xref: /linux/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/dma/mxs-dma.h>
20 #include <linux/string_choices.h>
21 #include "gpmi-nand.h"
22 #include "gpmi-regs.h"
23 #include "bch-regs.h"
24 
25 /* Resource names for the GPMI NAND driver. */
26 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
27 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
28 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
29 
30 /* Converts time to clock cycles */
31 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
32 
33 #define MXS_SET_ADDR		0x4
34 #define MXS_CLR_ADDR		0x8
35 /*
36  * Clear the bit and poll it cleared.  This is usually called with
37  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
38  * (bit 30).
39  */
40 static int clear_poll_bit(void __iomem *addr, u32 mask)
41 {
42 	int timeout = 0x400;
43 
44 	/* clear the bit */
45 	writel(mask, addr + MXS_CLR_ADDR);
46 
47 	/*
48 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
49 	 * recommends to wait 1us.
50 	 */
51 	udelay(1);
52 
53 	/* poll the bit becoming clear */
54 	while ((readl(addr) & mask) && --timeout)
55 		/* nothing */;
56 
57 	return !timeout;
58 }
59 
60 #define MODULE_CLKGATE		(1 << 30)
61 #define MODULE_SFTRST		(1 << 31)
62 /*
63  * The current mxs_reset_block() will do two things:
64  *  [1] enable the module.
65  *  [2] reset the module.
66  *
67  * In most of the cases, it's ok.
68  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
69  * If you try to soft reset the BCH block, it becomes unusable until
70  * the next hard reset. This case occurs in the NAND boot mode. When the board
71  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
72  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
73  * You will see a DMA timeout in this case. The bug has been fixed
74  * in the following chips, such as MX28.
75  *
76  * To avoid this bug, just add a new parameter `just_enable` for
77  * the mxs_reset_block(), and rewrite it here.
78  */
79 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
80 {
81 	int ret;
82 	int timeout = 0x400;
83 
84 	/* clear and poll SFTRST */
85 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
86 	if (unlikely(ret))
87 		goto error;
88 
89 	/* clear CLKGATE */
90 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
91 
92 	if (!just_enable) {
93 		/* set SFTRST to reset the block */
94 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
95 		udelay(1);
96 
97 		/* poll CLKGATE becoming set */
98 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
99 			/* nothing */;
100 		if (unlikely(!timeout))
101 			goto error;
102 	}
103 
104 	/* clear and poll SFTRST */
105 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
106 	if (unlikely(ret))
107 		goto error;
108 
109 	/* clear and poll CLKGATE */
110 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
111 	if (unlikely(ret))
112 		goto error;
113 
114 	return 0;
115 
116 error:
117 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
118 	return -ETIMEDOUT;
119 }
120 
121 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
122 {
123 	struct clk *clk;
124 	int ret;
125 	int i;
126 
127 	for (i = 0; i < GPMI_CLK_MAX; i++) {
128 		clk = this->resources.clock[i];
129 		if (!clk)
130 			break;
131 
132 		if (v) {
133 			ret = clk_prepare_enable(clk);
134 			if (ret)
135 				goto err_clk;
136 		} else {
137 			clk_disable_unprepare(clk);
138 		}
139 	}
140 	return 0;
141 
142 err_clk:
143 	for (; i > 0; i--)
144 		clk_disable_unprepare(this->resources.clock[i - 1]);
145 	return ret;
146 }
147 
148 #define gpmi_enable_clk(x)	__gpmi_enable_clk(x, true)
149 #define gpmi_disable_clk(x)	__gpmi_enable_clk(x, false)
150 
151 static int gpmi_init(struct gpmi_nand_data *this)
152 {
153 	struct resources *r = &this->resources;
154 	int ret;
155 
156 	ret = pm_runtime_resume_and_get(this->dev);
157 	if (ret < 0)
158 		return ret;
159 
160 	ret = gpmi_reset_block(r->gpmi_regs, false);
161 	if (ret)
162 		goto err_out;
163 
164 	/*
165 	 * Reset BCH here, too. We got failures otherwise :(
166 	 * See later BCH reset for explanation of MX23 and MX28 handling
167 	 */
168 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
169 	if (ret)
170 		goto err_out;
171 
172 	/* Choose NAND mode. */
173 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
174 
175 	/* Set the IRQ polarity. */
176 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
177 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
178 
179 	/* Disable Write-Protection. */
180 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181 
182 	/* Select BCH ECC. */
183 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
184 
185 	/*
186 	 * Decouple the chip select from dma channel. We use dma0 for all
187 	 * the chips, force all NAND RDY_BUSY inputs to be sourced from
188 	 * RDY_BUSY0.
189 	 */
190 	writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
191 	       r->gpmi_regs + HW_GPMI_CTRL1_SET);
192 
193 err_out:
194 	pm_runtime_mark_last_busy(this->dev);
195 	pm_runtime_put_autosuspend(this->dev);
196 	return ret;
197 }
198 
199 /* This function is very useful. It is called only when the bug occur. */
200 static void gpmi_dump_info(struct gpmi_nand_data *this)
201 {
202 	struct resources *r = &this->resources;
203 	struct bch_geometry *geo = &this->bch_geometry;
204 	u32 reg;
205 	int i;
206 
207 	dev_err(this->dev, "Show GPMI registers :\n");
208 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
209 		reg = readl(r->gpmi_regs + i * 0x10);
210 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
211 	}
212 
213 	/* start to print out the BCH info */
214 	dev_err(this->dev, "Show BCH registers :\n");
215 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
216 		reg = readl(r->bch_regs + i * 0x10);
217 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
218 	}
219 	dev_err(this->dev, "BCH Geometry :\n"
220 		"GF length              : %u\n"
221 		"ECC Strength           : %u\n"
222 		"Page Size in Bytes     : %u\n"
223 		"Metadata Size in Bytes : %u\n"
224 		"ECC0 Chunk Size in Bytes: %u\n"
225 		"ECCn Chunk Size in Bytes: %u\n"
226 		"ECC Chunk Count        : %u\n"
227 		"Payload Size in Bytes  : %u\n"
228 		"Auxiliary Size in Bytes: %u\n"
229 		"Auxiliary Status Offset: %u\n"
230 		"Block Mark Byte Offset : %u\n"
231 		"Block Mark Bit Offset  : %u\n",
232 		geo->gf_len,
233 		geo->ecc_strength,
234 		geo->page_size,
235 		geo->metadata_size,
236 		geo->ecc0_chunk_size,
237 		geo->eccn_chunk_size,
238 		geo->ecc_chunk_count,
239 		geo->payload_size,
240 		geo->auxiliary_size,
241 		geo->auxiliary_status_offset,
242 		geo->block_mark_byte_offset,
243 		geo->block_mark_bit_offset);
244 }
245 
246 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
247 {
248 	struct nand_chip *chip = &this->nand;
249 	struct bch_geometry *geo = &this->bch_geometry;
250 	struct nand_device *nand = &chip->base;
251 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
252 
253 	conf->step_size = geo->eccn_chunk_size;
254 	conf->strength = geo->ecc_strength;
255 
256 	/* Do the sanity check. */
257 	if (GPMI_IS_MXS(this)) {
258 		/* The mx23/mx28 only support the GF13. */
259 		if (geo->gf_len == 14)
260 			return false;
261 	}
262 
263 	if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
264 		return false;
265 
266 	if (!nand_ecc_is_strong_enough(nand))
267 		return false;
268 
269 	return true;
270 }
271 
272 /* check if bbm locates in data chunk rather than ecc chunk */
273 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
274 			unsigned int *chunk_num)
275 {
276 	struct bch_geometry *geo = &this->bch_geometry;
277 	struct nand_chip *chip = &this->nand;
278 	struct mtd_info *mtd = nand_to_mtd(chip);
279 	unsigned int i, j;
280 
281 	if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
282 		dev_err(this->dev,
283 			"The size of ecc0_chunk must equal to eccn_chunk\n");
284 		return false;
285 	}
286 
287 	i = (mtd->writesize * 8 - geo->metadata_size * 8) /
288 		(geo->gf_len * geo->ecc_strength +
289 			geo->eccn_chunk_size * 8);
290 
291 	j = (mtd->writesize * 8 - geo->metadata_size * 8) -
292 		(geo->gf_len * geo->ecc_strength +
293 			geo->eccn_chunk_size * 8) * i;
294 
295 	if (j < geo->eccn_chunk_size * 8) {
296 		*chunk_num = i+1;
297 		dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
298 				geo->ecc_strength, *chunk_num);
299 		return true;
300 	}
301 
302 	return false;
303 }
304 
305 /*
306  * If we can get the ECC information from the nand chip, we do not
307  * need to calculate them ourselves.
308  *
309  * We may have available oob space in this case.
310  */
311 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
312 				    unsigned int ecc_strength,
313 				    unsigned int ecc_step)
314 {
315 	struct bch_geometry *geo = &this->bch_geometry;
316 	struct nand_chip *chip = &this->nand;
317 	struct mtd_info *mtd = nand_to_mtd(chip);
318 	unsigned int block_mark_bit_offset;
319 
320 	switch (ecc_step) {
321 	case SZ_512:
322 		geo->gf_len = 13;
323 		break;
324 	case SZ_1K:
325 		geo->gf_len = 14;
326 		break;
327 	default:
328 		dev_err(this->dev,
329 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
330 			nanddev_get_ecc_requirements(&chip->base)->strength,
331 			nanddev_get_ecc_requirements(&chip->base)->step_size);
332 		return -EINVAL;
333 	}
334 	geo->ecc0_chunk_size = ecc_step;
335 	geo->eccn_chunk_size = ecc_step;
336 	geo->ecc_strength = round_up(ecc_strength, 2);
337 	if (!gpmi_check_ecc(this))
338 		return -EINVAL;
339 
340 	/* Keep the C >= O */
341 	if (geo->eccn_chunk_size < mtd->oobsize) {
342 		dev_err(this->dev,
343 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
344 			ecc_step, mtd->oobsize);
345 		return -EINVAL;
346 	}
347 
348 	/* The default value, see comment in the legacy_set_geometry(). */
349 	geo->metadata_size = 10;
350 
351 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
352 
353 	/*
354 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
355 	 *
356 	 *    |                          P                            |
357 	 *    |<----------------------------------------------------->|
358 	 *    |                                                       |
359 	 *    |                                        (Block Mark)   |
360 	 *    |                      P'                      |      | |     |
361 	 *    |<-------------------------------------------->|  D   | |  O' |
362 	 *    |                                              |<---->| |<--->|
363 	 *    V                                              V      V V     V
364 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
365 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
366 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
367 	 *                                                   ^              ^
368 	 *                                                   |      O       |
369 	 *                                                   |<------------>|
370 	 *                                                   |              |
371 	 *
372 	 *	P : the page size for BCH module.
373 	 *	E : The ECC strength.
374 	 *	G : the length of Galois Field.
375 	 *	N : The chunk count of per page.
376 	 *	M : the metasize of per page.
377 	 *	C : the ecc chunk size, aka the "data" above.
378 	 *	P': the nand chip's page size.
379 	 *	O : the nand chip's oob size.
380 	 *	O': the free oob.
