of Galois Field.
422  *	N : The chunk count of per page.
423  *	O : the oobsize of the NAND chip.
424  *	M : the metasize of per page.
425  *
426  *	The formula is :
427  *		E * G * N
428  *	      ------------ <= (O - M)
429  *                  8
430  *
431  *      So, we get E by:
432  *                    (O - M) * 8
433  *              E <= -------------
434  *                       G * N
435  */
436 static inline int get_ecc_strength(struct gpmi_nand_data *this)
437 {
438 	struct bch_geometry *geo = &this->bch_geometry;
439 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
440 	int ecc_strength;
441 
442 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
443 			/ (geo->gf_len * geo->ecc_chunk_count);
444 
445 	/* We need the minor even number. */
446 	return round_down(ecc_strength, 2);
447 }
448 
449 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
450 {
451 	struct bch_geometry *geo = &this->bch_geometry;
452 	struct nand_chip *chip = &this->nand;
453 	struct mtd_info *mtd = nand_to_mtd(chip);
454 	const struct nand_ecc_props *requirements =
455 		nanddev_get_ecc_requirements(&chip->base);
456 	unsigned int block_mark_bit_offset;
457 	unsigned int max_ecc;
458 	unsigned int bbm_chunk;
459 	unsigned int i;
460 
461 	/* sanity check for the minimum ecc nand required */
462 	if (!(requirements->strength > 0 &&
463 	      requirements->step_size > 0))
464 		return -EINVAL;
465 	geo->ecc_strength = requirements->strength;
466 
467 	/* check if platform can support this nand */
468 	if (!gpmi_check_ecc(this)) {
469 		dev_err(this->dev,
470 			"unsupported NAND chip, minimum ecc required %d\n",
471 			geo->ecc_strength);
472 		return -EINVAL;
473 	}
474 
475 	/* calculate the maximum ecc platform can support*/
476 	geo->metadata_size = 10;
477 	geo->gf_len = 14;
478 	geo->ecc0_chunk_size = 1024;
479 	geo->eccn_chunk_size = 1024;
480 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
481 	max_ecc = min(get_ecc_strength(this),
482 		      this->devdata->bch_max_ecc_strength);
483 
484 	/*
485 	 * search a supported ecc strength that makes bbm
486 	 * located in data chunk
487 	 */
488 	geo->ecc_strength = max_ecc;
489 	while (!(geo->ecc_strength < requirements->strength)) {
490 		if (bbm_in_data_chunk(this, &bbm_chunk))
491 			goto geo_setting;
492 		geo->ecc_strength -= 2;
493 	}
494 
495 	/* if none of them works, keep using the minimum ecc */
496 	/* nand required but changing ecc page layout  */
497 	geo->ecc_strength = requirements->strength;
498 	/* add extra ecc for meta data */
499 	geo->ecc0_chunk_size = 0;
500 	geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
501 	geo->ecc_for_meta = 1;
502 	/* check if oob can afford this extra ecc chunk */
503 	if (mtd->oobsize * 8 < geo->metadata_size * 8 +
504 	    geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
505 		dev_err(this->dev, "unsupported NAND chip with new layout\n");
506 		return -EINVAL;
507 	}
508 
509 	/* calculate in which chunk bbm located */
510 	bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
511 		     geo->gf_len * geo->ecc_strength) /
512 		     (geo->gf_len * geo->ecc_strength +
513 		     geo->eccn_chunk_size * 8) + 1;
514 
515 geo_setting:
516 
517 	geo->page_size = mtd->writesize + geo->metadata_size +
518 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
519 	geo->payload_size = mtd->writesize;
520 
521 	/*
522 	 * The auxiliary buffer contains the metadata and the ECC status. The
523 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
524 	 * contains one byte for every ECC chunk, and is also padded to the
525 	 * nearest 32-bit boundary.
526 	 */
527 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
528 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
529 				    + ALIGN(geo->ecc_chunk_count, 4);
530 
531 	if (!this->swap_block_mark)
532 		return 0;
533 
534 	/* calculate the number of ecc chunk behind the bbm */
535 	i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
536 
537 	block_mark_bit_offset = mtd->writesize * 8 -
538 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
539 		+ geo->metadata_size * 8);
540 
541 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
542 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
543 
544 	dev_dbg(this->dev, "BCH Geometry :\n"
545 		"GF length              : %u\n"
546 		"ECC Strength           : %u\n"
547 		"Page Size in Bytes     : %u\n"
548 		"Metadata Size in Bytes : %u\n"
549 		"ECC0 Chunk Size in Bytes: %u\n"
550 		"ECCn Chunk Size in Bytes: %u\n"
551 		"ECC Chunk Count        : %u\n"
552 		"Payload Size in Bytes  : %u\n"
553 		"Auxiliary Size in Bytes: %u\n"
554 		"Auxiliary Status Offset: %u\n"
555 		"Block Mark Byte Offset : %u\n"
556 		"Block Mark Bit Offset  : %u\n"
557 		"Block Mark in chunk	: %u\n"
558 		"Ecc for Meta data	: %u\n",
559 		geo->gf_len,
560 		geo->ecc_strength,
561 		geo->page_size,
562 		geo->metadata_size,
563 		geo->ecc0_chunk_size,
564 		geo->eccn_chunk_size,
565 		geo->ecc_chunk_count,
566 		geo->payload_size,
567 		geo->auxiliary_size,
568 		geo->auxiliary_status_offset,
569 		geo->block_mark_byte_offset,
570 		geo->block_mark_bit_offset,
571 		bbm_chunk,
572 		geo->ecc_for_meta);
573 
574 	return 0;
575 }
576 
577 static int legacy_set_geometry(struct gpmi_nand_data *this)
578 {
579 	struct bch_geometry *geo = &this->bch_geometry;
580 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
581 	unsigned int metadata_size;
582 	unsigned int status_size;
583 	unsigned int block_mark_bit_offset;
584 
585 	/*
586 	 * The size of the metadata can be changed, though we set it to 10
587 	 * bytes now. But it can't be too large, because we have to save
588 	 * enough space for BCH.
589 	 */
590 	geo->metadata_size = 10;
591 
592 	/* The default for the length of Galois Field. */
593 	geo->gf_len = 13;
594 
595 	/* The default for chunk size. */
596 	geo->ecc0_chunk_size = 512;
597 	geo->eccn_chunk_size = 512;
598 	while (geo->eccn_chunk_size < mtd->oobsize) {
599 		geo->ecc0_chunk_size *= 2; /* keep C >= O */
600 		geo->eccn_chunk_size *= 2; /* keep C >= O */
601 		geo->gf_len = 14;
602 	}
603 
604 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
605 
606 	/* We use the same ECC strength for all chunks. */
607 	geo->ecc_strength = get_ecc_strength(this);
608 	if (!gpmi_check_ecc(this)) {
609 		dev_err(this->dev,
610 			"ecc strength: %d cannot be supported by the controller (%d)\n"
611 			"try to use minimum ecc strength that NAND chip required\n",
612 			geo->ecc_strength,
613 			this->devdata->bch_max_ecc_strength);
614 		return -EINVAL;
615 	}
616 
617 	geo->page_size = mtd->writesize + geo->metadata_size +
618 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
619 	geo->payload_size = mtd->writesize;
620 
621 	/*
622 	 * The auxiliary buffer contains the metadata and the ECC status. The
623 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
624 	 * contains one byte for every ECC chunk, and is also padded to the
625 	 * nearest 32-bit boundary.
626 	 */
627 	metadata_size = ALIGN(geo->metadata_size, 4);
628 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
629 
630 	geo->auxiliary_size = metadata_size + status_size;
631 	geo->auxiliary_status_offset = metadata_size;
632 
633 	if (!this->swap_block_mark)
634 		return 0;
635 
636 	/*
637 	 * We need to compute the byte and bit offsets of
638 	 * the physical block mark within the ECC-based view of the page.
639 	 *
640 	 * NAND chip with 2K page shows below:
641 	 *                                             (Block Mark)
642 	 *                                                   |      |
643 	 *                                                   |  D   |
644 	 *                                                   |<---->|
645 	 *                                                   V      V
646 	 *    +---+----------+-+----------+-+----------+-+----------+-+
647 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
648 	 *    +---+----------+-+----------+-+----------+-+----------+-+
649 	 *
650 	 * The position of block mark moves forward in the ECC-based view
651 	 * of page, and the delta is:
652 	 *
653 	 *                   E * G * (N - 1)
654 	 *             D = (---------------- + M)
655 	 *                          8
656 	 *
657 	 * With the formula to compute the ECC strength, and the condition
658 	 *       : C >= O         (C is the ecc chunk size)
659 	 *
660 	 * It's easy to deduce to the following result:
661 	 *
662 	 *         E * G       (O - M)      C - M         C - M
663 	 *      ----------- <= ------- <=  --------  <  ---------
664 	 *           8            N           N          (N - 1)
665 	 *
666 	 *  So, we get:
667 	 *
668 	 *                   E * G * (N - 1)
669 	 *             D = (---------------- + M) < C
670 	 *                          8
671 	 *
672 	 *  The above inequality means the position of block mark
673 	 *  within the ECC-based view of the page is still in the data chunk,
674 	 *  and it's NOT in the ECC bits of the chunk.
