1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/dma/mxs-dma.h> 19 #include "gpmi-nand.h" 20 #include "gpmi-regs.h" 21 #include "bch-regs.h" 22 23 /* Resource names for the GPMI NAND driver. */ 24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 27 28 /* Converts time to clock cycles */ 29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) 30 31 #define MXS_SET_ADDR 0x4 32 #define MXS_CLR_ADDR 0x8 33 /* 34 * Clear the bit and poll it cleared. This is usually called with 35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE 36 * (bit 30). 37 */ 38 static int clear_poll_bit(void __iomem *addr, u32 mask) 39 { 40 int timeout = 0x400; 41 42 /* clear the bit */ 43 writel(mask, addr + MXS_CLR_ADDR); 44 45 /* 46 * SFTRST needs 3 GPMI clocks to settle, the reference manual 47 * recommends to wait 1us. 48 */ 49 udelay(1); 50 51 /* poll the bit becoming clear */ 52 while ((readl(addr) & mask) && --timeout) 53 /* nothing */; 54 55 return !timeout; 56 } 57 58 #define MODULE_CLKGATE (1 << 30) 59 #define MODULE_SFTRST (1 << 31) 60 /* 61 * The current mxs_reset_block() will do two things: 62 * [1] enable the module. 63 * [2] reset the module. 64 * 65 * In most of the cases, it's ok. 66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). 67 * If you try to soft reset the BCH block, it becomes unusable until 68 * the next hard reset. This case occurs in the NAND boot mode. When the board 69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. 70 * So If the driver tries to reset the BCH again, the BCH will not work anymore. 71 * You will see a DMA timeout in this case. The bug has been fixed 72 * in the following chips, such as MX28. 73 * 74 * To avoid this bug, just add a new parameter `just_enable` for 75 * the mxs_reset_block(), and rewrite it here. 76 */ 77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) 78 { 79 int ret; 80 int timeout = 0x400; 81 82 /* clear and poll SFTRST */ 83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 84 if (unlikely(ret)) 85 goto error; 86 87 /* clear CLKGATE */ 88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); 89 90 if (!just_enable) { 91 /* set SFTRST to reset the block */ 92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); 93 udelay(1); 94 95 /* poll CLKGATE becoming set */ 96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) 97 /* nothing */; 98 if (unlikely(!timeout)) 99 goto error; 100 } 101 102 /* clear and poll SFTRST */ 103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 104 if (unlikely(ret)) 105 goto error; 106 107 /* clear and poll CLKGATE */ 108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); 109 if (unlikely(ret)) 110 goto error; 111 112 return 0; 113 114 error: 115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); 116 return -ETIMEDOUT; 117 } 118 119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) 120 { 121 struct clk *clk; 122 int ret; 123 int i; 124 125 for (i = 0; i < GPMI_CLK_MAX; i++) { 126 clk = this->resources.clock[i]; 127 if (!clk) 128 break; 129 130 if (v) { 131 ret = clk_prepare_enable(clk); 132 if (ret) 133 goto err_clk; 134 } else { 135 clk_disable_unprepare(clk); 136 } 137 } 138 return 0; 139 140 err_clk: 141 for (; i > 0; i--) 142 clk_disable_unprepare(this->resources.clock[i - 1]); 143 return ret; 144 } 145 146 static int gpmi_init(struct gpmi_nand_data *this) 147 { 148 struct resources *r = &this->resources; 149 int ret; 150 151 ret = pm_runtime_get_sync(this->dev); 152 if (ret < 0) { 153 pm_runtime_put_noidle(this->dev); 154 return ret; 155 } 156 157 ret = gpmi_reset_block(r->gpmi_regs, false); 158 if (ret) 159 goto err_out; 160 161 /* 162 * Reset BCH here, too. We got failures otherwise :( 163 * See later BCH reset for explanation of MX23 and MX28 handling 164 */ 165 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 166 if (ret) 167 goto err_out; 168 169 /* Choose NAND mode. */ 170 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); 171 172 /* Set the IRQ polarity. */ 173 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, 174 r->gpmi_regs + HW_GPMI_CTRL1_SET); 175 176 /* Disable Write-Protection. */ 177 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); 178 179 /* Select BCH ECC. */ 180 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); 181 182 /* 183 * Decouple the chip select from dma channel. We use dma0 for all 184 * the chips, force all NAND RDY_BUSY inputs to be sourced from 185 * RDY_BUSY0. 186 */ 187 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, 188 r->gpmi_regs + HW_GPMI_CTRL1_SET); 189 190 err_out: 191 pm_runtime_mark_last_busy(this->dev); 192 pm_runtime_put_autosuspend(this->dev); 193 return ret; 194 } 195 196 /* This function is very useful. It is called only when the bug occur. */ 197 static void gpmi_dump_info(struct gpmi_nand_data *this) 198 { 199 struct resources *r = &this->resources; 200 struct bch_geometry *geo = &this->bch_geometry; 201 u32 reg; 202 int i; 203 204 dev_err(this->dev, "Show GPMI registers :\n"); 205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { 206 reg = readl(r->gpmi_regs + i * 0x10); 207 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 208 } 209 210 /* start to print out the BCH info */ 211 dev_err(this->dev, "Show BCH registers :\n"); 212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { 213 reg = readl(r->bch_regs + i * 0x10); 214 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 215 } 216 dev_err(this->dev, "BCH Geometry :\n" 217 "GF length : %u\n" 218 "ECC Strength : %u\n" 219 "Page Size in Bytes : %u\n" 220 "Metadata Size in Bytes : %u\n" 221 "ECC Chunk Size in Bytes: %u\n" 222 "ECC Chunk Count : %u\n" 223 "Payload Size in Bytes : %u\n" 224 "Auxiliary Size in Bytes: %u\n" 225 "Auxiliary Status Offset: %u\n" 226 "Block Mark Byte Offset : %u\n" 227 "Block Mark Bit Offset : %u\n", 228 geo->gf_len, 229 geo->ecc_strength, 230 geo->page_size, 231 geo->metadata_size, 232 geo->ecc_chunk_size, 233 geo->ecc_chunk_count, 234 geo->payload_size, 235 geo->auxiliary_size, 236 geo->auxiliary_status_offset, 237 geo->block_mark_byte_offset, 238 geo->block_mark_bit_offset); 239 } 240 241 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) 242 { 243 struct bch_geometry *geo = &this->bch_geometry; 244 245 /* Do the sanity check. */ 246 if (GPMI_IS_MXS(this)) { 247 /* The mx23/mx28 only support the GF13. */ 248 if (geo->gf_len == 14) 249 return false; 250 } 251 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; 252 } 253 254 /* 255 * If we can get the ECC information from the nand chip, we do not 256 * need to calculate them ourselves. 257 * 258 * We may have available oob space in this case. 259 */ 260 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 261 unsigned int ecc_strength, 262 unsigned int ecc_step) 263 { 264 struct bch_geometry *geo = &this->bch_geometry; 265 struct nand_chip *chip = &this->nand; 266 struct mtd_info *mtd = nand_to_mtd(chip); 267 unsigned int block_mark_bit_offset; 268 269 switch (ecc_step) { 270 case SZ_512: 271 geo->gf_len = 13; 272 break; 273 case SZ_1K: 274 geo->gf_len = 14; 275 break; 276 default: 277 dev_err(this->dev, 278 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 279 nanddev_get_ecc_requirements(&chip->base)->strength, 280 nanddev_get_ecc_requirements(&chip->base)->step_size); 281 return -EINVAL; 282 } 283 geo->ecc_chunk_size = ecc_step; 284 geo->ecc_strength = round_up(ecc_strength, 2); 285 if (!gpmi_check_ecc(this)) 286 return -EINVAL; 287 288 /* Keep the C >= O */ 289 if (geo->ecc_chunk_size < mtd->oobsize) { 290 dev_err(this->dev, 291 "unsupported nand chip. ecc size: %d, oob size : %d\n", 292 ecc_step, mtd->oobsize); 293 return -EINVAL; 294 } 295 296 /* The default value, see comment in the legacy_set_geometry(). */ 297 geo->metadata_size = 10; 298 299 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 300 301 /* 302 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 303 * 304 * | P | 305 * |<----------------------------------------------------->| 306 * | | 307 * | (Block Mark) | 308 * | P' | | | | 309 * |<-------------------------------------------->| D | | O' | 310 * | |<---->| |<--->| 311 * V V V V V 312 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 313 * | M | data |E| data |E| data |E| data |E| | 314 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 315 * ^ ^ 316 * | O | 317 * |<------------>| 318 * | | 319 * 320 * P : the page size for BCH module. 321 * E : The ECC strength. 322 * G : the length of Galois Field. 323 * N : The chunk count of per page. 324 * M : the metasize of per page. 325 * C : the ecc chunk size, aka the "data" above. 326 * P': the nand chip's page size. 327 * O : the nand chip's oob size. 328 * O': the free oob. 329 * 330 * The formula for P is : 331 * 332 * E * G * N 333 * P = ------------ + P' + M 334 * 8 335 * 336 * The position of block mark moves forward in the ECC-based view 337 * of page, and the delta is: 338 * 339 * E * G * (N - 1) 340 * D = (---------------- + M) 341 * 8 342 * 343 * Please see the comment in legacy_set_geometry(). 344 * With the condition C >= O , we still can get same result. 345 * So the bit position of the physical block mark within the ECC-based 346 * view of the page is : 347 * (P' - D) * 8 348 */ 349 geo->page_size = mtd->writesize + geo->metadata_size + 350 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 351 352 geo->payload_size = mtd->writesize; 353 354 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 355 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 356 + ALIGN(geo->ecc_chunk_count, 4); 357 358 if (!this->swap_block_mark) 359 return 0; 360 361 /* For bit swap. */ 362 block_mark_bit_offset = mtd->writesize * 8 - 363 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 364 + geo->metadata_size * 8); 365 366 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 367 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 368 return 0; 369 } 370 371 /* 372 * Calculate the ECC strength by hand: 373 * E : The ECC strength. 