1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/of.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/dma/mxs-dma.h> 19 #include "gpmi-nand.h" 20 #include "gpmi-regs.h" 21 #include "bch-regs.h" 22 23 /* Resource names for the GPMI NAND driver. */ 24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 27 28 /* Converts time to clock cycles */ 29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) 30 31 #define MXS_SET_ADDR 0x4 32 #define MXS_CLR_ADDR 0x8 33 /* 34 * Clear the bit and poll it cleared. This is usually called with 35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE 36 * (bit 30). 37 */ 38 static int clear_poll_bit(void __iomem *addr, u32 mask) 39 { 40 int timeout = 0x400; 41 42 /* clear the bit */ 43 writel(mask, addr + MXS_CLR_ADDR); 44 45 /* 46 * SFTRST needs 3 GPMI clocks to settle, the reference manual 47 * recommends to wait 1us. 48 */ 49 udelay(1); 50 51 /* poll the bit becoming clear */ 52 while ((readl(addr) & mask) && --timeout) 53 /* nothing */; 54 55 return !timeout; 56 } 57 58 #define MODULE_CLKGATE (1 << 30) 59 #define MODULE_SFTRST (1 << 31) 60 /* 61 * The current mxs_reset_block() will do two things: 62 * [1] enable the module. 63 * [2] reset the module. 64 * 65 * In most of the cases, it's ok. 66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). 67 * If you try to soft reset the BCH block, it becomes unusable until 68 * the next hard reset. This case occurs in the NAND boot mode. When the board 69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. 70 * So If the driver tries to reset the BCH again, the BCH will not work anymore. 71 * You will see a DMA timeout in this case. The bug has been fixed 72 * in the following chips, such as MX28. 73 * 74 * To avoid this bug, just add a new parameter `just_enable` for 75 * the mxs_reset_block(), and rewrite it here. 76 */ 77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) 78 { 79 int ret; 80 int timeout = 0x400; 81 82 /* clear and poll SFTRST */ 83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 84 if (unlikely(ret)) 85 goto error; 86 87 /* clear CLKGATE */ 88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); 89 90 if (!just_enable) { 91 /* set SFTRST to reset the block */ 92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); 93 udelay(1); 94 95 /* poll CLKGATE becoming set */ 96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) 97 /* nothing */; 98 if (unlikely(!timeout)) 99 goto error; 100 } 101 102 /* clear and poll SFTRST */ 103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 104 if (unlikely(ret)) 105 goto error; 106 107 /* clear and poll CLKGATE */ 108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); 109 if (unlikely(ret)) 110 goto error; 111 112 return 0; 113 114 error: 115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); 116 return -ETIMEDOUT; 117 } 118 119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) 120 { 121 struct clk *clk; 122 int ret; 123 int i; 124 125 for (i = 0; i < GPMI_CLK_MAX; i++) { 126 clk = this->resources.clock[i]; 127 if (!clk) 128 break; 129 130 if (v) { 131 ret = clk_prepare_enable(clk); 132 if (ret) 133 goto err_clk; 134 } else { 135 clk_disable_unprepare(clk); 136 } 137 } 138 return 0; 139 140 err_clk: 141 for (; i > 0; i--) 142 clk_disable_unprepare(this->resources.clock[i - 1]); 143 return ret; 144 } 145 146 static int gpmi_init(struct gpmi_nand_data *this) 147 { 148 struct resources *r = &this->resources; 149 int ret; 150 151 ret = pm_runtime_resume_and_get(this->dev); 152 if (ret < 0) 153 return ret; 154 155 ret = gpmi_reset_block(r->gpmi_regs, false); 156 if (ret) 157 goto err_out; 158 159 /* 160 * Reset BCH here, too. We got failures otherwise :( 161 * See later BCH reset for explanation of MX23 and MX28 handling 162 */ 163 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 164 if (ret) 165 goto err_out; 166 167 /* Choose NAND mode. */ 168 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); 169 170 /* Set the IRQ polarity. */ 171 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, 172 r->gpmi_regs + HW_GPMI_CTRL1_SET); 173 174 /* Disable Write-Protection. */ 175 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); 176 177 /* Select BCH ECC. */ 178 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); 179 180 /* 181 * Decouple the chip select from dma channel. We use dma0 for all 182 * the chips, force all NAND RDY_BUSY inputs to be sourced from 183 * RDY_BUSY0. 184 */ 185 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, 186 r->gpmi_regs + HW_GPMI_CTRL1_SET); 187 188 err_out: 189 pm_runtime_mark_last_busy(this->dev); 190 pm_runtime_put_autosuspend(this->dev); 191 return ret; 192 } 193 194 /* This function is very useful. It is called only when the bug occur. */ 195 static void gpmi_dump_info(struct gpmi_nand_data *this) 196 { 197 struct resources *r = &this->resources; 198 struct bch_geometry *geo = &this->bch_geometry; 199 u32 reg; 200 int i; 201 202 dev_err(this->dev, "Show GPMI registers :\n"); 203 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { 204 reg = readl(r->gpmi_regs + i * 0x10); 205 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 206 } 207 208 /* start to print out the BCH info */ 209 dev_err(this->dev, "Show BCH registers :\n"); 210 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { 211 reg = readl(r->bch_regs + i * 0x10); 212 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 213 } 214 dev_err(this->dev, "BCH Geometry :\n" 215 "GF length : %u\n" 216 "ECC Strength : %u\n" 217 "Page Size in Bytes : %u\n" 218 "Metadata Size in Bytes : %u\n" 219 "ECC0 Chunk Size in Bytes: %u\n" 220 "ECCn Chunk Size in Bytes: %u\n" 221 "ECC Chunk Count : %u\n" 222 "Payload Size in Bytes : %u\n" 223 "Auxiliary Size in Bytes: %u\n" 224 "Auxiliary Status Offset: %u\n" 225 "Block Mark Byte Offset : %u\n" 226 "Block Mark Bit Offset : %u\n", 227 geo->gf_len, 228 geo->ecc_strength, 229 geo->page_size, 230 geo->metadata_size, 231 geo->ecc0_chunk_size, 232 geo->eccn_chunk_size, 233 geo->ecc_chunk_count, 234 geo->payload_size, 235 geo->auxiliary_size, 236 geo->auxiliary_status_offset, 237 geo->block_mark_byte_offset, 238 geo->block_mark_bit_offset); 239 } 240 241 static bool gpmi_check_ecc(struct gpmi_nand_data *this) 242 { 243 struct nand_chip *chip = &this->nand; 244 struct bch_geometry *geo = &this->bch_geometry; 245 struct nand_device *nand = &chip->base; 246 struct nand_ecc_props *conf = &nand->ecc.ctx.conf; 247 248 conf->step_size = geo->eccn_chunk_size; 249 conf->strength = geo->ecc_strength; 250 251 /* Do the sanity check. */ 252 if (GPMI_IS_MXS(this)) { 253 /* The mx23/mx28 only support the GF13. */ 254 if (geo->gf_len == 14) 255 return false; 256 } 257 258 if (geo->ecc_strength > this->devdata->bch_max_ecc_strength) 259 return false; 260 261 if (!nand_ecc_is_strong_enough(nand)) 262 return false; 263 264 return true; 265 } 266 267 /* check if bbm locates in data chunk rather than ecc chunk */ 268 static bool bbm_in_data_chunk(struct gpmi_nand_data *this, 269 unsigned int *chunk_num) 270 { 271 struct bch_geometry *geo = &this->bch_geometry; 272 struct nand_chip *chip = &this->nand; 273 struct mtd_info *mtd = nand_to_mtd(chip); 274 unsigned int i, j; 275 276 if (geo->ecc0_chunk_size != geo->eccn_chunk_size) { 277 dev_err(this->dev, 278 "The size of ecc0_chunk must equal to eccn_chunk\n"); 279 return false; 280 } 281 282 i = (mtd->writesize * 8 - geo->metadata_size * 8) / 283 (geo->gf_len * geo->ecc_strength + 284 geo->eccn_chunk_size * 8); 285 286 j = (mtd->writesize * 8 - geo->metadata_size * 8) - 287 (geo->gf_len * geo->ecc_strength + 288 geo->eccn_chunk_size * 8) * i; 289 290 if (j < geo->eccn_chunk_size * 8) { 291 *chunk_num = i+1; 292 dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n", 293 geo->ecc_strength, *chunk_num); 294 return true; 295 } 296 297 return false; 298 } 299 300 /* 301 * If we can get the ECC information from the nand chip, we do not 302 * need to calculate them ourselves. 303 * 304 * We may have available oob space in this case. 305 */ 306 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 307 unsigned int ecc_strength, 308 unsigned int ecc_step) 309 { 310 struct bch_geometry *geo = &this->bch_geometry; 311 struct nand_chip *chip = &this->nand; 312 struct mtd_info *mtd = nand_to_mtd(chip); 313 unsigned int block_mark_bit_offset; 314 315 switch (ecc_step) { 316 case SZ_512: 317 geo->gf_len = 13; 318 break; 319 case SZ_1K: 320 geo->gf_len = 14; 321 break; 322 default: 323 dev_err(this->dev, 324 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 325 nanddev_get_ecc_requirements(&chip->base)->strength, 326 nanddev_get_ecc_requirements(&chip->base)->step_size); 327 return -EINVAL; 328 } 329 geo->ecc0_chunk_size = ecc_step; 330 geo->eccn_chunk_size = ecc_step; 331 geo->ecc_strength = round_up(ecc_strength, 2); 332 if (!gpmi_check_ecc(this)) 333 return -EINVAL; 334 335 /* Keep the C >= O */ 336 if (geo->eccn_chunk_size < mtd->oobsize) { 337 dev_err(this->dev, 338 "unsupported nand chip. ecc size: %d, oob size : %d\n", 339 ecc_step, mtd->oobsize); 340 return -EINVAL; 341 } 342 343 /* The default value, see comment in the legacy_set_geometry(). */ 344 geo->metadata_size = 10; 345 346 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; 347 348 /* 349 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 350 * 351 * | P | 352 * |<----------------------------------------------------->| 353 * | | 354 * | (Block Mark) | 355 * | P' | | | | 356 * |<-------------------------------------------->| D | | O' | 357 * | |<---->| |<--->| 358 * V V V V V 359 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 360 * | M | data |E| data |E| data |E| data |E| | 361 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 362 * ^ ^ 363 * | O | 364 * |<------------>| 365 * | | 366 * 367 * P : the page size for BCH module. 368 * E : The ECC strength. 369 * G : the length of Galois Field. 370 * N : The chunk count of per page. 371 * M : the metasize of per page. 372 * C : the ecc chunk size, aka the "data" above. 373 * P': the nand chip's page size. 374 * O : the nand chip's oob size. 375 * O': the free oob. 376 * 377 * The formula for P is : 378 * 379 * E * G * N 380 * P = ------------ + P' + M 381 * 8 382 * 383 * The position of block mark moves forward in the ECC-based view 384 * of page, and the delta is: 385 * 386 * E * G * (N - 1) 387 * D = (---------------- + M) 388 * 8 389 * 390 * Please see the comment in legacy_set_geometry(). 391 * With the condition C >= O , we still can get same result. 392 * So the bit position of the physical block mark within the ECC-based 393 * view of the page is : 394 * (P' - D) * 8 395 */ 396 geo->page_size = mtd->writesize + geo->metadata_size + 397 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 398 399 geo->payload_size = mtd->writesize; 400 401 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 402 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 403 + ALIGN(geo->ecc_chunk_count, 4); 404 405 if (!this->swap_block_mark) 406 return 0; 407 408 /* For bit swap. */ 409 block_mark_bit_offset = mtd->writesize * 8 - 410 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 411 + geo->metadata_size * 8); 412 413 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 414 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 415 return 0; 416 } 417 418 /* 419 * Calculate the ECC strength by hand: 420 * E : The ECC strength. 