675 	 *
676 	 *  Use the following to compute the bit position of the
677 	 *  physical block mark within the ECC-based view of the page:
678 	 *          (page_size - D) * 8
679 	 *
680 	 *  --Huang Shijie
681 	 */
682 	block_mark_bit_offset = mtd->writesize * 8 -
683 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
684 				+ geo->metadata_size * 8);
685 
686 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
687 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
688 	return 0;
689 }
690 
691 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
692 {
693 	struct nand_chip *chip = &this->nand;
694 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
695 	const struct nand_ecc_props *requirements =
696 		nanddev_get_ecc_requirements(&chip->base);
697 	bool use_minimun_ecc;
698 	int err;
699 
700 	use_minimun_ecc = of_property_read_bool(this->dev->of_node,
701 						"fsl,use-minimum-ecc");
702 
703 	/* use legacy bch geometry settings by default*/
704 	if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
705 	    !(requirements->strength > 0 && requirements->step_size > 0)) {
706 		dev_dbg(this->dev, "use legacy bch geometry\n");
707 		err = legacy_set_geometry(this);
708 		if (!err)
709 			return 0;
710 	}
711 
712 	/* for large oob nand */
713 	if (mtd->oobsize > 1024) {
714 		dev_dbg(this->dev, "use large oob bch geometry\n");
715 		err = set_geometry_for_large_oob(this);
716 		if (!err)
717 			return 0;
718 	}
719 
720 	/* otherwise use the minimum ecc nand chip required */
721 	dev_dbg(this->dev, "use minimum ecc bch geometry\n");
722 	err = set_geometry_by_ecc_info(this, requirements->strength,
723 					requirements->step_size);
724 	if (err)
725 		dev_err(this->dev, "none of the bch geometry setting works\n");
726 
727 	return err;
728 }
729 
730 /* Configures the geometry for BCH.  */
731 static int bch_set_geometry(struct gpmi_nand_data *this)
732 {
733 	struct resources *r = &this->resources;
734 	int ret;
735 
736 	ret = common_nfc_set_geometry(this);
737 	if (ret)
738 		return ret;
739 
740 	ret = pm_runtime_get_sync(this->dev);
741 	if (ret < 0) {
742 		pm_runtime_put_autosuspend(this->dev);
743 		return ret;
744 	}
745 
746 	/*
747 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
748 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
749 	* and MX28.
750 	*/
751 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
752 	if (ret)
753 		goto err_out;
754 
755 	/* Set *all* chip selects to use layout 0. */
756 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
757 
758 	ret = 0;
759 err_out:
760 	pm_runtime_mark_last_busy(this->dev);
761 	pm_runtime_put_autosuspend(this->dev);
762 
763 	return ret;
764 }
765 
766 /*
767  * <1> Firstly, we should know what's the GPMI-clock means.
768  *     The GPMI-clock is the internal clock in the gpmi nand controller.
769  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
770  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
771  *
772  * <2> Secondly, we should know what's the frequency on the nand chip pins.
773  *     The frequency on the nand chip pins is derived from the GPMI-clock.
774  *     We can get it from the following equation:
775  *
776  *         F = G / (DS + DH)
777  *
778  *         F  : the frequency on the nand chip pins.
779  *         G  : the GPMI clock, such as 100MHz.
780  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
781  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
782  *
783  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
784  *     the nand EDO(extended Data Out) timing could be applied.
785  *     The GPMI implements a feedback read strobe to sample the read data.
786  *     The feedback read strobe can be delayed to support the nand EDO timing
787  *     where the read strobe may deasserts before the read data is valid, and
788  *     read data is valid for some time after read strobe.
789  *
790  *     The following figure illustrates some aspects of a NAND Flash read:
791  *
792  *                   |<---tREA---->|
793  *                   |             |
794  *                   |         |   |
795  *                   |<--tRP-->|   |
796  *                   |         |   |
797  *                  __          ___|__________________________________
798  *     RDN            \________/   |
799  *                                 |
800  *                                 /---------\
801  *     Read Data    --------------<           >---------
802  *                                 \---------/
803  *                                |     |
804  *                                |<-D->|
805  *     FeedbackRDN  ________             ____________
806  *                          \___________/
807  *
808  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
809  *
810  *
811  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
812  *
813  *  4.1) From the aspect of the nand chip pins:
814  *        Delay = (tREA + C - tRP)               {1}
815  *
816  *        tREA : the maximum read access time.
817  *        C    : a constant to adjust the delay. default is 4000ps.
818  *        tRP  : the read pulse width, which is exactly:
819  *                   tRP = (GPMI-clock-period) * DATA_SETUP
820  *
821  *  4.2) From the aspect of the GPMI nand controller:
822  *         Delay = RDN_DELAY * 0.125 * RP        {2}
823  *
824  *         RP   : the DLL reference period.
825  *            if (GPMI-clock-period > DLL_THRETHOLD)
826  *                   RP = GPMI-clock-period / 2;
827  *            else
828  *                   RP = GPMI-clock-period;
829  *
830  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
831  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
832  *            is 16000ps, but in mx6q, we use 12000ps.
833  *
834  *  4.3) since {1} equals {2}, we get:
835  *
836  *                     (tREA + 4000 - tRP) * 8
837  *         RDN_DELAY = -----------------------     {3}
838  *                           RP
839  */
840 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
841 				    const struct nand_sdr_timings *sdr)
842 {
843 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
844 	struct resources *r = &this->resources;
845 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
846 	unsigned int period_ps, reference_period_ps;
847 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
848 	unsigned int tRP_ps;
849 	bool use_half_period;
850 	int sample_delay_ps, sample_delay_factor;
851 	unsigned int busy_timeout_cycles;
852 	u8 wrn_dly_sel;
853 	unsigned long clk_rate, min_rate;
854 	u64 busy_timeout_ps;
855 
856 	if (sdr->tRC_min >= 30000) {
857 		/* ONFI non-EDO modes [0-3] */
858 		hw->clk_rate = 22000000;
859 		min_rate = 0;
860 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
861 	} else if (sdr->tRC_min >= 25000) {
862 		/* ONFI EDO mode 4 */
863 		hw->clk_rate = 80000000;
864 		min_rate = 22000000;
865 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
866 	} else {
867 		/* ONFI EDO mode 5 */
868 		hw->clk_rate = 100000000;
869 		min_rate = 80000000;
870 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
871 	}
872 
873 	clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
874 	if (clk_rate <= min_rate) {
875 		dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
876 			hw->clk_rate, clk_rate);
877 		return -ENOTSUPP;
878 	}
879 
880 	hw->clk_rate = clk_rate;
881 	/* SDR core timings are given in picoseconds */
882 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
883 
884 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
885 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
886 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
887 	busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
888 	busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
889 
890 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
891 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
892 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
893 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
894 
895 	/*
896 	 * Derive NFC ideal delay from {3}:
897 	 *
898 	 *                     (tREA + 4000 - tRP) * 8
899 	 *         RDN_DELAY = -----------------------
900 	 *                                RP
901 	 */
902 	if (period_ps > dll_threshold_ps) {
903 		use_half_period = true;
904 		reference_period_ps = period_ps / 2;
905 	} else {
906 		use_half_period = false;
907 		reference_period_ps = period_ps;
908 	}
909 
910 	tRP_ps = data_setup_cycles * period_ps;
911 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
912 	if (sample_delay_ps > 0)
913 		sample_delay_factor = sample_delay_ps / reference_period_ps;
914 	else
915 		sample_delay_factor = 0;
916 
917 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
918 	if (sample_delay_factor)
919 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
920 			      BM_GPMI_CTRL1_DLL_ENABLE |
921 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
922 	return 0;
923 }
924 
925 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
926 {
927 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
928 	struct resources *r = &this->resources;
929 	void __iomem *gpmi_regs = r->gpmi_regs;
930 	unsigned int dll_wait_time_us;
931 	int ret;
932 
933 	/* Clock dividers do NOT guarantee a clean clock signal on its output
934 	 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
935 	 * all clock dividers provide these guarantee.
936 	 */
937 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
938 		clk_disable_unprepare(r->clock[0]);
939 
940 	ret = clk_set_rate(r->clock[0], hw->clk_rate);
941 	if (ret) {
942 		dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
943 		return ret;
944 	}
945 
946 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
947 		ret = clk_prepare_enable(r->clock[0]);
948 		if (ret)
949 			return ret;
950 	}
951 
952 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
953 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
954 
955 	/*
956 	 * Clear several CTRL1 fields, DLL must be disabled when setting
957 	 * RDN_DELAY or HALF_PERIOD.
958 	 */
959 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
960 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
961 
962 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
963 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
964 	if (!dll_wait_time_us)
965 		dll_wait_time_us = 1;
966 
967 	/* Wait for the DLL to settle. */
968 	udelay(dll_wait_time_us);
969 
970 	return 0;
971 }
972 
973 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
974 				const struct nand_interface_config *conf)
975 {
976 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
977 	const struct nand_sdr_timings *sdr;
978 	int ret;
979 
980 	/* Retrieve required NAND timings */
981 	sdr = nand_get_sdr_timings(conf);
982 	if (IS_ERR(sdr))
983 		return PTR_ERR(sdr);
984 
985 	/* Only MX28/MX6 GPMI controller can reach EDO timings */
986 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this))
987 		return -ENOTSUPP;
988 
989 	/* Stop here if this call was just a check */
990 	if (chipnr < 0)
991 		return 0;
992 
993 	/* Do the actual derivation of the controller timings */
994 	ret = gpmi_nfc_compute_timings(this, sdr);
995 	if (ret)
996 		return ret;
997 
998 	this->hw.must_apply_timings = true;
999 
1000 	return 0;
1001 }
1002 
1003 /* Clears a BCH interrupt. */
1004 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1005 {
1006 	struct resources *r = &this->resources;
1007 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1008 }
1009 
1010 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1011 {
1012 	/* We use the DMA channel 0 to access all the nand chips. */
1013 	return this->dma_chans[0];
1014 }
1015 
1016 /* This will be called after the DMA operation is finished. */
1017 static void dma_irq_callback(void *param)
1018 {
1019 	struct gpmi_nand_data *this = param;
1020 	struct completion *dma_c = &this->dma_done;
1021 
1022 	complete(dma_c);
1023 }
1024 
1025 static irqreturn_t bch_irq(int irq, void *cookie)
1026 {
1027 	struct gpmi_nand_data *this = cookie;
1028 
1029 	gpmi_clear_bch(this);
1030 	complete(&this->bch_done);
1031 	return IRQ_HANDLED;
1032 }
1033 
1034 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1035 {
1036 	/*
1037 	 * raw_len is the length to read/write including bch data which
1038 	 * we are passed in exec_op. Calculate the data length from it.