374 * G : the length of Galois Field. 375 * N : The chunk count of per page. 376 * O : the oobsize of the NAND chip. 377 * M : the metasize of per page. 378 * 379 * The formula is : 380 * E * G * N 381 * ------------ <= (O - M) 382 * 8 383 * 384 * So, we get E by: 385 * (O - M) * 8 386 * E <= ------------- 387 * G * N 388 */ 389 static inline int get_ecc_strength(struct gpmi_nand_data *this) 390 { 391 struct bch_geometry *geo = &this->bch_geometry; 392 struct mtd_info *mtd = nand_to_mtd(&this->nand); 393 int ecc_strength; 394 395 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 396 / (geo->gf_len * geo->ecc_chunk_count); 397 398 /* We need the minor even number. */ 399 return round_down(ecc_strength, 2); 400 } 401 402 static int legacy_set_geometry(struct gpmi_nand_data *this) 403 { 404 struct bch_geometry *geo = &this->bch_geometry; 405 struct mtd_info *mtd = nand_to_mtd(&this->nand); 406 unsigned int metadata_size; 407 unsigned int status_size; 408 unsigned int block_mark_bit_offset; 409 410 /* 411 * The size of the metadata can be changed, though we set it to 10 412 * bytes now. But it can't be too large, because we have to save 413 * enough space for BCH. 414 */ 415 geo->metadata_size = 10; 416 417 /* The default for the length of Galois Field. */ 418 geo->gf_len = 13; 419 420 /* The default for chunk size. */ 421 geo->ecc_chunk_size = 512; 422 while (geo->ecc_chunk_size < mtd->oobsize) { 423 geo->ecc_chunk_size *= 2; /* keep C >= O */ 424 geo->gf_len = 14; 425 } 426 427 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 428 429 /* We use the same ECC strength for all chunks. */ 430 geo->ecc_strength = get_ecc_strength(this); 431 if (!gpmi_check_ecc(this)) { 432 dev_err(this->dev, 433 "ecc strength: %d cannot be supported by the controller (%d)\n" 434 "try to use minimum ecc strength that NAND chip required\n", 435 geo->ecc_strength, 436 this->devdata->bch_max_ecc_strength); 437 return -EINVAL; 438 } 439 440 geo->page_size = mtd->writesize + geo->metadata_size + 441 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 442 geo->payload_size = mtd->writesize; 443 444 /* 445 * The auxiliary buffer contains the metadata and the ECC status. The 446 * metadata is padded to the nearest 32-bit boundary. The ECC status 447 * contains one byte for every ECC chunk, and is also padded to the 448 * nearest 32-bit boundary. 449 */ 450 metadata_size = ALIGN(geo->metadata_size, 4); 451 status_size = ALIGN(geo->ecc_chunk_count, 4); 452 453 geo->auxiliary_size = metadata_size + status_size; 454 geo->auxiliary_status_offset = metadata_size; 455 456 if (!this->swap_block_mark) 457 return 0; 458 459 /* 460 * We need to compute the byte and bit offsets of 461 * the physical block mark within the ECC-based view of the page. 462 * 463 * NAND chip with 2K page shows below: 464 * (Block Mark) 465 * | | 466 * | D | 467 * |<---->| 468 * V V 469 * +---+----------+-+----------+-+----------+-+----------+-+ 470 * | M | data |E| data |E| data |E| data |E| 471 * +---+----------+-+----------+-+----------+-+----------+-+ 472 * 473 * The position of block mark moves forward in the ECC-based view 474 * of page, and the delta is: 475 * 476 * E * G * (N - 1) 477 * D = (---------------- + M) 478 * 8 479 * 480 * With the formula to compute the ECC strength, and the condition 481 * : C >= O (C is the ecc chunk size) 482 * 483 * It's easy to deduce to the following result: 484 * 485 * E * G (O - M) C - M C - M 486 * ----------- <= ------- <= -------- < --------- 487 * 8 N N (N - 1) 488 * 489 * So, we get: 490 * 491 * E * G * (N - 1) 492 * D = (---------------- + M) < C 493 * 8 494 * 495 * The above inequality means the position of block mark 496 * within the ECC-based view of the page is still in the data chunk, 497 * and it's NOT in the ECC bits of the chunk. 498 * 499 * Use the following to compute the bit position of the 500 * physical block mark within the ECC-based view of the page: 501 * (page_size - D) * 8 502 * 503 * --Huang Shijie 504 */ 505 block_mark_bit_offset = mtd->writesize * 8 - 506 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 507 + geo->metadata_size * 8); 508 509 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 510 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 511 return 0; 512 } 513 514 static int common_nfc_set_geometry(struct gpmi_nand_data *this) 515 { 516 struct nand_chip *chip = &this->nand; 517 const struct nand_ecc_props *requirements = 518 nanddev_get_ecc_requirements(&chip->base); 519 520 if (chip->ecc.strength > 0 && chip->ecc.size > 0) 521 return set_geometry_by_ecc_info(this, chip->ecc.strength, 522 chip->ecc.size); 523 524 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) 525 || legacy_set_geometry(this)) { 526 if (!(requirements->strength > 0 && requirements->step_size > 0)) 527 return -EINVAL; 528 529 return set_geometry_by_ecc_info(this, 530 requirements->strength, 531 requirements->step_size); 532 } 533 534 return 0; 535 } 536 537 /* Configures the geometry for BCH. */ 538 static int bch_set_geometry(struct gpmi_nand_data *this) 539 { 540 struct resources *r = &this->resources; 541 int ret; 542 543 ret = common_nfc_set_geometry(this); 544 if (ret) 545 return ret; 546 547 ret = pm_runtime_get_sync(this->dev); 548 if (ret < 0) { 549 pm_runtime_put_autosuspend(this->dev); 550 return ret; 551 } 552 553 /* 554 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this 555 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. 556 * and MX28. 557 */ 558 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 559 if (ret) 560 goto err_out; 561 562 /* Set *all* chip selects to use layout 0. */ 563 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); 564 565 ret = 0; 566 err_out: 567 pm_runtime_mark_last_busy(this->dev); 568 pm_runtime_put_autosuspend(this->dev); 569 570 return ret; 571 } 572 573 /* 574 * <1> Firstly, we should know what's the GPMI-clock means. 575 * The GPMI-clock is the internal clock in the gpmi nand controller. 576 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period 577 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. 578 * 579 * <2> Secondly, we should know what's the frequency on the nand chip pins. 580 * The frequency on the nand chip pins is derived from the GPMI-clock. 581 * We can get it from the following equation: 582 * 583 * F = G / (DS + DH) 584 * 585 * F : the frequency on the nand chip pins. 586 * G : the GPMI clock, such as 100MHz. 587 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP 588 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD 589 * 590 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, 591 * the nand EDO(extended Data Out) timing could be applied. 592 * The GPMI implements a feedback read strobe to sample the read data. 593 * The feedback read strobe can be delayed to support the nand EDO timing 594 * where the read strobe may deasserts before the read data is valid, and 595 * read data is valid for some time after read strobe. 596 * 597 * The following figure illustrates some aspects of a NAND Flash read: 598 * 599 * |<---tREA---->| 600 * | | 601 * | | | 602 * |<--tRP-->| | 603 * | | | 604 * __ ___|__________________________________ 605 * RDN \________/ | 606 * | 607 * /---------\ 608 * Read Data --------------< >--------- 609 * \---------/ 610 * | | 611 * |<-D->| 612 * FeedbackRDN ________ ____________ 613 * \___________/ 614 * 615 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. 616 * 617 * 618 * <4> Now, we begin to describe how to compute the right RDN_DELAY. 619 * 620 * 4.1) From the aspect of the nand chip pins: 621 * Delay = (tREA + C - tRP) {1} 622 * 623 * tREA : the maximum read access time. 624 * C : a constant to adjust the delay. default is 4000ps. 625 * tRP : the read pulse width, which is exactly: 626 * tRP = (GPMI-clock-period) * DATA_SETUP 627 * 628 * 4.2) From the aspect of the GPMI nand controller: 629 * Delay = RDN_DELAY * 0.125 * RP {2} 630 * 631 * RP : the DLL reference period. 632 * if (GPMI-clock-period > DLL_THRETHOLD) 633 * RP = GPMI-clock-period / 2; 634 * else 635 * RP = GPMI-clock-period; 636 * 637 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period 638 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD 639 * is 16000ps, but in mx6q, we use 12000ps. 640 * 641 * 4.3) since {1} equals {2}, we get: 642 * 643 * (tREA + 4000 - tRP) * 8 644 * RDN_DELAY = ----------------------- {3} 645 * RP 646 */ 647 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, 648 const struct nand_sdr_timings *sdr) 649 { 650 struct gpmi_nfc_hardware_timing *hw = &this->hw; 651 unsigned int dll_threshold_ps = this->devdata->max_chain_delay; 652 unsigned int period_ps, reference_period_ps; 653 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; 654 unsigned int tRP_ps; 655 bool use_half_period; 656 int sample_delay_ps, sample_delay_factor; 657 u16 busy_timeout_cycles; 658 u8 wrn_dly_sel; 659 660 if (sdr->tRC_min >= 30000) { 661 /* ONFI non-EDO modes [0-3] */ 662 hw->clk_rate = 22000000; 663 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; 664 } else if (sdr->tRC_min >= 25000) { 665 /* ONFI EDO mode 4 */ 666 hw->clk_rate = 80000000; 667 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 668 } else { 669 /* ONFI EDO mode 5 */ 670 hw->clk_rate = 100000000; 671 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 672 } 673 674 /* SDR core timings are given in picoseconds */ 675 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); 676 677 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); 678 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); 679 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); 680 busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); 681 682 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | 683 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | 684 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); 685 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); 686 687 /* 688 * Derive NFC ideal delay from {3}: 689 * 690 * (tREA + 4000 - tRP) * 8 691 * RDN_DELAY = ----------------------- 692 * RP 693 */ 694 if (period_ps > dll_threshold_ps) { 695 use_half_period = true; 696 reference_period_ps = period_ps / 2; 697 } else { 698 use_half_period = false; 699 reference_period_ps = period_ps; 700 } 701 702 tRP_ps = data_setup_cycles * period_ps; 703 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; 704 if (sample_delay_ps > 0) 705 sample_delay_factor = sample_delay_ps / reference_period_ps; 706 else 707 sample_delay_factor = 0; 708 709 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); 710 if (sample_delay_factor) 711 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | 712 BM_GPMI_CTRL1_DLL_ENABLE | 713 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); 714 } 715 716 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) 717 { 718 struct gpmi_nfc_hardware_timing *hw = &this->hw; 719 struct resources *r = &this->resources; 720 void __iomem *gpmi_regs = r->gpmi_regs; 721 unsigned int dll_wait_time_us; 722 int ret; 723 724 /* Clock dividers do NOT guarantee a clean clock signal on its output 725 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, 726 * all clock dividers provide these guarantee. 