xref: /linux/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = pm_runtime_get_sync(this->dev);
152 	if (ret < 0)
153 		return ret;
154 
155 	ret = gpmi_reset_block(r->gpmi_regs, false);
156 	if (ret)
157 		goto err_out;
158 
159 	/*
160 	 * Reset BCH here, too. We got failures otherwise :(
161 	 * See later BCH reset for explanation of MX23 and MX28 handling
162 	 */
163 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
164 	if (ret)
165 		goto err_out;
166 
167 	/* Choose NAND mode. */
168 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
169 
170 	/* Set the IRQ polarity. */
171 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
172 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
173 
174 	/* Disable Write-Protection. */
175 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176 
177 	/* Select BCH ECC. */
178 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
179 
180 	/*
181 	 * Decouple the chip select from dma channel. We use dma0 for all
182 	 * the chips.
183 	 */
184 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
185 
186 err_out:
187 	pm_runtime_mark_last_busy(this->dev);
188 	pm_runtime_put_autosuspend(this->dev);
189 	return ret;
190 }
191 
192 /* This function is very useful. It is called only when the bug occur. */
193 static void gpmi_dump_info(struct gpmi_nand_data *this)
194 {
195 	struct resources *r = &this->resources;
196 	struct bch_geometry *geo = &this->bch_geometry;
197 	u32 reg;
198 	int i;
199 
200 	dev_err(this->dev, "Show GPMI registers :\n");
201 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
202 		reg = readl(r->gpmi_regs + i * 0x10);
203 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
204 	}
205 
206 	/* start to print out the BCH info */
207 	dev_err(this->dev, "Show BCH registers :\n");
208 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
209 		reg = readl(r->bch_regs + i * 0x10);
210 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
211 	}
212 	dev_err(this->dev, "BCH Geometry :\n"
213 		"GF length              : %u\n"
214 		"ECC Strength           : %u\n"
215 		"Page Size in Bytes     : %u\n"
216 		"Metadata Size in Bytes : %u\n"
217 		"ECC Chunk Size in Bytes: %u\n"
218 		"ECC Chunk Count        : %u\n"
219 		"Payload Size in Bytes  : %u\n"
220 		"Auxiliary Size in Bytes: %u\n"
221 		"Auxiliary Status Offset: %u\n"
222 		"Block Mark Byte Offset : %u\n"
223 		"Block Mark Bit Offset  : %u\n",
224 		geo->gf_len,
225 		geo->ecc_strength,
226 		geo->page_size,
227 		geo->metadata_size,
228 		geo->ecc_chunk_size,
229 		geo->ecc_chunk_count,
230 		geo->payload_size,
231 		geo->auxiliary_size,
232 		geo->auxiliary_status_offset,
233 		geo->block_mark_byte_offset,
234 		geo->block_mark_bit_offset);
235 }
236 
237 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
238 {
239 	struct bch_geometry *geo = &this->bch_geometry;
240 
241 	/* Do the sanity check. */
242 	if (GPMI_IS_MXS(this)) {
243 		/* The mx23/mx28 only support the GF13. */
244 		if (geo->gf_len == 14)
245 			return false;
246 	}
247 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
248 }
249 
250 /*
251  * If we can get the ECC information from the nand chip, we do not
252  * need to calculate them ourselves.
253  *
254  * We may have available oob space in this case.
255  */
256 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
257 				    unsigned int ecc_strength,
258 				    unsigned int ecc_step)
259 {
260 	struct bch_geometry *geo = &this->bch_geometry;
261 	struct nand_chip *chip = &this->nand;
262 	struct mtd_info *mtd = nand_to_mtd(chip);
263 	unsigned int block_mark_bit_offset;
264 
265 	switch (ecc_step) {
266 	case SZ_512:
267 		geo->gf_len = 13;
268 		break;
269 	case SZ_1K:
270 		geo->gf_len = 14;
271 		break;
272 	default:
273 		dev_err(this->dev,
274 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
275 			chip->base.eccreq.strength,
276 			chip->base.eccreq.step_size);
277 		return -EINVAL;
278 	}
279 	geo->ecc_chunk_size = ecc_step;
280 	geo->ecc_strength = round_up(ecc_strength, 2);
281 	if (!gpmi_check_ecc(this))
282 		return -EINVAL;
283 
284 	/* Keep the C >= O */
285 	if (geo->ecc_chunk_size < mtd->oobsize) {
286 		dev_err(this->dev,
287 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
288 			ecc_step, mtd->oobsize);
289 		return -EINVAL;
290 	}
291 
292 	/* The default value, see comment in the legacy_set_geometry(). */
293 	geo->metadata_size = 10;
294 
295 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
296 
297 	/*
298 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
299 	 *
300 	 *    |                          P                            |
301 	 *    |<----------------------------------------------------->|
302 	 *    |                                                       |
303 	 *    |                                        (Block Mark)   |
304 	 *    |                      P'                      |      | |     |
305 	 *    |<-------------------------------------------->|  D   | |  O' |
306 	 *    |                                              |<---->| |<--->|
307 	 *    V                                              V      V V     V
308 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
309 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
310 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
311 	 *                                                   ^              ^
312 	 *                                                   |      O       |
313 	 *                                                   |<------------>|
314 	 *                                                   |              |
315 	 *
316 	 *	P : the page size for BCH module.
317 	 *	E : The ECC strength.
318 	 *	G : the length of Galois Field.