1039 	 */
1040 	if (this->bch)
1041 		return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1042 	else
1043 		return raw_len;
1044 }
1045 
1046 /* Can we use the upper's buffer directly for DMA? */
1047 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1048 			     int raw_len, struct scatterlist *sgl,
1049 			     enum dma_data_direction dr)
1050 {
1051 	int ret;
1052 	int len = gpmi_raw_len_to_len(this, raw_len);
1053 
1054 	/* first try to map the upper buffer directly */
1055 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1056 		sg_init_one(sgl, buf, len);
1057 		ret = dma_map_sg(this->dev, sgl, 1, dr);
1058 		if (ret == 0)
1059 			goto map_fail;
1060 
1061 		return true;
1062 	}
1063 
1064 map_fail:
1065 	/* We have to use our own DMA buffer. */
1066 	sg_init_one(sgl, this->data_buffer_dma, len);
1067 
1068 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1069 		memcpy(this->data_buffer_dma, buf, len);
1070 
1071 	dma_map_sg(this->dev, sgl, 1, dr);
1072 
1073 	return false;
1074 }
1075 
1076 /* add our owner bbt descriptor */
1077 static uint8_t scan_ff_pattern[] = { 0xff };
1078 static struct nand_bbt_descr gpmi_bbt_descr = {
1079 	.options	= 0,
1080 	.offs		= 0,
1081 	.len		= 1,
1082 	.pattern	= scan_ff_pattern
1083 };
1084 
1085 /*
1086  * We may change the layout if we can get the ECC info from the datasheet,
1087  * else we will use all the (page + OOB).
1088  */
1089 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1090 			      struct mtd_oob_region *oobregion)
1091 {
1092 	struct nand_chip *chip = mtd_to_nand(mtd);
1093 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1094 	struct bch_geometry *geo = &this->bch_geometry;
1095 
1096 	if (section)
1097 		return -ERANGE;
1098 
1099 	oobregion->offset = 0;
1100 	oobregion->length = geo->page_size - mtd->writesize;
1101 
1102 	return 0;
1103 }
1104 
1105 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1106 			       struct mtd_oob_region *oobregion)
1107 {
1108 	struct nand_chip *chip = mtd_to_nand(mtd);
1109 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1110 	struct bch_geometry *geo = &this->bch_geometry;
1111 
1112 	if (section)
1113 		return -ERANGE;
1114 
1115 	/* The available oob size we have. */
1116 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
1117 		oobregion->offset = geo->page_size - mtd->writesize;
1118 		oobregion->length = mtd->oobsize - oobregion->offset;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static const char * const gpmi_clks_for_mx2x[] = {
1125 	"gpmi_io",
1126 };
1127 
1128 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1129 	.ecc = gpmi_ooblayout_ecc,
1130 	.free = gpmi_ooblayout_free,
1131 };
1132 
1133 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1134 	.type = IS_MX23,
1135 	.bch_max_ecc_strength = 20,
1136 	.max_chain_delay = 16000,
1137 	.clks = gpmi_clks_for_mx2x,
1138 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1139 };
1140 
1141 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1142 	.type = IS_MX28,
1143 	.bch_max_ecc_strength = 20,
1144 	.max_chain_delay = 16000,
1145 	.clks = gpmi_clks_for_mx2x,
1146 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1147 };
1148 
1149 static const char * const gpmi_clks_for_mx6[] = {
1150 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1151 };
1152 
1153 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1154 	.type = IS_MX6Q,
1155 	.bch_max_ecc_strength = 40,
1156 	.max_chain_delay = 12000,
1157 	.clks = gpmi_clks_for_mx6,
1158 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1159 };
1160 
1161 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1162 	.type = IS_MX6SX,
1163 	.bch_max_ecc_strength = 62,
1164 	.max_chain_delay = 12000,
1165 	.clks = gpmi_clks_for_mx6,
1166 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1167 };
1168 
1169 static const char * const gpmi_clks_for_mx7d[] = {
1170 	"gpmi_io", "gpmi_bch_apb",
1171 };
1172 
1173 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1174 	.type = IS_MX7D,
1175 	.bch_max_ecc_strength = 62,
1176 	.max_chain_delay = 12000,
1177 	.clks = gpmi_clks_for_mx7d,
1178 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1179 };
1180 
1181 static int acquire_register_block(struct gpmi_nand_data *this,
1182 				  const char *res_name)
1183 {
1184 	struct platform_device *pdev = this->pdev;
1185 	struct resources *res = &this->resources;
1186 	void __iomem *p;
1187 
1188 	p = devm_platform_ioremap_resource_byname(pdev, res_name);
1189 	if (IS_ERR(p))
1190 		return PTR_ERR(p);
1191 
1192 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1193 		res->gpmi_regs = p;
1194 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1195 		res->bch_regs = p;
1196 	else
1197 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
1198 
1199 	return 0;
1200 }
1201 
1202 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1203 {
1204 	struct platform_device *pdev = this->pdev;
1205 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1206 	int err;
1207 
1208 	err = platform_get_irq_byname(pdev, res_name);
1209 	if (err < 0)
1210 		return err;
1211 
1212 	err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1213 	if (err)
1214 		dev_err(this->dev, "error requesting BCH IRQ\n");
1215 
1216 	return err;
1217 }
1218 
1219 static void release_dma_channels(struct gpmi_nand_data *this)
1220 {
1221 	unsigned int i;
1222 	for (i = 0; i < DMA_CHANS; i++)
1223 		if (this->dma_chans[i]) {
1224 			dma_release_channel(this->dma_chans[i]);
1225 			this->dma_chans[i] = NULL;
1226 		}
1227 }
1228 
1229 static int acquire_dma_channels(struct gpmi_nand_data *this)
1230 {
1231 	struct platform_device *pdev = this->pdev;
1232 	struct dma_chan *dma_chan;
1233 	int ret = 0;
1234 
1235 	/* request dma channel */
1236 	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1237 	if (IS_ERR(dma_chan)) {
1238 		ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1239 				    "DMA channel request failed\n");
1240 		release_dma_channels(this);
1241 	} else {
1242 		this->dma_chans[0] = dma_chan;
1243 	}
1244 
1245 	return ret;
1246 }
1247 
1248 static int gpmi_get_clks(struct gpmi_nand_data *this)
1249 {
1250 	struct resources *r = &this->resources;
1251 	struct clk *clk;
1252 	int err, i;
1253 
1254 	for (i = 0; i < this->devdata->clks_count; i++) {
1255 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1256 		if (IS_ERR(clk)) {
1257 			err = PTR_ERR(clk);
1258 			goto err_clock;
1259 		}
1260 
1261 		r->clock[i] = clk;
1262 	}
1263 
1264 	return 0;
1265 
1266 err_clock:
1267 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1268 	return err;
1269 }
1270 
1271 static int acquire_resources(struct gpmi_nand_data *this)
1272 {
1273 	int ret;
1274 
1275 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1276 	if (ret)
1277 		goto exit_regs;
1278 
1279 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1280 	if (ret)
1281 		goto exit_regs;
1282 
1283 	ret = acquire_bch_irq(this, bch_irq);
1284 	if (ret)
1285 		goto exit_regs;
1286 
1287 	ret = acquire_dma_channels(this);
1288 	if (ret)
1289 		goto exit_regs;
1290 
1291 	ret = gpmi_get_clks(this);
1292 	if (ret)
1293 		goto exit_clock;
1294 	return 0;
1295 
1296 exit_clock:
1297 	release_dma_channels(this);
1298 exit_regs:
1299 	return ret;
1300 }
1301 
1302 static void release_resources(struct gpmi_nand_data *this)
1303 {
1304 	release_dma_channels(this);
1305 }
1306 
1307 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1308 {
1309 	struct device *dev = this->dev;
1310 	struct bch_geometry *geo = &this->bch_geometry;
1311 
1312 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1313 		dma_free_coherent(dev, geo->auxiliary_size,
1314 					this->auxiliary_virt,
1315 					this->auxiliary_phys);
1316 	kfree(this->data_buffer_dma);
1317 	kfree(this->raw_buffer);
1318 
1319 	this->data_buffer_dma	= NULL;
1320 	this->raw_buffer	= NULL;
1321 }
1322 
1323 /* Allocate the DMA buffers */
1324 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1325 {
1326 	struct bch_geometry *geo = &this->bch_geometry;
1327 	struct device *dev = this->dev;
1328 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1329 
1330 	/*
1331 	 * [2] Allocate a read/write data buffer.
1332 	 *     The gpmi_alloc_dma_buffer can be called twice.
1333 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1334 	 *     is called before the NAND identification; and we allocate a
1335 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1336 	 *     is called after.