727 */ 728 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) 729 clk_disable_unprepare(r->clock[0]); 730 731 ret = clk_set_rate(r->clock[0], hw->clk_rate); 732 if (ret) { 733 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); 734 return ret; 735 } 736 737 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { 738 ret = clk_prepare_enable(r->clock[0]); 739 if (ret) 740 return ret; 741 } 742 743 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); 744 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); 745 746 /* 747 * Clear several CTRL1 fields, DLL must be disabled when setting 748 * RDN_DELAY or HALF_PERIOD. 749 */ 750 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); 751 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); 752 753 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ 754 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; 755 if (!dll_wait_time_us) 756 dll_wait_time_us = 1; 757 758 /* Wait for the DLL to settle. */ 759 udelay(dll_wait_time_us); 760 761 return 0; 762 } 763 764 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, 765 const struct nand_interface_config *conf) 766 { 767 struct gpmi_nand_data *this = nand_get_controller_data(chip); 768 const struct nand_sdr_timings *sdr; 769 770 /* Retrieve required NAND timings */ 771 sdr = nand_get_sdr_timings(conf); 772 if (IS_ERR(sdr)) 773 return PTR_ERR(sdr); 774 775 /* Only MX6 GPMI controller can reach EDO timings */ 776 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) 777 return -ENOTSUPP; 778 779 /* Stop here if this call was just a check */ 780 if (chipnr < 0) 781 return 0; 782 783 /* Do the actual derivation of the controller timings */ 784 gpmi_nfc_compute_timings(this, sdr); 785 786 this->hw.must_apply_timings = true; 787 788 return 0; 789 } 790 791 /* Clears a BCH interrupt. */ 792 static void gpmi_clear_bch(struct gpmi_nand_data *this) 793 { 794 struct resources *r = &this->resources; 795 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); 796 } 797 798 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 799 { 800 /* We use the DMA channel 0 to access all the nand chips. */ 801 return this->dma_chans[0]; 802 } 803 804 /* This will be called after the DMA operation is finished. */ 805 static void dma_irq_callback(void *param) 806 { 807 struct gpmi_nand_data *this = param; 808 struct completion *dma_c = &this->dma_done; 809 810 complete(dma_c); 811 } 812 813 static irqreturn_t bch_irq(int irq, void *cookie) 814 { 815 struct gpmi_nand_data *this = cookie; 816 817 gpmi_clear_bch(this); 818 complete(&this->bch_done); 819 return IRQ_HANDLED; 820 } 821 822 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) 823 { 824 /* 825 * raw_len is the length to read/write including bch data which 826 * we are passed in exec_op. Calculate the data length from it. 827 */ 828 if (this->bch) 829 return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size); 830 else 831 return raw_len; 832 } 833 834 /* Can we use the upper's buffer directly for DMA? */ 835 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, 836 int raw_len, struct scatterlist *sgl, 837 enum dma_data_direction dr) 838 { 839 int ret; 840 int len = gpmi_raw_len_to_len(this, raw_len); 841 842 /* first try to map the upper buffer directly */ 843 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 844 sg_init_one(sgl, buf, len); 845 ret = dma_map_sg(this->dev, sgl, 1, dr); 846 if (ret == 0) 847 goto map_fail; 848 849 return true; 850 } 851 852 map_fail: 853 /* We have to use our own DMA buffer. */ 854 sg_init_one(sgl, this->data_buffer_dma, len); 855 856 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) 857 memcpy(this->data_buffer_dma, buf, len); 858 859 dma_map_sg(this->dev, sgl, 1, dr); 860 861 return false; 862 } 863 864 /* add our owner bbt descriptor */ 865 static uint8_t scan_ff_pattern[] = { 0xff }; 866 static struct nand_bbt_descr gpmi_bbt_descr = { 867 .options = 0, 868 .offs = 0, 869 .len = 1, 870 .pattern = scan_ff_pattern 871 }; 872 873 /* 874 * We may change the layout if we can get the ECC info from the datasheet, 875 * else we will use all the (page + OOB). 876 */ 877 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 878 struct mtd_oob_region *oobregion) 879 { 880 struct nand_chip *chip = mtd_to_nand(mtd); 881 struct gpmi_nand_data *this = nand_get_controller_data(chip); 882 struct bch_geometry *geo = &this->bch_geometry; 883 884 if (section) 885 return -ERANGE; 886 887 oobregion->offset = 0; 888 oobregion->length = geo->page_size - mtd->writesize; 889 890 return 0; 891 } 892 893 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 894 struct mtd_oob_region *oobregion) 895 { 896 struct nand_chip *chip = mtd_to_nand(mtd); 897 struct gpmi_nand_data *this = nand_get_controller_data(chip); 898 struct bch_geometry *geo = &this->bch_geometry; 899 900 if (section) 901 return -ERANGE; 902 903 /* The available oob size we have. */ 904 if (geo->page_size < mtd->writesize + mtd->oobsize) { 905 oobregion->offset = geo->page_size - mtd->writesize; 906 oobregion->length = mtd->oobsize - oobregion->offset; 907 } 908 909 return 0; 910 } 911 912 static const char * const gpmi_clks_for_mx2x[] = { 913 "gpmi_io", 914 }; 915 916 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 917 .ecc = gpmi_ooblayout_ecc, 918 .free = gpmi_ooblayout_free, 919 }; 920 921 static const struct gpmi_devdata gpmi_devdata_imx23 = { 922 .type = IS_MX23, 923 .bch_max_ecc_strength = 20, 924 .max_chain_delay = 16000, 925 .clks = gpmi_clks_for_mx2x, 926 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 927 }; 928 929 static const struct gpmi_devdata gpmi_devdata_imx28 = { 930 .type = IS_MX28, 931 .bch_max_ecc_strength = 20, 932 .max_chain_delay = 16000, 933 .clks = gpmi_clks_for_mx2x, 934 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 935 }; 936 937 static const char * const gpmi_clks_for_mx6[] = { 938 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 939 }; 940 941 static const struct gpmi_devdata gpmi_devdata_imx6q = { 942 .type = IS_MX6Q, 943 .bch_max_ecc_strength = 40, 944 .max_chain_delay = 12000, 945 .clks = gpmi_clks_for_mx6, 946 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 947 }; 948 949 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 950 .type = IS_MX6SX, 951 .bch_max_ecc_strength = 62, 952 .max_chain_delay = 12000, 953 .clks = gpmi_clks_for_mx6, 954 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 955 }; 956 957 static const char * const gpmi_clks_for_mx7d[] = { 958 "gpmi_io", "gpmi_bch_apb", 959 }; 960 961 static const struct gpmi_devdata gpmi_devdata_imx7d = { 962 .type = IS_MX7D, 963 .bch_max_ecc_strength = 62, 964 .max_chain_delay = 12000, 965 .clks = gpmi_clks_for_mx7d, 966 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 967 }; 968 969 static int acquire_register_block(struct gpmi_nand_data *this, 970 const char *res_name) 971 { 972 struct platform_device *pdev = this->pdev; 973 struct resources *res = &this->resources; 974 void __iomem *p; 975 976 p = devm_platform_ioremap_resource_byname(pdev, res_name); 977 if (IS_ERR(p)) 978 return PTR_ERR(p); 979 980 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 981 res->gpmi_regs = p; 982 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 983 res->bch_regs = p; 984 else 985 dev_err(this->dev, "unknown resource name : %s\n", res_name); 986 987 return 0; 988 } 989 990 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 991 { 992 struct platform_device *pdev = this->pdev; 993 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 994 int err; 995 996 err = platform_get_irq_byname(pdev, res_name); 997 if (err < 0) 998 return err; 999 1000 err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); 1001 if (err) 1002 dev_err(this->dev, "error requesting BCH IRQ\n"); 1003 1004 return err; 1005 } 1006 1007 static void release_dma_channels(struct gpmi_nand_data *this) 1008 { 1009 unsigned int i; 1010 for (i = 0; i < DMA_CHANS; i++) 1011 if (this->dma_chans[i]) { 1012 dma_release_channel(this->dma_chans[i]); 1013 this->dma_chans[i] = NULL; 1014 } 1015 } 1016 1017 static int acquire_dma_channels(struct gpmi_nand_data *this) 1018 { 1019 struct platform_device *pdev = this->pdev; 1020 struct dma_chan *dma_chan; 1021 int ret = 0; 1022 1023 /* request dma channel */ 1024 dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); 1025 if (IS_ERR(dma_chan)) { 1026 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), 1027 "DMA channel request failed\n"); 1028 release_dma_channels(this); 1029 } else { 1030 this->dma_chans[0] = dma_chan; 1031 } 1032 1033 return ret; 1034 } 1035 1036 static int gpmi_get_clks(struct gpmi_nand_data *this) 1037 { 1038 struct resources *r = &this->resources; 1039 struct clk *clk; 1040 int err, i; 1041 1042 for (i = 0; i < this->devdata->clks_count; i++) { 1043 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 1044 if (IS_ERR(clk)) { 1045 err = PTR_ERR(clk); 1046 goto err_clock; 1047 } 1048 1049 r->clock[i] = clk; 1050 } 1051 1052 return 0; 1053 1054 err_clock: 1055 dev_dbg(this->dev, "failed in finding the clocks.