381 	 *
382 	 *	The formula for P is :
383 	 *
384 	 *	            E * G * N
385 	 *	       P = ------------ + P' + M
386 	 *                      8
387 	 *
388 	 * The position of block mark moves forward in the ECC-based view
389 	 * of page, and the delta is:
390 	 *
391 	 *                   E * G * (N - 1)
392 	 *             D = (---------------- + M)
393 	 *                          8
394 	 *
395 	 * Please see the comment in legacy_set_geometry().
396 	 * With the condition C >= O , we still can get same result.
397 	 * So the bit position of the physical block mark within the ECC-based
398 	 * view of the page is :
399 	 *             (P' - D) * 8
400 	 */
401 	geo->page_size = mtd->writesize + geo->metadata_size +
402 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
403 
404 	geo->payload_size = mtd->writesize;
405 
406 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
407 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
408 				+ ALIGN(geo->ecc_chunk_count, 4);
409 
410 	if (!this->swap_block_mark)
411 		return 0;
412 
413 	/* For bit swap. */
414 	block_mark_bit_offset = mtd->writesize * 8 -
415 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
416 				+ geo->metadata_size * 8);
417 
418 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
419 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
420 	return 0;
421 }
422 
423 /*
424  *  Calculate the ECC strength by hand:
425  *	E : The ECC strength.
426  *	G : the length of Galois Field.
427  *	N : The chunk count of per page.
428  *	O : the oobsize of the NAND chip.
429  *	M : the metasize of per page.
430  *
431  *	The formula is :
432  *		E * G * N
433  *	      ------------ <= (O - M)
434  *                  8
435  *
436  *      So, we get E by:
437  *                    (O - M) * 8
438  *              E <= -------------
439  *                       G * N
440  */
441 static inline int get_ecc_strength(struct gpmi_nand_data *this)
442 {
443 	struct bch_geometry *geo = &this->bch_geometry;
444 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
445 	int ecc_strength;
446 
447 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
448 			/ (geo->gf_len * geo->ecc_chunk_count);
449 
450 	/* We need the minor even number. */
451 	return round_down(ecc_strength, 2);
452 }
453 
454 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
455 {
456 	struct bch_geometry *geo = &this->bch_geometry;
457 	struct nand_chip *chip = &this->nand;
458 	struct mtd_info *mtd = nand_to_mtd(chip);
459 	const struct nand_ecc_props *requirements =
460 		nanddev_get_ecc_requirements(&chip->base);
461 	unsigned int block_mark_bit_offset;
462 	unsigned int max_ecc;
463 	unsigned int bbm_chunk;
464 	unsigned int i;
465 
466 	/* sanity check for the minimum ecc nand required */
467 	if (!(requirements->strength > 0 &&
468 	      requirements->step_size > 0))
469 		return -EINVAL;
470 	geo->ecc_strength = requirements->strength;
471 
472 	/* check if platform can support this nand */
473 	if (!gpmi_check_ecc(this)) {
474 		dev_err(this->dev,
475 			"unsupported NAND chip, minimum ecc required %d\n",
476 			geo->ecc_strength);
477 		return -EINVAL;
478 	}
479 
480 	/* calculate the maximum ecc platform can support*/
481 	geo->metadata_size = 10;
482 	geo->gf_len = 14;
483 	geo->ecc0_chunk_size = 1024;
484 	geo->eccn_chunk_size = 1024;
485 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
486 	max_ecc = min(get_ecc_strength(this),
487 		      this->devdata->bch_max_ecc_strength);
488 
489 	/*
490 	 * search a supported ecc strength that makes bbm
491 	 * located in data chunk
492 	 */
493 	geo->ecc_strength = max_ecc;
494 	while (!(geo->ecc_strength < requirements->strength)) {
495 		if (bbm_in_data_chunk(this, &bbm_chunk))
496 			goto geo_setting;
497 		geo->ecc_strength -= 2;
498 	}
499 
500 	/* if none of them works, keep using the minimum ecc */
501 	/* nand required but changing ecc page layout  */
502 	geo->ecc_strength = requirements->strength;
503 	/* add extra ecc for meta data */
504 	geo->ecc0_chunk_size = 0;
505 	geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
506 	geo->ecc_for_meta = 1;
507 	/* check if oob can afford this extra ecc chunk */
508 	if (mtd->oobsize * 8 < geo->metadata_size * 8 +
509 	    geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
510 		dev_err(this->dev, "unsupported NAND chip with new layout\n");
511 		return -EINVAL;
512 	}
513 
514 	/* calculate in which chunk bbm located */
515 	bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
516 		     geo->gf_len * geo->ecc_strength) /
517 		     (geo->gf_len * geo->ecc_strength +
518 		     geo->eccn_chunk_size * 8) + 1;
519 
520 geo_setting:
521 
522 	geo->page_size = mtd->writesize + geo->metadata_size +
523 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
524 	geo->payload_size = mtd->writesize;
525 
526 	/*
527 	 * The auxiliary buffer contains the metadata and the ECC status. The
528 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
529 	 * contains one byte for every ECC chunk, and is also padded to the
530 	 * nearest 32-bit boundary.
531 	 */
532 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
533 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
534 				    + ALIGN(geo->ecc_chunk_count, 4);
535 
536 	if (!this->swap_block_mark)
537 		return 0;
538 
539 	/* calculate the number of ecc chunk behind the bbm */
540 	i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
541 
542 	block_mark_bit_offset = mtd->writesize * 8 -
543 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
544 		+ geo->metadata_size * 8);
545 
546 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
547 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
548 
549 	dev_dbg(this->dev, "BCH Geometry :\n"
550 		"GF length              : %u\n"
551 		"ECC Strength           : %u\n"
552 		"Page Size in Bytes     : %u\n"
553 		"Metadata Size in Bytes : %u\n"
554 		"ECC0 Chunk Size in Bytes: %u\n"
555 		"ECCn Chunk Size in Bytes: %u\n"
556 		"ECC Chunk Count        : %u\n"
557 		"Payload Size in Bytes  : %u\n"
558 		"Auxiliary Size in Bytes: %u\n"
559 		"Auxiliary Status Offset: %u\n"
560 		"Block Mark Byte Offset : %u\n"
561 		"Block Mark Bit Offset  : %u\n"
562 		"Block Mark in chunk	: %u\n"
563 		"Ecc for Meta data	: %u\n",
564 		geo->gf_len,
565 		geo->ecc_strength,
566 		geo->page_size,
567 		geo->metadata_size,
568 		geo->ecc0_chunk_size,
569 		geo->eccn_chunk_size,
570 		geo->ecc_chunk_count,
571 		geo->payload_size,
572 		geo->auxiliary_size,
573 		geo->auxiliary_status_offset,
574 		geo->block_mark_byte_offset,
575 		geo->block_mark_bit_offset,
576 		bbm_chunk,
577 		geo->ecc_for_meta);
578 
579 	return 0;
580 }
581 
582 static int legacy_set_geometry(struct gpmi_nand_data *this)
583 {
584 	struct bch_geometry *geo = &this->bch_geometry;
585 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
586 	unsigned int metadata_size;
587 	unsigned int status_size;
588 	unsigned int block_mark_bit_offset;
589 
590 	/*
591 	 * The size of the metadata can be changed, though we set it to 10
592 	 * bytes now. But it can't be too large, because we have to save
593 	 * enough space for BCH.
594 	 */
595 	geo->metadata_size = 10;
596 
597 	/* The default for the length of Galois Field. */
598 	geo->gf_len = 13;
599 
600 	/* The default for chunk size. */
601 	geo->ecc0_chunk_size = 512;
602 	geo->eccn_chunk_size = 512;
603 	while (geo->eccn_chunk_size < mtd->oobsize) {
604 		geo->ecc0_chunk_size *= 2; /* keep C >= O */
605 		geo->eccn_chunk_size *= 2; /* keep C >= O */
606 		geo->gf_len = 14;
607 	}
608 
609 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
610 
611 	/* We use the same ECC strength for all chunks. */
612 	geo->ecc_strength = get_ecc_strength(this);
613 	if (!gpmi_check_ecc(this)) {
614 		dev_err(this->dev,
615 			"ecc strength: %d cannot be supported by the controller (%d)\n"
616 			"try to use minimum ecc strength that NAND chip required\n",
617 			geo->ecc_strength,
618 			this->devdata->bch_max_ecc_strength);
619 		return -EINVAL;
620 	}
621 
622 	geo->page_size = mtd->writesize + geo->metadata_size +
623 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
624 	geo->payload_size = mtd->writesize;
625 
626 	/*
627 	 * The auxiliary buffer contains the metadata and the ECC status. The
628 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
629 	 * contains one byte for every ECC chunk, and is also padded to the
630 	 * nearest 32-bit boundary.
631 	 */
632 	metadata_size = ALIGN(geo->metadata_size, 4);
633 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
634 
635 	geo->auxiliary_size = metadata_size + status_size;
636 	geo->auxiliary_status_offset = metadata_size;
637 
638 	if (!this->swap_block_mark)
639 		return 0;
640 
641 	/*
642 	 * We need to compute the byte and bit offsets of
643 	 * the physical block mark within the ECC-based view of the page.
644 	 *
645 	 * NAND chip with 2K page shows below:
646 	 *                                             (Block Mark)
647 	 *                                                   |      |
648 	 *                                                   |  D   |
649 	 *                                                   |<---->|
650 	 *                                                   V      V
651 	 *    +---+----------+-+----------+-+----------+-+----------+-+
652 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
653 	 *    +---+----------+-+----------+-+----------+-+----------+-+
654 	 *
655 	 * The position of block mark moves forward in the ECC-based view
656 	 * of page, and the delta is:
657 	 *
658 	 *                   E * G * (N - 1)
659 	 *             D = (---------------- + M)
660 	 *                          8
661 	 *
662 	 * With the formula to compute the ECC strength, and the condition
663 	 *       : C >= O         (C is the ecc chunk size)
664 	 *
665 	 * It's easy to deduce to the following result:
666 	 *
667 	 *         E * G       (O - M)      C - M         C - M
668 	 *      ----------- <= ------- <=  --------  <  ---------
669 	 *           8            N           N          (N - 1)
670 	 *
671 	 *  So, we get:
672 	 *
673 	 *                   E * G * (N - 1)
674 	 *             D = (---------------- + M) < C
675 	 *                          8
676 	 *
677 	 *  The above inequality means the position of block mark
678 	 *  within the ECC-based view of the page is still in the data chunk,
679 	 *  and it's NOT in the ECC bits of the chunk.