1337 	 */
1338 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1339 					GFP_DMA | GFP_KERNEL);
1340 	if (this->data_buffer_dma == NULL)
1341 		goto error_alloc;
1342 
1343 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1344 					&this->auxiliary_phys, GFP_DMA);
1345 	if (!this->auxiliary_virt)
1346 		goto error_alloc;
1347 
1348 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1349 	if (!this->raw_buffer)
1350 		goto error_alloc;
1351 
1352 	return 0;
1353 
1354 error_alloc:
1355 	gpmi_free_dma_buffer(this);
1356 	return -ENOMEM;
1357 }
1358 
1359 /*
1360  * Handles block mark swapping.
1361  * It can be called in swapping the block mark, or swapping it back,
1362  * because the operations are the same.
1363  */
1364 static void block_mark_swapping(struct gpmi_nand_data *this,
1365 				void *payload, void *auxiliary)
1366 {
1367 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1368 	unsigned char *p;
1369 	unsigned char *a;
1370 	unsigned int  bit;
1371 	unsigned char mask;
1372 	unsigned char from_data;
1373 	unsigned char from_oob;
1374 
1375 	if (!this->swap_block_mark)
1376 		return;
1377 
1378 	/*
1379 	 * If control arrives here, we're swapping. Make some convenience
1380 	 * variables.
1381 	 */
1382 	bit = nfc_geo->block_mark_bit_offset;
1383 	p   = payload + nfc_geo->block_mark_byte_offset;
1384 	a   = auxiliary;
1385 
1386 	/*
1387 	 * Get the byte from the data area that overlays the block mark. Since
1388 	 * the ECC engine applies its own view to the bits in the page, the
1389 	 * physical block mark won't (in general) appear on a byte boundary in
1390 	 * the data.
1391 	 */
1392 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1393 
1394 	/* Get the byte from the OOB. */
1395 	from_oob = a[0];
1396 
1397 	/* Swap them. */
1398 	a[0] = from_data;
1399 
1400 	mask = (0x1 << bit) - 1;
1401 	p[0] = (p[0] & mask) | (from_oob << bit);
1402 
1403 	mask = ~0 << bit;
1404 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1405 }
1406 
1407 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1408 			       int last, int meta)
1409 {
1410 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1411 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1412 	struct mtd_info *mtd = nand_to_mtd(chip);
1413 	int i;
1414 	unsigned char *status;
1415 	unsigned int max_bitflips = 0;
1416 
1417 	/* Loop over status bytes, accumulating ECC status. */
1418 	status = this->auxiliary_virt + ALIGN(meta, 4);
1419 
1420 	for (i = first; i < last; i++, status++) {
1421 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1422 			continue;
1423 
1424 		if (*status == STATUS_UNCORRECTABLE) {
1425 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1426 			u8 *eccbuf = this->raw_buffer;
1427 			int offset, bitoffset;
1428 			int eccbytes;
1429 			int flips;
1430 
1431 			/* Read ECC bytes into our internal raw_buffer */
1432 			offset = nfc_geo->metadata_size * 8;
1433 			offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1434 			offset -= eccbits;
1435 			bitoffset = offset % 8;
1436 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1437 			offset /= 8;
1438 			eccbytes -= offset;
1439 			nand_change_read_column_op(chip, offset, eccbuf,
1440 						   eccbytes, false);
1441 
1442 			/*
1443 			 * ECC data are not byte aligned and we may have
1444 			 * in-band data in the first and last byte of
1445 			 * eccbuf. Set non-eccbits to one so that
1446 			 * nand_check_erased_ecc_chunk() does not count them
1447 			 * as bitflips.
1448 			 */
1449 			if (bitoffset)
1450 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1451 
1452 			bitoffset = (bitoffset + eccbits) % 8;
1453 			if (bitoffset)
1454 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1455 
1456 			/*
1457 			 * The ECC hardware has an uncorrectable ECC status
1458 			 * code in case we have bitflips in an erased page. As
1459 			 * nothing was written into this subpage the ECC is
1460 			 * obviously wrong and we can not trust it. We assume
1461 			 * at this point that we are reading an erased page and
1462 			 * try to correct the bitflips in buffer up to
1463 			 * ecc_strength bitflips. If this is a page with random
1464 			 * data, we exceed this number of bitflips and have a
1465 			 * ECC failure. Otherwise we use the corrected buffer.
1466 			 */
1467 			if (i == 0) {
1468 				/* The first block includes metadata */
1469 				flips = nand_check_erased_ecc_chunk(
1470 						buf + i * nfc_geo->eccn_chunk_size,
1471 						nfc_geo->eccn_chunk_size,
1472 						eccbuf, eccbytes,
1473 						this->auxiliary_virt,
1474 						nfc_geo->metadata_size,
1475 						nfc_geo->ecc_strength);
1476 			} else {
1477 				flips = nand_check_erased_ecc_chunk(
1478 						buf + i * nfc_geo->eccn_chunk_size,
1479 						nfc_geo->eccn_chunk_size,
1480 						eccbuf, eccbytes,
1481 						NULL, 0,
1482 						nfc_geo->ecc_strength);
1483 			}
1484 
1485 			if (flips > 0) {
1486 				max_bitflips = max_t(unsigned int, max_bitflips,
1487 						     flips);
1488 				mtd->ecc_stats.corrected += flips;
1489 				continue;
1490 			}
1491 
1492 			mtd->ecc_stats.failed++;
1493 			continue;
1494 		}
1495 
1496 		mtd->ecc_stats.corrected += *status;
1497 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1498 	}
1499 
1500 	return max_bitflips;
1501 }
1502 
1503 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1504 {
1505 	struct bch_geometry *geo = &this->bch_geometry;
1506 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1507 	unsigned int gf_len = geo->gf_len;
1508 	unsigned int block0_size = geo->ecc0_chunk_size;
1509 	unsigned int blockn_size = geo->eccn_chunk_size;
1510 
1511 	this->bch_flashlayout0 =
1512 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1513 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1514 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1515 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1516 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1517 
1518 	this->bch_flashlayout1 =
1519 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1520 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1521 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1522 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1523 }
1524 
1525 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1526 			      int oob_required, int page)
1527 {
1528 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1529 	struct mtd_info *mtd = nand_to_mtd(chip);
1530 	struct bch_geometry *geo = &this->bch_geometry;
1531 	unsigned int max_bitflips;
1532 	int ret;
1533 
1534 	gpmi_bch_layout_std(this);
1535 	this->bch = true;
1536 
1537 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1538 	if (ret)
1539 		return ret;
1540 
1541 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1542 					   geo->ecc_chunk_count,
1543 					   geo->auxiliary_status_offset);
1544 
1545 	/* handle the block mark swapping */
1546 	block_mark_swapping(this, buf, this->auxiliary_virt);
1547 
1548 	if (oob_required) {
1549 		/*
1550 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1551 		 * for details about our policy for delivering the OOB.
1552 		 *
1553 		 * We fill the caller's buffer with set bits, and then copy the
1554 		 * block mark to th caller's buffer. Note that, if block mark
1555 		 * swapping was necessary, it has already been done, so we can
1556 		 * rely on the first byte of the auxiliary buffer to contain
1557 		 * the block mark.
1558 		 */
1559 		memset(chip->oob_poi, ~0, mtd->oobsize);
1560 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1561 	}
1562 
1563 	return max_bitflips;
1564 }
1565 
1566 /* Fake a virtual small page for the subpage read */
1567 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1568 				 uint32_t len, uint8_t *buf, int page)
1569 {
1570 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1571 	struct bch_geometry *geo = &this->bch_geometry;
1572 	int size = chip->ecc.size; /* ECC chunk size */
1573 	int meta, n, page_size;
1574 	unsigned int max_bitflips;
1575 	unsigned int ecc_strength;
1576 	int first, last, marker_pos;
1577 	int ecc_parity_size;
1578 	int col = 0;
1579 	int ret;
1580 
1581 	/* The size of ECC parity */
1582 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1583 
1584 	/* Align it with the chunk size */
1585 	first = offs / size;
1586 	last = (offs + len - 1) / size;
1587 
1588 	if (this->swap_block_mark) {
1589 		/*
1590 		 * Find the chunk which contains the Block Marker.
1591 		 * If this chunk is in the range of [first, last],
1592 		 * we have to read out the whole page.
1593 		 * Why? since we had swapped the data at the position of Block
1594 		 * Marker to the metadata which is bound with the chunk 0.
1595 		 */
1596 		marker_pos = geo->block_mark_byte_offset / size;
1597 		if (last >= marker_pos && first <= marker_pos) {
1598 			dev_dbg(this->dev,
1599 				"page:%d, first:%d, last:%d, marker at:%d\n",
1600 				page, first, last, marker_pos);
1601 			return gpmi_ecc_read_page(chip, buf, 0, page);
1602 		}
1603 	}
1604 
1605 	/*
1606 	 * if there is an ECC dedicate for meta:
1607 	 * - need to add an extra ECC size when calculating col and page_size,
1608 	 *   if the meta size is NOT zero.
1609 	 * - ecc0_chunk size need to set to the same size as other chunks,
1610 	 *   if the meta size is zero.