\n"); 1056 return err; 1057 } 1058 1059 static int acquire_resources(struct gpmi_nand_data *this) 1060 { 1061 int ret; 1062 1063 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 1064 if (ret) 1065 goto exit_regs; 1066 1067 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 1068 if (ret) 1069 goto exit_regs; 1070 1071 ret = acquire_bch_irq(this, bch_irq); 1072 if (ret) 1073 goto exit_regs; 1074 1075 ret = acquire_dma_channels(this); 1076 if (ret) 1077 goto exit_regs; 1078 1079 ret = gpmi_get_clks(this); 1080 if (ret) 1081 goto exit_clock; 1082 return 0; 1083 1084 exit_clock: 1085 release_dma_channels(this); 1086 exit_regs: 1087 return ret; 1088 } 1089 1090 static void release_resources(struct gpmi_nand_data *this) 1091 { 1092 release_dma_channels(this); 1093 } 1094 1095 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 1096 { 1097 struct device *dev = this->dev; 1098 struct bch_geometry *geo = &this->bch_geometry; 1099 1100 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) 1101 dma_free_coherent(dev, geo->auxiliary_size, 1102 this->auxiliary_virt, 1103 this->auxiliary_phys); 1104 kfree(this->data_buffer_dma); 1105 kfree(this->raw_buffer); 1106 1107 this->data_buffer_dma = NULL; 1108 this->raw_buffer = NULL; 1109 } 1110 1111 /* Allocate the DMA buffers */ 1112 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 1113 { 1114 struct bch_geometry *geo = &this->bch_geometry; 1115 struct device *dev = this->dev; 1116 struct mtd_info *mtd = nand_to_mtd(&this->nand); 1117 1118 /* 1119 * [2] Allocate a read/write data buffer. 1120 * The gpmi_alloc_dma_buffer can be called twice. 1121 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 1122 * is called before the NAND identification; and we allocate a 1123 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 1124 * is called after. 1125 */ 1126 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 1127 GFP_DMA | GFP_KERNEL); 1128 if (this->data_buffer_dma == NULL) 1129 goto error_alloc; 1130 1131 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, 1132 &this->auxiliary_phys, GFP_DMA); 1133 if (!this->auxiliary_virt) 1134 goto error_alloc; 1135 1136 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); 1137 if (!this->raw_buffer) 1138 goto error_alloc; 1139 1140 return 0; 1141 1142 error_alloc: 1143 gpmi_free_dma_buffer(this); 1144 return -ENOMEM; 1145 } 1146 1147 /* 1148 * Handles block mark swapping. 1149 * It can be called in swapping the block mark, or swapping it back, 1150 * because the the operations are the same. 1151 */ 1152 static void block_mark_swapping(struct gpmi_nand_data *this, 1153 void *payload, void *auxiliary) 1154 { 1155 struct bch_geometry *nfc_geo = &this->bch_geometry; 1156 unsigned char *p; 1157 unsigned char *a; 1158 unsigned int bit; 1159 unsigned char mask; 1160 unsigned char from_data; 1161 unsigned char from_oob; 1162 1163 if (!this->swap_block_mark) 1164 return; 1165 1166 /* 1167 * If control arrives here, we're swapping. Make some convenience 1168 * variables. 1169 */ 1170 bit = nfc_geo->block_mark_bit_offset; 1171 p = payload + nfc_geo->block_mark_byte_offset; 1172 a = auxiliary; 1173 1174 /* 1175 * Get the byte from the data area that overlays the block mark. Since 1176 * the ECC engine applies its own view to the bits in the page, the 1177 * physical block mark won't (in general) appear on a byte boundary in 1178 * the data. 1179 */ 1180 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1181 1182 /* Get the byte from the OOB. */ 1183 from_oob = a[0]; 1184 1185 /* Swap them. */ 1186 a[0] = from_data; 1187 1188 mask = (0x1 << bit) - 1; 1189 p[0] = (p[0] & mask) | (from_oob << bit); 1190 1191 mask = ~0 << bit; 1192 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1193 } 1194 1195 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, 1196 int last, int meta) 1197 { 1198 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1199 struct bch_geometry *nfc_geo = &this->bch_geometry; 1200 struct mtd_info *mtd = nand_to_mtd(chip); 1201 int i; 1202 unsigned char *status; 1203 unsigned int max_bitflips = 0; 1204 1205 /* Loop over status bytes, accumulating ECC status. */ 1206 status = this->auxiliary_virt + ALIGN(meta, 4); 1207 1208 for (i = first; i < last; i++, status++) { 1209 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1210 continue; 1211 1212 if (*status == STATUS_UNCORRECTABLE) { 1213 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1214 u8 *eccbuf = this->raw_buffer; 1215 int offset, bitoffset; 1216 int eccbytes; 1217 int flips; 1218 1219 /* Read ECC bytes into our internal raw_buffer */ 1220 offset = nfc_geo->metadata_size * 8; 1221 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); 1222 offset -= eccbits; 1223 bitoffset = offset % 8; 1224 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1225 offset /= 8; 1226 eccbytes -= offset; 1227 nand_change_read_column_op(chip, offset, eccbuf, 1228 eccbytes, false); 1229 1230 /* 1231 * ECC data are not byte aligned and we may have 1232 * in-band data in the first and last byte of 1233 * eccbuf. Set non-eccbits to one so that 1234 * nand_check_erased_ecc_chunk() does not count them 1235 * as bitflips. 1236 */ 1237 if (bitoffset) 1238 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1239 1240 bitoffset = (bitoffset + eccbits) % 8; 1241 if (bitoffset) 1242 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1243 1244 /* 1245 * The ECC hardware has an uncorrectable ECC status 1246 * code in case we have bitflips in an erased page. As 1247 * nothing was written into this subpage the ECC is 1248 * obviously wrong and we can not trust it. We assume 1249 * at this point that we are reading an erased page and 1250 * try to correct the bitflips in buffer up to 1251 * ecc_strength bitflips. If this is a page with random 1252 * data, we exceed this number of bitflips and have a 1253 * ECC failure. Otherwise we use the corrected buffer. 1254 */ 1255 if (i == 0) { 1256 /* The first block includes metadata */ 1257 flips = nand_check_erased_ecc_chunk( 1258 buf + i * nfc_geo->ecc_chunk_size, 1259 nfc_geo->ecc_chunk_size, 1260 eccbuf, eccbytes, 1261 this->auxiliary_virt, 1262 nfc_geo->metadata_size, 1263 nfc_geo->ecc_strength); 1264 } else { 1265 flips = nand_check_erased_ecc_chunk( 1266 buf + i * nfc_geo->ecc_chunk_size, 1267 nfc_geo->ecc_chunk_size, 1268 eccbuf, eccbytes, 1269 NULL, 0, 1270 nfc_geo->ecc_strength); 1271 } 1272 1273 if (flips > 0) { 1274 max_bitflips = max_t(unsigned int, max_bitflips, 1275 flips); 1276 mtd->ecc_stats.corrected += flips; 1277 continue; 1278 } 1279 1280 mtd->ecc_stats.failed++; 1281 continue; 1282 } 1283 1284 mtd->ecc_stats.corrected += *status; 1285 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1286 } 1287 1288 return max_bitflips; 1289 } 1290 1291 static void gpmi_bch_layout_std(struct gpmi_nand_data *this) 1292 { 1293 struct bch_geometry *geo = &this->bch_geometry; 1294 unsigned int ecc_strength = geo->ecc_strength >> 1; 1295 unsigned int gf_len = geo->gf_len; 1296 unsigned int block_size = geo->ecc_chunk_size; 1297 1298 this->bch_flashlayout0 = 1299 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | 1300 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | 1301 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1302 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | 1303 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this); 1304 1305 this->bch_flashlayout1 = 1306 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | 1307 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1308 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | 1309 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this); 1310 } 1311 1312 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1313 int oob_required, int page) 1314 { 1315 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1316 struct mtd_info *mtd = nand_to_mtd(chip); 1317 struct bch_geometry *geo = &this->bch_geometry; 1318 unsigned int max_bitflips; 1319 int ret; 1320 1321 gpmi_bch_layout_std(this); 1322 this->bch = true; 1323 1324 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); 1325 if (ret) 1326 return ret; 1327 1328 max_bitflips = gpmi_count_bitflips(chip, buf, 0, 1329 geo->ecc_chunk_count, 1330 geo->auxiliary_status_offset); 1331 1332 /* handle the block mark swapping */ 1333 block_mark_swapping(this, buf, this->auxiliary_virt); 1334 1335 if (oob_required) { 1336 /* 1337 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1338 * for details about our policy for delivering the OOB. 1339 * 1340 * We fill the caller's buffer with set bits, and then copy the 1341 * block mark to th caller's buffer. Note that, if block mark 1342 * swapping was necessary, it has already been done, so we can 1343 * rely on the first byte of the auxiliary buffer to contain 1344 * the block mark. 1345 */ 1346 memset(chip->oob_poi, ~0, mtd->oobsize); 1347 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1348 } 1349 1350 return max_bitflips; 1351 } 1352 1353 /* Fake a virtual small page for the subpage read */ 1354 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1355 uint32_t len, uint8_t *buf, int page) 1356 { 1357 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1358 struct bch_geometry *geo = &this->bch_geometry; 1359 int size = chip->ecc.size; /* ECC chunk size */ 1360 int meta, n, page_size; 1361 unsigned int max_bitflips; 1362 unsigned int ecc_strength; 1363 int first, last, marker_pos; 1364 int ecc_parity_size; 1365 int col = 0; 1366 int ret; 1367 1368 /* The size of ECC parity */ 1369 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1370 1371 /* Align it with the chunk size */ 1372 first = offs / size; 1373 last = (offs + len - 1) / size; 1374 1375 if (this->swap_block_mark) { 1376 /* 1377 * Find the chunk which contains the Block Marker. 