680 	 *
681 	 *  Use the following to compute the bit position of the
682 	 *  physical block mark within the ECC-based view of the page:
683 	 *          (page_size - D) * 8
684 	 *
685 	 *  --Huang Shijie
686 	 */
687 	block_mark_bit_offset = mtd->writesize * 8 -
688 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
689 				+ geo->metadata_size * 8);
690 
691 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
692 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
693 	return 0;
694 }
695 
696 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
697 {
698 	struct nand_chip *chip = &this->nand;
699 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
700 	const struct nand_ecc_props *requirements =
701 		nanddev_get_ecc_requirements(&chip->base);
702 	bool use_minimun_ecc;
703 	int err;
704 
705 	use_minimun_ecc = of_property_read_bool(this->dev->of_node,
706 						"fsl,use-minimum-ecc");
707 
708 	/* use legacy bch geometry settings by default*/
709 	if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
710 	    !(requirements->strength > 0 && requirements->step_size > 0)) {
711 		dev_dbg(this->dev, "use legacy bch geometry\n");
712 		err = legacy_set_geometry(this);
713 		if (!err)
714 			return 0;
715 	}
716 
717 	/* for large oob nand */
718 	if (mtd->oobsize > 1024) {
719 		dev_dbg(this->dev, "use large oob bch geometry\n");
720 		err = set_geometry_for_large_oob(this);
721 		if (!err)
722 			return 0;
723 	}
724 
725 	/* otherwise use the minimum ecc nand chip required */
726 	dev_dbg(this->dev, "use minimum ecc bch geometry\n");
727 	err = set_geometry_by_ecc_info(this, requirements->strength,
728 					requirements->step_size);
729 	if (err)
730 		dev_err(this->dev, "none of the bch geometry setting works\n");
731 
732 	return err;
733 }
734 
735 /* Configures the geometry for BCH.  */
736 static int bch_set_geometry(struct gpmi_nand_data *this)
737 {
738 	struct resources *r = &this->resources;
739 	int ret;
740 
741 	ret = common_nfc_set_geometry(this);
742 	if (ret)
743 		return ret;
744 
745 	ret = pm_runtime_resume_and_get(this->dev);
746 	if (ret < 0) {
747 		return ret;
748 	}
749 
750 	/*
751 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
752 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
753 	* and MX28.
754 	*/
755 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
756 	if (ret)
757 		goto err_out;
758 
759 	/* Set *all* chip selects to use layout 0. */
760 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
761 
762 	ret = 0;
763 err_out:
764 	pm_runtime_mark_last_busy(this->dev);
765 	pm_runtime_put_autosuspend(this->dev);
766 
767 	return ret;
768 }
769 
770 /*
771  * <1> Firstly, we should know what's the GPMI-clock means.
772  *     The GPMI-clock is the internal clock in the gpmi nand controller.
773  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
774  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
775  *
776  * <2> Secondly, we should know what's the frequency on the nand chip pins.
777  *     The frequency on the nand chip pins is derived from the GPMI-clock.
778  *     We can get it from the following equation:
779  *
780  *         F = G / (DS + DH)
781  *
782  *         F  : the frequency on the nand chip pins.
783  *         G  : the GPMI clock, such as 100MHz.
784  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
785  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
786  *
787  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
788  *     the nand EDO(extended Data Out) timing could be applied.
789  *     The GPMI implements a feedback read strobe to sample the read data.
790  *     The feedback read strobe can be delayed to support the nand EDO timing
791  *     where the read strobe may deasserts before the read data is valid, and
792  *     read data is valid for some time after read strobe.
793  *
794  *     The following figure illustrates some aspects of a NAND Flash read:
795  *
796  *                   |<---tREA---->|
797  *                   |             |
798  *                   |         |   |
799  *                   |<--tRP-->|   |
800  *                   |         |   |
801  *                  __          ___|__________________________________
802  *     RDN            \________/   |
803  *                                 |
804  *                                 /---------\
805  *     Read Data    --------------<           >---------
806  *                                 \---------/
807  *                                |     |
808  *                                |<-D->|
809  *     FeedbackRDN  ________             ____________
810  *                          \___________/
811  *
812  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
813  *
814  *
815  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
816  *
817  *  4.1) From the aspect of the nand chip pins:
818  *        Delay = (tREA + C - tRP)               {1}
819  *
820  *        tREA : the maximum read access time.
821  *        C    : a constant to adjust the delay. default is 4000ps.
822  *        tRP  : the read pulse width, which is exactly:
823  *                   tRP = (GPMI-clock-period) * DATA_SETUP
824  *
825  *  4.2) From the aspect of the GPMI nand controller:
826  *         Delay = RDN_DELAY * 0.125 * RP        {2}
827  *
828  *         RP   : the DLL reference period.
829  *            if (GPMI-clock-period > DLL_THRETHOLD)
830  *                   RP = GPMI-clock-period / 2;
831  *            else
832  *                   RP = GPMI-clock-period;
833  *
834  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
835  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
836  *            is 16000ps, but in mx6q, we use 12000ps.
837  *
838  *  4.3) since {1} equals {2}, we get:
839  *
840  *                     (tREA + 4000 - tRP) * 8
841  *         RDN_DELAY = -----------------------     {3}
842  *                           RP
843  */
844 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
845 				    const struct nand_sdr_timings *sdr)
846 {
847 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
848 	struct resources *r = &this->resources;
849 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
850 	unsigned int period_ps, reference_period_ps;
851 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
852 	unsigned int tRP_ps;
853 	bool use_half_period;
854 	int sample_delay_ps, sample_delay_factor;
855 	unsigned int busy_timeout_cycles;
856 	u8 wrn_dly_sel;
857 	unsigned long clk_rate, min_rate;
858 	u64 busy_timeout_ps;
859 
860 	if (sdr->tRC_min >= 30000) {
861 		/* ONFI non-EDO modes [0-3] */
862 		hw->clk_rate = 22000000;
863 		min_rate = 0;
864 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
865 	} else if (sdr->tRC_min >= 25000) {
866 		/* ONFI EDO mode 4 */
867 		hw->clk_rate = 80000000;
868 		min_rate = 22000000;
869 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
870 	} else {
871 		/* ONFI EDO mode 5 */
872 		hw->clk_rate = 100000000;
873 		min_rate = 80000000;
874 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
875 	}
876 
877 	clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
878 	if (clk_rate <= min_rate) {
879 		dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
880 			hw->clk_rate, clk_rate);
881 		return -ENOTSUPP;
882 	}
883 
884 	hw->clk_rate = clk_rate;
885 	/* SDR core timings are given in picoseconds */
886 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
887 
888 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
889 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
890 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
891 	busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
892 	busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
893 
894 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
895 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
896 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
897 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
898 
899 	/*
900 	 * Derive NFC ideal delay from {3}:
901 	 *
902 	 *                     (tREA + 4000 - tRP) * 8
903 	 *         RDN_DELAY = -----------------------
904 	 *                                RP
905 	 */
906 	if (period_ps > dll_threshold_ps) {
907 		use_half_period = true;
908 		reference_period_ps = period_ps / 2;
909 	} else {
910 		use_half_period = false;
911 		reference_period_ps = period_ps;
912 	}
913 
914 	tRP_ps = data_setup_cycles * period_ps;
915 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
916 	if (sample_delay_ps > 0)
917 		sample_delay_factor = sample_delay_ps / reference_period_ps;
918 	else
919 		sample_delay_factor = 0;
920 
921 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
922 	if (sample_delay_factor)
923 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
924 			      BM_GPMI_CTRL1_DLL_ENABLE |
925 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
926 	return 0;
927 }
928 
929 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
930 {
931 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
932 	struct resources *r = &this->resources;
933 	void __iomem *gpmi_regs = r->gpmi_regs;
934 	unsigned int dll_wait_time_us;
935 	int ret;
936 
937 	/* Clock dividers do NOT guarantee a clean clock signal on its output
938 	 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
939 	 * all clock dividers provide these guarantee.
940 	 */
941 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
942 		clk_disable_unprepare(r->clock[0]);
943 
944 	ret = clk_set_rate(r->clock[0], hw->clk_rate);
945 	if (ret) {
946 		dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
947 		return ret;
948 	}
949 
950 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
951 		ret = clk_prepare_enable(r->clock[0]);
952 		if (ret)
953 			return ret;
954 	}
955 
956 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
957 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
958 
959 	/*
960 	 * Clear several CTRL1 fields, DLL must be disabled when setting
961 	 * RDN_DELAY or HALF_PERIOD.
962 	 */
963 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
964 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
965 
966 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
967 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
968 	if (!dll_wait_time_us)
969 		dll_wait_time_us = 1;
970 
971 	/* Wait for the DLL to settle. */
972 	udelay(dll_wait_time_us);
973 
974 	return 0;
975 }
976 
977 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
978 				const struct nand_interface_config *conf)
979 {
980 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
981 	const struct nand_sdr_timings *sdr;
982 	int ret;
983 
984 	/* Retrieve required NAND timings */
985 	sdr = nand_get_sdr_timings(conf);
986 	if (IS_ERR(sdr))
987 		return PTR_ERR(sdr);
988 
989 	/* Only MX28/MX6 GPMI controller can reach EDO timings */
990 	if (sdr->tRC_min <= 25000 && !this->devdata->support_edo_timing)
991 		return -ENOTSUPP;
992 
993 	/* Stop here if this call was just a check */
994 	if (chipnr < 0)
995 		return 0;
996 
997 	/* Do the actual derivation of the controller timings */
998 	ret = gpmi_nfc_compute_timings(this, sdr);
999 	if (ret)
1000 		return ret;
1001 
1002 	this->hw.must_apply_timings = true;
1003 
1004 	return 0;
1005 }
1006 
1007 /* Clears a BCH interrupt. */
1008 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1009 {
1010 	struct resources *r = &this->resources;
1011 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1012 }
1013 
1014 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1015 {
1016 	/* We use the DMA channel 0 to access all the nand chips. */
1017 	return this->dma_chans[0];
1018 }
1019 
1020 /* This will be called after the DMA operation is finished. */
1021 static void dma_irq_callback(void *param)
1022 {
1023 	struct gpmi_nand_data *this = param;
1024 	struct completion *dma_c = &this->dma_done;
1025 
1026 	complete(dma_c);
1027 }
1028 
1029 static irqreturn_t bch_irq(int irq, void *cookie)
1030 {
1031 	struct gpmi_nand_data *this = cookie;
1032 
1033 	gpmi_clear_bch(this);
1034 	complete(&this->bch_done);
1035 	return IRQ_HANDLED;
1036 }
1037 
1038 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1039 {
1040 	/*
1041 	 * raw_len is the length to read/write including bch data which
1042 	 * we are passed in exec_op. Calculate the data length from it.
1043 	 */
1044 	if (this->bch)
1045 		return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1046 	else
1047 		return raw_len;
1048 }
1049 
1050 /* Can we use the upper's buffer directly for DMA? */
1051 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1052 			     int raw_len, struct scatterlist *sgl,
1053 			     enum dma_data_direction dr)
1054 {
1055 	int ret;
1056 	int len = gpmi_raw_len_to_len(this, raw_len);
1057 
1058 	/* first try to map the upper buffer directly */
1059 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1060 		sg_init_one(sgl, buf, len);
1061 		ret = dma_map_sg(this->dev, sgl, 1, dr);
1062 		if (ret == 0)
1063 			goto map_fail;
1064 
1065 		return true;
1066 	}
1067 
1068 map_fail:
1069 	/* We have to use our own DMA buffer. */
1070 	sg_init_one(sgl, this->data_buffer_dma, len);
1071 
1072 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1073 		memcpy(this->data_buffer_dma, buf, len);
1074 
1075 	dma_map_sg(this->dev, sgl, 1, dr);
1076 
1077 	return false;
1078 }
1079 
1080 /* add our owner bbt descriptor */
1081 static uint8_t scan_ff_pattern[] = { 0xff };
1082 static struct nand_bbt_descr gpmi_bbt_descr = {
1083 	.options	= 0,
1084 	.offs		= 0,
1085 	.len		= 1,
1086 	.pattern	= scan_ff_pattern
1087 };
1088 
1089 /*
1090  * We may change the layout if we can get the ECC info from the datasheet,
1091  * else we will use all the (page + OOB).