1611 	 */
1612 
1613 	meta = geo->metadata_size;
1614 	if (first) {
1615 		if (geo->ecc_for_meta)
1616 			col = meta + ecc_parity_size
1617 				+ (size + ecc_parity_size) * first;
1618 		else
1619 			col = meta + (size + ecc_parity_size) * first;
1620 
1621 		meta = 0;
1622 		buf = buf + first * size;
1623 	}
1624 
1625 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1626 	n = last - first + 1;
1627 
1628 	if (geo->ecc_for_meta && meta)
1629 		page_size = meta + ecc_parity_size
1630 			    + (size + ecc_parity_size) * n;
1631 	else
1632 		page_size = meta + (size + ecc_parity_size) * n;
1633 
1634 	ecc_strength = geo->ecc_strength >> 1;
1635 
1636 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1637 		(geo->ecc_for_meta ? n : n - 1)) |
1638 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1639 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1640 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1641 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1642 		0 : geo->ecc0_chunk_size), this);
1643 
1644 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1645 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1646 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1647 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1648 
1649 	this->bch = true;
1650 
1651 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1652 	if (ret)
1653 		return ret;
1654 
1655 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1656 		page, offs, len, col, first, n, page_size);
1657 
1658 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1659 
1660 	return max_bitflips;
1661 }
1662 
1663 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1664 			       int oob_required, int page)
1665 {
1666 	struct mtd_info *mtd = nand_to_mtd(chip);
1667 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1668 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1669 
1670 	dev_dbg(this->dev, "ecc write page.\n");
1671 
1672 	gpmi_bch_layout_std(this);
1673 	this->bch = true;
1674 
1675 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1676 
1677 	if (this->swap_block_mark) {
1678 		/*
1679 		 * When doing bad block marker swapping we must always copy the
1680 		 * input buffer as we can't modify the const buffer.
1681 		 */
1682 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1683 		buf = this->data_buffer_dma;
1684 		block_mark_swapping(this, this->data_buffer_dma,
1685 				    this->auxiliary_virt);
1686 	}
1687 
1688 	return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1689 }
1690 
1691 /*
1692  * There are several places in this driver where we have to handle the OOB and
1693  * block marks. This is the function where things are the most complicated, so
1694  * this is where we try to explain it all. All the other places refer back to
1695  * here.
1696  *
1697  * These are the rules, in order of decreasing importance:
1698  *
1699  * 1) Nothing the caller does can be allowed to imperil the block mark.
1700  *
1701  * 2) In read operations, the first byte of the OOB we return must reflect the
1702  *    true state of the block mark, no matter where that block mark appears in
1703  *    the physical page.
1704  *
1705  * 3) ECC-based read operations return an OOB full of set bits (since we never
1706  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1707  *    return).
1708  *
1709  * 4) "Raw" read operations return a direct view of the physical bytes in the
1710  *    page, using the conventional definition of which bytes are data and which
1711  *    are OOB. This gives the caller a way to see the actual, physical bytes
1712  *    in the page, without the distortions applied by our ECC engine.
1713  *
1714  *
1715  * What we do for this specific read operation depends on two questions:
1716  *
1717  * 1) Are we doing a "raw" read, or an ECC-based read?
1718  *
1719  * 2) Are we using block mark swapping or transcription?
1720  *
1721  * There are four cases, illustrated by the following Karnaugh map:
1722  *
1723  *                    |           Raw           |         ECC-based       |
1724  *       -------------+-------------------------+-------------------------+
1725  *                    | Read the conventional   |                         |
1726  *                    | OOB at the end of the   |                         |
1727  *       Swapping     | page and return it. It  |                         |
1728  *                    | contains exactly what   |                         |
1729  *                    | we want.                | Read the block mark and |
1730  *       -------------+-------------------------+ return it in a buffer   |
1731  *                    | Read the conventional   | full of set bits.       |
1732  *                    | OOB at the end of the   |                         |
1733  *                    | page and also the block |                         |
1734  *       Transcribing | mark in the metadata.   |                         |
1735  *                    | Copy the block mark     |                         |
1736  *                    | into the first byte of  |                         |
1737  *                    | the OOB.                |                         |
1738  *       -------------+-------------------------+-------------------------+
1739  *
1740  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1741  * giving an accurate view of the actual, physical bytes in the page (we're
1742  * overwriting the block mark). That's OK because it's more important to follow
1743  * rule #2.
1744  *
1745  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1746  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1747  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1748  * ECC-based or raw view of the page is implicit in which function it calls
1749  * (there is a similar pair of ECC-based/raw functions for writing).
1750  */
1751 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1752 {
1753 	struct mtd_info *mtd = nand_to_mtd(chip);
1754 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1755 	int ret;
1756 
1757 	/* clear the OOB buffer */
1758 	memset(chip->oob_poi, ~0, mtd->oobsize);
1759 
1760 	/* Read out the conventional OOB. */
1761 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1762 				mtd->oobsize);
1763 	if (ret)
1764 		return ret;
1765 
1766 	/*
1767 	 * Now, we want to make sure the block mark is correct. In the
1768 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1769 	 * Otherwise, we need to explicitly read it.
1770 	 */
1771 	if (GPMI_IS_MX23(this)) {
1772 		/* Read the block mark into the first byte of the OOB buffer. */
1773 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1774 		if (ret)
1775 			return ret;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1782 {
1783 	struct mtd_info *mtd = nand_to_mtd(chip);
1784 	struct mtd_oob_region of = { };
1785 
1786 	/* Do we have available oob area? */
1787 	mtd_ooblayout_free(mtd, 0, &of);
1788 	if (!of.length)
1789 		return -EPERM;
1790 
1791 	if (!nand_is_slc(chip))
1792 		return -EPERM;
1793 
1794 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1795 				 chip->oob_poi + of.offset, of.length);
1796 }
1797 
1798 /*
1799  * This function reads a NAND page without involving the ECC engine (no HW
1800  * ECC correction).
1801  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1802  * inline (interleaved with payload DATA), and do not align data chunk on
1803  * byte boundaries.
1804  * We thus need to take care moving the payload data and ECC bits stored in the
1805  * page into the provided buffers, which is why we're using nand_extract_bits().
1806  *
1807  * See set_geometry_by_ecc_info inline comments to have a full description
1808  * of the layout used by the GPMI controller.
1809  */
1810 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1811 				  int oob_required, int page)
1812 {
1813 	struct mtd_info *mtd = nand_to_mtd(chip);
1814 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1815 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1816 	int eccsize = nfc_geo->eccn_chunk_size;
1817 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1818 	u8 *tmp_buf = this->raw_buffer;
1819 	size_t src_bit_off;
1820 	size_t oob_bit_off;
1821 	size_t oob_byte_off;
1822 	uint8_t *oob = chip->oob_poi;
1823 	int step;
1824 	int ret;
1825 
1826 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1827 				mtd->writesize + mtd->oobsize);
1828 	if (ret)
1829 		return ret;
1830 
1831 	/*
1832 	 * If required, swap the bad block marker and the data stored in the
1833 	 * metadata section, so that we don't wrongly consider a block as bad.
1834 	 *
1835 	 * See the layout description for a detailed explanation on why this
1836 	 * is needed.
1837 	 */
1838 	if (this->swap_block_mark)
1839 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1840 
1841 	/*
1842 	 * Copy the metadata section into the oob buffer (this section is
1843 	 * guaranteed to be aligned on a byte boundary).
1844 	 */
1845 	if (oob_required)
1846 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1847 
1848 	oob_bit_off = nfc_geo->metadata_size * 8;
1849 	src_bit_off = oob_bit_off;
1850 
1851 	/* Extract interleaved payload data and ECC bits */
1852 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1853 		if (buf)
1854 			nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1855 					  src_bit_off, eccsize * 8);
1856 		src_bit_off += eccsize * 8;
1857 
1858 		/* Align last ECC block to align a byte boundary */
1859 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1860 		    (oob_bit_off + eccbits) % 8)
1861 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1862 
1863 		if (oob_required)
1864 			nand_extract_bits(oob, oob_bit_off, tmp_buf,
1865 					  src_bit_off, eccbits);
1866 
1867 		src_bit_off += eccbits;
1868 		oob_bit_off += eccbits;
1869 	}
1870 
1871 	if (oob_required) {
1872 		oob_byte_off = oob_bit_off / 8;
1873 
1874 		if (oob_byte_off < mtd->oobsize)
1875 			memcpy(oob + oob_byte_off,
1876 			       tmp_buf + mtd->writesize + oob_byte_off,
1877 			       mtd->oobsize - oob_byte_off);
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 /*
1884  * This function writes a NAND page without involving the ECC engine (no HW
1885  * ECC generation).
1886  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1887  * inline (interleaved with payload DATA), and do not align data chunk on
1888  * byte boundaries.
1889  * We thus need to take care moving the OOB area at the right place in the
1890  * final page, which is why we're using nand_extract_bits().
1891  *
1892  * See set_geometry_by_ecc_info inline comments to have a full description
1893  * of the layout used by the GPMI controller.
1894  */
1895 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1896 				   int oob_required, int page)
1897 {
1898 	struct mtd_info *mtd = nand_to_mtd(chip);
1899 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1900 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1901 	int eccsize = nfc_geo->eccn_chunk_size;
1902 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1903 	u8 *tmp_buf = this->raw_buffer;
1904 	uint8_t *oob = chip->oob_poi;
1905 	size_t dst_bit_off;
1906 	size_t oob_bit_off;
1907 	size_t oob_byte_off;
1908 	int step;
1909 
1910 	/*
1911 	 * Initialize all bits to 1 in case we don't have a buffer for the
1912 	 * payload or oob data in order to leave unspecified bits of data
1913 	 * to their initial state.
1914 	 */
1915 	if (!buf || !oob_required)
1916 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1917 
1918 	/*
1919 	 * First copy the metadata section (stored in oob buffer) at the
1920 	 * beginning of the page, as imposed by the GPMI layout.