319 	 *	N : The chunk count of per page.
320 	 *	M : the metasize of per page.
321 	 *	C : the ecc chunk size, aka the "data" above.
322 	 *	P': the nand chip's page size.
323 	 *	O : the nand chip's oob size.
324 	 *	O': the free oob.
325 	 *
326 	 *	The formula for P is :
327 	 *
328 	 *	            E * G * N
329 	 *	       P = ------------ + P' + M
330 	 *                      8
331 	 *
332 	 * The position of block mark moves forward in the ECC-based view
333 	 * of page, and the delta is:
334 	 *
335 	 *                   E * G * (N - 1)
336 	 *             D = (---------------- + M)
337 	 *                          8
338 	 *
339 	 * Please see the comment in legacy_set_geometry().
340 	 * With the condition C >= O , we still can get same result.
341 	 * So the bit position of the physical block mark within the ECC-based
342 	 * view of the page is :
343 	 *             (P' - D) * 8
344 	 */
345 	geo->page_size = mtd->writesize + geo->metadata_size +
346 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
347 
348 	geo->payload_size = mtd->writesize;
349 
350 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
351 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
352 				+ ALIGN(geo->ecc_chunk_count, 4);
353 
354 	if (!this->swap_block_mark)
355 		return 0;
356 
357 	/* For bit swap. */
358 	block_mark_bit_offset = mtd->writesize * 8 -
359 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
360 				+ geo->metadata_size * 8);
361 
362 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
363 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
364 	return 0;
365 }
366 
367 /*
368  *  Calculate the ECC strength by hand:
369  *	E : The ECC strength.
370  *	G : the length of Galois Field.
371  *	N : The chunk count of per page.
372  *	O : the oobsize of the NAND chip.
373  *	M : the metasize of per page.
374  *
375  *	The formula is :
376  *		E * G * N
377  *	      ------------ <= (O - M)
378  *                  8
379  *
380  *      So, we get E by:
381  *                    (O - M) * 8
382  *              E <= -------------
383  *                       G * N
384  */
385 static inline int get_ecc_strength(struct gpmi_nand_data *this)
386 {
387 	struct bch_geometry *geo = &this->bch_geometry;
388 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
389 	int ecc_strength;
390 
391 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
392 			/ (geo->gf_len * geo->ecc_chunk_count);
393 
394 	/* We need the minor even number. */
395 	return round_down(ecc_strength, 2);
396 }
397 
398 static int legacy_set_geometry(struct gpmi_nand_data *this)
399 {
400 	struct bch_geometry *geo = &this->bch_geometry;
401 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
402 	unsigned int metadata_size;
403 	unsigned int status_size;
404 	unsigned int block_mark_bit_offset;
405 
406 	/*
407 	 * The size of the metadata can be changed, though we set it to 10
408 	 * bytes now. But it can't be too large, because we have to save
409 	 * enough space for BCH.
410 	 */
411 	geo->metadata_size = 10;
412 
413 	/* The default for the length of Galois Field. */
414 	geo->gf_len = 13;
415 
416 	/* The default for chunk size. */
417 	geo->ecc_chunk_size = 512;
418 	while (geo->ecc_chunk_size < mtd->oobsize) {
419 		geo->ecc_chunk_size *= 2; /* keep C >= O */
420 		geo->gf_len = 14;
421 	}
422 
423 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
424 
425 	/* We use the same ECC strength for all chunks. */
426 	geo->ecc_strength = get_ecc_strength(this);
427 	if (!gpmi_check_ecc(this)) {
428 		dev_err(this->dev,
429 			"ecc strength: %d cannot be supported by the controller (%d)\n"
430 			"try to use minimum ecc strength that NAND chip required\n",
431 			geo->ecc_strength,
432 			this->devdata->bch_max_ecc_strength);
433 		return -EINVAL;
434 	}
435 
436 	geo->page_size = mtd->writesize + geo->metadata_size +
437 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
438 	geo->payload_size = mtd->writesize;
439 
440 	/*
441 	 * The auxiliary buffer contains the metadata and the ECC status. The
442 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
443 	 * contains one byte for every ECC chunk, and is also padded to the
444 	 * nearest 32-bit boundary.
445 	 */
446 	metadata_size = ALIGN(geo->metadata_size, 4);
447 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
448 
449 	geo->auxiliary_size = metadata_size + status_size;
450 	geo->auxiliary_status_offset = metadata_size;
451 
452 	if (!this->swap_block_mark)
453 		return 0;
454 
455 	/*
456 	 * We need to compute the byte and bit offsets of
457 	 * the physical block mark within the ECC-based view of the page.
458 	 *
459 	 * NAND chip with 2K page shows below:
460 	 *                                             (Block Mark)
461 	 *                                                   |      |
462 	 *                                                   |  D   |
463 	 *                                                   |<---->|
464 	 *                                                   V      V
465 	 *    +---+----------+-+----------+-+----------+-+----------+-+
466 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
467 	 *    +---+----------+-+----------+-+----------+-+----------+-+
468 	 *
469 	 * The position of block mark moves forward in the ECC-based view
470 	 * of page, and the delta is:
471 	 *
472 	 *                   E * G * (N - 1)
473 	 *             D = (---------------- + M)
474 	 *                          8
475 	 *
476 	 * With the formula to compute the ECC strength, and the condition
477 	 *       : C >= O         (C is the ecc chunk size)
478 	 *
479 	 * It's easy to deduce to the following result:
480 	 *
481 	 *         E * G       (O - M)      C - M         C - M
482 	 *      ----------- <= ------- <=  --------  <  ---------
483 	 *           8            N           N          (N - 1)
484 	 *
485 	 *  So, we get:
486 	 *
487 	 *                   E * G * (N - 1)
488 	 *             D = (---------------- + M) < C
489 	 *                          8
490 	 *
491 	 *  The above inequality means the position of block mark
492 	 *  within the ECC-based view of the page is still in the data chunk,
493 	 *  and it's NOT in the ECC bits of the chunk.