1378 * If this chunk is in the range of [first, last], 1379 * we have to read out the whole page. 1380 * Why? since we had swapped the data at the position of Block 1381 * Marker to the metadata which is bound with the chunk 0. 1382 */ 1383 marker_pos = geo->block_mark_byte_offset / size; 1384 if (last >= marker_pos && first <= marker_pos) { 1385 dev_dbg(this->dev, 1386 "page:%d, first:%d, last:%d, marker at:%d\n", 1387 page, first, last, marker_pos); 1388 return gpmi_ecc_read_page(chip, buf, 0, page); 1389 } 1390 } 1391 1392 meta = geo->metadata_size; 1393 if (first) { 1394 col = meta + (size + ecc_parity_size) * first; 1395 meta = 0; 1396 buf = buf + first * size; 1397 } 1398 1399 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1400 1401 n = last - first + 1; 1402 page_size = meta + (size + ecc_parity_size) * n; 1403 ecc_strength = geo->ecc_strength >> 1; 1404 1405 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) | 1406 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | 1407 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1408 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | 1409 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this); 1410 1411 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | 1412 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1413 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | 1414 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this); 1415 1416 this->bch = true; 1417 1418 ret = nand_read_page_op(chip, page, col, buf, page_size); 1419 if (ret) 1420 return ret; 1421 1422 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1423 page, offs, len, col, first, n, page_size); 1424 1425 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); 1426 1427 return max_bitflips; 1428 } 1429 1430 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1431 int oob_required, int page) 1432 { 1433 struct mtd_info *mtd = nand_to_mtd(chip); 1434 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1435 struct bch_geometry *nfc_geo = &this->bch_geometry; 1436 1437 dev_dbg(this->dev, "ecc write page.\n"); 1438 1439 gpmi_bch_layout_std(this); 1440 this->bch = true; 1441 1442 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); 1443 1444 if (this->swap_block_mark) { 1445 /* 1446 * When doing bad block marker swapping we must always copy the 1447 * input buffer as we can't modify the const buffer. 1448 */ 1449 memcpy(this->data_buffer_dma, buf, mtd->writesize); 1450 buf = this->data_buffer_dma; 1451 block_mark_swapping(this, this->data_buffer_dma, 1452 this->auxiliary_virt); 1453 } 1454 1455 return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); 1456 } 1457 1458 /* 1459 * There are several places in this driver where we have to handle the OOB and 1460 * block marks. This is the function where things are the most complicated, so 1461 * this is where we try to explain it all. All the other places refer back to 1462 * here. 1463 * 1464 * These are the rules, in order of decreasing importance: 1465 * 1466 * 1) Nothing the caller does can be allowed to imperil the block mark. 1467 * 1468 * 2) In read operations, the first byte of the OOB we return must reflect the 1469 * true state of the block mark, no matter where that block mark appears in 1470 * the physical page. 1471 * 1472 * 3) ECC-based read operations return an OOB full of set bits (since we never 1473 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1474 * return). 1475 * 1476 * 4) "Raw" read operations return a direct view of the physical bytes in the 1477 * page, using the conventional definition of which bytes are data and which 1478 * are OOB. This gives the caller a way to see the actual, physical bytes 1479 * in the page, without the distortions applied by our ECC engine. 1480 * 1481 * 1482 * What we do for this specific read operation depends on two questions: 1483 * 1484 * 1) Are we doing a "raw" read, or an ECC-based read? 1485 * 1486 * 2) Are we using block mark swapping or transcription? 1487 * 1488 * There are four cases, illustrated by the following Karnaugh map: 1489 * 1490 * | Raw | ECC-based | 1491 * -------------+-------------------------+-------------------------+ 1492 * | Read the conventional | | 1493 * | OOB at the end of the | | 1494 * Swapping | page and return it. It | | 1495 * | contains exactly what | | 1496 * | we want. | Read the block mark and | 1497 * -------------+-------------------------+ return it in a buffer | 1498 * | Read the conventional | full of set bits. | 1499 * | OOB at the end of the | | 1500 * | page and also the block | | 1501 * Transcribing | mark in the metadata. | | 1502 * | Copy the block mark | | 1503 * | into the first byte of | | 1504 * | the OOB. | | 1505 * -------------+-------------------------+-------------------------+ 1506 * 1507 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1508 * giving an accurate view of the actual, physical bytes in the page (we're 1509 * overwriting the block mark). That's OK because it's more important to follow 1510 * rule #2. 1511 * 1512 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1513 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1514 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1515 * ECC-based or raw view of the page is implicit in which function it calls 1516 * (there is a similar pair of ECC-based/raw functions for writing). 1517 */ 1518 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1519 { 1520 struct mtd_info *mtd = nand_to_mtd(chip); 1521 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1522 int ret; 1523 1524 /* clear the OOB buffer */ 1525 memset(chip->oob_poi, ~0, mtd->oobsize); 1526 1527 /* Read out the conventional OOB. */ 1528 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, 1529 mtd->oobsize); 1530 if (ret) 1531 return ret; 1532 1533 /* 1534 * Now, we want to make sure the block mark is correct. In the 1535 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1536 * Otherwise, we need to explicitly read it. 1537 */ 1538 if (GPMI_IS_MX23(this)) { 1539 /* Read the block mark into the first byte of the OOB buffer. */ 1540 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); 1541 if (ret) 1542 return ret; 1543 } 1544 1545 return 0; 1546 } 1547 1548 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1549 { 1550 struct mtd_info *mtd = nand_to_mtd(chip); 1551 struct mtd_oob_region of = { }; 1552 1553 /* Do we have available oob area? */ 1554 mtd_ooblayout_free(mtd, 0, &of); 1555 if (!of.length) 1556 return -EPERM; 1557 1558 if (!nand_is_slc(chip)) 1559 return -EPERM; 1560 1561 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1562 chip->oob_poi + of.offset, of.length); 1563 } 1564 1565 /* 1566 * This function reads a NAND page without involving the ECC engine (no HW 1567 * ECC correction). 1568 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1569 * inline (interleaved with payload DATA), and do not align data chunk on 1570 * byte boundaries. 1571 * We thus need to take care moving the payload data and ECC bits stored in the 1572 * page into the provided buffers, which is why we're using nand_extract_bits(). 1573 * 1574 * See set_geometry_by_ecc_info inline comments to have a full description 1575 * of the layout used by the GPMI controller. 1576 */ 1577 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1578 int oob_required, int page) 1579 { 1580 struct mtd_info *mtd = nand_to_mtd(chip); 1581 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1582 struct bch_geometry *nfc_geo = &this->bch_geometry; 1583 int eccsize = nfc_geo->ecc_chunk_size; 1584 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1585 u8 *tmp_buf = this->raw_buffer; 1586 size_t src_bit_off; 1587 size_t oob_bit_off; 1588 size_t oob_byte_off; 1589 uint8_t *oob = chip->oob_poi; 1590 int step; 1591 int ret; 1592 1593 ret = nand_read_page_op(chip, page, 0, tmp_buf, 1594 mtd->writesize + mtd->oobsize); 1595 if (ret) 1596 return ret; 1597 1598 /* 1599 * If required, swap the bad block marker and the data stored in the 1600 * metadata section, so that we don't wrongly consider a block as bad. 1601 * 1602 * See the layout description for a detailed explanation on why this 1603 * is needed. 1604 */ 1605 if (this->swap_block_mark) 1606 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1607 1608 /* 1609 * Copy the metadata section into the oob buffer (this section is 1610 * guaranteed to be aligned on a byte boundary). 1611 */ 1612 if (oob_required) 1613 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1614 1615 oob_bit_off = nfc_geo->metadata_size * 8; 1616 src_bit_off = oob_bit_off; 1617 1618 /* Extract interleaved payload data and ECC bits */ 1619 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1620 if (buf) 1621 nand_extract_bits(buf, step * eccsize * 8, tmp_buf, 1622 src_bit_off, eccsize * 8); 1623 src_bit_off += eccsize * 8; 1624 1625 /* Align last ECC block to align a byte boundary */ 1626 if (step == nfc_geo->ecc_chunk_count - 1 && 1627 (oob_bit_off + eccbits) % 8) 1628 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1629 1630 if (oob_required) 1631 nand_extract_bits(oob, oob_bit_off, tmp_buf, 1632 src_bit_off, eccbits); 1633 1634 src_bit_off += eccbits; 1635 oob_bit_off += eccbits; 1636 } 1637 1638 if (oob_required) { 1639 oob_byte_off = oob_bit_off / 8; 1640 1641 if (oob_byte_off < mtd->oobsize) 1642 memcpy(oob + oob_byte_off, 1643 tmp_buf + mtd->writesize + oob_byte_off, 1644 mtd->oobsize - oob_byte_off); 1645 } 1646 1647 return 0; 1648 } 1649 1650 /* 1651 * This function writes a NAND page without involving the ECC engine (no HW 1652 * ECC generation). 