421 * G : the length of Galois Field. 422 * N : The chunk count of per page. 423 * O : the oobsize of the NAND chip. 424 * M : the metasize of per page. 425 * 426 * The formula is : 427 * E * G * N 428 * ------------ <= (O - M) 429 * 8 430 * 431 * So, we get E by: 432 * (O - M) * 8 433 * E <= ------------- 434 * G * N 435 */ 436 static inline int get_ecc_strength(struct gpmi_nand_data *this) 437 { 438 struct bch_geometry *geo = &this->bch_geometry; 439 struct mtd_info *mtd = nand_to_mtd(&this->nand); 440 int ecc_strength; 441 442 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 443 / (geo->gf_len * geo->ecc_chunk_count); 444 445 /* We need the minor even number. */ 446 return round_down(ecc_strength, 2); 447 } 448 449 static int set_geometry_for_large_oob(struct gpmi_nand_data *this) 450 { 451 struct bch_geometry *geo = &this->bch_geometry; 452 struct nand_chip *chip = &this->nand; 453 struct mtd_info *mtd = nand_to_mtd(chip); 454 const struct nand_ecc_props *requirements = 455 nanddev_get_ecc_requirements(&chip->base); 456 unsigned int block_mark_bit_offset; 457 unsigned int max_ecc; 458 unsigned int bbm_chunk; 459 unsigned int i; 460 461 /* sanity check for the minimum ecc nand required */ 462 if (!(requirements->strength > 0 && 463 requirements->step_size > 0)) 464 return -EINVAL; 465 geo->ecc_strength = requirements->strength; 466 467 /* check if platform can support this nand */ 468 if (!gpmi_check_ecc(this)) { 469 dev_err(this->dev, 470 "unsupported NAND chip, minimum ecc required %d\n", 471 geo->ecc_strength); 472 return -EINVAL; 473 } 474 475 /* calculate the maximum ecc platform can support*/ 476 geo->metadata_size = 10; 477 geo->gf_len = 14; 478 geo->ecc0_chunk_size = 1024; 479 geo->eccn_chunk_size = 1024; 480 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; 481 max_ecc = min(get_ecc_strength(this), 482 this->devdata->bch_max_ecc_strength); 483 484 /* 485 * search a supported ecc strength that makes bbm 486 * located in data chunk 487 */ 488 geo->ecc_strength = max_ecc; 489 while (!(geo->ecc_strength < requirements->strength)) { 490 if (bbm_in_data_chunk(this, &bbm_chunk)) 491 goto geo_setting; 492 geo->ecc_strength -= 2; 493 } 494 495 /* if none of them works, keep using the minimum ecc */ 496 /* nand required but changing ecc page layout */ 497 geo->ecc_strength = requirements->strength; 498 /* add extra ecc for meta data */ 499 geo->ecc0_chunk_size = 0; 500 geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1; 501 geo->ecc_for_meta = 1; 502 /* check if oob can afford this extra ecc chunk */ 503 if (mtd->oobsize * 8 < geo->metadata_size * 8 + 504 geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) { 505 dev_err(this->dev, "unsupported NAND chip with new layout\n"); 506 return -EINVAL; 507 } 508 509 /* calculate in which chunk bbm located */ 510 bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 - 511 geo->gf_len * geo->ecc_strength) / 512 (geo->gf_len * geo->ecc_strength + 513 geo->eccn_chunk_size * 8) + 1; 514 515 geo_setting: 516 517 geo->page_size = mtd->writesize + geo->metadata_size + 518 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 519 geo->payload_size = mtd->writesize; 520 521 /* 522 * The auxiliary buffer contains the metadata and the ECC status. The 523 * metadata is padded to the nearest 32-bit boundary. The ECC status 524 * contains one byte for every ECC chunk, and is also padded to the 525 * nearest 32-bit boundary. 526 */ 527 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 528 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 529 + ALIGN(geo->ecc_chunk_count, 4); 530 531 if (!this->swap_block_mark) 532 return 0; 533 534 /* calculate the number of ecc chunk behind the bbm */ 535 i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1; 536 537 block_mark_bit_offset = mtd->writesize * 8 - 538 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i) 539 + geo->metadata_size * 8); 540 541 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 542 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 543 544 dev_dbg(this->dev, "BCH Geometry :\n" 545 "GF length : %u\n" 546 "ECC Strength : %u\n" 547 "Page Size in Bytes : %u\n" 548 "Metadata Size in Bytes : %u\n" 549 "ECC0 Chunk Size in Bytes: %u\n" 550 "ECCn Chunk Size in Bytes: %u\n" 551 "ECC Chunk Count : %u\n" 552 "Payload Size in Bytes : %u\n" 553 "Auxiliary Size in Bytes: %u\n" 554 "Auxiliary Status Offset: %u\n" 555 "Block Mark Byte Offset : %u\n" 556 "Block Mark Bit Offset : %u\n" 557 "Block Mark in chunk : %u\n" 558 "Ecc for Meta data : %u\n", 559 geo->gf_len, 560 geo->ecc_strength, 561 geo->page_size, 562 geo->metadata_size, 563 geo->ecc0_chunk_size, 564 geo->eccn_chunk_size, 565 geo->ecc_chunk_count, 566 geo->payload_size, 567 geo->auxiliary_size, 568 geo->auxiliary_status_offset, 569 geo->block_mark_byte_offset, 570 geo->block_mark_bit_offset, 571 bbm_chunk, 572 geo->ecc_for_meta); 573 574 return 0; 575 } 576 577 static int legacy_set_geometry(struct gpmi_nand_data *this) 578 { 579 struct bch_geometry *geo = &this->bch_geometry; 580 struct mtd_info *mtd = nand_to_mtd(&this->nand); 581 unsigned int metadata_size; 582 unsigned int status_size; 583 unsigned int block_mark_bit_offset; 584 585 /* 586 * The size of the metadata can be changed, though we set it to 10 587 * bytes now. But it can't be too large, because we have to save 588 * enough space for BCH. 589 */ 590 geo->metadata_size = 10; 591 592 /* The default for the length of Galois Field. */ 593 geo->gf_len = 13; 594 595 /* The default for chunk size. */ 596 geo->ecc0_chunk_size = 512; 597 geo->eccn_chunk_size = 512; 598 while (geo->eccn_chunk_size < mtd->oobsize) { 599 geo->ecc0_chunk_size *= 2; /* keep C >= O */ 600 geo->eccn_chunk_size *= 2; /* keep C >= O */ 601 geo->gf_len = 14; 602 } 603 604 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; 605 606 /* We use the same ECC strength for all chunks. */ 607 geo->ecc_strength = get_ecc_strength(this); 608 if (!gpmi_check_ecc(this)) { 609 dev_err(this->dev, 610 "ecc strength: %d cannot be supported by the controller (%d)\n" 611 "try to use minimum ecc strength that NAND chip required\n", 612 geo->ecc_strength, 613 this->devdata->bch_max_ecc_strength); 614 return -EINVAL; 615 } 616 617 geo->page_size = mtd->writesize + geo->metadata_size + 618 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 619 geo->payload_size = mtd->writesize; 620 621 /* 622 * The auxiliary buffer contains the metadata and the ECC status. The 623 * metadata is padded to the nearest 32-bit boundary. The ECC status 624 * contains one byte for every ECC chunk, and is also padded to the 625 * nearest 32-bit boundary. 626 */ 627 metadata_size = ALIGN(geo->metadata_size, 4); 628 status_size = ALIGN(geo->ecc_chunk_count, 4); 629 630 geo->auxiliary_size = metadata_size + status_size; 631 geo->auxiliary_status_offset = metadata_size; 632 633 if (!this->swap_block_mark) 634 return 0; 635 636 /* 637 * We need to compute the byte and bit offsets of 638 * the physical block mark within the ECC-based view of the page. 639 * 640 * NAND chip with 2K page shows below: 641 * (Block Mark) 642 * | | 643 * | D | 644 * |<---->| 645 * V V 646 * +---+----------+-+----------+-+----------+-+----------+-+ 647 * | M | data |E| data |E| data |E| data |E| 648 * +---+----------+-+----------+-+----------+-+----------+-+ 649 * 650 * The position of block mark moves forward in the ECC-based view 651 * of page, and the delta is: 652 * 653 * E * G * (N - 1) 654 * D = (---------------- + M) 655 * 8 656 * 657 * With the formula to compute the ECC strength, and the condition 658 * : C >= O (C is the ecc chunk size) 659 * 660 * It's easy to deduce to the following result: 661 * 662 * E * G (O - M) C - M C - M 663 * ----------- <= ------- <= -------- < --------- 664 * 8 N N (N - 1) 665 * 666 * So, we get: 667 * 668 * E * G * (N - 1) 669 * D = (---------------- + M) < C 670 * 8 671 * 672 * The above inequality means the position of block mark 673 * within the ECC-based view of the page is still in the data chunk, 674 * and it's NOT in the ECC bits of the chunk. 675 * 676 * Use the following to compute the bit position of the 677 * physical block mark within the ECC-based view of the page: 678 * (page_size - D) * 8 679 * 680 * --Huang Shijie 681 */ 682 block_mark_bit_offset = mtd->writesize * 8 - 683 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 684 + geo->metadata_size * 8); 685 686 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 687 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 688 return 0; 689 } 690 691 static int common_nfc_set_geometry(struct gpmi_nand_data *this) 692 { 693 struct nand_chip *chip = &this->nand; 694 struct mtd_info *mtd = nand_to_mtd(&this->nand); 695 const struct nand_ecc_props *requirements = 696 nanddev_get_ecc_requirements(&chip->base); 697 bool use_minimun_ecc; 698 int err; 699 700 use_minimun_ecc = of_property_read_bool(this->dev->of_node, 701 "fsl,use-minimum-ecc"); 702 703 /* use legacy bch geometry settings by default*/ 704 if ((!use_minimun_ecc && mtd->oobsize < 1024) || 705 !(requirements->strength > 0 && requirements->step_size > 0)) { 706 dev_dbg(this->dev, "use legacy bch geometry\n"); 707 err = legacy_set_geometry(this); 708 if (!err) 709 return 0; 710 } 711 712 /* for large oob nand */ 713 if (mtd->oobsize > 1024) { 714 dev_dbg(this->dev, "use large oob bch geometry\n"); 715 err = set_geometry_for_large_oob(this); 716 if (!err) 717 return 0; 718 } 719 720 /* otherwise use the minimum ecc nand chip required */ 721 dev_dbg(this->dev, "use minimum ecc bch geometry\n"); 722 err = set_geometry_by_ecc_info(this, requirements->strength, 723 requirements->step_size); 724 if (err) 725 dev_err(this->dev, "none of the bch geometry setting works\n"); 726 727 return err; 728 } 729 730 /* Configures the geometry for BCH. */ 731 static int bch_set_geometry(struct gpmi_nand_data *this) 732 { 733 struct resources *r = &this->resources; 734 int ret; 735 736 ret = common_nfc_set_geometry(this); 737 if (ret) 738 return ret; 739 740 ret = pm_runtime_get_sync(this->dev); 741 if (ret < 0) { 742 pm_runtime_put_autosuspend(this->dev); 743 return ret; 744 } 745 746 /* 747 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this 748 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. 749 * and MX28. 750 */ 751 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 752 if (ret) 753 goto err_out; 754 755 /* Set *all* chip selects to use layout 0. */ 756 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); 757 758 ret = 0; 759 err_out: 760 pm_runtime_mark_last_busy(this->dev); 761 pm_runtime_put_autosuspend(this->dev); 762 763 return ret; 764 } 765 766 /* 767 * <1> Firstly, we should know what's the GPMI-clock means. 