494 	 *
495 	 *  Use the following to compute the bit position of the
496 	 *  physical block mark within the ECC-based view of the page:
497 	 *          (page_size - D) * 8
498 	 *
499 	 *  --Huang Shijie
500 	 */
501 	block_mark_bit_offset = mtd->writesize * 8 -
502 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
503 				+ geo->metadata_size * 8);
504 
505 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
506 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
507 	return 0;
508 }
509 
510 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
511 {
512 	struct nand_chip *chip = &this->nand;
513 
514 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
515 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
516 						chip->ecc.size);
517 
518 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
519 				|| legacy_set_geometry(this)) {
520 		if (!(chip->base.eccreq.strength > 0 &&
521 		      chip->base.eccreq.step_size > 0))
522 			return -EINVAL;
523 
524 		return set_geometry_by_ecc_info(this,
525 						chip->base.eccreq.strength,
526 						chip->base.eccreq.step_size);
527 	}
528 
529 	return 0;
530 }
531 
532 /* Configures the geometry for BCH.  */
533 static int bch_set_geometry(struct gpmi_nand_data *this)
534 {
535 	struct resources *r = &this->resources;
536 	int ret;
537 
538 	ret = common_nfc_set_geometry(this);
539 	if (ret)
540 		return ret;
541 
542 	ret = pm_runtime_get_sync(this->dev);
543 	if (ret < 0)
544 		return ret;
545 
546 	/*
547 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
548 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
549 	* and MX28.
550 	*/
551 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
552 	if (ret)
553 		goto err_out;
554 
555 	/* Set *all* chip selects to use layout 0. */
556 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
557 
558 	ret = 0;
559 err_out:
560 	pm_runtime_mark_last_busy(this->dev);
561 	pm_runtime_put_autosuspend(this->dev);
562 
563 	return ret;
564 }
565 
566 /*
567  * <1> Firstly, we should know what's the GPMI-clock means.
568  *     The GPMI-clock is the internal clock in the gpmi nand controller.
569  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
570  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
571  *
572  * <2> Secondly, we should know what's the frequency on the nand chip pins.
573  *     The frequency on the nand chip pins is derived from the GPMI-clock.
574  *     We can get it from the following equation:
575  *
576  *         F = G / (DS + DH)
577  *
578  *         F  : the frequency on the nand chip pins.
579  *         G  : the GPMI clock, such as 100MHz.
580  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
581  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
582  *
583  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
584  *     the nand EDO(extended Data Out) timing could be applied.
585  *     The GPMI implements a feedback read strobe to sample the read data.
586  *     The feedback read strobe can be delayed to support the nand EDO timing
587  *     where the read strobe may deasserts before the read data is valid, and
588  *     read data is valid for some time after read strobe.
589  *
590  *     The following figure illustrates some aspects of a NAND Flash read:
591  *
592  *                   |<---tREA---->|
593  *                   |             |
594  *                   |         |   |
595  *                   |<--tRP-->|   |
596  *                   |         |   |
597  *                  __          ___|__________________________________
598  *     RDN            \________/   |
599  *                                 |
600  *                                 /---------\
601  *     Read Data    --------------<           >---------
602  *                                 \---------/
603  *                                |     |
604  *                                |<-D->|
605  *     FeedbackRDN  ________             ____________
606  *                          \___________/
607  *
608  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
609  *
610  *
611  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
612  *
613  *  4.1) From the aspect of the nand chip pins:
614  *        Delay = (tREA + C - tRP)               {1}
615  *
616  *        tREA : the maximum read access time.
617  *        C    : a constant to adjust the delay. default is 4000ps.
618  *        tRP  : the read pulse width, which is exactly:
619  *                   tRP = (GPMI-clock-period) * DATA_SETUP
620  *
621  *  4.2) From the aspect of the GPMI nand controller:
622  *         Delay = RDN_DELAY * 0.125 * RP        {2}
623  *
624  *         RP   : the DLL reference period.
625  *            if (GPMI-clock-period > DLL_THRETHOLD)
626  *                   RP = GPMI-clock-period / 2;
627  *            else
628  *                   RP = GPMI-clock-period;
629  *
630  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
631  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
632  *            is 16000ps, but in mx6q, we use 12000ps.