1653 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1654 * inline (interleaved with payload DATA), and do not align data chunk on 1655 * byte boundaries. 1656 * We thus need to take care moving the OOB area at the right place in the 1657 * final page, which is why we're using nand_extract_bits(). 1658 * 1659 * See set_geometry_by_ecc_info inline comments to have a full description 1660 * of the layout used by the GPMI controller. 1661 */ 1662 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1663 int oob_required, int page) 1664 { 1665 struct mtd_info *mtd = nand_to_mtd(chip); 1666 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1667 struct bch_geometry *nfc_geo = &this->bch_geometry; 1668 int eccsize = nfc_geo->ecc_chunk_size; 1669 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1670 u8 *tmp_buf = this->raw_buffer; 1671 uint8_t *oob = chip->oob_poi; 1672 size_t dst_bit_off; 1673 size_t oob_bit_off; 1674 size_t oob_byte_off; 1675 int step; 1676 1677 /* 1678 * Initialize all bits to 1 in case we don't have a buffer for the 1679 * payload or oob data in order to leave unspecified bits of data 1680 * to their initial state. 1681 */ 1682 if (!buf || !oob_required) 1683 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1684 1685 /* 1686 * First copy the metadata section (stored in oob buffer) at the 1687 * beginning of the page, as imposed by the GPMI layout. 1688 */ 1689 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1690 oob_bit_off = nfc_geo->metadata_size * 8; 1691 dst_bit_off = oob_bit_off; 1692 1693 /* Interleave payload data and ECC bits */ 1694 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1695 if (buf) 1696 nand_extract_bits(tmp_buf, dst_bit_off, buf, 1697 step * eccsize * 8, eccsize * 8); 1698 dst_bit_off += eccsize * 8; 1699 1700 /* Align last ECC block to align a byte boundary */ 1701 if (step == nfc_geo->ecc_chunk_count - 1 && 1702 (oob_bit_off + eccbits) % 8) 1703 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1704 1705 if (oob_required) 1706 nand_extract_bits(tmp_buf, dst_bit_off, oob, 1707 oob_bit_off, eccbits); 1708 1709 dst_bit_off += eccbits; 1710 oob_bit_off += eccbits; 1711 } 1712 1713 oob_byte_off = oob_bit_off / 8; 1714 1715 if (oob_required && oob_byte_off < mtd->oobsize) 1716 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1717 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1718 1719 /* 1720 * If required, swap the bad block marker and the first byte of the 1721 * metadata section, so that we don't modify the bad block marker. 1722 * 1723 * See the layout description for a detailed explanation on why this 1724 * is needed. 1725 */ 1726 if (this->swap_block_mark) 1727 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1728 1729 return nand_prog_page_op(chip, page, 0, tmp_buf, 1730 mtd->writesize + mtd->oobsize); 1731 } 1732 1733 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1734 { 1735 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1736 } 1737 1738 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1739 { 1740 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1741 } 1742 1743 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1744 { 1745 struct mtd_info *mtd = nand_to_mtd(chip); 1746 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1747 int ret = 0; 1748 uint8_t *block_mark; 1749 int column, page, chipnr; 1750 1751 chipnr = (int)(ofs >> chip->chip_shift); 1752 nand_select_target(chip, chipnr); 1753 1754 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1755 1756 /* Write the block mark. */ 1757 block_mark = this->data_buffer_dma; 1758 block_mark[0] = 0; /* bad block marker */ 1759 1760 /* Shift to get page */ 1761 page = (int)(ofs >> chip->page_shift); 1762 1763 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1764 1765 nand_deselect_target(chip); 1766 1767 return ret; 1768 } 1769 1770 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 1771 { 1772 struct boot_rom_geometry *geometry = &this->rom_geometry; 1773 1774 /* 1775 * Set the boot block stride size. 1776 * 1777 * In principle, we should be reading this from the OTP bits, since 1778 * that's where the ROM is going to get it. In fact, we don't have any 1779 * way to read the OTP bits, so we go with the default and hope for the 1780 * best. 1781 */ 1782 geometry->stride_size_in_pages = 64; 1783 1784 /* 1785 * Set the search area stride exponent. 1786 * 1787 * In principle, we should be reading this from the OTP bits, since 1788 * that's where the ROM is going to get it. In fact, we don't have any 1789 * way to read the OTP bits, so we go with the default and hope for the 1790 * best. 1791 */ 1792 geometry->search_area_stride_exponent = 2; 1793 return 0; 1794 } 1795 1796 static const char *fingerprint = "STMP"; 1797 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1798 { 1799 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1800 struct device *dev = this->dev; 1801 struct nand_chip *chip = &this->nand; 1802 unsigned int search_area_size_in_strides; 1803 unsigned int stride; 1804 unsigned int page; 1805 u8 *buffer = nand_get_data_buf(chip); 1806 int found_an_ncb_fingerprint = false; 1807 int ret; 1808 1809 /* Compute the number of strides in a search area. */ 1810 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1811 1812 nand_select_target(chip, 0); 1813 1814 /* 1815 * Loop through the first search area, looking for the NCB fingerprint. 1816 */ 1817 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 1818 1819 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1820 /* Compute the page addresses. */ 1821 page = stride * rom_geo->stride_size_in_pages; 1822 1823 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 1824 1825 /* 1826 * Read the NCB fingerprint. The fingerprint is four bytes long 1827 * and starts in the 12th byte of the page. 1828 */ 1829 ret = nand_read_page_op(chip, page, 12, buffer, 1830 strlen(fingerprint)); 1831 if (ret) 1832 continue; 1833 1834 /* Look for the fingerprint. */ 1835 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 1836 found_an_ncb_fingerprint = true; 1837 break; 1838 } 1839 1840 } 1841 1842 nand_deselect_target(chip); 1843 1844 if (found_an_ncb_fingerprint) 1845 dev_dbg(dev, "\tFound a fingerprint\n"); 1846 else 1847 dev_dbg(dev, "\tNo fingerprint found\n"); 1848 return found_an_ncb_fingerprint; 1849 } 1850 1851 /* Writes a transcription stamp. */ 1852 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1853 { 1854 struct device *dev = this->dev; 1855 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1856 struct nand_chip *chip = &this->nand; 1857 struct mtd_info *mtd = nand_to_mtd(chip); 1858 unsigned int block_size_in_pages; 1859 unsigned int search_area_size_in_strides; 1860 unsigned int search_area_size_in_pages; 1861 unsigned int search_area_size_in_blocks; 1862 unsigned int block; 1863 unsigned int stride; 1864 unsigned int page; 1865 u8 *buffer = nand_get_data_buf(chip); 1866 int status; 1867 1868 /* Compute the search area geometry. */ 1869 block_size_in_pages = mtd->erasesize / mtd->writesize; 1870 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1871 search_area_size_in_pages = search_area_size_in_strides * 1872 rom_geo->stride_size_in_pages; 1873 search_area_size_in_blocks = 1874 (search_area_size_in_pages + (block_size_in_pages - 1)) / 1875 block_size_in_pages; 1876 1877 dev_dbg(dev, "Search Area Geometry :\n"); 1878 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 1879 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 1880 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 1881 1882 nand_select_target(chip, 0); 1883 1884 /* Loop over blocks in the first search area, erasing them. */ 1885 dev_dbg(dev, "Erasing the search area...\n"); 1886 1887 for (block = 0; block < search_area_size_in_blocks; block++) { 1888 /* Erase this block. */ 1889 dev_dbg(dev, "\tErasing block 0x%x\n", block); 1890 status = nand_erase_op(chip, block); 1891 if (status) 1892 dev_err(dev, "[%s] Erase failed.\n", __func__); 1893 } 1894 1895 /* Write the NCB fingerprint into the page buffer. */ 1896 memset(buffer, ~0, mtd->writesize); 1897 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 1898 1899 /* Loop through the first search area, writing NCB fingerprints. */ 1900 dev_dbg(dev, "Writing NCB fingerprints...\n"); 1901 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1902 /* Compute the page addresses. */ 1903 page = stride * rom_geo->stride_size_in_pages; 1904 1905 /* Write the first page of the current stride. */ 1906 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 1907 1908 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 1909 if (status) 1910 dev_err(dev, "[%s] Write failed.\n", __func__); 1911 } 1912 1913 nand_deselect_target(chip); 1914 1915 return 0; 1916 } 1917 1918 static int mx23_boot_init(struct gpmi_nand_data *this) 1919 { 1920 struct device *dev = this->dev; 1921 struct nand_chip *chip = &this->nand; 1922 struct mtd_info *mtd = nand_to_mtd(chip); 1923 unsigned int block_count; 1924 unsigned int block; 1925 int chipnr; 1926 int page; 1927 loff_t byte; 1928 uint8_t block_mark; 1929 int ret = 0; 1930 1931 /* 1932 * If control arrives here, we can't use block mark swapping, which 1933 * means we're forced to use transcription. First, scan for the 1934 * transcription stamp. If we find it, then we don't have to do 1935 * anything -- the block marks are already transcribed. 1936 */ 1937 if (mx23_check_transcription_stamp(this)) 1938 return 0; 1939 1940 /* 1941 * If control arrives here, we couldn't find a transcription stamp, so 1942 * so we presume the block marks are in the conventional location. 1943 */ 1944 dev_dbg(dev, "Transcribing bad block marks...