1921 	 */
1922 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1923 	oob_bit_off = nfc_geo->metadata_size * 8;
1924 	dst_bit_off = oob_bit_off;
1925 
1926 	/* Interleave payload data and ECC bits */
1927 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1928 		if (buf)
1929 			nand_extract_bits(tmp_buf, dst_bit_off, buf,
1930 					  step * eccsize * 8, eccsize * 8);
1931 		dst_bit_off += eccsize * 8;
1932 
1933 		/* Align last ECC block to align a byte boundary */
1934 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1935 		    (oob_bit_off + eccbits) % 8)
1936 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1937 
1938 		if (oob_required)
1939 			nand_extract_bits(tmp_buf, dst_bit_off, oob,
1940 					  oob_bit_off, eccbits);
1941 
1942 		dst_bit_off += eccbits;
1943 		oob_bit_off += eccbits;
1944 	}
1945 
1946 	oob_byte_off = oob_bit_off / 8;
1947 
1948 	if (oob_required && oob_byte_off < mtd->oobsize)
1949 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1950 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1951 
1952 	/*
1953 	 * If required, swap the bad block marker and the first byte of the
1954 	 * metadata section, so that we don't modify the bad block marker.
1955 	 *
1956 	 * See the layout description for a detailed explanation on why this
1957 	 * is needed.
1958 	 */
1959 	if (this->swap_block_mark)
1960 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1961 
1962 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1963 				 mtd->writesize + mtd->oobsize);
1964 }
1965 
1966 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1967 {
1968 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1969 }
1970 
1971 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1972 {
1973 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1974 }
1975 
1976 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1977 {
1978 	struct mtd_info *mtd = nand_to_mtd(chip);
1979 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1980 	int ret = 0;
1981 	uint8_t *block_mark;
1982 	int column, page, chipnr;
1983 
1984 	chipnr = (int)(ofs >> chip->chip_shift);
1985 	nand_select_target(chip, chipnr);
1986 
1987 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1988 
1989 	/* Write the block mark. */
1990 	block_mark = this->data_buffer_dma;
1991 	block_mark[0] = 0; /* bad block marker */
1992 
1993 	/* Shift to get page */
1994 	page = (int)(ofs >> chip->page_shift);
1995 
1996 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1997 
1998 	nand_deselect_target(chip);
1999 
2000 	return ret;
2001 }
2002 
2003 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2004 {
2005 	struct boot_rom_geometry *geometry = &this->rom_geometry;
2006 
2007 	/*
2008 	 * Set the boot block stride size.
2009 	 *
2010 	 * In principle, we should be reading this from the OTP bits, since
2011 	 * that's where the ROM is going to get it. In fact, we don't have any
2012 	 * way to read the OTP bits, so we go with the default and hope for the
2013 	 * best.
2014 	 */
2015 	geometry->stride_size_in_pages = 64;
2016 
2017 	/*
2018 	 * Set the search area stride exponent.
2019 	 *
2020 	 * In principle, we should be reading this from the OTP bits, since
2021 	 * that's where the ROM is going to get it. In fact, we don't have any
2022 	 * way to read the OTP bits, so we go with the default and hope for the
2023 	 * best.
2024 	 */
2025 	geometry->search_area_stride_exponent = 2;
2026 	return 0;
2027 }
2028 
2029 static const char  *fingerprint = "STMP";
2030 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2031 {
2032 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2033 	struct device *dev = this->dev;
2034 	struct nand_chip *chip = &this->nand;
2035 	unsigned int search_area_size_in_strides;
2036 	unsigned int stride;
2037 	unsigned int page;
2038 	u8 *buffer = nand_get_data_buf(chip);
2039 	int found_an_ncb_fingerprint = false;
2040 	int ret;
2041 
2042 	/* Compute the number of strides in a search area. */
2043 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2044 
2045 	nand_select_target(chip, 0);
2046 
2047 	/*
2048 	 * Loop through the first search area, looking for the NCB fingerprint.
2049 	 */
2050 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2051 
2052 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2053 		/* Compute the page addresses. */
2054 		page = stride * rom_geo->stride_size_in_pages;
2055 
2056 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2057 
2058 		/*
2059 		 * Read the NCB fingerprint. The fingerprint is four bytes long
2060 		 * and starts in the 12th byte of the page.
2061 		 */
2062 		ret = nand_read_page_op(chip, page, 12, buffer,
2063 					strlen(fingerprint));
2064 		if (ret)
2065 			continue;
2066 
2067 		/* Look for the fingerprint. */
2068 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2069 			found_an_ncb_fingerprint = true;
2070 			break;
2071 		}
2072 
2073 	}
2074 
2075 	nand_deselect_target(chip);
2076 
2077 	if (found_an_ncb_fingerprint)
2078 		dev_dbg(dev, "\tFound a fingerprint\n");
2079 	else
2080 		dev_dbg(dev, "\tNo fingerprint found\n");
2081 	return found_an_ncb_fingerprint;
2082 }
2083 
2084 /* Writes a transcription stamp. */
2085 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2086 {
2087 	struct device *dev = this->dev;
2088 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2089 	struct nand_chip *chip = &this->nand;
2090 	struct mtd_info *mtd = nand_to_mtd(chip);
2091 	unsigned int block_size_in_pages;
2092 	unsigned int search_area_size_in_strides;
2093 	unsigned int search_area_size_in_pages;
2094 	unsigned int search_area_size_in_blocks;
2095 	unsigned int block;
2096 	unsigned int stride;
2097 	unsigned int page;
2098 	u8 *buffer = nand_get_data_buf(chip);
2099 	int status;
2100 
2101 	/* Compute the search area geometry. */
2102 	block_size_in_pages = mtd->erasesize / mtd->writesize;
2103 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2104 	search_area_size_in_pages = search_area_size_in_strides *
2105 					rom_geo->stride_size_in_pages;
2106 	search_area_size_in_blocks =
2107 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
2108 				    block_size_in_pages;
2109 
2110 	dev_dbg(dev, "Search Area Geometry :\n");
2111 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2112 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2113 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2114 
2115 	nand_select_target(chip, 0);
2116 
2117 	/* Loop over blocks in the first search area, erasing them. */
2118 	dev_dbg(dev, "Erasing the search area...\n");
2119 
2120 	for (block = 0; block < search_area_size_in_blocks; block++) {
2121 		/* Erase this block. */
2122 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
2123 		status = nand_erase_op(chip, block);
2124 		if (status)
2125 			dev_err(dev, "[%s] Erase failed.\n", __func__);
2126 	}
2127 
2128 	/* Write the NCB fingerprint into the page buffer. */
2129 	memset(buffer, ~0, mtd->writesize);
2130 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2131 
2132 	/* Loop through the first search area, writing NCB fingerprints. */
2133 	dev_dbg(dev, "Writing NCB fingerprints...\n");
2134 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2135 		/* Compute the page addresses. */
2136 		page = stride * rom_geo->stride_size_in_pages;
2137 
2138 		/* Write the first page of the current stride. */
2139 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2140 
2141 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2142 		if (status)
2143 			dev_err(dev, "[%s] Write failed.\n", __func__);
2144 	}
2145 
2146 	nand_deselect_target(chip);
2147 
2148 	return 0;
2149 }
2150 
2151 static int mx23_boot_init(struct gpmi_nand_data  *this)
2152 {
2153 	struct device *dev = this->dev;
2154 	struct nand_chip *chip = &this->nand;
2155 	struct mtd_info *mtd = nand_to_mtd(chip);
2156 	unsigned int block_count;
2157 	unsigned int block;
2158 	int     chipnr;
2159 	int     page;
2160 	loff_t  byte;
2161 	uint8_t block_mark;
2162 	int     ret = 0;
2163 
2164 	/*
2165 	 * If control arrives here, we can't use block mark swapping, which
2166 	 * means we're forced to use transcription. First, scan for the
2167 	 * transcription stamp. If we find it, then we don't have to do
2168 	 * anything -- the block marks are already transcribed.
2169 	 */
2170 	if (mx23_check_transcription_stamp(this))
2171 		return 0;
2172 
2173 	/*
2174 	 * If control arrives here, we couldn't find a transcription stamp, so
2175 	 * so we presume the block marks are in the conventional location.
2176 	 */
2177 	dev_dbg(dev, "Transcribing bad block marks...\n");
2178 
2179 	/* Compute the number of blocks in the entire medium. */
2180 	block_count = nanddev_eraseblocks_per_target(&chip->base);
2181 
2182 	/*
2183 	 * Loop over all the blocks in the medium, transcribing block marks as
2184 	 * we go.
2185 	 */
2186 	for (block = 0; block < block_count; block++) {
2187 		/*
2188 		 * Compute the chip, page and byte addresses for this block's
2189 		 * conventional mark.
2190 		 */
2191 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2192 		page = block << (chip->phys_erase_shift - chip->page_shift);
2193 		byte = block <<  chip->phys_erase_shift;
2194 
2195 		/* Send the command to read the conventional block mark. */
2196 		nand_select_target(chip, chipnr);
2197 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2198 					1);
2199 		nand_deselect_target(chip);
2200 
2201 		if (ret)
2202 			continue;
2203 
2204 		/*
2205 		 * Check if the block is marked bad. If so, we need to mark it
2206 		 * again, but this time the result will be a mark in the
2207 		 * location where we transcribe block marks.