633  *
634  *  4.3) since {1} equals {2}, we get:
635  *
636  *                     (tREA + 4000 - tRP) * 8
637  *         RDN_DELAY = -----------------------     {3}
638  *                           RP
639  */
640 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
641 				     const struct nand_sdr_timings *sdr)
642 {
643 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
644 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
645 	unsigned int period_ps, reference_period_ps;
646 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
647 	unsigned int tRP_ps;
648 	bool use_half_period;
649 	int sample_delay_ps, sample_delay_factor;
650 	u16 busy_timeout_cycles;
651 	u8 wrn_dly_sel;
652 
653 	if (sdr->tRC_min >= 30000) {
654 		/* ONFI non-EDO modes [0-3] */
655 		hw->clk_rate = 22000000;
656 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
657 	} else if (sdr->tRC_min >= 25000) {
658 		/* ONFI EDO mode 4 */
659 		hw->clk_rate = 80000000;
660 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
661 	} else {
662 		/* ONFI EDO mode 5 */
663 		hw->clk_rate = 100000000;
664 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
665 	}
666 
667 	/* SDR core timings are given in picoseconds */
668 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
669 
670 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
671 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
672 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
673 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
674 
675 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
676 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
677 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
678 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
679 
680 	/*
681 	 * Derive NFC ideal delay from {3}:
682 	 *
683 	 *                     (tREA + 4000 - tRP) * 8
684 	 *         RDN_DELAY = -----------------------
685 	 *                                RP
686 	 */
687 	if (period_ps > dll_threshold_ps) {
688 		use_half_period = true;
689 		reference_period_ps = period_ps / 2;
690 	} else {
691 		use_half_period = false;
692 		reference_period_ps = period_ps;
693 	}
694 
695 	tRP_ps = data_setup_cycles * period_ps;
696 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
697 	if (sample_delay_ps > 0)
698 		sample_delay_factor = sample_delay_ps / reference_period_ps;
699 	else
700 		sample_delay_factor = 0;
701 
702 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
703 	if (sample_delay_factor)
704 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
705 			      BM_GPMI_CTRL1_DLL_ENABLE |
706 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
707 }
708 
709 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
710 {
711 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
712 	struct resources *r = &this->resources;
713 	void __iomem *gpmi_regs = r->gpmi_regs;
714 	unsigned int dll_wait_time_us;
715 
716 	clk_set_rate(r->clock[0], hw->clk_rate);
717 
718 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
719 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
720 
721 	/*
722 	 * Clear several CTRL1 fields, DLL must be disabled when setting
723 	 * RDN_DELAY or HALF_PERIOD.
724 	 */
725 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
726 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
727 
728 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
729 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
730 	if (!dll_wait_time_us)
731 		dll_wait_time_us = 1;
732 
733 	/* Wait for the DLL to settle. */
734 	udelay(dll_wait_time_us);
735 }
736 
737 static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
738 				     const struct nand_data_interface *conf)
739 {
740 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
741 	const struct nand_sdr_timings *sdr;
742 
743 	/* Retrieve required NAND timings */
744 	sdr = nand_get_sdr_timings(conf);
745 	if (IS_ERR(sdr))
746 		return PTR_ERR(sdr);
747 
748 	/* Only MX6 GPMI controller can reach EDO timings */
749 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
750 		return -ENOTSUPP;
751 
752 	/* Stop here if this call was just a check */
753 	if (chipnr < 0)
754 		return 0;
755 
756 	/* Do the actual derivation of the controller timings */
757 	gpmi_nfc_compute_timings(this, sdr);
758 
759 	this->hw.must_apply_timings = true;
760 
761 	return 0;
762 }
763 
764 /* Clears a BCH interrupt. */
765 static void gpmi_clear_bch(struct gpmi_nand_data *this)
766 {
767 	struct resources *r = &this->resources;
768 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
769 }
770 
771 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
772 {
773 	/* We use the DMA channel 0 to access all the nand chips. */
774 	return this->dma_chans[0];
775 }
776 
777 /* This will be called after the DMA operation is finished. */
778 static void dma_irq_callback(void *param)
779 {
780 	struct gpmi_nand_data *this = param;
781 	struct completion *dma_c = &this->dma_done;
782 
783 	complete(dma_c);
784 }
785 
786 static irqreturn_t bch_irq(int irq, void *cookie)
787 {
788 	struct gpmi_nand_data *this = cookie;
789 
790 	gpmi_clear_bch(this);
791 	complete(&this->bch_done);
792 	return IRQ_HANDLED;
793 }
794 
795 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
796 {
797 	/*
798 	 * raw_len is the length to read/write including bch data which
799 	 * we are passed in exec_op. Calculate the data length from it.
800 	 */
801 	if (this->bch)
802 		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
803 	else
804 		return raw_len;
805 }
806 
807 /* Can we use the upper's buffer directly for DMA? */
808 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
809 			     int raw_len, struct scatterlist *sgl,
810 			     enum dma_data_direction dr)
811 {
812 	int ret;
813 	int len = gpmi_raw_len_to_len(this, raw_len);
814 
815 	/* first try to map the upper buffer directly */
816 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
817 		sg_init_one(sgl, buf, len);
818 		ret = dma_map_sg(this->dev, sgl, 1, dr);
819 		if (ret == 0)
820 			goto map_fail;
821 
822 		return true;
823 	}
824 
825 map_fail:
826 	/* We have to use our own DMA buffer. */
827 	sg_init_one(sgl, this->data_buffer_dma, len);
828 
829 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
830 		memcpy(this->data_buffer_dma, buf, len);
831 
832 	dma_map_sg(this->dev, sgl, 1, dr);
833 
834 	return false;
835 }
836 
837 /**
838  * gpmi_copy_bits - copy bits from one memory region to another
839  * @dst: destination buffer
840  * @dst_bit_off: bit offset we're starting to write at
841  * @src: source buffer
842  * @src_bit_off: bit offset we're starting to read from
843  * @nbits: number of bits to copy
844  *
845  * This functions copies bits from one memory region to another, and is used by
846  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
847  * aligned.