\n"); 1945 1946 /* Compute the number of blocks in the entire medium. */ 1947 block_count = nanddev_eraseblocks_per_target(&chip->base); 1948 1949 /* 1950 * Loop over all the blocks in the medium, transcribing block marks as 1951 * we go. 1952 */ 1953 for (block = 0; block < block_count; block++) { 1954 /* 1955 * Compute the chip, page and byte addresses for this block's 1956 * conventional mark. 1957 */ 1958 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 1959 page = block << (chip->phys_erase_shift - chip->page_shift); 1960 byte = block << chip->phys_erase_shift; 1961 1962 /* Send the command to read the conventional block mark. */ 1963 nand_select_target(chip, chipnr); 1964 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 1965 1); 1966 nand_deselect_target(chip); 1967 1968 if (ret) 1969 continue; 1970 1971 /* 1972 * Check if the block is marked bad. If so, we need to mark it 1973 * again, but this time the result will be a mark in the 1974 * location where we transcribe block marks. 1975 */ 1976 if (block_mark != 0xff) { 1977 dev_dbg(dev, "Transcribing mark in block %u\n", block); 1978 ret = chip->legacy.block_markbad(chip, byte); 1979 if (ret) 1980 dev_err(dev, 1981 "Failed to mark block bad with ret %d\n", 1982 ret); 1983 } 1984 } 1985 1986 /* Write the stamp that indicates we've transcribed the block marks. */ 1987 mx23_write_transcription_stamp(this); 1988 return 0; 1989 } 1990 1991 static int nand_boot_init(struct gpmi_nand_data *this) 1992 { 1993 nand_boot_set_geometry(this); 1994 1995 /* This is ROM arch-specific initilization before the BBT scanning. */ 1996 if (GPMI_IS_MX23(this)) 1997 return mx23_boot_init(this); 1998 return 0; 1999 } 2000 2001 static int gpmi_set_geometry(struct gpmi_nand_data *this) 2002 { 2003 int ret; 2004 2005 /* Free the temporary DMA memory for reading ID. */ 2006 gpmi_free_dma_buffer(this); 2007 2008 /* Set up the NFC geometry which is used by BCH. */ 2009 ret = bch_set_geometry(this); 2010 if (ret) { 2011 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 2012 return ret; 2013 } 2014 2015 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 2016 return gpmi_alloc_dma_buffer(this); 2017 } 2018 2019 static int gpmi_init_last(struct gpmi_nand_data *this) 2020 { 2021 struct nand_chip *chip = &this->nand; 2022 struct mtd_info *mtd = nand_to_mtd(chip); 2023 struct nand_ecc_ctrl *ecc = &chip->ecc; 2024 struct bch_geometry *bch_geo = &this->bch_geometry; 2025 int ret; 2026 2027 /* Set up the medium geometry */ 2028 ret = gpmi_set_geometry(this); 2029 if (ret) 2030 return ret; 2031 2032 /* Init the nand_ecc_ctrl{} */ 2033 ecc->read_page = gpmi_ecc_read_page; 2034 ecc->write_page = gpmi_ecc_write_page; 2035 ecc->read_oob = gpmi_ecc_read_oob; 2036 ecc->write_oob = gpmi_ecc_write_oob; 2037 ecc->read_page_raw = gpmi_ecc_read_page_raw; 2038 ecc->write_page_raw = gpmi_ecc_write_page_raw; 2039 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 2040 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 2041 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2042 ecc->size = bch_geo->ecc_chunk_size; 2043 ecc->strength = bch_geo->ecc_strength; 2044 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 2045 2046 /* 2047 * We only enable the subpage read when: 2048 * (1) the chip is imx6, and 2049 * (2) the size of the ECC parity is byte aligned. 2050 */ 2051 if (GPMI_IS_MX6(this) && 2052 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 2053 ecc->read_subpage = gpmi_ecc_read_subpage; 2054 chip->options |= NAND_SUBPAGE_READ; 2055 } 2056 2057 return 0; 2058 } 2059 2060 static int gpmi_nand_attach_chip(struct nand_chip *chip) 2061 { 2062 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2063 int ret; 2064 2065 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2066 chip->bbt_options |= NAND_BBT_NO_OOB; 2067 2068 if (of_property_read_bool(this->dev->of_node, 2069 "fsl,no-blockmark-swap")) 2070 this->swap_block_mark = false; 2071 } 2072 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2073 this->swap_block_mark ? "en" : "dis"); 2074 2075 ret = gpmi_init_last(this); 2076 if (ret) 2077 return ret; 2078 2079 chip->options |= NAND_SKIP_BBTSCAN; 2080 2081 return 0; 2082 } 2083 2084 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) 2085 { 2086 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; 2087 2088 this->ntransfers++; 2089 2090 if (this->ntransfers == GPMI_MAX_TRANSFERS) 2091 return NULL; 2092 2093 return transfer; 2094 } 2095 2096 static struct dma_async_tx_descriptor *gpmi_chain_command( 2097 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) 2098 { 2099 struct dma_chan *channel = get_dma_chan(this); 2100 struct dma_async_tx_descriptor *desc; 2101 struct gpmi_transfer *transfer; 2102 int chip = this->nand.cur_cs; 2103 u32 pio[3]; 2104 2105 /* [1] send out the PIO words */ 2106 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2107 | BM_GPMI_CTRL0_WORD_LENGTH 2108 | BF_GPMI_CTRL0_CS(chip, this) 2109 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2110 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) 2111 | BM_GPMI_CTRL0_ADDRESS_INCREMENT 2112 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); 2113 pio[1] = 0; 2114 pio[2] = 0; 2115 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2116 DMA_TRANS_NONE, 0); 2117 if (!desc) 2118 return NULL; 2119 2120 transfer = get_next_transfer(this); 2121 if (!transfer) 2122 return NULL; 2123 2124 transfer->cmdbuf[0] = cmd; 2125 if (naddr) 2126 memcpy(&transfer->cmdbuf[1], addr, naddr); 2127 2128 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); 2129 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); 2130 2131 transfer->direction = DMA_TO_DEVICE; 2132 2133 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, 2134 MXS_DMA_CTRL_WAIT4END); 2135 return desc; 2136 } 2137 2138 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( 2139 struct gpmi_nand_data *this) 2140 { 2141 struct dma_chan *channel = get_dma_chan(this); 2142 u32 pio[2]; 2143 2144 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) 2145 | BM_GPMI_CTRL0_WORD_LENGTH 2146 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2147 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2148 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2149 | BF_GPMI_CTRL0_XFER_COUNT(0); 2150 pio[1] = 0; 2151 2152 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 2153 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); 2154 } 2155 2156 static struct dma_async_tx_descriptor *gpmi_chain_data_read( 2157 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) 2158 { 2159 struct dma_async_tx_descriptor *desc; 2160 struct dma_chan *channel = get_dma_chan(this); 2161 struct gpmi_transfer *transfer; 2162 u32 pio[6] = {}; 2163 2164 transfer = get_next_transfer(this); 2165 if (!transfer) 2166 return NULL; 2167 2168 transfer->direction = DMA_FROM_DEVICE; 2169 2170 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, 2171 DMA_FROM_DEVICE); 2172 2173 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) 2174 | BM_GPMI_CTRL0_WORD_LENGTH 2175 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2176 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2177 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2178 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2179 2180 if (this->bch) { 2181 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2182 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) 2183 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 2184 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2185 pio[3] = raw_len; 2186 pio[4] = transfer->sgl.dma_address; 2187 pio[5] = this->auxiliary_phys; 2188 } 2189 2190 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2191 DMA_TRANS_NONE, 0); 2192 if (!desc) 2193 return NULL; 2194 2195 if (!this->bch) 2196 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2197 DMA_DEV_TO_MEM, 2198 MXS_DMA_CTRL_WAIT4END); 2199 2200 return desc; 2201 } 2202 2203 static struct dma_async_tx_descriptor *gpmi_chain_data_write( 2204 struct gpmi_nand_data *this, const void *buf, int raw_len) 2205 { 2206 struct dma_chan *channel = get_dma_chan(this); 2207 struct dma_async_tx_descriptor *desc; 2208 struct gpmi_transfer *transfer; 2209 u32 pio[6] = {}; 2210 2211 transfer = get_next_transfer(this); 2212 if (!transfer) 2213 return NULL; 2214 2215 transfer->direction = DMA_TO_DEVICE; 2216 2217 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); 2218 2219 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2220 | BM_GPMI_CTRL0_WORD_LENGTH 2221 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2222 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2223 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2224 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2225 2226 if (this->bch) { 2227 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2228 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) 2229 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | 2230 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2231 pio[3] = raw_len; 2232 pio[4] = transfer->sgl.dma_address; 2233 pio[5] = this->auxiliary_phys; 2234 } 2235 2236 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2237 DMA_TRANS_NONE, 2238 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); 2239 if (!desc) 2240 return NULL; 2241 2242 if (!this->bch) 2243 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2244 DMA_MEM_TO_DEV, 2245 MXS_DMA_CTRL_WAIT4END); 2246 2247 return desc; 2248 } 2249 2250 static int gpmi_nfc_exec_op(struct nand_chip *chip, 2251 const struct nand_operation *op, 2252 bool check_only) 2253 { 2254 const struct nand_op_instr *instr; 2255 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2256 struct dma_async_tx_descriptor *desc = NULL; 2257 int i, ret, buf_len = 0, nbufs = 0; 2258 u8 cmd = 0; 2259 void *buf_read = NULL; 2260 const void *buf_write = NULL; 2261 bool direct = false; 2262 struct completion *dma_completion, *bch_completion; 2263 unsigned long to; 2264 2265 if (check_only) 2266 return 0; 2267 2268 this->ntransfers = 0; 2269 for (i = 0; i < GPMI_MAX_TRANSFERS; i++) 2270 this->transfers[i].direction = DMA_NONE; 2271 2272 ret = pm_runtime_get_sync(this->dev); 2273 if (ret < 0) { 2274 pm_runtime_put_noidle(this->dev); 2275 return ret; 2276 } 2277 2278 /* 2279 * This driver currently supports only one NAND chip. Plus, dies share 2280 * the same configuration. So once timings have been applied on the 2281 * controller side, they will not change anymore. When the time will 2282 * come, the check on must_apply_timings will have to be dropped. 