1092  */
1093 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1094 			      struct mtd_oob_region *oobregion)
1095 {
1096 	struct nand_chip *chip = mtd_to_nand(mtd);
1097 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1098 	struct bch_geometry *geo = &this->bch_geometry;
1099 
1100 	if (section)
1101 		return -ERANGE;
1102 
1103 	oobregion->offset = 0;
1104 	oobregion->length = geo->page_size - mtd->writesize;
1105 
1106 	return 0;
1107 }
1108 
1109 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1110 			       struct mtd_oob_region *oobregion)
1111 {
1112 	struct nand_chip *chip = mtd_to_nand(mtd);
1113 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1114 	struct bch_geometry *geo = &this->bch_geometry;
1115 
1116 	if (section)
1117 		return -ERANGE;
1118 
1119 	/* The available oob size we have. */
1120 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
1121 		oobregion->offset = geo->page_size - mtd->writesize;
1122 		oobregion->length = mtd->oobsize - oobregion->offset;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static const char * const gpmi_clks_for_mx2x[] = {
1129 	"gpmi_io",
1130 };
1131 
1132 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1133 	.ecc = gpmi_ooblayout_ecc,
1134 	.free = gpmi_ooblayout_free,
1135 };
1136 
1137 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1138 	.type = IS_MX23,
1139 	.bch_max_ecc_strength = 20,
1140 	.max_chain_delay = 16000,
1141 	.clks = gpmi_clks_for_mx2x,
1142 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1143 };
1144 
1145 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1146 	.type = IS_MX28,
1147 	.bch_max_ecc_strength = 20,
1148 	.max_chain_delay = 16000,
1149 	.support_edo_timing = true,
1150 	.clks = gpmi_clks_for_mx2x,
1151 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1152 };
1153 
1154 static const char * const gpmi_clks_for_mx6[] = {
1155 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1156 };
1157 
1158 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1159 	.type = IS_MX6Q,
1160 	.bch_max_ecc_strength = 40,
1161 	.max_chain_delay = 12000,
1162 	.support_edo_timing = true,
1163 	.clks = gpmi_clks_for_mx6,
1164 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1165 };
1166 
1167 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1168 	.type = IS_MX6SX,
1169 	.bch_max_ecc_strength = 62,
1170 	.max_chain_delay = 12000,
1171 	.support_edo_timing = true,
1172 	.clks = gpmi_clks_for_mx6,
1173 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1174 };
1175 
1176 static const char * const gpmi_clks_for_mx7d[] = {
1177 	"gpmi_io", "gpmi_bch_apb",
1178 };
1179 
1180 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1181 	.type = IS_MX7D,
1182 	.bch_max_ecc_strength = 62,
1183 	.max_chain_delay = 12000,
1184 	.support_edo_timing = true,
1185 	.clks = gpmi_clks_for_mx7d,
1186 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1187 };
1188 
1189 static const char *gpmi_clks_for_mx8qxp[GPMI_CLK_MAX] = {
1190 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb",
1191 };
1192 
1193 static const struct gpmi_devdata gpmi_devdata_imx8qxp = {
1194 	.type = IS_MX8QXP,
1195 	.bch_max_ecc_strength = 62,
1196 	.max_chain_delay = 12000,
1197 	.support_edo_timing = true,
1198 	.clks = gpmi_clks_for_mx8qxp,
1199 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx8qxp),
1200 };
1201 
1202 static int acquire_register_block(struct gpmi_nand_data *this,
1203 				  const char *res_name)
1204 {
1205 	struct platform_device *pdev = this->pdev;
1206 	struct resources *res = &this->resources;
1207 	void __iomem *p;
1208 
1209 	p = devm_platform_ioremap_resource_byname(pdev, res_name);
1210 	if (IS_ERR(p))
1211 		return PTR_ERR(p);
1212 
1213 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1214 		res->gpmi_regs = p;
1215 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1216 		res->bch_regs = p;
1217 	else
1218 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
1219 
1220 	return 0;
1221 }
1222 
1223 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1224 {
1225 	struct platform_device *pdev = this->pdev;
1226 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1227 	int err;
1228 
1229 	err = platform_get_irq_byname(pdev, res_name);
1230 	if (err < 0)
1231 		return err;
1232 
1233 	err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1234 	if (err)
1235 		dev_err(this->dev, "error requesting BCH IRQ\n");
1236 
1237 	return err;
1238 }
1239 
1240 static void release_dma_channels(struct gpmi_nand_data *this)
1241 {
1242 	unsigned int i;
1243 	for (i = 0; i < DMA_CHANS; i++)
1244 		if (this->dma_chans[i]) {
1245 			dma_release_channel(this->dma_chans[i]);
1246 			this->dma_chans[i] = NULL;
1247 		}
1248 }
1249 
1250 static int acquire_dma_channels(struct gpmi_nand_data *this)
1251 {
1252 	struct platform_device *pdev = this->pdev;
1253 	struct dma_chan *dma_chan;
1254 	int ret = 0;
1255 
1256 	/* request dma channel */
1257 	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1258 	if (IS_ERR(dma_chan)) {
1259 		ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1260 				    "DMA channel request failed\n");
1261 		release_dma_channels(this);
1262 	} else {
1263 		this->dma_chans[0] = dma_chan;
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 static int gpmi_get_clks(struct gpmi_nand_data *this)
1270 {
1271 	struct resources *r = &this->resources;
1272 	struct clk *clk;
1273 	int err, i;
1274 
1275 	for (i = 0; i < this->devdata->clks_count; i++) {
1276 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1277 		if (IS_ERR(clk)) {
1278 			err = PTR_ERR(clk);
1279 			goto err_clock;
1280 		}
1281 
1282 		r->clock[i] = clk;
1283 	}
1284 
1285 	return 0;
1286 
1287 err_clock:
1288 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1289 	return err;
1290 }
1291 
1292 static int acquire_resources(struct gpmi_nand_data *this)
1293 {
1294 	int ret;
1295 
1296 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1297 	if (ret)
1298 		goto exit_regs;
1299 
1300 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1301 	if (ret)
1302 		goto exit_regs;
1303 
1304 	ret = acquire_bch_irq(this, bch_irq);
1305 	if (ret)
1306 		goto exit_regs;
1307 
1308 	ret = acquire_dma_channels(this);
1309 	if (ret)
1310 		goto exit_regs;
1311 
1312 	ret = gpmi_get_clks(this);
1313 	if (ret)
1314 		goto exit_clock;
1315 	return 0;
1316 
1317 exit_clock:
1318 	release_dma_channels(this);
1319 exit_regs:
1320 	return ret;
1321 }
1322 
1323 static void release_resources(struct gpmi_nand_data *this)
1324 {
1325 	release_dma_channels(this);
1326 }
1327 
1328 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1329 {
1330 	struct device *dev = this->dev;
1331 	struct bch_geometry *geo = &this->bch_geometry;
1332 
1333 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1334 		dma_free_coherent(dev, geo->auxiliary_size,
1335 					this->auxiliary_virt,
1336 					this->auxiliary_phys);
1337 	kfree(this->data_buffer_dma);
1338 	kfree(this->raw_buffer);
1339 
1340 	this->data_buffer_dma	= NULL;
1341 	this->raw_buffer	= NULL;
1342 }
1343 
1344 /* Allocate the DMA buffers */
1345 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1346 {
1347 	struct bch_geometry *geo = &this->bch_geometry;
1348 	struct device *dev = this->dev;
1349 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1350 
1351 	/*
1352 	 * [2] Allocate a read/write data buffer.
1353 	 *     The gpmi_alloc_dma_buffer can be called twice.
1354 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1355 	 *     is called before the NAND identification; and we allocate a
1356 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1357 	 *     is called after.
1358 	 */
1359 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1360 					GFP_DMA | GFP_KERNEL);
1361 	if (this->data_buffer_dma == NULL)
1362 		goto error_alloc;
1363 
1364 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1365 					&this->auxiliary_phys, GFP_DMA);
1366 	if (!this->auxiliary_virt)
1367 		goto error_alloc;
1368 
1369 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1370 	if (!this->raw_buffer)
1371 		goto error_alloc;
1372 
1373 	return 0;
1374 
1375 error_alloc:
1376 	gpmi_free_dma_buffer(this);
1377 	return -ENOMEM;
1378 }
1379 
1380 /*
1381  * Handles block mark swapping.
1382  * It can be called in swapping the block mark, or swapping it back,
1383  * because the operations are the same.
1384  */
1385 static void block_mark_swapping(struct gpmi_nand_data *this,
1386 				void *payload, void *auxiliary)
1387 {
1388 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1389 	unsigned char *p;
1390 	unsigned char *a;
1391 	unsigned int  bit;
1392 	unsigned char mask;
1393 	unsigned char from_data;
1394 	unsigned char from_oob;
1395 
1396 	if (!this->swap_block_mark)
1397 		return;
1398 
1399 	/*
1400 	 * If control arrives here, we're swapping. Make some convenience
1401 	 * variables.
1402 	 */
1403 	bit = nfc_geo->block_mark_bit_offset;
1404 	p   = payload + nfc_geo->block_mark_byte_offset;
1405 	a   = auxiliary;
1406 
1407 	/*
1408 	 * Get the byte from the data area that overlays the block mark. Since
1409 	 * the ECC engine applies its own view to the bits in the page, the
1410 	 * physical block mark won't (in general) appear on a byte boundary in
1411 	 * the data.
1412 	 */
1413 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1414 
1415 	/* Get the byte from the OOB. */
1416 	from_oob = a[0];
1417 
1418 	/* Swap them. */
1419 	a[0] = from_data;
1420 
1421 	mask = (0x1 << bit) - 1;
1422 	p[0] = (p[0] & mask) | (from_oob << bit);
1423 
1424 	mask = ~0 << bit;
1425 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1426 }
1427 
1428 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1429 			       int last, int meta)
1430 {
1431 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1432 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1433 	struct mtd_info *mtd = nand_to_mtd(chip);
1434 	int i;
1435 	unsigned char *status;
1436 	unsigned int max_bitflips = 0;
1437 
1438 	/* Loop over status bytes, accumulating ECC status. */
1439 	status = this->auxiliary_virt + ALIGN(meta, 4);
1440 
1441 	for (i = first; i < last; i++, status++) {
1442 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1443 			continue;
1444 
1445 		if (*status == STATUS_UNCORRECTABLE) {
1446 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1447 			u8 *eccbuf = this->raw_buffer;
1448 			int offset, bitoffset;
1449 			int eccbytes;
1450 			int flips;
1451 
1452 			/* Read ECC bytes into our internal raw_buffer */
1453 			offset = nfc_geo->metadata_size * 8;
1454 			offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1455 			offset -= eccbits;
1456 			bitoffset = offset % 8;
1457 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1458 			offset /= 8;
1459 			eccbytes -= offset;
1460 			nand_change_read_column_op(chip, offset, eccbuf,
1461 						   eccbytes, false);
1462 
1463 			/*
1464 			 * ECC data are not byte aligned and we may have
1465 			 * in-band data in the first and last byte of
1466 			 * eccbuf. Set non-eccbits to one so that
1467 			 * nand_check_erased_ecc_chunk() does not count them
1468 			 * as bitflips.