848  *
849  * src and dst should not overlap.
850  *
851  */
852 static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
853 			   size_t src_bit_off, size_t nbits)
854 {
855 	size_t i;
856 	size_t nbytes;
857 	u32 src_buffer = 0;
858 	size_t bits_in_src_buffer = 0;
859 
860 	if (!nbits)
861 		return;
862 
863 	/*
864 	 * Move src and dst pointers to the closest byte pointer and store bit
865 	 * offsets within a byte.
866 	 */
867 	src += src_bit_off / 8;
868 	src_bit_off %= 8;
869 
870 	dst += dst_bit_off / 8;
871 	dst_bit_off %= 8;
872 
873 	/*
874 	 * Initialize the src_buffer value with bits available in the first
875 	 * byte of data so that we end up with a byte aligned src pointer.
876 	 */
877 	if (src_bit_off) {
878 		src_buffer = src[0] >> src_bit_off;
879 		if (nbits >= (8 - src_bit_off)) {
880 			bits_in_src_buffer += 8 - src_bit_off;
881 		} else {
882 			src_buffer &= GENMASK(nbits - 1, 0);
883 			bits_in_src_buffer += nbits;
884 		}
885 		nbits -= bits_in_src_buffer;
886 		src++;
887 	}
888 
889 	/* Calculate the number of bytes that can be copied from src to dst. */
890 	nbytes = nbits / 8;
891 
892 	/* Try to align dst to a byte boundary. */
893 	if (dst_bit_off) {
894 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
895 			src_buffer |= src[0] << bits_in_src_buffer;
896 			bits_in_src_buffer += 8;
897 			src++;
898 			nbytes--;
899 		}
900 
901 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
902 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
903 			dst[0] |= src_buffer << dst_bit_off;
904 			src_buffer >>= (8 - dst_bit_off);
905 			bits_in_src_buffer -= (8 - dst_bit_off);
906 			dst_bit_off = 0;
907 			dst++;
908 			if (bits_in_src_buffer > 7) {
909 				bits_in_src_buffer -= 8;
910 				dst[0] = src_buffer;
911 				dst++;
912 				src_buffer >>= 8;
913 			}
914 		}
915 	}
916 
917 	if (!bits_in_src_buffer && !dst_bit_off) {
918 		/*
919 		 * Both src and dst pointers are byte aligned, thus we can
920 		 * just use the optimized memcpy function.
921 		 */
922 		if (nbytes)
923 			memcpy(dst, src, nbytes);
924 	} else {
925 		/*
926 		 * src buffer is not byte aligned, hence we have to copy each
927 		 * src byte to the src_buffer variable before extracting a byte
928 		 * to store in dst.
929 		 */
930 		for (i = 0; i < nbytes; i++) {
931 			src_buffer |= src[i] << bits_in_src_buffer;
932 			dst[i] = src_buffer;
933 			src_buffer >>= 8;
934 		}
935 	}
936 	/* Update dst and src pointers */
937 	dst += nbytes;
938 	src += nbytes;
939 
940 	/*
941 	 * nbits is the number of remaining bits. It should not exceed 8 as
942 	 * we've already copied as much bytes as possible.
943 	 */
944 	nbits %= 8;
945 
946 	/*
947 	 * If there's no more bits to copy to the destination and src buffer
948 	 * was already byte aligned, then we're done.
949 	 */
950 	if (!nbits && !bits_in_src_buffer)
951 		return;
952 
953 	/* Copy the remaining bits to src_buffer */
954 	if (nbits)
955 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
956 			      bits_in_src_buffer;
957 	bits_in_src_buffer += nbits;
958 
959 	/*
960 	 * In case there were not enough bits to get a byte aligned dst buffer
961 	 * prepare the src_buffer variable to match the dst organization (shift
962 	 * src_buffer by dst_bit_off and retrieve the least significant bits
963 	 * from dst).
964 	 */
965 	if (dst_bit_off)
966 		src_buffer = (src_buffer << dst_bit_off) |
967 			     (*dst & GENMASK(dst_bit_off - 1, 0));
968 	bits_in_src_buffer += dst_bit_off;
969 
970 	/*
971 	 * Keep most significant bits from dst if we end up with an unaligned
972 	 * number of bits.
973 	 */
974 	nbytes = bits_in_src_buffer / 8;
975 	if (bits_in_src_buffer % 8) {
976 		src_buffer |= (dst[nbytes] &
977 			       GENMASK(7, bits_in_src_buffer % 8)) <<
978 			      (nbytes * 8);
979 		nbytes++;
980 	}
981 
982 	/* Copy the remaining bytes to dst */
983 	for (i = 0; i < nbytes; i++) {
984 		dst[i] = src_buffer;
985 		src_buffer >>= 8;
986 	}
987 }
988 
989 /* add our owner bbt descriptor */
990 static uint8_t scan_ff_pattern[] = { 0xff };
991 static struct nand_bbt_descr gpmi_bbt_descr = {
992 	.options	= 0,
993 	.offs		= 0,
994 	.len		= 1,
995 	.pattern	= scan_ff_pattern
996 };
997 
998 /*
999  * We may change the layout if we can get the ECC info from the datasheet,
1000  * else we will use all the (page + OOB).