2283 */ 2284 if (this->hw.must_apply_timings) { 2285 this->hw.must_apply_timings = false; 2286 ret = gpmi_nfc_apply_timings(this); 2287 if (ret) 2288 goto out_pm; 2289 } 2290 2291 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); 2292 2293 for (i = 0; i < op->ninstrs; i++) { 2294 instr = &op->instrs[i]; 2295 2296 nand_op_trace(" ", instr); 2297 2298 switch (instr->type) { 2299 case NAND_OP_WAITRDY_INSTR: 2300 desc = gpmi_chain_wait_ready(this); 2301 break; 2302 case NAND_OP_CMD_INSTR: 2303 cmd = instr->ctx.cmd.opcode; 2304 2305 /* 2306 * When this command has an address cycle chain it 2307 * together with the address cycle 2308 */ 2309 if (i + 1 != op->ninstrs && 2310 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) 2311 continue; 2312 2313 desc = gpmi_chain_command(this, cmd, NULL, 0); 2314 2315 break; 2316 case NAND_OP_ADDR_INSTR: 2317 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, 2318 instr->ctx.addr.naddrs); 2319 break; 2320 case NAND_OP_DATA_OUT_INSTR: 2321 buf_write = instr->ctx.data.buf.out; 2322 buf_len = instr->ctx.data.len; 2323 nbufs++; 2324 2325 desc = gpmi_chain_data_write(this, buf_write, buf_len); 2326 2327 break; 2328 case NAND_OP_DATA_IN_INSTR: 2329 if (!instr->ctx.data.len) 2330 break; 2331 buf_read = instr->ctx.data.buf.in; 2332 buf_len = instr->ctx.data.len; 2333 nbufs++; 2334 2335 desc = gpmi_chain_data_read(this, buf_read, buf_len, 2336 &direct); 2337 break; 2338 } 2339 2340 if (!desc) { 2341 ret = -ENXIO; 2342 goto unmap; 2343 } 2344 } 2345 2346 dev_dbg(this->dev, "%s setup done\n", __func__); 2347 2348 if (nbufs > 1) { 2349 dev_err(this->dev, "Multiple data instructions not supported\n"); 2350 ret = -EINVAL; 2351 goto unmap; 2352 } 2353 2354 if (this->bch) { 2355 writel(this->bch_flashlayout0, 2356 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); 2357 writel(this->bch_flashlayout1, 2358 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); 2359 } 2360 2361 desc->callback = dma_irq_callback; 2362 desc->callback_param = this; 2363 dma_completion = &this->dma_done; 2364 bch_completion = NULL; 2365 2366 init_completion(dma_completion); 2367 2368 if (this->bch && buf_read) { 2369 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2370 this->resources.bch_regs + HW_BCH_CTRL_SET); 2371 bch_completion = &this->bch_done; 2372 init_completion(bch_completion); 2373 } 2374 2375 dmaengine_submit(desc); 2376 dma_async_issue_pending(get_dma_chan(this)); 2377 2378 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); 2379 if (!to) { 2380 dev_err(this->dev, "DMA timeout, last DMA\n"); 2381 gpmi_dump_info(this); 2382 ret = -ETIMEDOUT; 2383 goto unmap; 2384 } 2385 2386 if (this->bch && buf_read) { 2387 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); 2388 if (!to) { 2389 dev_err(this->dev, "BCH timeout, last DMA\n"); 2390 gpmi_dump_info(this); 2391 ret = -ETIMEDOUT; 2392 goto unmap; 2393 } 2394 } 2395 2396 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2397 this->resources.bch_regs + HW_BCH_CTRL_CLR); 2398 gpmi_clear_bch(this); 2399 2400 ret = 0; 2401 2402 unmap: 2403 for (i = 0; i < this->ntransfers; i++) { 2404 struct gpmi_transfer *transfer = &this->transfers[i]; 2405 2406 if (transfer->direction != DMA_NONE) 2407 dma_unmap_sg(this->dev, &transfer->sgl, 1, 2408 transfer->direction); 2409 } 2410 2411 if (!ret && buf_read && !direct) 2412 memcpy(buf_read, this->data_buffer_dma, 2413 gpmi_raw_len_to_len(this, buf_len)); 2414 2415 this->bch = false; 2416 2417 out_pm: 2418 pm_runtime_mark_last_busy(this->dev); 2419 pm_runtime_put_autosuspend(this->dev); 2420 2421 return ret; 2422 } 2423 2424 static const struct nand_controller_ops gpmi_nand_controller_ops = { 2425 .attach_chip = gpmi_nand_attach_chip, 2426 .setup_interface = gpmi_setup_interface, 2427 .exec_op = gpmi_nfc_exec_op, 2428 }; 2429 2430 static int gpmi_nand_init(struct gpmi_nand_data *this) 2431 { 2432 struct nand_chip *chip = &this->nand; 2433 struct mtd_info *mtd = nand_to_mtd(chip); 2434 int ret; 2435 2436 /* init the MTD data structures */ 2437 mtd->name = "gpmi-nand"; 2438 mtd->dev.parent = this->dev; 2439 2440 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 2441 nand_set_controller_data(chip, this); 2442 nand_set_flash_node(chip, this->pdev->dev.of_node); 2443 chip->legacy.block_markbad = gpmi_block_markbad; 2444 chip->badblock_pattern = &gpmi_bbt_descr; 2445 chip->options |= NAND_NO_SUBPAGE_WRITE; 2446 2447 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 2448 this->swap_block_mark = !GPMI_IS_MX23(this); 2449 2450 /* 2451 * Allocate a temporary DMA buffer for reading ID in the 2452 * nand_scan_ident(). 2453 */ 2454 this->bch_geometry.payload_size = 1024; 2455 this->bch_geometry.auxiliary_size = 128; 2456 ret = gpmi_alloc_dma_buffer(this); 2457 if (ret) 2458 return ret; 2459 2460 nand_controller_init(&this->base); 2461 this->base.ops = &gpmi_nand_controller_ops; 2462 chip->controller = &this->base; 2463 2464 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 2465 if (ret) 2466 goto err_out; 2467 2468 ret = nand_boot_init(this); 2469 if (ret) 2470 goto err_nand_cleanup; 2471 ret = nand_create_bbt(chip); 2472 if (ret) 2473 goto err_nand_cleanup; 2474 2475 ret = mtd_device_register(mtd, NULL, 0); 2476 if (ret) 2477 goto err_nand_cleanup; 2478 return 0; 2479 2480 err_nand_cleanup: 2481 nand_cleanup(chip); 2482 err_out: 2483 gpmi_free_dma_buffer(this); 2484 return ret; 2485 } 2486 2487 static const struct of_device_id gpmi_nand_id_table[] = { 2488 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, 2489 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, 2490 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, 2491 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, 2492 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, 2493 {} 2494 }; 2495 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2496 2497 static int gpmi_nand_probe(struct platform_device *pdev) 2498 { 2499 struct gpmi_nand_data *this; 2500 int ret; 2501 2502 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2503 if (!this) 2504 return -ENOMEM; 2505 2506 this->devdata = of_device_get_match_data(&pdev->dev); 2507 platform_set_drvdata(pdev, this); 2508 this->pdev = pdev; 2509 this->dev = &pdev->dev; 2510 2511 ret = acquire_resources(this); 2512 if (ret) 2513 goto exit_acquire_resources; 2514 2515 ret = __gpmi_enable_clk(this, true); 2516 if (ret) 2517 goto exit_acquire_resources; 2518 2519 pm_runtime_set_autosuspend_delay(&pdev->dev, 500); 2520 pm_runtime_use_autosuspend(&pdev->dev); 2521 pm_runtime_set_active(&pdev->dev); 2522 pm_runtime_enable(&pdev->dev); 2523 pm_runtime_get_sync(&pdev->dev); 2524 2525 ret = gpmi_init(this); 2526 if (ret) 2527 goto exit_nfc_init; 2528 2529 ret = gpmi_nand_init(this); 2530 if (ret) 2531 goto exit_nfc_init; 2532 2533 pm_runtime_mark_last_busy(&pdev->dev); 2534 pm_runtime_put_autosuspend(&pdev->dev); 2535 2536 dev_info(this->dev, "driver registered.\n"); 2537 2538 return 0; 2539 2540 exit_nfc_init: 2541 pm_runtime_put(&pdev->dev); 2542 pm_runtime_disable(&pdev->dev); 2543 release_resources(this); 2544 exit_acquire_resources: 2545 2546 return ret; 2547 } 2548 2549 static int gpmi_nand_remove(struct platform_device *pdev) 2550 { 2551 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2552 struct nand_chip *chip = &this->nand; 2553 int ret; 2554 2555 pm_runtime_put_sync(&pdev->dev); 2556 pm_runtime_disable(&pdev->dev); 2557 2558 ret = mtd_device_unregister(nand_to_mtd(chip)); 2559 WARN_ON(ret); 2560 nand_cleanup(chip); 2561 gpmi_free_dma_buffer(this); 2562 release_resources(this); 2563 return 0; 2564 } 2565 2566 #ifdef CONFIG_PM_SLEEP 2567 static int gpmi_pm_suspend(struct device *dev) 2568 { 2569 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2570 2571 release_dma_channels(this); 2572 return 0; 2573 } 2574 2575 static int gpmi_pm_resume(struct device *dev) 2576 { 2577 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2578 int ret; 2579 2580 ret = acquire_dma_channels(this); 2581 if (ret < 0) 2582 return ret; 2583 2584 /* re-init the GPMI registers */ 2585 ret = gpmi_init(this); 2586 if (ret) { 2587 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2588 return ret; 2589 } 2590 2591 /* Set flag to get timing setup restored for next exec_op */ 2592 if (this->hw.clk_rate) 2593 this->hw.must_apply_timings = true; 2594 2595 /* re-init the BCH registers */ 2596 ret = bch_set_geometry(this); 2597 if (ret) { 2598 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2599 return ret; 2600 } 2601 2602 return 0; 2603 } 2604 #endif /* CONFIG_PM_SLEEP */ 2605 2606 static int __maybe_unused gpmi_runtime_suspend(struct device *dev) 2607 { 2608 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2609 2610 return __gpmi_enable_clk(this, false); 2611 } 2612 2613 static int __maybe_unused gpmi_runtime_resume(struct device *dev) 2614 { 2615 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2616 2617 return __gpmi_enable_clk(this, true); 2618 } 2619 2620 static const struct dev_pm_ops gpmi_pm_ops = { 2621 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2622 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) 2623 }; 2624 2625 static struct platform_driver gpmi_nand_driver = { 2626 .driver = { 2627 .name = "gpmi-nand", 2628 .pm = &gpmi_pm_ops, 2629 .of_match_table = gpmi_nand_id_table, 2630 }, 2631 .probe = gpmi_nand_probe, 2632 .remove = gpmi_nand_remove, 2633 }; 2634 module_platform_driver(gpmi_nand_driver); 2635 2636 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2637 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2638 MODULE_LICENSE("GPL"); 2639