1469 			 */
1470 			if (bitoffset)
1471 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1472 
1473 			bitoffset = (bitoffset + eccbits) % 8;
1474 			if (bitoffset)
1475 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1476 
1477 			/*
1478 			 * The ECC hardware has an uncorrectable ECC status
1479 			 * code in case we have bitflips in an erased page. As
1480 			 * nothing was written into this subpage the ECC is
1481 			 * obviously wrong and we can not trust it. We assume
1482 			 * at this point that we are reading an erased page and
1483 			 * try to correct the bitflips in buffer up to
1484 			 * ecc_strength bitflips. If this is a page with random
1485 			 * data, we exceed this number of bitflips and have a
1486 			 * ECC failure. Otherwise we use the corrected buffer.
1487 			 */
1488 			if (i == 0) {
1489 				/* The first block includes metadata */
1490 				flips = nand_check_erased_ecc_chunk(
1491 						buf + i * nfc_geo->eccn_chunk_size,
1492 						nfc_geo->eccn_chunk_size,
1493 						eccbuf, eccbytes,
1494 						this->auxiliary_virt,
1495 						nfc_geo->metadata_size,
1496 						nfc_geo->ecc_strength);
1497 			} else {
1498 				flips = nand_check_erased_ecc_chunk(
1499 						buf + i * nfc_geo->eccn_chunk_size,
1500 						nfc_geo->eccn_chunk_size,
1501 						eccbuf, eccbytes,
1502 						NULL, 0,
1503 						nfc_geo->ecc_strength);
1504 			}
1505 
1506 			if (flips > 0) {
1507 				max_bitflips = max_t(unsigned int, max_bitflips,
1508 						     flips);
1509 				mtd->ecc_stats.corrected += flips;
1510 				continue;
1511 			}
1512 
1513 			mtd->ecc_stats.failed++;
1514 			continue;
1515 		}
1516 
1517 		mtd->ecc_stats.corrected += *status;
1518 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1519 	}
1520 
1521 	return max_bitflips;
1522 }
1523 
1524 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1525 {
1526 	struct bch_geometry *geo = &this->bch_geometry;
1527 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1528 	unsigned int gf_len = geo->gf_len;
1529 	unsigned int block0_size = geo->ecc0_chunk_size;
1530 	unsigned int blockn_size = geo->eccn_chunk_size;
1531 
1532 	this->bch_flashlayout0 =
1533 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1534 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1535 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1536 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1537 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1538 
1539 	this->bch_flashlayout1 =
1540 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1541 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1542 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1543 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1544 }
1545 
1546 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1547 			      int oob_required, int page)
1548 {
1549 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1550 	struct mtd_info *mtd = nand_to_mtd(chip);
1551 	struct bch_geometry *geo = &this->bch_geometry;
1552 	unsigned int max_bitflips;
1553 	int ret;
1554 
1555 	gpmi_bch_layout_std(this);
1556 	this->bch = true;
1557 
1558 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1559 	if (ret)
1560 		return ret;
1561 
1562 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1563 					   geo->ecc_chunk_count,
1564 					   geo->auxiliary_status_offset);
1565 
1566 	/* handle the block mark swapping */
1567 	block_mark_swapping(this, buf, this->auxiliary_virt);
1568 
1569 	if (oob_required) {
1570 		/*
1571 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1572 		 * for details about our policy for delivering the OOB.
1573 		 *
1574 		 * We fill the caller's buffer with set bits, and then copy the
1575 		 * block mark to th caller's buffer. Note that, if block mark
1576 		 * swapping was necessary, it has already been done, so we can
1577 		 * rely on the first byte of the auxiliary buffer to contain
1578 		 * the block mark.
1579 		 */
1580 		memset(chip->oob_poi, ~0, mtd->oobsize);
1581 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1582 	}
1583 
1584 	return max_bitflips;
1585 }
1586 
1587 /* Fake a virtual small page for the subpage read */
1588 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1589 				 uint32_t len, uint8_t *buf, int page)
1590 {
1591 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1592 	struct bch_geometry *geo = &this->bch_geometry;
1593 	int size = chip->ecc.size; /* ECC chunk size */
1594 	int meta, n, page_size;
1595 	unsigned int max_bitflips;
1596 	unsigned int ecc_strength;
1597 	int first, last, marker_pos;
1598 	int ecc_parity_size;
1599 	int col = 0;
1600 	int ret;
1601 
1602 	/* The size of ECC parity */
1603 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1604 
1605 	/* Align it with the chunk size */
1606 	first = offs / size;
1607 	last = (offs + len - 1) / size;
1608 
1609 	if (this->swap_block_mark) {
1610 		/*
1611 		 * Find the chunk which contains the Block Marker.
1612 		 * If this chunk is in the range of [first, last],
1613 		 * we have to read out the whole page.
1614 		 * Why? since we had swapped the data at the position of Block
1615 		 * Marker to the metadata which is bound with the chunk 0.
1616 		 */
1617 		marker_pos = geo->block_mark_byte_offset / size;
1618 		if (last >= marker_pos && first <= marker_pos) {
1619 			dev_dbg(this->dev,
1620 				"page:%d, first:%d, last:%d, marker at:%d\n",
1621 				page, first, last, marker_pos);
1622 			return gpmi_ecc_read_page(chip, buf, 0, page);
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * if there is an ECC dedicate for meta:
1628 	 * - need to add an extra ECC size when calculating col and page_size,
1629 	 *   if the meta size is NOT zero.
1630 	 * - ecc0_chunk size need to set to the same size as other chunks,
1631 	 *   if the meta size is zero.
1632 	 */
1633 
1634 	meta = geo->metadata_size;
1635 	if (first) {
1636 		if (geo->ecc_for_meta)
1637 			col = meta + ecc_parity_size
1638 				+ (size + ecc_parity_size) * first;
1639 		else
1640 			col = meta + (size + ecc_parity_size) * first;
1641 
1642 		meta = 0;
1643 		buf = buf + first * size;
1644 	}
1645 
1646 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1647 	n = last - first + 1;
1648 
1649 	if (geo->ecc_for_meta && meta)
1650 		page_size = meta + ecc_parity_size
1651 			    + (size + ecc_parity_size) * n;
1652 	else
1653 		page_size = meta + (size + ecc_parity_size) * n;
1654 
1655 	ecc_strength = geo->ecc_strength >> 1;
1656 
1657 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1658 		(geo->ecc_for_meta ? n : n - 1)) |
1659 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1660 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1661 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1662 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1663 		0 : geo->ecc0_chunk_size), this);
1664 
1665 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1666 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1667 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1668 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1669 
1670 	this->bch = true;
1671 
1672 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1673 	if (ret)
1674 		return ret;
1675 
1676 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1677 		page, offs, len, col, first, n, page_size);
1678 
1679 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1680 
1681 	return max_bitflips;
1682 }
1683 
1684 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1685 			       int oob_required, int page)
1686 {
1687 	struct mtd_info *mtd = nand_to_mtd(chip);
1688 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1689 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1690 
1691 	dev_dbg(this->dev, "ecc write page.\n");
1692 
1693 	gpmi_bch_layout_std(this);
1694 	this->bch = true;
1695 
1696 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1697 
1698 	if (this->swap_block_mark) {
1699 		/*
1700 		 * When doing bad block marker swapping we must always copy the
1701 		 * input buffer as we can't modify the const buffer.
1702 		 */
1703 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1704 		buf = this->data_buffer_dma;
1705 		block_mark_swapping(this, this->data_buffer_dma,
1706 				    this->auxiliary_virt);
1707 	}
1708 
1709 	return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1710 }
1711 
1712 /*
1713  * There are several places in this driver where we have to handle the OOB and
1714  * block marks. This is the function where things are the most complicated, so
1715  * this is where we try to explain it all. All the other places refer back to
1716  * here.
1717  *
1718  * These are the rules, in order of decreasing importance:
1719  *
1720  * 1) Nothing the caller does can be allowed to imperil the block mark.
1721  *
1722  * 2) In read operations, the first byte of the OOB we return must reflect the
1723  *    true state of the block mark, no matter where that block mark appears in
1724  *    the physical page.
1725  *
1726  * 3) ECC-based read operations return an OOB full of set bits (since we never
1727  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1728  *    return).
1729  *
1730  * 4) "Raw" read operations return a direct view of the physical bytes in the
1731  *    page, using the conventional definition of which bytes are data and which
1732  *    are OOB. This gives the caller a way to see the actual, physical bytes
1733  *    in the page, without the distortions applied by our ECC engine.
1734  *
1735  *
1736  * What we do for this specific read operation depends on two questions:
1737  *
1738  * 1) Are we doing a "raw" read, or an ECC-based read?
1739  *
1740  * 2) Are we using block mark swapping or transcription?
1741  *
1742  * There are four cases, illustrated by the following Karnaugh map:
1743  *
1744  *                    |           Raw           |         ECC-based       |
1745  *       -------------+-------------------------+-------------------------+
1746  *                    | Read the conventional   |                         |
1747  *                    | OOB at the end of the   |                         |
1748  *       Swapping     | page and return it. It  |                         |
1749  *                    | contains exactly what   |                         |
1750  *                    | we want.                | Read the block mark and |
1751  *       -------------+-------------------------+ return it in a buffer   |
1752  *                    | Read the conventional   | full of set bits.       |
1753  *                    | OOB at the end of the   |                         |
1754  *                    | page and also the block |                         |
1755  *       Transcribing | mark in the metadata.   |                         |
1756  *                    | Copy the block mark     |                         |
1757  *                    | into the first byte of  |                         |
1758  *                    | the OOB.                |                         |
1759  *       -------------+-------------------------+-------------------------+
1760  *
1761  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1762  * giving an accurate view of the actual, physical bytes in the page (we're
1763  * overwriting the block mark). That's OK because it's more important to follow
1764  * rule #2.
1765  *
1766  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1767  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1768  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1769  * ECC-based or raw view of the page is implicit in which function it calls
1770  * (there is a similar pair of ECC-based/raw functions for writing).
1771  */
1772 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1773 {
1774 	struct mtd_info *mtd = nand_to_mtd(chip);
1775 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1776 	int ret;
1777 
1778 	/* clear the OOB buffer */
1779 	memset(chip->oob_poi, ~0, mtd->oobsize);
1780 
1781 	/* Read out the conventional OOB. */
1782 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1783 				mtd->oobsize);
1784 	if (ret)
1785 		return ret;
1786 
1787 	/*
1788 	 * Now, we want to make sure the block mark is correct. In the
1789 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1790 	 * Otherwise, we need to explicitly read it.