768 * The GPMI-clock is the internal clock in the gpmi nand controller. 769 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period 770 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. 771 * 772 * <2> Secondly, we should know what's the frequency on the nand chip pins. 773 * The frequency on the nand chip pins is derived from the GPMI-clock. 774 * We can get it from the following equation: 775 * 776 * F = G / (DS + DH) 777 * 778 * F : the frequency on the nand chip pins. 779 * G : the GPMI clock, such as 100MHz. 780 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP 781 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD 782 * 783 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, 784 * the nand EDO(extended Data Out) timing could be applied. 785 * The GPMI implements a feedback read strobe to sample the read data. 786 * The feedback read strobe can be delayed to support the nand EDO timing 787 * where the read strobe may deasserts before the read data is valid, and 788 * read data is valid for some time after read strobe. 789 * 790 * The following figure illustrates some aspects of a NAND Flash read: 791 * 792 * |<---tREA---->| 793 * | | 794 * | | | 795 * |<--tRP-->| | 796 * | | | 797 * __ ___|__________________________________ 798 * RDN \________/ | 799 * | 800 * /---------\ 801 * Read Data --------------< >--------- 802 * \---------/ 803 * | | 804 * |<-D->| 805 * FeedbackRDN ________ ____________ 806 * \___________/ 807 * 808 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. 809 * 810 * 811 * <4> Now, we begin to describe how to compute the right RDN_DELAY. 812 * 813 * 4.1) From the aspect of the nand chip pins: 814 * Delay = (tREA + C - tRP) {1} 815 * 816 * tREA : the maximum read access time. 817 * C : a constant to adjust the delay. default is 4000ps. 818 * tRP : the read pulse width, which is exactly: 819 * tRP = (GPMI-clock-period) * DATA_SETUP 820 * 821 * 4.2) From the aspect of the GPMI nand controller: 822 * Delay = RDN_DELAY * 0.125 * RP {2} 823 * 824 * RP : the DLL reference period. 825 * if (GPMI-clock-period > DLL_THRETHOLD) 826 * RP = GPMI-clock-period / 2; 827 * else 828 * RP = GPMI-clock-period; 829 * 830 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period 831 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD 832 * is 16000ps, but in mx6q, we use 12000ps. 833 * 834 * 4.3) since {1} equals {2}, we get: 835 * 836 * (tREA + 4000 - tRP) * 8 837 * RDN_DELAY = ----------------------- {3} 838 * RP 839 */ 840 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this, 841 const struct nand_sdr_timings *sdr) 842 { 843 struct gpmi_nfc_hardware_timing *hw = &this->hw; 844 struct resources *r = &this->resources; 845 unsigned int dll_threshold_ps = this->devdata->max_chain_delay; 846 unsigned int period_ps, reference_period_ps; 847 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; 848 unsigned int tRP_ps; 849 bool use_half_period; 850 int sample_delay_ps, sample_delay_factor; 851 unsigned int busy_timeout_cycles; 852 u8 wrn_dly_sel; 853 unsigned long clk_rate, min_rate; 854 u64 busy_timeout_ps; 855 856 if (sdr->tRC_min >= 30000) { 857 /* ONFI non-EDO modes [0-3] */ 858 hw->clk_rate = 22000000; 859 min_rate = 0; 860 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; 861 } else if (sdr->tRC_min >= 25000) { 862 /* ONFI EDO mode 4 */ 863 hw->clk_rate = 80000000; 864 min_rate = 22000000; 865 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 866 } else { 867 /* ONFI EDO mode 5 */ 868 hw->clk_rate = 100000000; 869 min_rate = 80000000; 870 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 871 } 872 873 clk_rate = clk_round_rate(r->clock[0], hw->clk_rate); 874 if (clk_rate <= min_rate) { 875 dev_err(this->dev, "clock setting: expected %ld, got %ld\n", 876 hw->clk_rate, clk_rate); 877 return -ENOTSUPP; 878 } 879 880 hw->clk_rate = clk_rate; 881 /* SDR core timings are given in picoseconds */ 882 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); 883 884 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); 885 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); 886 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); 887 busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max); 888 busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps); 889 890 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | 891 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | 892 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); 893 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096)); 894 895 /* 896 * Derive NFC ideal delay from {3}: 897 * 898 * (tREA + 4000 - tRP) * 8 899 * RDN_DELAY = ----------------------- 900 * RP 901 */ 902 if (period_ps > dll_threshold_ps) { 903 use_half_period = true; 904 reference_period_ps = period_ps / 2; 905 } else { 906 use_half_period = false; 907 reference_period_ps = period_ps; 908 } 909 910 tRP_ps = data_setup_cycles * period_ps; 911 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; 912 if (sample_delay_ps > 0) 913 sample_delay_factor = sample_delay_ps / reference_period_ps; 914 else 915 sample_delay_factor = 0; 916 917 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); 918 if (sample_delay_factor) 919 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | 920 BM_GPMI_CTRL1_DLL_ENABLE | 921 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); 922 return 0; 923 } 924 925 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) 926 { 927 struct gpmi_nfc_hardware_timing *hw = &this->hw; 928 struct resources *r = &this->resources; 929 void __iomem *gpmi_regs = r->gpmi_regs; 930 unsigned int dll_wait_time_us; 931 int ret; 932 933 /* Clock dividers do NOT guarantee a clean clock signal on its output 934 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, 935 * all clock dividers provide these guarantee. 936 */ 937 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) 938 clk_disable_unprepare(r->clock[0]); 939 940 ret = clk_set_rate(r->clock[0], hw->clk_rate); 941 if (ret) { 942 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); 943 return ret; 944 } 945 946 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { 947 ret = clk_prepare_enable(r->clock[0]); 948 if (ret) 949 return ret; 950 } 951 952 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); 953 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); 954 955 /* 956 * Clear several CTRL1 fields, DLL must be disabled when setting 957 * RDN_DELAY or HALF_PERIOD. 958 */ 959 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); 960 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); 961 962 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ 963 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; 964 if (!dll_wait_time_us) 965 dll_wait_time_us = 1; 966 967 /* Wait for the DLL to settle. */ 968 udelay(dll_wait_time_us); 969 970 return 0; 971 } 972 973 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, 974 const struct nand_interface_config *conf) 975 { 976 struct gpmi_nand_data *this = nand_get_controller_data(chip); 977 const struct nand_sdr_timings *sdr; 978 int ret; 979 980 /* Retrieve required NAND timings */ 981 sdr = nand_get_sdr_timings(conf); 982 if (IS_ERR(sdr)) 983 return PTR_ERR(sdr); 984 985 /* Only MX28/MX6 GPMI controller can reach EDO timings */ 986 if (sdr->tRC_min <= 25000 && !this->devdata->support_edo_timing) 987 return -ENOTSUPP; 988 989 /* Stop here if this call was just a check */ 990 if (chipnr < 0) 991 return 0; 992 993 /* Do the actual derivation of the controller timings */ 994 ret = gpmi_nfc_compute_timings(this, sdr); 995 if (ret) 996 return ret; 997 998 this->hw.must_apply_timings = true; 999 1000 return 0; 1001 } 1002 1003 /* Clears a BCH interrupt. */ 1004 static void gpmi_clear_bch(struct gpmi_nand_data *this) 1005 { 1006 struct resources *r = &this->resources; 1007 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); 1008 } 1009 1010 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 1011 { 1012 /* We use the DMA channel 0 to access all the nand chips. */ 1013 return this->dma_chans[0]; 1014 } 1015 1016 /* This will be called after the DMA operation is finished. */ 1017 static void dma_irq_callback(void *param) 1018 { 1019 struct gpmi_nand_data *this = param; 1020 struct completion *dma_c = &this->dma_done; 1021 1022 complete(dma_c); 1023 } 1024 1025 static irqreturn_t bch_irq(int irq, void *cookie) 1026 { 1027 struct gpmi_nand_data *this = cookie; 1028 1029 gpmi_clear_bch(this); 1030 complete(&this->bch_done); 1031 return IRQ_HANDLED; 1032 } 1033 1034 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) 1035 { 1036 /* 1037 * raw_len is the length to read/write including bch data which 1038 * we are passed in exec_op. Calculate the data length from it. 1039 */ 1040 if (this->bch) 1041 return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size); 1042 else 1043 return raw_len; 1044 } 1045 1046 /* Can we use the upper's buffer directly for DMA? */ 1047 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, 1048 int raw_len, struct scatterlist *sgl, 1049 enum dma_data_direction dr) 1050 { 1051 int ret; 1052 int len = gpmi_raw_len_to_len(this, raw_len); 1053 1054 /* first try to map the upper buffer directly */ 1055 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 1056 sg_init_one(sgl, buf, len); 1057 ret = dma_map_sg(this->dev, sgl, 1, dr); 1058 if (ret == 0) 1059 goto map_fail; 1060 1061 return true; 1062 } 1063 1064 map_fail: 1065 /* We have to use our own DMA buffer. */ 1066 sg_init_one(sgl, this->data_buffer_dma, len); 1067 1068 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) 1069 memcpy(this->data_buffer_dma, buf, len); 1070 1071 dma_map_sg(this->dev, sgl, 1, dr); 1072 1073 return false; 1074 } 1075 1076 /* add our owner bbt descriptor */ 1077 static uint8_t scan_ff_pattern[] = { 0xff }; 1078 static struct nand_bbt_descr gpmi_bbt_descr = { 1079 .options = 0, 1080 .offs = 0, 1081 .len = 1, 1082 .pattern = scan_ff_pattern 1083 }; 1084 1085 /* 1086 * We may change the layout if we can get the ECC info from the datasheet, 1087 * else we will use all the (page + OOB). 