1001  */
1002 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1003 			      struct mtd_oob_region *oobregion)
1004 {
1005 	struct nand_chip *chip = mtd_to_nand(mtd);
1006 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1007 	struct bch_geometry *geo = &this->bch_geometry;
1008 
1009 	if (section)
1010 		return -ERANGE;
1011 
1012 	oobregion->offset = 0;
1013 	oobregion->length = geo->page_size - mtd->writesize;
1014 
1015 	return 0;
1016 }
1017 
1018 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1019 			       struct mtd_oob_region *oobregion)
1020 {
1021 	struct nand_chip *chip = mtd_to_nand(mtd);
1022 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1023 	struct bch_geometry *geo = &this->bch_geometry;
1024 
1025 	if (section)
1026 		return -ERANGE;
1027 
1028 	/* The available oob size we have. */
1029 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
1030 		oobregion->offset = geo->page_size - mtd->writesize;
1031 		oobregion->length = mtd->oobsize - oobregion->offset;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static const char * const gpmi_clks_for_mx2x[] = {
1038 	"gpmi_io",
1039 };
1040 
1041 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1042 	.ecc = gpmi_ooblayout_ecc,
1043 	.free = gpmi_ooblayout_free,
1044 };
1045 
1046 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1047 	.type = IS_MX23,
1048 	.bch_max_ecc_strength = 20,
1049 	.max_chain_delay = 16000,
1050 	.clks = gpmi_clks_for_mx2x,
1051 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1052 };
1053 
1054 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1055 	.type = IS_MX28,
1056 	.bch_max_ecc_strength = 20,
1057 	.max_chain_delay = 16000,
1058 	.clks = gpmi_clks_for_mx2x,
1059 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1060 };
1061 
1062 static const char * const gpmi_clks_for_mx6[] = {
1063 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1064 };
1065 
1066 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1067 	.type = IS_MX6Q,
1068 	.bch_max_ecc_strength = 40,
1069 	.max_chain_delay = 12000,
1070 	.clks = gpmi_clks_for_mx6,
1071 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1072 };
1073 
1074 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1075 	.type = IS_MX6SX,
1076 	.bch_max_ecc_strength = 62,
1077 	.max_chain_delay = 12000,
1078 	.clks = gpmi_clks_for_mx6,
1079 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1080 };
1081 
1082 static const char * const gpmi_clks_for_mx7d[] = {
1083 	"gpmi_io", "gpmi_bch_apb",
1084 };
1085 
1086 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1087 	.type = IS_MX7D,
1088 	.bch_max_ecc_strength = 62,
1089 	.max_chain_delay = 12000,
1090 	.clks = gpmi_clks_for_mx7d,
1091 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1092 };
1093 
1094 static int acquire_register_block(struct gpmi_nand_data *this,
1095 				  const char *res_name)
1096 {
1097 	struct platform_device *pdev = this->pdev;
1098 	struct resources *res = &this->resources;
1099 	struct resource *r;
1100 	void __iomem *p;
1101 
1102 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
1103 	p = devm_ioremap_resource(&pdev->dev, r);
1104 	if (IS_ERR(p))
1105 		return PTR_ERR(p);
1106 
1107 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1108 		res->gpmi_regs = p;
1109 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1110 		res->bch_regs = p;
1111 	else
1112 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
1113 
1114 	return 0;
1115 }
1116 
1117 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1118 {
1119 	struct platform_device *pdev = this->pdev;
1120 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1121 	struct resource *r;
1122 	int err;
1123 
1124 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
1125 	if (!r) {
1126 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
1127 		return -ENODEV;
1128 	}
1129 
1130 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
1131 	if (err)
1132 		dev_err(this->dev, "error requesting BCH IRQ\n");
1133 
1134 	return err;
1135 }
1136 
1137 static void release_dma_channels(struct gpmi_nand_data *this)
1138 {
1139 	unsigned int i;
1140 	for (i = 0; i < DMA_CHANS; i++)
1141 		if (this->dma_chans[i]) {
1142 			dma_release_channel(this->dma_chans[i]);
1143 			this->dma_chans[i] = NULL;
1144 		}
1145 }
1146 
1147 static int acquire_dma_channels(struct gpmi_nand_data *this)
1148 {
1149 	struct platform_device *pdev = this->pdev;
1150 	struct dma_chan *dma_chan;
1151 
1152 	/* request dma channel */
1153 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
1154 	if (!dma_chan) {
1155 		dev_err(this->dev, "Failed to request DMA channel.\n");
1156 		goto acquire_err;
1157 	}
1158 
1159 	this->dma_chans[0] = dma_chan;
1160 	return 0;
1161 
1162 acquire_err:
1163 	release_dma_channels(this);
1164 	return -EINVAL;
1165 }
1166 
1167 static int gpmi_get_clks(struct gpmi_nand_data *this)
1168 {
1169 	struct resources *r = &this->resources;
1170 	struct clk *clk;
1171 	int err, i;
1172 
1173 	for (i = 0; i < this->devdata->clks_count; i++) {
1174 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1175 		if (IS_ERR(clk)) {
1176 			err = PTR_ERR(clk);
1177 			goto err_clock;
1178 		}
1179 
1180 		r->clock[i] = clk;
1181 	}
1182 
1183 	if (GPMI_IS_MX6(this))
1184 		/*
1185 		 * Set the default value for the gpmi clock.
1186 		 *
1187 		 * If you want to use the ONFI nand which is in the
1188 		 * Synchronous Mode, you should change the clock as you need.