1791 	 */
1792 	if (GPMI_IS_MX23(this)) {
1793 		/* Read the block mark into the first byte of the OOB buffer. */
1794 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1795 		if (ret)
1796 			return ret;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1803 {
1804 	struct mtd_info *mtd = nand_to_mtd(chip);
1805 	struct mtd_oob_region of = { };
1806 
1807 	/* Do we have available oob area? */
1808 	mtd_ooblayout_free(mtd, 0, &of);
1809 	if (!of.length)
1810 		return -EPERM;
1811 
1812 	if (!nand_is_slc(chip))
1813 		return -EPERM;
1814 
1815 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1816 				 chip->oob_poi + of.offset, of.length);
1817 }
1818 
1819 /*
1820  * This function reads a NAND page without involving the ECC engine (no HW
1821  * ECC correction).
1822  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1823  * inline (interleaved with payload DATA), and do not align data chunk on
1824  * byte boundaries.
1825  * We thus need to take care moving the payload data and ECC bits stored in the
1826  * page into the provided buffers, which is why we're using nand_extract_bits().
1827  *
1828  * See set_geometry_by_ecc_info inline comments to have a full description
1829  * of the layout used by the GPMI controller.
1830  */
1831 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1832 				  int oob_required, int page)
1833 {
1834 	struct mtd_info *mtd = nand_to_mtd(chip);
1835 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1836 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1837 	int eccsize = nfc_geo->eccn_chunk_size;
1838 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1839 	u8 *tmp_buf = this->raw_buffer;
1840 	size_t src_bit_off;
1841 	size_t oob_bit_off;
1842 	size_t oob_byte_off;
1843 	uint8_t *oob = chip->oob_poi;
1844 	int step;
1845 	int ret;
1846 
1847 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1848 				mtd->writesize + mtd->oobsize);
1849 	if (ret)
1850 		return ret;
1851 
1852 	/*
1853 	 * If required, swap the bad block marker and the data stored in the
1854 	 * metadata section, so that we don't wrongly consider a block as bad.
1855 	 *
1856 	 * See the layout description for a detailed explanation on why this
1857 	 * is needed.
1858 	 */
1859 	if (this->swap_block_mark)
1860 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1861 
1862 	/*
1863 	 * Copy the metadata section into the oob buffer (this section is
1864 	 * guaranteed to be aligned on a byte boundary).
1865 	 */
1866 	if (oob_required)
1867 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1868 
1869 	oob_bit_off = nfc_geo->metadata_size * 8;
1870 	src_bit_off = oob_bit_off;
1871 
1872 	/* Extract interleaved payload data and ECC bits */
1873 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1874 		if (buf)
1875 			nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1876 					  src_bit_off, eccsize * 8);
1877 		src_bit_off += eccsize * 8;
1878 
1879 		/* Align last ECC block to align a byte boundary */
1880 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1881 		    (oob_bit_off + eccbits) % 8)
1882 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1883 
1884 		if (oob_required)
1885 			nand_extract_bits(oob, oob_bit_off, tmp_buf,
1886 					  src_bit_off, eccbits);
1887 
1888 		src_bit_off += eccbits;
1889 		oob_bit_off += eccbits;
1890 	}
1891 
1892 	if (oob_required) {
1893 		oob_byte_off = oob_bit_off / 8;
1894 
1895 		if (oob_byte_off < mtd->oobsize)
1896 			memcpy(oob + oob_byte_off,
1897 			       tmp_buf + mtd->writesize + oob_byte_off,
1898 			       mtd->oobsize - oob_byte_off);
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 /*
1905  * This function writes a NAND page without involving the ECC engine (no HW
1906  * ECC generation).
1907  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1908  * inline (interleaved with payload DATA), and do not align data chunk on
1909  * byte boundaries.
1910  * We thus need to take care moving the OOB area at the right place in the
1911  * final page, which is why we're using nand_extract_bits().
1912  *
1913  * See set_geometry_by_ecc_info inline comments to have a full description
1914  * of the layout used by the GPMI controller.
1915  */
1916 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1917 				   int oob_required, int page)
1918 {
1919 	struct mtd_info *mtd = nand_to_mtd(chip);
1920 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1921 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1922 	int eccsize = nfc_geo->eccn_chunk_size;
1923 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1924 	u8 *tmp_buf = this->raw_buffer;
1925 	uint8_t *oob = chip->oob_poi;
1926 	size_t dst_bit_off;
1927 	size_t oob_bit_off;
1928 	size_t oob_byte_off;
1929 	int step;
1930 
1931 	/*
1932 	 * Initialize all bits to 1 in case we don't have a buffer for the
1933 	 * payload or oob data in order to leave unspecified bits of data
1934 	 * to their initial state.
1935 	 */
1936 	if (!buf || !oob_required)
1937 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1938 
1939 	/*
1940 	 * First copy the metadata section (stored in oob buffer) at the
1941 	 * beginning of the page, as imposed by the GPMI layout.
1942 	 */
1943 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1944 	oob_bit_off = nfc_geo->metadata_size * 8;
1945 	dst_bit_off = oob_bit_off;
1946 
1947 	/* Interleave payload data and ECC bits */
1948 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1949 		if (buf)
1950 			nand_extract_bits(tmp_buf, dst_bit_off, buf,
1951 					  step * eccsize * 8, eccsize * 8);
1952 		dst_bit_off += eccsize * 8;
1953 
1954 		/* Align last ECC block to align a byte boundary */
1955 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1956 		    (oob_bit_off + eccbits) % 8)
1957 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1958 
1959 		if (oob_required)
1960 			nand_extract_bits(tmp_buf, dst_bit_off, oob,
1961 					  oob_bit_off, eccbits);
1962 
1963 		dst_bit_off += eccbits;
1964 		oob_bit_off += eccbits;
1965 	}
1966 
1967 	oob_byte_off = oob_bit_off / 8;
1968 
1969 	if (oob_required && oob_byte_off < mtd->oobsize)
1970 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1971 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1972 
1973 	/*
1974 	 * If required, swap the bad block marker and the first byte of the
1975 	 * metadata section, so that we don't modify the bad block marker.
1976 	 *
1977 	 * See the layout description for a detailed explanation on why this
1978 	 * is needed.
1979 	 */
1980 	if (this->swap_block_mark)
1981 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1982 
1983 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1984 				 mtd->writesize + mtd->oobsize);
1985 }
1986 
1987 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1988 {
1989 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1990 }
1991 
1992 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1993 {
1994 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1995 }
1996 
1997 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1998 {
1999 	struct mtd_info *mtd = nand_to_mtd(chip);
2000 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2001 	int ret = 0;
2002 	uint8_t *block_mark;
2003 	int column, page, chipnr;
2004 
2005 	chipnr = (int)(ofs >> chip->chip_shift);
2006 	nand_select_target(chip, chipnr);
2007 
2008 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
2009 
2010 	/* Write the block mark. */
2011 	block_mark = this->data_buffer_dma;
2012 	block_mark[0] = 0; /* bad block marker */
2013 
2014 	/* Shift to get page */
2015 	page = (int)(ofs >> chip->page_shift);
2016 
2017 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
2018 
2019 	nand_deselect_target(chip);
2020 
2021 	return ret;
2022 }
2023 
2024 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2025 {
2026 	struct boot_rom_geometry *geometry = &this->rom_geometry;
2027 
2028 	/*
2029 	 * Set the boot block stride size.
2030 	 *
2031 	 * In principle, we should be reading this from the OTP bits, since
2032 	 * that's where the ROM is going to get it. In fact, we don't have any
2033 	 * way to read the OTP bits, so we go with the default and hope for the
2034 	 * best.
2035 	 */
2036 	geometry->stride_size_in_pages = 64;
2037 
2038 	/*
2039 	 * Set the search area stride exponent.
2040 	 *
2041 	 * In principle, we should be reading this from the OTP bits, since
2042 	 * that's where the ROM is going to get it. In fact, we don't have any
2043 	 * way to read the OTP bits, so we go with the default and hope for the
2044 	 * best.
2045 	 */
2046 	geometry->search_area_stride_exponent = 2;
2047 	return 0;
2048 }
2049 
2050 static const char  *fingerprint = "STMP";
2051 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2052 {
2053 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2054 	struct device *dev = this->dev;
2055 	struct nand_chip *chip = &this->nand;
2056 	unsigned int search_area_size_in_strides;
2057 	unsigned int stride;
2058 	unsigned int page;
2059 	u8 *buffer = nand_get_data_buf(chip);
2060 	int found_an_ncb_fingerprint = false;
2061 	int ret;
2062 
2063 	/* Compute the number of strides in a search area. */
2064 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2065 
2066 	nand_select_target(chip, 0);
2067 
2068 	/*
2069 	 * Loop through the first search area, looking for the NCB fingerprint.
2070 	 */
2071 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2072 
2073 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2074 		/* Compute the page addresses. */
2075 		page = stride * rom_geo->stride_size_in_pages;
2076 
2077 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2078 
2079 		/*
2080 		 * Read the NCB fingerprint. The fingerprint is four bytes long
2081 		 * and starts in the 12th byte of the page.
2082 		 */
2083 		ret = nand_read_page_op(chip, page, 12, buffer,
2084 					strlen(fingerprint));
2085 		if (ret)
2086 			continue;
2087 
2088 		/* Look for the fingerprint. */
2089 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2090 			found_an_ncb_fingerprint = true;
2091 			break;
2092 		}
2093 
2094 	}
2095 
2096 	nand_deselect_target(chip);
2097 
2098 	if (found_an_ncb_fingerprint)
2099 		dev_dbg(dev, "\tFound a fingerprint\n");
2100 	else
2101 		dev_dbg(dev, "\tNo fingerprint found\n");
2102 	return found_an_ncb_fingerprint;
2103 }
2104 
2105 /* Writes a transcription stamp. */
2106 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2107 {
2108 	struct device *dev = this->dev;
2109 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2110 	struct nand_chip *chip = &this->nand;
2111 	struct mtd_info *mtd = nand_to_mtd(chip);
2112 	unsigned int block_size_in_pages;
2113 	unsigned int search_area_size_in_strides;
2114 	unsigned int search_area_size_in_pages;
2115 	unsigned int search_area_size_in_blocks;
2116 	unsigned int block;
2117 	unsigned int stride;
2118 	unsigned int page;
2119 	u8 *buffer = nand_get_data_buf(chip);
2120 	int status;
2121 
2122 	/* Compute the search area geometry. */
2123 	block_size_in_pages = mtd->erasesize / mtd->writesize;
2124 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2125 	search_area_size_in_pages = search_area_size_in_strides *
2126 					rom_geo->stride_size_in_pages;
2127 	search_area_size_in_blocks =
2128 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
2129 				    block_size_in_pages;
2130 
2131 	dev_dbg(dev, "Search Area Geometry :\n");
2132 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2133 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2134 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2135 
2136 	nand_select_target(chip, 0);
2137 
2138 	/* Loop over blocks in the first search area, erasing them. */
2139 	dev_dbg(dev, "Erasing the search area...\n");
2140 
2141 	for (block = 0; block < search_area_size_in_blocks; block++) {
2142 		/* Erase this block. */
2143 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
2144 		status = nand_erase_op(chip, block);
2145 		if (status)
2146 			dev_err(dev, "[%s] Erase failed.\n", __func__);
2147 	}
2148 
2149 	/* Write the NCB fingerprint into the page buffer. */
2150 	memset(buffer, ~0, mtd->writesize);
2151 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2152 
2153 	/* Loop through the first search area, writing NCB fingerprints. */
2154 	dev_dbg(dev, "Writing NCB fingerprints...\n");
2155 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2156 		/* Compute the page addresses. */
2157 		page = stride * rom_geo->stride_size_in_pages;
2158 
2159 		/* Write the first page of the current stride. */
2160 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2161 
2162 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2163 		if (status)
2164 			dev_err(dev, "[%s] Write failed.\n", __func__);
2165 	}
2166 
2167 	nand_deselect_target(chip);
2168 
2169 	return 0;
2170 }
2171 
2172 static int mx23_boot_init(struct gpmi_nand_data  *this)
2173 {
2174 	struct device *dev = this->dev;
2175 	struct nand_chip *chip = &this->nand;
2176 	struct mtd_info *mtd = nand_to_mtd(chip);
2177 	unsigned int block_count;
2178 	unsigned int block;
2179 	int     chipnr;
2180 	int     page;
2181 	loff_t  byte;
2182 	uint8_t block_mark;
2183 	int     ret = 0;
2184 
2185 	/*
2186 	 * If control arrives here, we can't use block mark swapping, which
2187 	 * means we're forced to use transcription. First, scan for the
2188 	 * transcription stamp. If we find it, then we don't have to do
2189 	 * anything -- the block marks are already transcribed.