2208 		 */
2209 		if (block_mark != 0xff) {
2210 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
2211 			ret = chip->legacy.block_markbad(chip, byte);
2212 			if (ret)
2213 				dev_err(dev,
2214 					"Failed to mark block bad with ret %d\n",
2215 					ret);
2216 		}
2217 	}
2218 
2219 	/* Write the stamp that indicates we've transcribed the block marks. */
2220 	mx23_write_transcription_stamp(this);
2221 	return 0;
2222 }
2223 
2224 static int nand_boot_init(struct gpmi_nand_data  *this)
2225 {
2226 	nand_boot_set_geometry(this);
2227 
2228 	/* This is ROM arch-specific initilization before the BBT scanning. */
2229 	if (GPMI_IS_MX23(this))
2230 		return mx23_boot_init(this);
2231 	return 0;
2232 }
2233 
2234 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2235 {
2236 	int ret;
2237 
2238 	/* Free the temporary DMA memory for reading ID. */
2239 	gpmi_free_dma_buffer(this);
2240 
2241 	/* Set up the NFC geometry which is used by BCH. */
2242 	ret = bch_set_geometry(this);
2243 	if (ret) {
2244 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2245 		return ret;
2246 	}
2247 
2248 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2249 	return gpmi_alloc_dma_buffer(this);
2250 }
2251 
2252 static int gpmi_init_last(struct gpmi_nand_data *this)
2253 {
2254 	struct nand_chip *chip = &this->nand;
2255 	struct mtd_info *mtd = nand_to_mtd(chip);
2256 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2257 	struct bch_geometry *bch_geo = &this->bch_geometry;
2258 	int ret;
2259 
2260 	/* Set up the medium geometry */
2261 	ret = gpmi_set_geometry(this);
2262 	if (ret)
2263 		return ret;
2264 
2265 	/* Init the nand_ecc_ctrl{} */
2266 	ecc->read_page	= gpmi_ecc_read_page;
2267 	ecc->write_page	= gpmi_ecc_write_page;
2268 	ecc->read_oob	= gpmi_ecc_read_oob;
2269 	ecc->write_oob	= gpmi_ecc_write_oob;
2270 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2271 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2272 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2273 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2274 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2275 	ecc->size	= bch_geo->eccn_chunk_size;
2276 	ecc->strength	= bch_geo->ecc_strength;
2277 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2278 
2279 	/*
2280 	 * We only enable the subpage read when:
2281 	 *  (1) the chip is imx6, and
2282 	 *  (2) the size of the ECC parity is byte aligned.
2283 	 */
2284 	if (GPMI_IS_MX6(this) &&
2285 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2286 		ecc->read_subpage = gpmi_ecc_read_subpage;
2287 		chip->options |= NAND_SUBPAGE_READ;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2294 {
2295 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2296 	int ret;
2297 
2298 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2299 		chip->bbt_options |= NAND_BBT_NO_OOB;
2300 
2301 		if (of_property_read_bool(this->dev->of_node,
2302 					  "fsl,no-blockmark-swap"))
2303 			this->swap_block_mark = false;
2304 	}
2305 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2306 		this->swap_block_mark ? "en" : "dis");
2307 
2308 	ret = gpmi_init_last(this);
2309 	if (ret)
2310 		return ret;
2311 
2312 	chip->options |= NAND_SKIP_BBTSCAN;
2313 
2314 	return 0;
2315 }
2316 
2317 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2318 {
2319 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2320 
2321 	this->ntransfers++;
2322 
2323 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2324 		return NULL;
2325 
2326 	return transfer;
2327 }
2328 
2329 static struct dma_async_tx_descriptor *gpmi_chain_command(
2330 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2331 {
2332 	struct dma_chan *channel = get_dma_chan(this);
2333 	struct dma_async_tx_descriptor *desc;
2334 	struct gpmi_transfer *transfer;
2335 	int chip = this->nand.cur_cs;
2336 	u32 pio[3];
2337 
2338 	/* [1] send out the PIO words */
2339 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2340 		| BM_GPMI_CTRL0_WORD_LENGTH
2341 		| BF_GPMI_CTRL0_CS(chip, this)
2342 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2343 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2344 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2345 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2346 	pio[1] = 0;
2347 	pio[2] = 0;
2348 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2349 				      DMA_TRANS_NONE, 0);
2350 	if (!desc)
2351 		return NULL;
2352 
2353 	transfer = get_next_transfer(this);
2354 	if (!transfer)
2355 		return NULL;
2356 
2357 	transfer->cmdbuf[0] = cmd;
2358 	if (naddr)
2359 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2360 
2361 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2362 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2363 
2364 	transfer->direction = DMA_TO_DEVICE;
2365 
2366 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2367 				       MXS_DMA_CTRL_WAIT4END);
2368 	return desc;
2369 }
2370 
2371 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2372 	struct gpmi_nand_data *this)
2373 {
2374 	struct dma_chan *channel = get_dma_chan(this);
2375 	u32 pio[2];
2376 
2377 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2378 		| BM_GPMI_CTRL0_WORD_LENGTH
2379 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2380 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2381 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2382 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2383 	pio[1] = 0;
2384 
2385 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2386 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2387 }
2388 
2389 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2390 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2391 {
2392 	struct dma_async_tx_descriptor *desc;
2393 	struct dma_chan *channel = get_dma_chan(this);
2394 	struct gpmi_transfer *transfer;
2395 	u32 pio[6] = {};
2396 
2397 	transfer = get_next_transfer(this);
2398 	if (!transfer)
2399 		return NULL;
2400 
2401 	transfer->direction = DMA_FROM_DEVICE;
2402 
2403 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2404 				   DMA_FROM_DEVICE);
2405 
2406 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2407 		| BM_GPMI_CTRL0_WORD_LENGTH
2408 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2409 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2410 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2411 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2412 
2413 	if (this->bch) {
2414 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2415 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2416 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2417 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2418 		pio[3] = raw_len;
2419 		pio[4] = transfer->sgl.dma_address;
2420 		pio[5] = this->auxiliary_phys;
2421 	}
2422 
2423 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2424 				      DMA_TRANS_NONE, 0);
2425 	if (!desc)
2426 		return NULL;
2427 
2428 	if (!this->bch)
2429 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2430 					     DMA_DEV_TO_MEM,
2431 					     MXS_DMA_CTRL_WAIT4END);
2432 
2433 	return desc;
2434 }
2435 
2436 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2437 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2438 {
2439 	struct dma_chan *channel = get_dma_chan(this);
2440 	struct dma_async_tx_descriptor *desc;
2441 	struct gpmi_transfer *transfer;
2442 	u32 pio[6] = {};
2443 
2444 	transfer = get_next_transfer(this);
2445 	if (!transfer)
2446 		return NULL;
2447 
2448 	transfer->direction = DMA_TO_DEVICE;
2449 
2450 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2451 
2452 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2453 		| BM_GPMI_CTRL0_WORD_LENGTH
2454 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2455 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2456 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2457 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2458 
2459 	if (this->bch) {
2460 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2461 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2462 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2463 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2464 		pio[3] = raw_len;
2465 		pio[4] = transfer->sgl.dma_address;
2466 		pio[5] = this->auxiliary_phys;
2467 	}
2468 
2469 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2470 				      DMA_TRANS_NONE,
2471 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2472 	if (!desc)
2473 		return NULL;
2474 
2475 	if (!this->bch)
2476 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2477 					       DMA_MEM_TO_DEV,
2478 					       MXS_DMA_CTRL_WAIT4END);
2479 
2480 	return desc;
2481 }
2482 
2483 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2484 			     const struct nand_operation *op,
2485 			     bool check_only)
2486 {
2487 	const struct nand_op_instr *instr;
2488 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2489 	struct dma_async_tx_descriptor *desc = NULL;
2490 	int i, ret, buf_len = 0, nbufs = 0;
2491 	u8 cmd = 0;
2492 	void *buf_read = NULL;
2493 	const void *buf_write = NULL;
2494 	bool direct = false;
2495 	struct completion *dma_completion, *bch_completion;
2496 	unsigned long to;
2497 
2498 	if (check_only)
2499 		return 0;
2500 
2501 	this->ntransfers = 0;
2502 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2503 		this->transfers[i].direction = DMA_NONE;
2504 
2505 	ret = pm_runtime_resume_and_get(this->dev);
2506 	if (ret < 0)
2507 		return ret;
2508 
2509 	/*
2510 	 * This driver currently supports only one NAND chip. Plus, dies share
2511 	 * the same configuration. So once timings have been applied on the
2512 	 * controller side, they will not change anymore. When the time will
2513 	 * come, the check on must_apply_timings will have to be dropped.