1088 */ 1089 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 1090 struct mtd_oob_region *oobregion) 1091 { 1092 struct nand_chip *chip = mtd_to_nand(mtd); 1093 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1094 struct bch_geometry *geo = &this->bch_geometry; 1095 1096 if (section) 1097 return -ERANGE; 1098 1099 oobregion->offset = 0; 1100 oobregion->length = geo->page_size - mtd->writesize; 1101 1102 return 0; 1103 } 1104 1105 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 1106 struct mtd_oob_region *oobregion) 1107 { 1108 struct nand_chip *chip = mtd_to_nand(mtd); 1109 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1110 struct bch_geometry *geo = &this->bch_geometry; 1111 1112 if (section) 1113 return -ERANGE; 1114 1115 /* The available oob size we have. */ 1116 if (geo->page_size < mtd->writesize + mtd->oobsize) { 1117 oobregion->offset = geo->page_size - mtd->writesize; 1118 oobregion->length = mtd->oobsize - oobregion->offset; 1119 } 1120 1121 return 0; 1122 } 1123 1124 static const char * const gpmi_clks_for_mx2x[] = { 1125 "gpmi_io", 1126 }; 1127 1128 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 1129 .ecc = gpmi_ooblayout_ecc, 1130 .free = gpmi_ooblayout_free, 1131 }; 1132 1133 static const struct gpmi_devdata gpmi_devdata_imx23 = { 1134 .type = IS_MX23, 1135 .bch_max_ecc_strength = 20, 1136 .max_chain_delay = 16000, 1137 .clks = gpmi_clks_for_mx2x, 1138 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 1139 }; 1140 1141 static const struct gpmi_devdata gpmi_devdata_imx28 = { 1142 .type = IS_MX28, 1143 .bch_max_ecc_strength = 20, 1144 .max_chain_delay = 16000, 1145 .support_edo_timing = true, 1146 .clks = gpmi_clks_for_mx2x, 1147 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 1148 }; 1149 1150 static const char * const gpmi_clks_for_mx6[] = { 1151 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 1152 }; 1153 1154 static const struct gpmi_devdata gpmi_devdata_imx6q = { 1155 .type = IS_MX6Q, 1156 .bch_max_ecc_strength = 40, 1157 .max_chain_delay = 12000, 1158 .support_edo_timing = true, 1159 .clks = gpmi_clks_for_mx6, 1160 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 1161 }; 1162 1163 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 1164 .type = IS_MX6SX, 1165 .bch_max_ecc_strength = 62, 1166 .max_chain_delay = 12000, 1167 .support_edo_timing = true, 1168 .clks = gpmi_clks_for_mx6, 1169 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 1170 }; 1171 1172 static const char * const gpmi_clks_for_mx7d[] = { 1173 "gpmi_io", "gpmi_bch_apb", 1174 }; 1175 1176 static const struct gpmi_devdata gpmi_devdata_imx7d = { 1177 .type = IS_MX7D, 1178 .bch_max_ecc_strength = 62, 1179 .max_chain_delay = 12000, 1180 .support_edo_timing = true, 1181 .clks = gpmi_clks_for_mx7d, 1182 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 1183 }; 1184 1185 static const char *gpmi_clks_for_mx8qxp[GPMI_CLK_MAX] = { 1186 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", 1187 }; 1188 1189 static const struct gpmi_devdata gpmi_devdata_imx8qxp = { 1190 .type = IS_MX8QXP, 1191 .bch_max_ecc_strength = 62, 1192 .max_chain_delay = 12000, 1193 .support_edo_timing = true, 1194 .clks = gpmi_clks_for_mx8qxp, 1195 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx8qxp), 1196 }; 1197 1198 static int acquire_register_block(struct gpmi_nand_data *this, 1199 const char *res_name) 1200 { 1201 struct platform_device *pdev = this->pdev; 1202 struct resources *res = &this->resources; 1203 void __iomem *p; 1204 1205 p = devm_platform_ioremap_resource_byname(pdev, res_name); 1206 if (IS_ERR(p)) 1207 return PTR_ERR(p); 1208 1209 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 1210 res->gpmi_regs = p; 1211 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 1212 res->bch_regs = p; 1213 else 1214 dev_err(this->dev, "unknown resource name : %s\n", res_name); 1215 1216 return 0; 1217 } 1218 1219 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 1220 { 1221 struct platform_device *pdev = this->pdev; 1222 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 1223 int err; 1224 1225 err = platform_get_irq_byname(pdev, res_name); 1226 if (err < 0) 1227 return err; 1228 1229 err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); 1230 if (err) 1231 dev_err(this->dev, "error requesting BCH IRQ\n"); 1232 1233 return err; 1234 } 1235 1236 static void release_dma_channels(struct gpmi_nand_data *this) 1237 { 1238 unsigned int i; 1239 for (i = 0; i < DMA_CHANS; i++) 1240 if (this->dma_chans[i]) { 1241 dma_release_channel(this->dma_chans[i]); 1242 this->dma_chans[i] = NULL; 1243 } 1244 } 1245 1246 static int acquire_dma_channels(struct gpmi_nand_data *this) 1247 { 1248 struct platform_device *pdev = this->pdev; 1249 struct dma_chan *dma_chan; 1250 int ret = 0; 1251 1252 /* request dma channel */ 1253 dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); 1254 if (IS_ERR(dma_chan)) { 1255 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), 1256 "DMA channel request failed\n"); 1257 release_dma_channels(this); 1258 } else { 1259 this->dma_chans[0] = dma_chan; 1260 } 1261 1262 return ret; 1263 } 1264 1265 static int gpmi_get_clks(struct gpmi_nand_data *this) 1266 { 1267 struct resources *r = &this->resources; 1268 struct clk *clk; 1269 int err, i; 1270 1271 for (i = 0; i < this->devdata->clks_count; i++) { 1272 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 1273 if (IS_ERR(clk)) { 1274 err = PTR_ERR(clk); 1275 goto err_clock; 1276 } 1277 1278 r->clock[i] = clk; 1279 } 1280 1281 return 0; 1282 1283 err_clock: 1284 dev_dbg(this->dev, "failed in finding the clocks.\n"); 1285 return err; 1286 } 1287 1288 static int acquire_resources(struct gpmi_nand_data *this) 1289 { 1290 int ret; 1291 1292 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 1293 if (ret) 1294 goto exit_regs; 1295 1296 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 1297 if (ret) 1298 goto exit_regs; 1299 1300 ret = acquire_bch_irq(this, bch_irq); 1301 if (ret) 1302 goto exit_regs; 1303 1304 ret = acquire_dma_channels(this); 1305 if (ret) 1306 goto exit_regs; 1307 1308 ret = gpmi_get_clks(this); 1309 if (ret) 1310 goto exit_clock; 1311 return 0; 1312 1313 exit_clock: 1314 release_dma_channels(this); 1315 exit_regs: 1316 return ret; 1317 } 1318 1319 static void release_resources(struct gpmi_nand_data *this) 1320 { 1321 release_dma_channels(this); 1322 } 1323 1324 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 1325 { 1326 struct device *dev = this->dev; 1327 struct bch_geometry *geo = &this->bch_geometry; 1328 1329 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) 1330 dma_free_coherent(dev, geo->auxiliary_size, 1331 this->auxiliary_virt, 1332 this->auxiliary_phys); 1333 kfree(this->data_buffer_dma); 1334 kfree(this->raw_buffer); 1335 1336 this->data_buffer_dma = NULL; 1337 this->raw_buffer = NULL; 1338 } 1339 1340 /* Allocate the DMA buffers */ 1341 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 1342 { 1343 struct bch_geometry *geo = &this->bch_geometry; 1344 struct device *dev = this->dev; 1345 struct mtd_info *mtd = nand_to_mtd(&this->nand); 1346 1347 /* 1348 * [2] Allocate a read/write data buffer. 1349 * The gpmi_alloc_dma_buffer can be called twice. 1350 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 1351 * is called before the NAND identification; and we allocate a 1352 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 1353 * is called after. 1354 */ 1355 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 1356 GFP_DMA | GFP_KERNEL); 1357 if (this->data_buffer_dma == NULL) 1358 goto error_alloc; 1359 1360 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, 1361 &this->auxiliary_phys, GFP_DMA); 1362 if (!this->auxiliary_virt) 1363 goto error_alloc; 1364 1365 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); 1366 if (!this->raw_buffer) 1367 goto error_alloc; 1368 1369 return 0; 1370 1371 error_alloc: 1372 gpmi_free_dma_buffer(this); 1373 return -ENOMEM; 1374 } 1375 1376 /* 1377 * Handles block mark swapping. 1378 * It can be called in swapping the block mark, or swapping it back, 1379 * because the operations are the same. 1380 */ 1381 static void block_mark_swapping(struct gpmi_nand_data *this, 1382 void *payload, void *auxiliary) 1383 { 1384 struct bch_geometry *nfc_geo = &this->bch_geometry; 1385 unsigned char *p; 1386 unsigned char *a; 1387 unsigned int bit; 1388 unsigned char mask; 1389 unsigned char from_data; 1390 unsigned char from_oob; 1391 1392 if (!this->swap_block_mark) 1393 return; 1394 1395 /* 1396 * If control arrives here, we're swapping. Make some convenience 1397 * variables. 1398 */ 1399 bit = nfc_geo->block_mark_bit_offset; 1400 p = payload + nfc_geo->block_mark_byte_offset; 1401 a = auxiliary; 1402 1403 /* 1404 * Get the byte from the data area that overlays the block mark. Since 1405 * the ECC engine applies its own view to the bits in the page, the 1406 * physical block mark won't (in general) appear on a byte boundary in 1407 * the data. 1408 */ 1409 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1410 1411 /* Get the byte from the OOB. */ 1412 from_oob = a[0]; 1413 1414 /* Swap them. */ 1415 a[0] = from_data; 1416 1417 mask = (0x1 << bit) - 1; 1418 p[0] = (p[0] & mask) | (from_oob << bit); 1419 1420 mask = ~0 << bit; 1421 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1422 } 1423 1424 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, 1425 int last, int meta) 1426 { 1427 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1428 struct bch_geometry *nfc_geo = &this->bch_geometry; 1429 struct mtd_info *mtd = nand_to_mtd(chip); 1430 int i; 1431 unsigned char *status; 1432 unsigned int max_bitflips = 0; 1433 1434 /* Loop over status bytes, accumulating ECC status. */ 1435 status = this->auxiliary_virt + ALIGN(meta, 4); 1436 1437 for (i = first; i < last; i++, status++) { 1438 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1439 continue; 1440 1441 if (*status == STATUS_UNCORRECTABLE) { 1442 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1443 u8 *eccbuf = this->raw_buffer; 1444 int offset, bitoffset; 1445 int eccbytes; 1446 int flips; 1447 1448 /* Read ECC bytes into our internal raw_buffer */ 1449 offset = nfc_geo->metadata_size * 8; 1450 offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1); 1451 offset -= eccbits; 1452 bitoffset = offset % 8; 1453 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1454 offset /= 8; 1455 eccbytes -= offset; 1456 nand_change_read_column_op(chip, offset, eccbuf, 1457 eccbytes, false); 1458 1459 /* 1460 * ECC data are not byte aligned and we may have 1461 * in-band data in the first and last byte of 1462 * eccbuf. Set non-eccbits to one so that 1463 * nand_check_erased_ecc_chunk() does not count them 1464 * as bitflips. 1465 */ 1466 if (bitoffset) 1467 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1468 1469 bitoffset = (bitoffset + eccbits) % 8; 1470 if (bitoffset) 1471 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1472 1473 /* 1474 * The ECC hardware has an uncorrectable ECC status 1475 * code in case we have bitflips in an erased page. As 1476 * nothing was written into this subpage the ECC is 1477 * obviously wrong and we can not trust it. We assume 1478 * at this point that we are reading an erased page and 1479 * try to correct the bitflips in buffer up to 1480 * ecc_strength bitflips. If this is a page with random 1481 * data, we exceed this number of bitflips and have a 1482 * ECC failure. Otherwise we use the corrected buffer. 