1189 		 */
1190 		clk_set_rate(r->clock[0], 22000000);
1191 
1192 	return 0;
1193 
1194 err_clock:
1195 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1196 	return err;
1197 }
1198 
1199 static int acquire_resources(struct gpmi_nand_data *this)
1200 {
1201 	int ret;
1202 
1203 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1204 	if (ret)
1205 		goto exit_regs;
1206 
1207 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1208 	if (ret)
1209 		goto exit_regs;
1210 
1211 	ret = acquire_bch_irq(this, bch_irq);
1212 	if (ret)
1213 		goto exit_regs;
1214 
1215 	ret = acquire_dma_channels(this);
1216 	if (ret)
1217 		goto exit_regs;
1218 
1219 	ret = gpmi_get_clks(this);
1220 	if (ret)
1221 		goto exit_clock;
1222 	return 0;
1223 
1224 exit_clock:
1225 	release_dma_channels(this);
1226 exit_regs:
1227 	return ret;
1228 }
1229 
1230 static void release_resources(struct gpmi_nand_data *this)
1231 {
1232 	release_dma_channels(this);
1233 }
1234 
1235 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1236 {
1237 	struct device *dev = this->dev;
1238 	struct bch_geometry *geo = &this->bch_geometry;
1239 
1240 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1241 		dma_free_coherent(dev, geo->auxiliary_size,
1242 					this->auxiliary_virt,
1243 					this->auxiliary_phys);
1244 	kfree(this->data_buffer_dma);
1245 	kfree(this->raw_buffer);
1246 
1247 	this->data_buffer_dma	= NULL;
1248 	this->raw_buffer	= NULL;
1249 }
1250 
1251 /* Allocate the DMA buffers */
1252 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1253 {
1254 	struct bch_geometry *geo = &this->bch_geometry;
1255 	struct device *dev = this->dev;
1256 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1257 
1258 	/*
1259 	 * [2] Allocate a read/write data buffer.
1260 	 *     The gpmi_alloc_dma_buffer can be called twice.
1261 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1262 	 *     is called before the NAND identification; and we allocate a
1263 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1264 	 *     is called after.
1265 	 */
1266 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1267 					GFP_DMA | GFP_KERNEL);
1268 	if (this->data_buffer_dma == NULL)
1269 		goto error_alloc;
1270 
1271 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1272 					&this->auxiliary_phys, GFP_DMA);
1273 	if (!this->auxiliary_virt)
1274 		goto error_alloc;
1275 
1276 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1277 	if (!this->raw_buffer)
1278 		goto error_alloc;
1279 
1280 	return 0;
1281 
1282 error_alloc:
1283 	gpmi_free_dma_buffer(this);
1284 	return -ENOMEM;
1285 }
1286 
1287 /*
1288  * Handles block mark swapping.
1289  * It can be called in swapping the block mark, or swapping it back,
1290  * because the the operations are the same.
1291  */
1292 static void block_mark_swapping(struct gpmi_nand_data *this,
1293 				void *payload, void *auxiliary)
1294 {
1295 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1296 	unsigned char *p;
1297 	unsigned char *a;
1298 	unsigned int  bit;
1299 	unsigned char mask;
1300 	unsigned char from_data;
1301 	unsigned char from_oob;
1302 
1303 	if (!this->swap_block_mark)
1304 		return;
1305 
1306 	/*
1307 	 * If control arrives here, we're swapping. Make some convenience
1308 	 * variables.
1309 	 */
1310 	bit = nfc_geo->block_mark_bit_offset;
1311 	p   = payload + nfc_geo->block_mark_byte_offset;
1312 	a   = auxiliary;
1313 
1314 	/*
1315 	 * Get the byte from the data area that overlays the block mark. Since
1316 	 * the ECC engine applies its own view to the bits in the page, the
1317 	 * physical block mark won't (in general) appear on a byte boundary in
1318 	 * the data.
1319 	 */
1320 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1321 
1322 	/* Get the byte from the OOB. */
1323 	from_oob = a[0];
1324 
1325 	/* Swap them. */
1326 	a[0] = from_data;
1327 
1328 	mask = (0x1 << bit) - 1;
1329 	p[0] = (p[0] & mask) | (from_oob << bit);
1330 
1331 	mask = ~0 << bit;
1332 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1333 }
1334 
1335 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1336 			       int last, int meta)
1337 {
1338 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1339 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1340 	struct mtd_info *mtd = nand_to_mtd(chip);
1341 	int i;
1342 	unsigned char *status;
1343 	unsigned int max_bitflips = 0;
1344 
1345 	/* Loop over status bytes, accumulating ECC status. */
1346 	status = this->auxiliary_virt + ALIGN(meta, 4);
1347 
1348 	for (i = first; i < last; i++, status++) {
1349 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1350 			continue;
1351 
1352 		if (*status == STATUS_UNCORRECTABLE) {
1353 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1354 			u8 *eccbuf = this->raw_buffer;
1355 			int offset, bitoffset;
1356 			int eccbytes;
1357 			int flips;
1358 
1359 			/* Read ECC bytes into our internal raw_buffer */
1360 			offset = nfc_geo->metadata_size * 8;
1361 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1362 			offset -= eccbits;
1363 			bitoffset = offset % 8;
1364 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1365 			offset /= 8;
1366 			eccbytes -= offset;
1367 			nand_change_read_column_op(chip, offset, eccbuf,
1368 						   eccbytes, false);
1369 
1370 			/*
1371 			 * ECC data are not byte aligned and we may have
1372 			 * in-band data in the first and last byte of
1373 			 * eccbuf. Set non-eccbits to one so that
1374 			 * nand_check_erased_ecc_chunk() does not count them
1375 			 * as bitflips.