2514 	 */
2515 	if (this->hw.must_apply_timings) {
2516 		this->hw.must_apply_timings = false;
2517 		ret = gpmi_nfc_apply_timings(this);
2518 		if (ret)
2519 			goto out_pm;
2520 	}
2521 
2522 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2523 
2524 	for (i = 0; i < op->ninstrs; i++) {
2525 		instr = &op->instrs[i];
2526 
2527 		nand_op_trace("  ", instr);
2528 
2529 		switch (instr->type) {
2530 		case NAND_OP_WAITRDY_INSTR:
2531 			desc = gpmi_chain_wait_ready(this);
2532 			break;
2533 		case NAND_OP_CMD_INSTR:
2534 			cmd = instr->ctx.cmd.opcode;
2535 
2536 			/*
2537 			 * When this command has an address cycle chain it
2538 			 * together with the address cycle
2539 			 */
2540 			if (i + 1 != op->ninstrs &&
2541 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2542 				continue;
2543 
2544 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2545 
2546 			break;
2547 		case NAND_OP_ADDR_INSTR:
2548 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2549 						  instr->ctx.addr.naddrs);
2550 			break;
2551 		case NAND_OP_DATA_OUT_INSTR:
2552 			buf_write = instr->ctx.data.buf.out;
2553 			buf_len = instr->ctx.data.len;
2554 			nbufs++;
2555 
2556 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2557 
2558 			break;
2559 		case NAND_OP_DATA_IN_INSTR:
2560 			if (!instr->ctx.data.len)
2561 				break;
2562 			buf_read = instr->ctx.data.buf.in;
2563 			buf_len = instr->ctx.data.len;
2564 			nbufs++;
2565 
2566 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2567 						   &direct);
2568 			break;
2569 		}
2570 
2571 		if (!desc) {
2572 			ret = -ENXIO;
2573 			goto unmap;
2574 		}
2575 	}
2576 
2577 	dev_dbg(this->dev, "%s setup done\n", __func__);
2578 
2579 	if (nbufs > 1) {
2580 		dev_err(this->dev, "Multiple data instructions not supported\n");
2581 		ret = -EINVAL;
2582 		goto unmap;
2583 	}
2584 
2585 	if (this->bch) {
2586 		writel(this->bch_flashlayout0,
2587 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2588 		writel(this->bch_flashlayout1,
2589 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2590 	}
2591 
2592 	desc->callback = dma_irq_callback;
2593 	desc->callback_param = this;
2594 	dma_completion = &this->dma_done;
2595 	bch_completion = NULL;
2596 
2597 	init_completion(dma_completion);
2598 
2599 	if (this->bch && buf_read) {
2600 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2601 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2602 		bch_completion = &this->bch_done;
2603 		init_completion(bch_completion);
2604 	}
2605 
2606 	dmaengine_submit(desc);
2607 	dma_async_issue_pending(get_dma_chan(this));
2608 
2609 	to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2610 	if (!to) {
2611 		dev_err(this->dev, "DMA timeout, last DMA\n");
2612 		gpmi_dump_info(this);
2613 		ret = -ETIMEDOUT;
2614 		goto unmap;
2615 	}
2616 
2617 	if (this->bch && buf_read) {
2618 		to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2619 		if (!to) {
2620 			dev_err(this->dev, "BCH timeout, last DMA\n");
2621 			gpmi_dump_info(this);
2622 			ret = -ETIMEDOUT;
2623 			goto unmap;
2624 		}
2625 	}
2626 
2627 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2628 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2629 	gpmi_clear_bch(this);
2630 
2631 	ret = 0;
2632 
2633 unmap:
2634 	for (i = 0; i < this->ntransfers; i++) {
2635 		struct gpmi_transfer *transfer = &this->transfers[i];
2636 
2637 		if (transfer->direction != DMA_NONE)
2638 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2639 				     transfer->direction);
2640 	}
2641 
2642 	if (!ret && buf_read && !direct)
2643 		memcpy(buf_read, this->data_buffer_dma,
2644 		       gpmi_raw_len_to_len(this, buf_len));
2645 
2646 	this->bch = false;
2647 
2648 out_pm:
2649 	pm_runtime_mark_last_busy(this->dev);
2650 	pm_runtime_put_autosuspend(this->dev);
2651 
2652 	return ret;
2653 }
2654 
2655 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2656 	.attach_chip = gpmi_nand_attach_chip,
2657 	.setup_interface = gpmi_setup_interface,
2658 	.exec_op = gpmi_nfc_exec_op,
2659 };
2660 
2661 static int gpmi_nand_init(struct gpmi_nand_data *this)
2662 {
2663 	struct nand_chip *chip = &this->nand;
2664 	struct mtd_info  *mtd = nand_to_mtd(chip);
2665 	int ret;
2666 
2667 	/* init the MTD data structures */
2668 	mtd->name		= "gpmi-nand";
2669 	mtd->dev.parent		= this->dev;
2670 
2671 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2672 	nand_set_controller_data(chip, this);
2673 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2674 	chip->legacy.block_markbad = gpmi_block_markbad;
2675 	chip->badblock_pattern	= &gpmi_bbt_descr;
2676 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2677 
2678 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2679 	this->swap_block_mark = !GPMI_IS_MX23(this);
2680 
2681 	/*
2682 	 * Allocate a temporary DMA buffer for reading ID in the
2683 	 * nand_scan_ident().
2684 	 */
2685 	this->bch_geometry.payload_size = 1024;
2686 	this->bch_geometry.auxiliary_size = 128;
2687 	ret = gpmi_alloc_dma_buffer(this);
2688 	if (ret)
2689 		return ret;
2690 
2691 	nand_controller_init(&this->base);
2692 	this->base.ops = &gpmi_nand_controller_ops;
2693 	chip->controller = &this->base;
2694 
2695 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2696 	if (ret)
2697 		goto err_out;
2698 
2699 	ret = nand_boot_init(this);
2700 	if (ret)
2701 		goto err_nand_cleanup;
2702 	ret = nand_create_bbt(chip);
2703 	if (ret)
2704 		goto err_nand_cleanup;
2705 
2706 	ret = mtd_device_register(mtd, NULL, 0);
2707 	if (ret)
2708 		goto err_nand_cleanup;
2709 	return 0;
2710 
2711 err_nand_cleanup:
2712 	nand_cleanup(chip);
2713 err_out:
2714 	gpmi_free_dma_buffer(this);
2715 	return ret;
2716 }
2717 
2718 static const struct of_device_id gpmi_nand_id_table[] = {
2719 	{ .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2720 	{ .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2721 	{ .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2722 	{ .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2723 	{ .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2724 	{}
2725 };
2726 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2727 
2728 static int gpmi_nand_probe(struct platform_device *pdev)
2729 {
2730 	struct gpmi_nand_data *this;
2731 	int ret;
2732 
2733 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2734 	if (!this)
2735 		return -ENOMEM;
2736 
2737 	this->devdata = of_device_get_match_data(&pdev->dev);
2738 	platform_set_drvdata(pdev, this);
2739 	this->pdev  = pdev;
2740 	this->dev   = &pdev->dev;
2741 
2742 	ret = acquire_resources(this);
2743 	if (ret)
2744 		goto exit_acquire_resources;
2745 
2746 	ret = __gpmi_enable_clk(this, true);
2747 	if (ret)
2748 		goto exit_acquire_resources;
2749 
2750 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2751 	pm_runtime_use_autosuspend(&pdev->dev);
2752 	pm_runtime_set_active(&pdev->dev);
2753 	pm_runtime_enable(&pdev->dev);
2754 	pm_runtime_get_sync(&pdev->dev);
2755 
2756 	ret = gpmi_init(this);
2757 	if (ret)
2758 		goto exit_nfc_init;
2759 
2760 	ret = gpmi_nand_init(this);
2761 	if (ret)
2762 		goto exit_nfc_init;
2763 
2764 	pm_runtime_mark_last_busy(&pdev->dev);
2765 	pm_runtime_put_autosuspend(&pdev->dev);
2766 
2767 	dev_info(this->dev, "driver registered.\n");
2768 
2769 	return 0;
2770 
2771 exit_nfc_init:
2772 	pm_runtime_put(&pdev->dev);
2773 	pm_runtime_disable(&pdev->dev);
2774 	release_resources(this);
2775 exit_acquire_resources:
2776 
2777 	return ret;
2778 }
2779 
2780 static void gpmi_nand_remove(struct platform_device *pdev)
2781 {
2782 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2783 	struct nand_chip *chip = &this->nand;
2784 	int ret;
2785 
2786 	pm_runtime_put_sync(&pdev->dev);
2787 	pm_runtime_disable(&pdev->dev);
2788 
2789 	ret = mtd_device_unregister(nand_to_mtd(chip));
2790 	WARN_ON(ret);
2791 	nand_cleanup(chip);
2792 	gpmi_free_dma_buffer(this);
2793 	release_resources(this);
2794 }
2795 
2796 #ifdef CONFIG_PM_SLEEP
2797 static int gpmi_pm_suspend(struct device *dev)
2798 {
2799 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2800 
2801 	release_dma_channels(this);
2802 	return 0;
2803 }
2804 
2805 static int gpmi_pm_resume(struct device *dev)
2806 {
2807 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2808 	int ret;
2809 
2810 	ret = acquire_dma_channels(this);
2811 	if (ret < 0)
2812 		return ret;
2813 
2814 	/* re-init the GPMI registers */
2815 	ret = gpmi_init(this);
2816 	if (ret) {
2817 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2818 		return ret;
2819 	}
2820 
2821 	/* Set flag to get timing setup restored for next exec_op */
2822 	if (this->hw.clk_rate)
2823 		this->hw.must_apply_timings = true;
2824 
2825 	/* re-init the BCH registers */
2826 	ret = bch_set_geometry(this);
2827 	if (ret) {
2828 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2829 		return ret;
2830 	}
2831 
2832 	return 0;
2833 }
2834 #endif /* CONFIG_PM_SLEEP */
2835 
2836 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2837 {
2838 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2839 
2840 	return __gpmi_enable_clk(this, false);
2841 }
2842 
2843 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2844 {
2845 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2846 
2847 	return __gpmi_enable_clk(this, true);
2848 }
2849 
2850 static const struct dev_pm_ops gpmi_pm_ops = {
2851 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2852 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2853 };
2854 
2855 static struct platform_driver gpmi_nand_driver = {
2856 	.driver = {
2857 		.name = "gpmi-nand",
2858 		.pm = &gpmi_pm_ops,
2859 		.of_match_table = gpmi_nand_id_table,
2860 	},
2861 	.probe   = gpmi_nand_probe,
2862 	.remove_new = gpmi_nand_remove,
2863 };
2864 module_platform_driver(gpmi_nand_driver);
2865 
2866 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2867 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2868 MODULE_LICENSE("GPL");
2869