1483 */ 1484 if (i == 0) { 1485 /* The first block includes metadata */ 1486 flips = nand_check_erased_ecc_chunk( 1487 buf + i * nfc_geo->eccn_chunk_size, 1488 nfc_geo->eccn_chunk_size, 1489 eccbuf, eccbytes, 1490 this->auxiliary_virt, 1491 nfc_geo->metadata_size, 1492 nfc_geo->ecc_strength); 1493 } else { 1494 flips = nand_check_erased_ecc_chunk( 1495 buf + i * nfc_geo->eccn_chunk_size, 1496 nfc_geo->eccn_chunk_size, 1497 eccbuf, eccbytes, 1498 NULL, 0, 1499 nfc_geo->ecc_strength); 1500 } 1501 1502 if (flips > 0) { 1503 max_bitflips = max_t(unsigned int, max_bitflips, 1504 flips); 1505 mtd->ecc_stats.corrected += flips; 1506 continue; 1507 } 1508 1509 mtd->ecc_stats.failed++; 1510 continue; 1511 } 1512 1513 mtd->ecc_stats.corrected += *status; 1514 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1515 } 1516 1517 return max_bitflips; 1518 } 1519 1520 static void gpmi_bch_layout_std(struct gpmi_nand_data *this) 1521 { 1522 struct bch_geometry *geo = &this->bch_geometry; 1523 unsigned int ecc_strength = geo->ecc_strength >> 1; 1524 unsigned int gf_len = geo->gf_len; 1525 unsigned int block0_size = geo->ecc0_chunk_size; 1526 unsigned int blockn_size = geo->eccn_chunk_size; 1527 1528 this->bch_flashlayout0 = 1529 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | 1530 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | 1531 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1532 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | 1533 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this); 1534 1535 this->bch_flashlayout1 = 1536 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | 1537 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1538 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | 1539 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this); 1540 } 1541 1542 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1543 int oob_required, int page) 1544 { 1545 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1546 struct mtd_info *mtd = nand_to_mtd(chip); 1547 struct bch_geometry *geo = &this->bch_geometry; 1548 unsigned int max_bitflips; 1549 int ret; 1550 1551 gpmi_bch_layout_std(this); 1552 this->bch = true; 1553 1554 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); 1555 if (ret) 1556 return ret; 1557 1558 max_bitflips = gpmi_count_bitflips(chip, buf, 0, 1559 geo->ecc_chunk_count, 1560 geo->auxiliary_status_offset); 1561 1562 /* handle the block mark swapping */ 1563 block_mark_swapping(this, buf, this->auxiliary_virt); 1564 1565 if (oob_required) { 1566 /* 1567 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1568 * for details about our policy for delivering the OOB. 1569 * 1570 * We fill the caller's buffer with set bits, and then copy the 1571 * block mark to th caller's buffer. Note that, if block mark 1572 * swapping was necessary, it has already been done, so we can 1573 * rely on the first byte of the auxiliary buffer to contain 1574 * the block mark. 1575 */ 1576 memset(chip->oob_poi, ~0, mtd->oobsize); 1577 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1578 } 1579 1580 return max_bitflips; 1581 } 1582 1583 /* Fake a virtual small page for the subpage read */ 1584 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1585 uint32_t len, uint8_t *buf, int page) 1586 { 1587 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1588 struct bch_geometry *geo = &this->bch_geometry; 1589 int size = chip->ecc.size; /* ECC chunk size */ 1590 int meta, n, page_size; 1591 unsigned int max_bitflips; 1592 unsigned int ecc_strength; 1593 int first, last, marker_pos; 1594 int ecc_parity_size; 1595 int col = 0; 1596 int ret; 1597 1598 /* The size of ECC parity */ 1599 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1600 1601 /* Align it with the chunk size */ 1602 first = offs / size; 1603 last = (offs + len - 1) / size; 1604 1605 if (this->swap_block_mark) { 1606 /* 1607 * Find the chunk which contains the Block Marker. 1608 * If this chunk is in the range of [first, last], 1609 * we have to read out the whole page. 1610 * Why? since we had swapped the data at the position of Block 1611 * Marker to the metadata which is bound with the chunk 0. 1612 */ 1613 marker_pos = geo->block_mark_byte_offset / size; 1614 if (last >= marker_pos && first <= marker_pos) { 1615 dev_dbg(this->dev, 1616 "page:%d, first:%d, last:%d, marker at:%d\n", 1617 page, first, last, marker_pos); 1618 return gpmi_ecc_read_page(chip, buf, 0, page); 1619 } 1620 } 1621 1622 /* 1623 * if there is an ECC dedicate for meta: 1624 * - need to add an extra ECC size when calculating col and page_size, 1625 * if the meta size is NOT zero. 1626 * - ecc0_chunk size need to set to the same size as other chunks, 1627 * if the meta size is zero. 1628 */ 1629 1630 meta = geo->metadata_size; 1631 if (first) { 1632 if (geo->ecc_for_meta) 1633 col = meta + ecc_parity_size 1634 + (size + ecc_parity_size) * first; 1635 else 1636 col = meta + (size + ecc_parity_size) * first; 1637 1638 meta = 0; 1639 buf = buf + first * size; 1640 } 1641 1642 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1643 n = last - first + 1; 1644 1645 if (geo->ecc_for_meta && meta) 1646 page_size = meta + ecc_parity_size 1647 + (size + ecc_parity_size) * n; 1648 else 1649 page_size = meta + (size + ecc_parity_size) * n; 1650 1651 ecc_strength = geo->ecc_strength >> 1; 1652 1653 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS( 1654 (geo->ecc_for_meta ? n : n - 1)) | 1655 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | 1656 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1657 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | 1658 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ? 1659 0 : geo->ecc0_chunk_size), this); 1660 1661 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | 1662 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1663 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | 1664 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this); 1665 1666 this->bch = true; 1667 1668 ret = nand_read_page_op(chip, page, col, buf, page_size); 1669 if (ret) 1670 return ret; 1671 1672 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1673 page, offs, len, col, first, n, page_size); 1674 1675 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); 1676 1677 return max_bitflips; 1678 } 1679 1680 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1681 int oob_required, int page) 1682 { 1683 struct mtd_info *mtd = nand_to_mtd(chip); 1684 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1685 struct bch_geometry *nfc_geo = &this->bch_geometry; 1686 1687 dev_dbg(this->dev, "ecc write page.\n"); 1688 1689 gpmi_bch_layout_std(this); 1690 this->bch = true; 1691 1692 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); 1693 1694 if (this->swap_block_mark) { 1695 /* 1696 * When doing bad block marker swapping we must always copy the 1697 * input buffer as we can't modify the const buffer. 1698 */ 1699 memcpy(this->data_buffer_dma, buf, mtd->writesize); 1700 buf = this->data_buffer_dma; 1701 block_mark_swapping(this, this->data_buffer_dma, 1702 this->auxiliary_virt); 1703 } 1704 1705 return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); 1706 } 1707 1708 /* 1709 * There are several places in this driver where we have to handle the OOB and 1710 * block marks. This is the function where things are the most complicated, so 1711 * this is where we try to explain it all. All the other places refer back to 1712 * here. 1713 * 1714 * These are the rules, in order of decreasing importance: 1715 * 1716 * 1) Nothing the caller does can be allowed to imperil the block mark. 1717 * 1718 * 2) In read operations, the first byte of the OOB we return must reflect the 1719 * true state of the block mark, no matter where that block mark appears in 1720 * the physical page. 1721 * 1722 * 3) ECC-based read operations return an OOB full of set bits (since we never 1723 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1724 * return). 1725 * 1726 * 4) "Raw" read operations return a direct view of the physical bytes in the 1727 * page, using the conventional definition of which bytes are data and which 1728 * are OOB. This gives the caller a way to see the actual, physical bytes 1729 * in the page, without the distortions applied by our ECC engine. 1730 * 1731 * 1732 * What we do for this specific read operation depends on two questions: 1733 * 1734 * 1) Are we doing a "raw" read, or an ECC-based read? 1735 * 1736 * 2) Are we using block mark swapping or transcription? 1737 * 1738 * There are four cases, illustrated by the following Karnaugh map: 1739 * 1740 * | Raw | ECC-based | 1741 * -------------+-------------------------+-------------------------+ 1742 * | Read the conventional | | 1743 * | OOB at the end of the | | 1744 * Swapping | page and return it. It | | 1745 * | contains exactly what | | 1746 * | we want. | Read the block mark and | 1747 * -------------+-------------------------+ return it in a buffer | 1748 * | Read the conventional | full of set bits. | 1749 * | OOB at the end of the | | 1750 * | page and also the block | | 1751 * Transcribing | mark in the metadata. | | 1752 * | Copy the block mark | | 1753 * | into the first byte of | | 1754 * | the OOB. | | 1755 * -------------+-------------------------+-------------------------+ 1756 * 1757 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1758 * giving an accurate view of the actual, physical bytes in the page (we're 1759 * overwriting the block mark). That's OK because it's more important to follow 1760 * rule #2. 1761 * 1762 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1763 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1764 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1765 * ECC-based or raw view of the page is implicit in which function it calls 1766 * (there is a similar pair of ECC-based/raw functions for writing). 1767 */ 1768 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1769 { 1770 struct mtd_info *mtd = nand_to_mtd(chip); 1771 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1772 int ret; 1773 1774 /* clear the OOB buffer */ 1775 memset(chip->oob_poi, ~0, mtd->oobsize); 1776 1777 /* Read out the conventional OOB. */ 1778 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, 1779 mtd->oobsize); 1780 if (ret) 1781 return ret; 1782 1783 /* 1784 * Now, we want to make sure the block mark is correct. In the 1785 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1786 * Otherwise, we need to explicitly read it. 1787 */ 1788 if (GPMI_IS_MX23(this)) { 1789 /* Read the block mark into the first byte of the OOB buffer. */ 1790 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); 1791 if (ret) 1792 return ret; 1793 } 1794 1795 return 0; 1796 } 1797 1798 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1799 { 1800 struct mtd_info *mtd = nand_to_mtd(chip); 1801 struct mtd_oob_region of = { }; 1802 1803 /* Do we have available oob area? */ 1804 mtd_ooblayout_free(mtd, 0, &of); 1805 if (!of.length) 1806 return -EPERM; 1807 1808 if (!nand_is_slc(chip)) 1809 return -EPERM; 1810 1811 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1812 chip->oob_poi + of.offset, of.length); 1813 } 1814 1815 /* 1816 * This function reads a NAND page without involving the ECC engine (no HW 1817 * ECC correction). 