2190 	 */
2191 	if (mx23_check_transcription_stamp(this))
2192 		return 0;
2193 
2194 	/*
2195 	 * If control arrives here, we couldn't find a transcription stamp, so
2196 	 * so we presume the block marks are in the conventional location.
2197 	 */
2198 	dev_dbg(dev, "Transcribing bad block marks...\n");
2199 
2200 	/* Compute the number of blocks in the entire medium. */
2201 	block_count = nanddev_eraseblocks_per_target(&chip->base);
2202 
2203 	/*
2204 	 * Loop over all the blocks in the medium, transcribing block marks as
2205 	 * we go.
2206 	 */
2207 	for (block = 0; block < block_count; block++) {
2208 		/*
2209 		 * Compute the chip, page and byte addresses for this block's
2210 		 * conventional mark.
2211 		 */
2212 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2213 		page = block << (chip->phys_erase_shift - chip->page_shift);
2214 		byte = block <<  chip->phys_erase_shift;
2215 
2216 		/* Send the command to read the conventional block mark. */
2217 		nand_select_target(chip, chipnr);
2218 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2219 					1);
2220 		nand_deselect_target(chip);
2221 
2222 		if (ret)
2223 			continue;
2224 
2225 		/*
2226 		 * Check if the block is marked bad. If so, we need to mark it
2227 		 * again, but this time the result will be a mark in the
2228 		 * location where we transcribe block marks.
2229 		 */
2230 		if (block_mark != 0xff) {
2231 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
2232 			ret = chip->legacy.block_markbad(chip, byte);
2233 			if (ret)
2234 				dev_err(dev,
2235 					"Failed to mark block bad with ret %d\n",
2236 					ret);
2237 		}
2238 	}
2239 
2240 	/* Write the stamp that indicates we've transcribed the block marks. */
2241 	mx23_write_transcription_stamp(this);
2242 	return 0;
2243 }
2244 
2245 static int nand_boot_init(struct gpmi_nand_data  *this)
2246 {
2247 	nand_boot_set_geometry(this);
2248 
2249 	/* This is ROM arch-specific initilization before the BBT scanning. */
2250 	if (GPMI_IS_MX23(this))
2251 		return mx23_boot_init(this);
2252 	return 0;
2253 }
2254 
2255 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2256 {
2257 	int ret;
2258 
2259 	/* Free the temporary DMA memory for reading ID. */
2260 	gpmi_free_dma_buffer(this);
2261 
2262 	/* Set up the NFC geometry which is used by BCH. */
2263 	ret = bch_set_geometry(this);
2264 	if (ret) {
2265 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2266 		return ret;
2267 	}
2268 
2269 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2270 	return gpmi_alloc_dma_buffer(this);
2271 }
2272 
2273 static int gpmi_init_last(struct gpmi_nand_data *this)
2274 {
2275 	struct nand_chip *chip = &this->nand;
2276 	struct mtd_info *mtd = nand_to_mtd(chip);
2277 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2278 	struct bch_geometry *bch_geo = &this->bch_geometry;
2279 	int ret;
2280 
2281 	/* Set up the medium geometry */
2282 	ret = gpmi_set_geometry(this);
2283 	if (ret)
2284 		return ret;
2285 
2286 	/* Init the nand_ecc_ctrl{} */
2287 	ecc->read_page	= gpmi_ecc_read_page;
2288 	ecc->write_page	= gpmi_ecc_write_page;
2289 	ecc->read_oob	= gpmi_ecc_read_oob;
2290 	ecc->write_oob	= gpmi_ecc_write_oob;
2291 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2292 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2293 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2294 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2295 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2296 	ecc->size	= bch_geo->eccn_chunk_size;
2297 	ecc->strength	= bch_geo->ecc_strength;
2298 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2299 
2300 	/*
2301 	 * We only enable the subpage read when:
2302 	 *  (1) the chip is imx6, and
2303 	 *  (2) the size of the ECC parity is byte aligned.
2304 	 */
2305 	if (GPMI_IS_MX6(this) &&
2306 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2307 		ecc->read_subpage = gpmi_ecc_read_subpage;
2308 		chip->options |= NAND_SUBPAGE_READ;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
2314 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2315 {
2316 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2317 	int ret;
2318 
2319 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2320 		chip->bbt_options |= NAND_BBT_NO_OOB;
2321 
2322 		if (of_property_read_bool(this->dev->of_node,
2323 					  "fsl,no-blockmark-swap"))
2324 			this->swap_block_mark = false;
2325 	}
2326 	dev_dbg(this->dev, "Blockmark swapping %s\n",
2327 		str_enabled_disabled(this->swap_block_mark));
2328 
2329 	ret = gpmi_init_last(this);
2330 	if (ret)
2331 		return ret;
2332 
2333 	chip->options |= NAND_SKIP_BBTSCAN;
2334 
2335 	return 0;
2336 }
2337 
2338 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2339 {
2340 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2341 
2342 	this->ntransfers++;
2343 
2344 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2345 		return NULL;
2346 
2347 	return transfer;
2348 }
2349 
2350 static struct dma_async_tx_descriptor *gpmi_chain_command(
2351 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2352 {
2353 	struct dma_chan *channel = get_dma_chan(this);
2354 	struct dma_async_tx_descriptor *desc;
2355 	struct gpmi_transfer *transfer;
2356 	int chip = this->nand.cur_cs;
2357 	u32 pio[3];
2358 
2359 	/* [1] send out the PIO words */
2360 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2361 		| BM_GPMI_CTRL0_WORD_LENGTH
2362 		| BF_GPMI_CTRL0_CS(chip, this)
2363 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2364 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2365 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2366 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2367 	pio[1] = 0;
2368 	pio[2] = 0;
2369 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2370 				      DMA_TRANS_NONE, 0);
2371 	if (!desc)
2372 		return NULL;
2373 
2374 	transfer = get_next_transfer(this);
2375 	if (!transfer)
2376 		return NULL;
2377 
2378 	transfer->cmdbuf[0] = cmd;
2379 	if (naddr)
2380 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2381 
2382 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2383 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2384 
2385 	transfer->direction = DMA_TO_DEVICE;
2386 
2387 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2388 				       MXS_DMA_CTRL_WAIT4END);
2389 	return desc;
2390 }
2391 
2392 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2393 	struct gpmi_nand_data *this)
2394 {
2395 	struct dma_chan *channel = get_dma_chan(this);
2396 	u32 pio[2];
2397 
2398 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2399 		| BM_GPMI_CTRL0_WORD_LENGTH
2400 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2401 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2402 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2403 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2404 	pio[1] = 0;
2405 
2406 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2407 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2408 }
2409 
2410 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2411 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2412 {
2413 	struct dma_async_tx_descriptor *desc;
2414 	struct dma_chan *channel = get_dma_chan(this);
2415 	struct gpmi_transfer *transfer;
2416 	u32 pio[6] = {};
2417 
2418 	transfer = get_next_transfer(this);
2419 	if (!transfer)
2420 		return NULL;
2421 
2422 	transfer->direction = DMA_FROM_DEVICE;
2423 
2424 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2425 				   DMA_FROM_DEVICE);
2426 
2427 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2428 		| BM_GPMI_CTRL0_WORD_LENGTH
2429 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2430 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2431 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2432 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2433 
2434 	if (this->bch) {
2435 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2436 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2437 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2438 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2439 		pio[3] = raw_len;
2440 		pio[4] = transfer->sgl.dma_address;
2441 		pio[5] = this->auxiliary_phys;
2442 	}
2443 
2444 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2445 				      DMA_TRANS_NONE, 0);
2446 	if (!desc)
2447 		return NULL;
2448 
2449 	if (!this->bch)
2450 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2451 					     DMA_DEV_TO_MEM,
2452 					     MXS_DMA_CTRL_WAIT4END);
2453 
2454 	return desc;
2455 }
2456 
2457 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2458 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2459 {
2460 	struct dma_chan *channel = get_dma_chan(this);
2461 	struct dma_async_tx_descriptor *desc;
2462 	struct gpmi_transfer *transfer;
2463 	u32 pio[6] = {};
2464 
2465 	transfer = get_next_transfer(this);
2466 	if (!transfer)
2467 		return NULL;
2468 
2469 	transfer->direction = DMA_TO_DEVICE;
2470 
2471 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2472 
2473 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2474 		| BM_GPMI_CTRL0_WORD_LENGTH
2475 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2476 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2477 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2478 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2479 
2480 	if (this->bch) {
2481 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2482 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2483 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2484 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2485 		pio[3] = raw_len;
2486 		pio[4] = transfer->sgl.dma_address;
2487 		pio[5] = this->auxiliary_phys;
2488 	}
2489 
2490 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2491 				      DMA_TRANS_NONE,
2492 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2493 	if (!desc)
2494 		return NULL;
2495 
2496 	if (!this->bch)
2497 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2498 					       DMA_MEM_TO_DEV,
2499 					       MXS_DMA_CTRL_WAIT4END);
2500 
2501 	return desc;
2502 }
2503 
2504 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2505 			     const struct nand_operation *op,
2506 			     bool check_only)
2507 {
2508 	const struct nand_op_instr *instr;
2509 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2510 	struct dma_async_tx_descriptor *desc = NULL;
2511 	int i, ret, buf_len = 0, nbufs = 0;
2512 	u8 cmd = 0;
2513 	void *buf_read = NULL;
2514 	const void *buf_write = NULL;
2515 	bool direct = false;
2516 	struct completion *dma_completion, *bch_completion;
2517 	unsigned long to;
2518 
2519 	if (check_only)
2520 		return 0;
2521 
2522 	this->ntransfers = 0;
2523 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2524 		this->transfers[i].direction = DMA_NONE;
2525 
2526 	ret = pm_runtime_resume_and_get(this->dev);
2527 	if (ret < 0)
2528 		return ret;
2529 
2530 	/*
2531 	 * This driver currently supports only one NAND chip. Plus, dies share
2532 	 * the same configuration. So once timings have been applied on the
2533 	 * controller side, they will not change anymore. When the time will
2534 	 * come, the check on must_apply_timings will have to be dropped.