1818 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1819 * inline (interleaved with payload DATA), and do not align data chunk on 1820 * byte boundaries. 1821 * We thus need to take care moving the payload data and ECC bits stored in the 1822 * page into the provided buffers, which is why we're using nand_extract_bits(). 1823 * 1824 * See set_geometry_by_ecc_info inline comments to have a full description 1825 * of the layout used by the GPMI controller. 1826 */ 1827 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1828 int oob_required, int page) 1829 { 1830 struct mtd_info *mtd = nand_to_mtd(chip); 1831 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1832 struct bch_geometry *nfc_geo = &this->bch_geometry; 1833 int eccsize = nfc_geo->eccn_chunk_size; 1834 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1835 u8 *tmp_buf = this->raw_buffer; 1836 size_t src_bit_off; 1837 size_t oob_bit_off; 1838 size_t oob_byte_off; 1839 uint8_t *oob = chip->oob_poi; 1840 int step; 1841 int ret; 1842 1843 ret = nand_read_page_op(chip, page, 0, tmp_buf, 1844 mtd->writesize + mtd->oobsize); 1845 if (ret) 1846 return ret; 1847 1848 /* 1849 * If required, swap the bad block marker and the data stored in the 1850 * metadata section, so that we don't wrongly consider a block as bad. 1851 * 1852 * See the layout description for a detailed explanation on why this 1853 * is needed. 1854 */ 1855 if (this->swap_block_mark) 1856 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1857 1858 /* 1859 * Copy the metadata section into the oob buffer (this section is 1860 * guaranteed to be aligned on a byte boundary). 1861 */ 1862 if (oob_required) 1863 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1864 1865 oob_bit_off = nfc_geo->metadata_size * 8; 1866 src_bit_off = oob_bit_off; 1867 1868 /* Extract interleaved payload data and ECC bits */ 1869 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1870 if (buf) 1871 nand_extract_bits(buf, step * eccsize * 8, tmp_buf, 1872 src_bit_off, eccsize * 8); 1873 src_bit_off += eccsize * 8; 1874 1875 /* Align last ECC block to align a byte boundary */ 1876 if (step == nfc_geo->ecc_chunk_count - 1 && 1877 (oob_bit_off + eccbits) % 8) 1878 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1879 1880 if (oob_required) 1881 nand_extract_bits(oob, oob_bit_off, tmp_buf, 1882 src_bit_off, eccbits); 1883 1884 src_bit_off += eccbits; 1885 oob_bit_off += eccbits; 1886 } 1887 1888 if (oob_required) { 1889 oob_byte_off = oob_bit_off / 8; 1890 1891 if (oob_byte_off < mtd->oobsize) 1892 memcpy(oob + oob_byte_off, 1893 tmp_buf + mtd->writesize + oob_byte_off, 1894 mtd->oobsize - oob_byte_off); 1895 } 1896 1897 return 0; 1898 } 1899 1900 /* 1901 * This function writes a NAND page without involving the ECC engine (no HW 1902 * ECC generation). 1903 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1904 * inline (interleaved with payload DATA), and do not align data chunk on 1905 * byte boundaries. 1906 * We thus need to take care moving the OOB area at the right place in the 1907 * final page, which is why we're using nand_extract_bits(). 1908 * 1909 * See set_geometry_by_ecc_info inline comments to have a full description 1910 * of the layout used by the GPMI controller. 1911 */ 1912 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1913 int oob_required, int page) 1914 { 1915 struct mtd_info *mtd = nand_to_mtd(chip); 1916 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1917 struct bch_geometry *nfc_geo = &this->bch_geometry; 1918 int eccsize = nfc_geo->eccn_chunk_size; 1919 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1920 u8 *tmp_buf = this->raw_buffer; 1921 uint8_t *oob = chip->oob_poi; 1922 size_t dst_bit_off; 1923 size_t oob_bit_off; 1924 size_t oob_byte_off; 1925 int step; 1926 1927 /* 1928 * Initialize all bits to 1 in case we don't have a buffer for the 1929 * payload or oob data in order to leave unspecified bits of data 1930 * to their initial state. 1931 */ 1932 if (!buf || !oob_required) 1933 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1934 1935 /* 1936 * First copy the metadata section (stored in oob buffer) at the 1937 * beginning of the page, as imposed by the GPMI layout. 1938 */ 1939 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1940 oob_bit_off = nfc_geo->metadata_size * 8; 1941 dst_bit_off = oob_bit_off; 1942 1943 /* Interleave payload data and ECC bits */ 1944 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1945 if (buf) 1946 nand_extract_bits(tmp_buf, dst_bit_off, buf, 1947 step * eccsize * 8, eccsize * 8); 1948 dst_bit_off += eccsize * 8; 1949 1950 /* Align last ECC block to align a byte boundary */ 1951 if (step == nfc_geo->ecc_chunk_count - 1 && 1952 (oob_bit_off + eccbits) % 8) 1953 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1954 1955 if (oob_required) 1956 nand_extract_bits(tmp_buf, dst_bit_off, oob, 1957 oob_bit_off, eccbits); 1958 1959 dst_bit_off += eccbits; 1960 oob_bit_off += eccbits; 1961 } 1962 1963 oob_byte_off = oob_bit_off / 8; 1964 1965 if (oob_required && oob_byte_off < mtd->oobsize) 1966 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1967 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1968 1969 /* 1970 * If required, swap the bad block marker and the first byte of the 1971 * metadata section, so that we don't modify the bad block marker. 1972 * 1973 * See the layout description for a detailed explanation on why this 1974 * is needed. 1975 */ 1976 if (this->swap_block_mark) 1977 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1978 1979 return nand_prog_page_op(chip, page, 0, tmp_buf, 1980 mtd->writesize + mtd->oobsize); 1981 } 1982 1983 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1984 { 1985 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1986 } 1987 1988 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1989 { 1990 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1991 } 1992 1993 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1994 { 1995 struct mtd_info *mtd = nand_to_mtd(chip); 1996 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1997 int ret = 0; 1998 uint8_t *block_mark; 1999 int column, page, chipnr; 2000 2001 chipnr = (int)(ofs >> chip->chip_shift); 2002 nand_select_target(chip, chipnr); 2003 2004 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 2005 2006 /* Write the block mark. */ 2007 block_mark = this->data_buffer_dma; 2008 block_mark[0] = 0; /* bad block marker */ 2009 2010 /* Shift to get page */ 2011 page = (int)(ofs >> chip->page_shift); 2012 2013 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 2014 2015 nand_deselect_target(chip); 2016 2017 return ret; 2018 } 2019 2020 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 2021 { 2022 struct boot_rom_geometry *geometry = &this->rom_geometry; 2023 2024 /* 2025 * Set the boot block stride size. 2026 * 2027 * In principle, we should be reading this from the OTP bits, since 2028 * that's where the ROM is going to get it. In fact, we don't have any 2029 * way to read the OTP bits, so we go with the default and hope for the 2030 * best. 2031 */ 2032 geometry->stride_size_in_pages = 64; 2033 2034 /* 2035 * Set the search area stride exponent. 2036 * 2037 * In principle, we should be reading this from the OTP bits, since 2038 * that's where the ROM is going to get it. In fact, we don't have any 2039 * way to read the OTP bits, so we go with the default and hope for the 2040 * best. 2041 */ 2042 geometry->search_area_stride_exponent = 2; 2043 return 0; 2044 } 2045 2046 static const char *fingerprint = "STMP"; 2047 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 2048 { 2049 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 2050 struct device *dev = this->dev; 2051 struct nand_chip *chip = &this->nand; 2052 unsigned int search_area_size_in_strides; 2053 unsigned int stride; 2054 unsigned int page; 2055 u8 *buffer = nand_get_data_buf(chip); 2056 int found_an_ncb_fingerprint = false; 2057 int ret; 2058 2059 /* Compute the number of strides in a search area. */ 2060 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 2061 2062 nand_select_target(chip, 0); 2063 2064 /* 2065 * Loop through the first search area, looking for the NCB fingerprint. 2066 */ 2067 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 2068 2069 for (stride = 0; stride < search_area_size_in_strides; stride++) { 2070 /* Compute the page addresses. */ 2071 page = stride * rom_geo->stride_size_in_pages; 2072 2073 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 2074 2075 /* 2076 * Read the NCB fingerprint. The fingerprint is four bytes long 2077 * and starts in the 12th byte of the page. 2078 */ 2079 ret = nand_read_page_op(chip, page, 12, buffer, 2080 strlen(fingerprint)); 2081 if (ret) 2082 continue; 2083 2084 /* Look for the fingerprint. */ 2085 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 2086 found_an_ncb_fingerprint = true; 2087 break; 2088 } 2089 2090 } 2091 2092 nand_deselect_target(chip); 2093 2094 if (found_an_ncb_fingerprint) 2095 dev_dbg(dev, "\tFound a fingerprint\n"); 2096 else 2097 dev_dbg(dev, "\tNo fingerprint found\n"); 2098 return found_an_ncb_fingerprint; 2099 } 2100 2101 /* Writes a transcription stamp. */ 2102 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 2103 { 2104 struct device *dev = this->dev; 2105 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 2106 struct nand_chip *chip = &this->nand; 2107 struct mtd_info *mtd = nand_to_mtd(chip); 2108 unsigned int block_size_in_pages; 2109 unsigned int search_area_size_in_strides; 2110 unsigned int search_area_size_in_pages; 2111 unsigned int search_area_size_in_blocks; 2112 unsigned int block; 2113 unsigned int stride; 2114 unsigned int page; 2115 u8 *buffer = nand_get_data_buf(chip); 2116 int status; 2117 2118 /* Compute the search area geometry. */ 2119 block_size_in_pages = mtd->erasesize / mtd->writesize; 2120 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 2121 search_area_size_in_pages = search_area_size_in_strides * 2122 rom_geo->stride_size_in_pages; 2123 search_area_size_in_blocks = 2124 (search_area_size_in_pages + (block_size_in_pages - 1)) / 2125 block_size_in_pages; 2126 2127 dev_dbg(dev, "Search Area Geometry :\n"); 2128 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 2129 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 2130 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 2131 2132 nand_select_target(chip, 0); 2133 2134 /* Loop over blocks in the first search area, erasing them. */ 2135 dev_dbg(dev, "Erasing the search area...\n"); 2136 2137 for (block = 0; block < search_area_size_in_blocks; block++) { 2138 /* Erase this block. */ 2139 dev_dbg(dev, "\tErasing block 0x%x\n", block); 2140 status = nand_erase_op(chip, block); 2141 if (status) 2142 dev_err(dev, "[%s] Erase failed.\n", __func__); 2143 } 2144 2145 /* Write the NCB fingerprint into the page buffer. */ 2146 memset(buffer, ~0, mtd->writesize); 2147 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 2148 2149 /* Loop through the first search area, writing NCB fingerprints. */ 2150 dev_dbg(dev, "Writing NCB fingerprints...\n"); 2151 for (stride = 0; stride < search_area_size_in_strides; stride++) { 2152 /* Compute the page addresses. */ 2153 page = stride * rom_geo->stride_size_in_pages; 2154 2155 /* Write the first page of the current stride. */ 2156 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 2157 2158 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 2159 if (status) 2160 dev_err(dev, "[%s] Write failed.\n", __func__); 2161 } 2162 2163 nand_deselect_target(chip); 2164 2165 return 0; 2166 } 2167 2168 static int mx23_boot_init(struct gpmi_nand_data *this) 2169 { 2170 struct device *dev = this->dev; 2171 struct nand_chip *chip = &this->nand; 2172 struct mtd_info *mtd = nand_to_mtd(chip); 2173 unsigned int block_count; 2174 unsigned int block; 2175 int chipnr; 2176 int page; 2177 loff_t byte; 2178 uint8_t block_mark; 2179 int ret = 0; 2180 2181 /* 2182 * If control arrives here, we can't use block mark swapping, which 2183 * means we're forced to use transcription. First, scan for the 2184 * transcription stamp. If we find it, then we don't have to do 2185 * anything -- the block marks are already transcribed. 2186 */ 2187 if (mx23_check_transcription_stamp(this)) 2188 return 0; 2189 2190 /* 2191 * If control arrives here, we couldn't find a transcription stamp, so 2192 * so we presume the block marks are in the conventional location. 2193 */ 2194 dev_dbg(dev, "Transcribing bad block marks...\n"); 2195 2196 /* Compute the number of blocks in the entire medium. */ 2197 block_count = nanddev_eraseblocks_per_target(&chip->base); 2198 2199 /* 2200 * Loop over all the blocks in the medium, transcribing block marks as 2201 * we go. 2202 */ 2203 for (block = 0; block < block_count; block++) { 2204 /* 2205 * Compute the chip, page and byte addresses for this block's 2206 * conventional mark. 2207 */ 2208 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 2209 page = block << (chip->phys_erase_shift - chip->page_shift); 2210 byte = block << chip->phys_erase_shift; 2211 2212 /* Send the command to read the conventional block mark. */ 2213 nand_select_target(chip, chipnr); 2214 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 2215 1); 2216 nand_deselect_target(chip); 2217 2218 if (ret) 2219 continue; 2220 2221 /* 2222 * Check if the block is marked bad. If so, we need to mark it 2223 * again, but this time the result will be a mark in the 2224 * location where we transcribe block marks. 2225 */ 2226 if (block_mark != 0xff) { 2227 dev_dbg(dev, "Transcribing mark in block %u\n", block); 2228 ret = chip->legacy.block_markbad(chip, byte); 2229 if (ret) 2230 dev_err(dev, 2231 "Failed to mark block bad with ret %d\n", 2232 ret); 2233 } 2234 } 2235 2236 /* Write the stamp that indicates we've transcribed the block marks. */ 2237 mx23_write_transcription_stamp(this); 2238 return 0; 2239 } 2240 2241 static int nand_boot_init(struct gpmi_nand_data *this) 2242 { 2243 nand_boot_set_geometry(this); 2244 2245 /* This is ROM arch-specific initilization before the BBT scanning. */ 2246 if (GPMI_IS_MX23(this)) 2247 return mx23_boot_init(this); 2248 return 0; 2249 } 2250 2251 static int gpmi_set_geometry(struct gpmi_nand_data *this) 2252 { 2253 int ret; 2254 2255 /* Free the temporary DMA memory for reading ID. */ 2256 gpmi_free_dma_buffer(this); 2257 2258 /* Set up the NFC geometry which is used by BCH. */ 2259 ret = bch_set_geometry(this); 2260 if (ret) { 2261 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 2262 return ret; 2263 } 2264 2265 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 2266 return gpmi_alloc_dma_buffer(this); 2267 } 2268 2269 static int gpmi_init_last(struct gpmi_nand_data *this) 2270 { 2271 struct nand_chip *chip = &this->nand; 2272 struct mtd_info *mtd = nand_to_mtd(chip); 2273 struct nand_ecc_ctrl *ecc = &chip->ecc; 2274 struct bch_geometry *bch_geo = &this->bch_geometry; 2275 int ret; 2276 2277 /* Set up the medium geometry */ 2278 ret = gpmi_set_geometry(this); 2279 if (ret) 2280 return ret; 2281 2282 /* Init the nand_ecc_ctrl{} */ 2283 ecc->read_page = gpmi_ecc_read_page; 2284 ecc->write_page = gpmi_ecc_write_page; 2285 ecc->read_oob = gpmi_ecc_read_oob; 2286 ecc->write_oob = gpmi_ecc_write_oob; 2287 ecc->read_page_raw = gpmi_ecc_read_page_raw; 2288 ecc->write_page_raw = gpmi_ecc_write_page_raw; 2289 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 2290 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 2291 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2292 ecc->size = bch_geo->eccn_chunk_size; 2293 ecc->strength = bch_geo->ecc_strength; 2294 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 2295 2296 /* 2297 * We only enable the subpage read when: 2298 * (1) the chip is imx6, and 2299 * (2) the size of the ECC parity is byte aligned. 2300 */ 2301 if (GPMI_IS_MX6(this) && 2302 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 2303 ecc->read_subpage = gpmi_ecc_read_subpage; 2304 chip->options |= NAND_SUBPAGE_READ; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static int gpmi_nand_attach_chip(struct nand_chip *chip) 2311 { 2312 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2313 int ret; 2314 2315 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2316 chip->bbt_options |= NAND_BBT_NO_OOB; 2317 2318 if (of_property_read_bool(this->dev->of_node, 2319 "fsl,no-blockmark-swap")) 2320 this->swap_block_mark = false; 2321 } 2322 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2323 this->swap_block_mark ? "en" : "dis"); 2324 2325 ret = gpmi_init_last(this); 2326 if (ret) 2327 return ret; 2328 2329 chip->options |= NAND_SKIP_BBTSCAN; 2330 2331 return 0; 2332 } 2333 2334 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) 2335 { 2336 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; 2337 2338 this->ntransfers++; 2339 2340 if (this->ntransfers == GPMI_MAX_TRANSFERS) 2341 return NULL; 2342 2343 return transfer; 2344 } 2345 2346 static struct dma_async_tx_descriptor *gpmi_chain_command( 2347 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) 2348 { 2349 struct dma_chan *channel = get_dma_chan(this); 2350 struct dma_async_tx_descriptor *desc; 2351 struct gpmi_transfer *transfer; 2352 int chip = this->nand.cur_cs; 2353 u32 pio[3]; 2354 2355 /* [1] send out the PIO words */ 2356 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2357 | BM_GPMI_CTRL0_WORD_LENGTH 2358 | BF_GPMI_CTRL0_CS(chip, this) 2359 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2360 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) 2361 | BM_GPMI_CTRL0_ADDRESS_INCREMENT 2362 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); 2363 pio[1] = 0; 2364 pio[2] = 0; 2365 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2366 DMA_TRANS_NONE, 0); 2367 if (!desc) 2368 return NULL; 2369 2370 transfer = get_next_transfer(this); 2371 if (!transfer) 2372 return NULL; 2373 2374 transfer->cmdbuf[0] = cmd; 2375 if (naddr) 2376 memcpy(&transfer->cmdbuf[1], addr, naddr); 2377 2378 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); 2379 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); 2380 2381 transfer->direction = DMA_TO_DEVICE; 2382 2383 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, 2384 MXS_DMA_CTRL_WAIT4END); 2385 return desc; 2386 } 2387 2388 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( 2389 struct gpmi_nand_data *this) 2390 { 2391 struct dma_chan *channel = get_dma_chan(this); 2392 u32 pio[2]; 2393 2394 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) 2395 | BM_GPMI_CTRL0_WORD_LENGTH 2396 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2397 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2398 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2399 | BF_GPMI_CTRL0_XFER_COUNT(0); 2400 pio[1] = 0; 2401 2402 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 2403 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); 2404 } 2405 2406 static struct dma_async_tx_descriptor *gpmi_chain_data_read( 2407 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) 2408 { 2409 struct dma_async_tx_descriptor *desc; 2410 struct dma_chan *channel = get_dma_chan(this); 2411 struct gpmi_transfer *transfer; 2412 u32 pio[6] = {}; 2413 2414 transfer = get_next_transfer(this); 2415 if (!transfer) 2416 return NULL; 2417 2418 transfer->direction = DMA_FROM_DEVICE; 2419 2420 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, 2421 DMA_FROM_DEVICE); 2422 2423 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) 2424 | BM_GPMI_CTRL0_WORD_LENGTH 2425 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2426 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2427 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2428 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2429 2430 if (this->bch) { 2431 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2432 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) 2433 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 2434 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2435 pio[3] = raw_len; 2436 pio[4] = transfer->sgl.dma_address; 2437 pio[5] = this->auxiliary_phys; 2438 } 2439 2440 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2441 DMA_TRANS_NONE, 0); 2442 if (!desc) 2443 return NULL; 2444 2445 if (!this->bch) 2446 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2447 DMA_DEV_TO_MEM, 2448 MXS_DMA_CTRL_WAIT4END); 2449 2450 return desc; 2451 } 2452 2453 static struct dma_async_tx_descriptor *gpmi_chain_data_write( 2454 struct gpmi_nand_data *this, const void *buf, int raw_len) 2455 { 2456 struct dma_chan *channel = get_dma_chan(this); 2457 struct dma_async_tx_descriptor *desc; 2458 struct gpmi_transfer *transfer; 2459 u32 pio[6] = {}; 2460 2461 transfer = get_next_transfer(this); 2462 if (!transfer) 2463 return NULL; 2464 2465 transfer->direction = DMA_TO_DEVICE; 2466 2467 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); 2468 2469 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2470 | BM_GPMI_CTRL0_WORD_LENGTH 2471 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2472 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2473 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2474 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2475 2476 if (this->bch) { 2477 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2478 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) 2479 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | 2480 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2481 pio[3] = raw_len; 2482 pio[4] = transfer->sgl.dma_address; 2483 pio[5] = this->auxiliary_phys; 2484 } 2485 2486 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2487 DMA_TRANS_NONE, 2488 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); 2489 if (!desc) 2490 return NULL; 2491 2492 if (!this->bch) 2493 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2494 DMA_MEM_TO_DEV, 2495 MXS_DMA_CTRL_WAIT4END); 2496 2497 return desc; 2498 } 2499 2500 static int gpmi_nfc_exec_op(struct nand_chip *chip, 2501 const struct nand_operation *op, 2502 bool check_only) 2503 { 2504 const struct nand_op_instr *instr; 2505 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2506 struct dma_async_tx_descriptor *desc = NULL; 2507 int i, ret, buf_len = 0, nbufs = 0; 2508 u8 cmd = 0; 2509 void *buf_read = NULL; 2510 const void *buf_write = NULL; 2511 bool direct = false; 2512 struct completion *dma_completion, *bch_completion; 2513 unsigned long to; 2514 2515 if (check_only) 2516 return 0; 2517 2518 this->ntransfers = 0; 2519 for (i = 0; i < GPMI_MAX_TRANSFERS; i++) 2520 this->transfers[i].direction = DMA_NONE; 2521 2522 ret = pm_runtime_resume_and_get(this->dev); 2523 if (ret < 0) 2524 return ret; 2525 2526 /* 2527 * This driver currently supports only one NAND chip. Plus, dies share 2528 * the same configuration. So once timings have been applied on the 2529 * controller side, they will not change anymore. When the time will 2530 * come, the check on must_apply_timings will have to be dropped. 