2535 	 */
2536 	if (this->hw.must_apply_timings) {
2537 		this->hw.must_apply_timings = false;
2538 		ret = gpmi_nfc_apply_timings(this);
2539 		if (ret)
2540 			goto out_pm;
2541 	}
2542 
2543 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2544 
2545 	for (i = 0; i < op->ninstrs; i++) {
2546 		instr = &op->instrs[i];
2547 
2548 		nand_op_trace("  ", instr);
2549 
2550 		switch (instr->type) {
2551 		case NAND_OP_WAITRDY_INSTR:
2552 			desc = gpmi_chain_wait_ready(this);
2553 			break;
2554 		case NAND_OP_CMD_INSTR:
2555 			cmd = instr->ctx.cmd.opcode;
2556 
2557 			/*
2558 			 * When this command has an address cycle chain it
2559 			 * together with the address cycle
2560 			 */
2561 			if (i + 1 != op->ninstrs &&
2562 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2563 				continue;
2564 
2565 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2566 
2567 			break;
2568 		case NAND_OP_ADDR_INSTR:
2569 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2570 						  instr->ctx.addr.naddrs);
2571 			break;
2572 		case NAND_OP_DATA_OUT_INSTR:
2573 			buf_write = instr->ctx.data.buf.out;
2574 			buf_len = instr->ctx.data.len;
2575 			nbufs++;
2576 
2577 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2578 
2579 			break;
2580 		case NAND_OP_DATA_IN_INSTR:
2581 			if (!instr->ctx.data.len)
2582 				break;
2583 			buf_read = instr->ctx.data.buf.in;
2584 			buf_len = instr->ctx.data.len;
2585 			nbufs++;
2586 
2587 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2588 						   &direct);
2589 			break;
2590 		}
2591 
2592 		if (!desc) {
2593 			ret = -ENXIO;
2594 			goto unmap;
2595 		}
2596 	}
2597 
2598 	dev_dbg(this->dev, "%s setup done\n", __func__);
2599 
2600 	if (nbufs > 1) {
2601 		dev_err(this->dev, "Multiple data instructions not supported\n");
2602 		ret = -EINVAL;
2603 		goto unmap;
2604 	}
2605 
2606 	if (this->bch) {
2607 		writel(this->bch_flashlayout0,
2608 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2609 		writel(this->bch_flashlayout1,
2610 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2611 	}
2612 
2613 	desc->callback = dma_irq_callback;
2614 	desc->callback_param = this;
2615 	dma_completion = &this->dma_done;
2616 	bch_completion = NULL;
2617 
2618 	init_completion(dma_completion);
2619 
2620 	if (this->bch && buf_read) {
2621 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2622 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2623 		bch_completion = &this->bch_done;
2624 		init_completion(bch_completion);
2625 	}
2626 
2627 	dmaengine_submit(desc);
2628 	dma_async_issue_pending(get_dma_chan(this));
2629 
2630 	to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2631 	if (!to) {
2632 		dev_err(this->dev, "DMA timeout, last DMA\n");
2633 		gpmi_dump_info(this);
2634 		ret = -ETIMEDOUT;
2635 		goto unmap;
2636 	}
2637 
2638 	if (this->bch && buf_read) {
2639 		to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2640 		if (!to) {
2641 			dev_err(this->dev, "BCH timeout, last DMA\n");
2642 			gpmi_dump_info(this);
2643 			ret = -ETIMEDOUT;
2644 			goto unmap;
2645 		}
2646 	}
2647 
2648 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2649 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2650 	gpmi_clear_bch(this);
2651 
2652 	ret = 0;
2653 
2654 unmap:
2655 	for (i = 0; i < this->ntransfers; i++) {
2656 		struct gpmi_transfer *transfer = &this->transfers[i];
2657 
2658 		if (transfer->direction != DMA_NONE)
2659 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2660 				     transfer->direction);
2661 	}
2662 
2663 	if (!ret && buf_read && !direct)
2664 		memcpy(buf_read, this->data_buffer_dma,
2665 		       gpmi_raw_len_to_len(this, buf_len));
2666 
2667 	this->bch = false;
2668 
2669 out_pm:
2670 	pm_runtime_mark_last_busy(this->dev);
2671 	pm_runtime_put_autosuspend(this->dev);
2672 
2673 	return ret;
2674 }
2675 
2676 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2677 	.attach_chip = gpmi_nand_attach_chip,
2678 	.setup_interface = gpmi_setup_interface,
2679 	.exec_op = gpmi_nfc_exec_op,
2680 };
2681 
2682 static int gpmi_nand_init(struct gpmi_nand_data *this)
2683 {
2684 	struct nand_chip *chip = &this->nand;
2685 	struct mtd_info  *mtd = nand_to_mtd(chip);
2686 	int ret;
2687 
2688 	/* init the MTD data structures */
2689 	mtd->name		= "gpmi-nand";
2690 	mtd->dev.parent		= this->dev;
2691 
2692 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2693 	nand_set_controller_data(chip, this);
2694 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2695 	chip->legacy.block_markbad = gpmi_block_markbad;
2696 	chip->badblock_pattern	= &gpmi_bbt_descr;
2697 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2698 
2699 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2700 	this->swap_block_mark = !GPMI_IS_MX23(this);
2701 
2702 	/*
2703 	 * Allocate a temporary DMA buffer for reading ID in the
2704 	 * nand_scan_ident().
2705 	 */
2706 	this->bch_geometry.payload_size = 1024;
2707 	this->bch_geometry.auxiliary_size = 128;
2708 	ret = gpmi_alloc_dma_buffer(this);
2709 	if (ret)
2710 		return ret;
2711 
2712 	nand_controller_init(&this->base);
2713 	this->base.ops = &gpmi_nand_controller_ops;
2714 	chip->controller = &this->base;
2715 
2716 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2717 	if (ret)
2718 		goto err_out;
2719 
2720 	ret = nand_boot_init(this);
2721 	if (ret)
2722 		goto err_nand_cleanup;
2723 	ret = nand_create_bbt(chip);
2724 	if (ret)
2725 		goto err_nand_cleanup;
2726 
2727 	ret = mtd_device_register(mtd, NULL, 0);
2728 	if (ret)
2729 		goto err_nand_cleanup;
2730 	return 0;
2731 
2732 err_nand_cleanup:
2733 	nand_cleanup(chip);
2734 err_out:
2735 	gpmi_free_dma_buffer(this);
2736 	return ret;
2737 }
2738 
2739 static const struct of_device_id gpmi_nand_id_table[] = {
2740 	{ .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2741 	{ .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2742 	{ .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2743 	{ .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2744 	{ .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2745 	{ .compatible = "fsl,imx8qxp-gpmi-nand", .data = &gpmi_devdata_imx8qxp, },
2746 	{}
2747 };
2748 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2749 
2750 static int gpmi_nand_probe(struct platform_device *pdev)
2751 {
2752 	struct gpmi_nand_data *this;
2753 	int ret;
2754 
2755 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2756 	if (!this)
2757 		return -ENOMEM;
2758 
2759 	this->devdata = of_device_get_match_data(&pdev->dev);
2760 	platform_set_drvdata(pdev, this);
2761 	this->pdev  = pdev;
2762 	this->dev   = &pdev->dev;
2763 
2764 	ret = acquire_resources(this);
2765 	if (ret)
2766 		goto exit_acquire_resources;
2767 
2768 	pm_runtime_enable(&pdev->dev);
2769 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2770 	pm_runtime_use_autosuspend(&pdev->dev);
2771 #ifndef CONFIG_PM
2772 	ret = gpmi_enable_clk(this);
2773 	if (ret)
2774 		goto exit_acquire_resources;
2775 #endif
2776 
2777 	ret = gpmi_init(this);
2778 	if (ret)
2779 		goto exit_nfc_init;
2780 
2781 	ret = gpmi_nand_init(this);
2782 	if (ret)
2783 		goto exit_nfc_init;
2784 
2785 	dev_info(this->dev, "driver registered.\n");
2786 
2787 	return 0;
2788 
2789 exit_nfc_init:
2790 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2791 	pm_runtime_disable(&pdev->dev);
2792 	release_resources(this);
2793 exit_acquire_resources:
2794 
2795 	return ret;
2796 }
2797 
2798 static void gpmi_nand_remove(struct platform_device *pdev)
2799 {
2800 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2801 	struct nand_chip *chip = &this->nand;
2802 	int ret;
2803 
2804 	ret = mtd_device_unregister(nand_to_mtd(chip));
2805 	WARN_ON(ret);
2806 	nand_cleanup(chip);
2807 	gpmi_free_dma_buffer(this);
2808 	release_resources(this);
2809 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2810 	pm_runtime_disable(&pdev->dev);
2811 #ifndef CONFIG_PM
2812 	gpmi_disable_clk(this);
2813 #endif
2814 }
2815 
2816 static int gpmi_pm_suspend(struct device *dev)
2817 {
2818 	int ret;
2819 
2820 	pinctrl_pm_select_sleep_state(dev);
2821 	ret = pm_runtime_force_suspend(dev);
2822 
2823 	return ret;
2824 }
2825 
2826 static int gpmi_pm_resume(struct device *dev)
2827 {
2828 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2829 	int ret;
2830 
2831 	ret = pm_runtime_force_resume(dev);
2832 	if (ret) {
2833 		dev_err(this->dev, "Error in resume %d\n", ret);
2834 		return ret;
2835 	}
2836 
2837 	pinctrl_pm_select_default_state(dev);
2838 
2839 	/* re-init the GPMI registers */
2840 	ret = gpmi_init(this);
2841 	if (ret) {
2842 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2843 		return ret;
2844 	}
2845 
2846 	/* Set flag to get timing setup restored for next exec_op */
2847 	if (this->hw.clk_rate)
2848 		this->hw.must_apply_timings = true;
2849 
2850 	/* re-init the BCH registers */
2851 	ret = bch_set_geometry(this);
2852 	if (ret) {
2853 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2854 		return ret;
2855 	}
2856 
2857 	return 0;
2858 }
2859 
2860 static int gpmi_runtime_suspend(struct device *dev)
2861 {
2862 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2863 
2864 	gpmi_disable_clk(this);
2865 
2866 	return 0;
2867 }
2868 
2869 static int gpmi_runtime_resume(struct device *dev)
2870 {
2871 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2872 	int ret;
2873 
2874 	ret = gpmi_enable_clk(this);
2875 	if (ret)
2876 		return ret;
2877 
2878 	return 0;
2879 
2880 }
2881 
2882 static const struct dev_pm_ops gpmi_pm_ops = {
2883 	SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2884 	RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2885 };
2886 
2887 static struct platform_driver gpmi_nand_driver = {
2888 	.driver = {
2889 		.name = "gpmi-nand",
2890 		.pm = pm_ptr(&gpmi_pm_ops),
2891 		.of_match_table = gpmi_nand_id_table,
2892 	},
2893 	.probe = gpmi_nand_probe,
2894 	.remove = gpmi_nand_remove,
2895 };
2896 module_platform_driver(gpmi_nand_driver);
2897 
2898 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2899 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2900 MODULE_LICENSE("GPL");
2901