2531 */ 2532 if (this->hw.must_apply_timings) { 2533 this->hw.must_apply_timings = false; 2534 ret = gpmi_nfc_apply_timings(this); 2535 if (ret) 2536 goto out_pm; 2537 } 2538 2539 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); 2540 2541 for (i = 0; i < op->ninstrs; i++) { 2542 instr = &op->instrs[i]; 2543 2544 nand_op_trace(" ", instr); 2545 2546 switch (instr->type) { 2547 case NAND_OP_WAITRDY_INSTR: 2548 desc = gpmi_chain_wait_ready(this); 2549 break; 2550 case NAND_OP_CMD_INSTR: 2551 cmd = instr->ctx.cmd.opcode; 2552 2553 /* 2554 * When this command has an address cycle chain it 2555 * together with the address cycle 2556 */ 2557 if (i + 1 != op->ninstrs && 2558 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) 2559 continue; 2560 2561 desc = gpmi_chain_command(this, cmd, NULL, 0); 2562 2563 break; 2564 case NAND_OP_ADDR_INSTR: 2565 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, 2566 instr->ctx.addr.naddrs); 2567 break; 2568 case NAND_OP_DATA_OUT_INSTR: 2569 buf_write = instr->ctx.data.buf.out; 2570 buf_len = instr->ctx.data.len; 2571 nbufs++; 2572 2573 desc = gpmi_chain_data_write(this, buf_write, buf_len); 2574 2575 break; 2576 case NAND_OP_DATA_IN_INSTR: 2577 if (!instr->ctx.data.len) 2578 break; 2579 buf_read = instr->ctx.data.buf.in; 2580 buf_len = instr->ctx.data.len; 2581 nbufs++; 2582 2583 desc = gpmi_chain_data_read(this, buf_read, buf_len, 2584 &direct); 2585 break; 2586 } 2587 2588 if (!desc) { 2589 ret = -ENXIO; 2590 goto unmap; 2591 } 2592 } 2593 2594 dev_dbg(this->dev, "%s setup done\n", __func__); 2595 2596 if (nbufs > 1) { 2597 dev_err(this->dev, "Multiple data instructions not supported\n"); 2598 ret = -EINVAL; 2599 goto unmap; 2600 } 2601 2602 if (this->bch) { 2603 writel(this->bch_flashlayout0, 2604 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); 2605 writel(this->bch_flashlayout1, 2606 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); 2607 } 2608 2609 desc->callback = dma_irq_callback; 2610 desc->callback_param = this; 2611 dma_completion = &this->dma_done; 2612 bch_completion = NULL; 2613 2614 init_completion(dma_completion); 2615 2616 if (this->bch && buf_read) { 2617 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2618 this->resources.bch_regs + HW_BCH_CTRL_SET); 2619 bch_completion = &this->bch_done; 2620 init_completion(bch_completion); 2621 } 2622 2623 dmaengine_submit(desc); 2624 dma_async_issue_pending(get_dma_chan(this)); 2625 2626 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); 2627 if (!to) { 2628 dev_err(this->dev, "DMA timeout, last DMA\n"); 2629 gpmi_dump_info(this); 2630 ret = -ETIMEDOUT; 2631 goto unmap; 2632 } 2633 2634 if (this->bch && buf_read) { 2635 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); 2636 if (!to) { 2637 dev_err(this->dev, "BCH timeout, last DMA\n"); 2638 gpmi_dump_info(this); 2639 ret = -ETIMEDOUT; 2640 goto unmap; 2641 } 2642 } 2643 2644 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2645 this->resources.bch_regs + HW_BCH_CTRL_CLR); 2646 gpmi_clear_bch(this); 2647 2648 ret = 0; 2649 2650 unmap: 2651 for (i = 0; i < this->ntransfers; i++) { 2652 struct gpmi_transfer *transfer = &this->transfers[i]; 2653 2654 if (transfer->direction != DMA_NONE) 2655 dma_unmap_sg(this->dev, &transfer->sgl, 1, 2656 transfer->direction); 2657 } 2658 2659 if (!ret && buf_read && !direct) 2660 memcpy(buf_read, this->data_buffer_dma, 2661 gpmi_raw_len_to_len(this, buf_len)); 2662 2663 this->bch = false; 2664 2665 out_pm: 2666 pm_runtime_mark_last_busy(this->dev); 2667 pm_runtime_put_autosuspend(this->dev); 2668 2669 return ret; 2670 } 2671 2672 static const struct nand_controller_ops gpmi_nand_controller_ops = { 2673 .attach_chip = gpmi_nand_attach_chip, 2674 .setup_interface = gpmi_setup_interface, 2675 .exec_op = gpmi_nfc_exec_op, 2676 }; 2677 2678 static int gpmi_nand_init(struct gpmi_nand_data *this) 2679 { 2680 struct nand_chip *chip = &this->nand; 2681 struct mtd_info *mtd = nand_to_mtd(chip); 2682 int ret; 2683 2684 /* init the MTD data structures */ 2685 mtd->name = "gpmi-nand"; 2686 mtd->dev.parent = this->dev; 2687 2688 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 2689 nand_set_controller_data(chip, this); 2690 nand_set_flash_node(chip, this->pdev->dev.of_node); 2691 chip->legacy.block_markbad = gpmi_block_markbad; 2692 chip->badblock_pattern = &gpmi_bbt_descr; 2693 chip->options |= NAND_NO_SUBPAGE_WRITE; 2694 2695 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 2696 this->swap_block_mark = !GPMI_IS_MX23(this); 2697 2698 /* 2699 * Allocate a temporary DMA buffer for reading ID in the 2700 * nand_scan_ident(). 2701 */ 2702 this->bch_geometry.payload_size = 1024; 2703 this->bch_geometry.auxiliary_size = 128; 2704 ret = gpmi_alloc_dma_buffer(this); 2705 if (ret) 2706 return ret; 2707 2708 nand_controller_init(&this->base); 2709 this->base.ops = &gpmi_nand_controller_ops; 2710 chip->controller = &this->base; 2711 2712 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 2713 if (ret) 2714 goto err_out; 2715 2716 ret = nand_boot_init(this); 2717 if (ret) 2718 goto err_nand_cleanup; 2719 ret = nand_create_bbt(chip); 2720 if (ret) 2721 goto err_nand_cleanup; 2722 2723 ret = mtd_device_register(mtd, NULL, 0); 2724 if (ret) 2725 goto err_nand_cleanup; 2726 return 0; 2727 2728 err_nand_cleanup: 2729 nand_cleanup(chip); 2730 err_out: 2731 gpmi_free_dma_buffer(this); 2732 return ret; 2733 } 2734 2735 static const struct of_device_id gpmi_nand_id_table[] = { 2736 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, 2737 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, 2738 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, 2739 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, 2740 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, 2741 { .compatible = "fsl,imx8qxp-gpmi-nand", .data = &gpmi_devdata_imx8qxp, }, 2742 {} 2743 }; 2744 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2745 2746 static int gpmi_nand_probe(struct platform_device *pdev) 2747 { 2748 struct gpmi_nand_data *this; 2749 int ret; 2750 2751 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2752 if (!this) 2753 return -ENOMEM; 2754 2755 this->devdata = of_device_get_match_data(&pdev->dev); 2756 platform_set_drvdata(pdev, this); 2757 this->pdev = pdev; 2758 this->dev = &pdev->dev; 2759 2760 ret = acquire_resources(this); 2761 if (ret) 2762 goto exit_acquire_resources; 2763 2764 ret = __gpmi_enable_clk(this, true); 2765 if (ret) 2766 goto exit_acquire_resources; 2767 2768 pm_runtime_set_autosuspend_delay(&pdev->dev, 500); 2769 pm_runtime_use_autosuspend(&pdev->dev); 2770 pm_runtime_set_active(&pdev->dev); 2771 pm_runtime_enable(&pdev->dev); 2772 pm_runtime_get_sync(&pdev->dev); 2773 2774 ret = gpmi_init(this); 2775 if (ret) 2776 goto exit_nfc_init; 2777 2778 ret = gpmi_nand_init(this); 2779 if (ret) 2780 goto exit_nfc_init; 2781 2782 pm_runtime_mark_last_busy(&pdev->dev); 2783 pm_runtime_put_autosuspend(&pdev->dev); 2784 2785 dev_info(this->dev, "driver registered.\n"); 2786 2787 return 0; 2788 2789 exit_nfc_init: 2790 pm_runtime_put(&pdev->dev); 2791 pm_runtime_disable(&pdev->dev); 2792 release_resources(this); 2793 exit_acquire_resources: 2794 2795 return ret; 2796 } 2797 2798 static void gpmi_nand_remove(struct platform_device *pdev) 2799 { 2800 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2801 struct nand_chip *chip = &this->nand; 2802 int ret; 2803 2804 pm_runtime_put_sync(&pdev->dev); 2805 pm_runtime_disable(&pdev->dev); 2806 2807 ret = mtd_device_unregister(nand_to_mtd(chip)); 2808 WARN_ON(ret); 2809 nand_cleanup(chip); 2810 gpmi_free_dma_buffer(this); 2811 release_resources(this); 2812 } 2813 2814 #ifdef CONFIG_PM_SLEEP 2815 static int gpmi_pm_suspend(struct device *dev) 2816 { 2817 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2818 2819 release_dma_channels(this); 2820 return 0; 2821 } 2822 2823 static int gpmi_pm_resume(struct device *dev) 2824 { 2825 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2826 int ret; 2827 2828 ret = acquire_dma_channels(this); 2829 if (ret < 0) 2830 return ret; 2831 2832 /* re-init the GPMI registers */ 2833 ret = gpmi_init(this); 2834 if (ret) { 2835 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2836 return ret; 2837 } 2838 2839 /* Set flag to get timing setup restored for next exec_op */ 2840 if (this->hw.clk_rate) 2841 this->hw.must_apply_timings = true; 2842 2843 /* re-init the BCH registers */ 2844 ret = bch_set_geometry(this); 2845 if (ret) { 2846 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2847 return ret; 2848 } 2849 2850 return 0; 2851 } 2852 #endif /* CONFIG_PM_SLEEP */ 2853 2854 static int __maybe_unused gpmi_runtime_suspend(struct device *dev) 2855 { 2856 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2857 2858 return __gpmi_enable_clk(this, false); 2859 } 2860 2861 static int __maybe_unused gpmi_runtime_resume(struct device *dev) 2862 { 2863 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2864 2865 return __gpmi_enable_clk(this, true); 2866 } 2867 2868 static const struct dev_pm_ops gpmi_pm_ops = { 2869 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2870 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) 2871 }; 2872 2873 static struct platform_driver gpmi_nand_driver = { 2874 .driver = { 2875 .name = "gpmi-nand", 2876 .pm = &gpmi_pm_ops, 2877 .of_match_table = gpmi_nand_id_table, 2878 }, 2879 .probe = gpmi_nand_probe, 2880 .remove_new = gpmi_nand_remove, 2881 }; 2882 module_platform_driver(gpmi_nand_driver); 2883 2884 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2885 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2886 MODULE_LICENSE("GPL"); 2887