1376 			 */
1377 			if (bitoffset)
1378 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1379 
1380 			bitoffset = (bitoffset + eccbits) % 8;
1381 			if (bitoffset)
1382 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1383 
1384 			/*
1385 			 * The ECC hardware has an uncorrectable ECC status
1386 			 * code in case we have bitflips in an erased page. As
1387 			 * nothing was written into this subpage the ECC is
1388 			 * obviously wrong and we can not trust it. We assume
1389 			 * at this point that we are reading an erased page and
1390 			 * try to correct the bitflips in buffer up to
1391 			 * ecc_strength bitflips. If this is a page with random
1392 			 * data, we exceed this number of bitflips and have a
1393 			 * ECC failure. Otherwise we use the corrected buffer.
1394 			 */
1395 			if (i == 0) {
1396 				/* The first block includes metadata */
1397 				flips = nand_check_erased_ecc_chunk(
1398 						buf + i * nfc_geo->ecc_chunk_size,
1399 						nfc_geo->ecc_chunk_size,
1400 						eccbuf, eccbytes,
1401 						this->auxiliary_virt,
1402 						nfc_geo->metadata_size,
1403 						nfc_geo->ecc_strength);
1404 			} else {
1405 				flips = nand_check_erased_ecc_chunk(
1406 						buf + i * nfc_geo->ecc_chunk_size,
1407 						nfc_geo->ecc_chunk_size,
1408 						eccbuf, eccbytes,
1409 						NULL, 0,
1410 						nfc_geo->ecc_strength);
1411 			}
1412 
1413 			if (flips > 0) {
1414 				max_bitflips = max_t(unsigned int, max_bitflips,
1415 						     flips);
1416 				mtd->ecc_stats.corrected += flips;
1417 				continue;
1418 			}
1419 
1420 			mtd->ecc_stats.failed++;
1421 			continue;
1422 		}
1423 
1424 		mtd->ecc_stats.corrected += *status;
1425 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1426 	}
1427 
1428 	return max_bitflips;
1429 }
1430 
1431 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1432 {
1433 	struct bch_geometry *geo = &this->bch_geometry;
1434 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1435 	unsigned int gf_len = geo->gf_len;
1436 	unsigned int block_size = geo->ecc_chunk_size;
1437 
1438 	this->bch_flashlayout0 =
1439 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1440 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1441 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1442 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1443 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1444 
1445 	this->bch_flashlayout1 =
1446 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1447 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1448 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1449 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1450 }
1451 
1452 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1453 			      int oob_required, int page)
1454 {
1455 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1456 	struct mtd_info *mtd = nand_to_mtd(chip);
1457 	struct bch_geometry *geo = &this->bch_geometry;
1458 	unsigned int max_bitflips;
1459 	int ret;
1460 
1461 	gpmi_bch_layout_std(this);
1462 	this->bch = true;
1463 
1464 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1465 	if (ret)
1466 		return ret;
1467 
1468 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1469 					   geo->ecc_chunk_count,
1470 					   geo->auxiliary_status_offset);
1471 
1472 	/* handle the block mark swapping */
1473 	block_mark_swapping(this, buf, this->auxiliary_virt);
1474 
1475 	if (oob_required) {
1476 		/*
1477 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1478 		 * for details about our policy for delivering the OOB.
1479 		 *
1480 		 * We fill the caller's buffer with set bits, and then copy the
1481 		 * block mark to th caller's buffer. Note that, if block mark
1482 		 * swapping was necessary, it has already been done, so we can
1483 		 * rely on the first byte of the auxiliary buffer to contain
1484 		 * the block mark.
1485 		 */
1486 		memset(chip->oob_poi, ~0, mtd->oobsize);
1487 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1488 	}
1489 
1490 	return max_bitflips;
1491 }
1492 
1493 /* Fake a virtual small page for the subpage read */
1494 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1495 				 uint32_t len, uint8_t *buf, int page)
1496 {
1497 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1498 	struct bch_geometry *geo = &this->bch_geometry;
1499 	int size = chip->ecc.size; /* ECC chunk size */
1500 	int meta, n, page_size;
1501 	unsigned int max_bitflips;
1502 	unsigned int ecc_strength;
1503 	int first, last, marker_pos;
1504 	int ecc_parity_size;
1505 	int col = 0;
1506 	int ret;
1507 
1508 	/* The size of ECC parity */
1509 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1510 
1511 	/* Align it with the chunk size */
1512 	first = offs / size;
1513 	last = (offs + len - 1) / size;
1514 
1515 	if (this->swap_block_mark) {
1516 		/*
1517 		 * Find the chunk which contains the Block Marker.
1518 		 * If this chunk is in the range of [first, last],
1519 		 * we have to read out the whole page.
1520 		 * Why? since we had swapped the data at the position of Block
1521 		 * Marker to the metadata which is bound with the chunk 0.
1522 		 */
1523 		marker_pos = geo->block_mark_byte_offset / size;
1524 		if (last >= marker_pos && first <= marker_pos) {
1525 			dev_dbg(this->dev,
1526 				"page:%d, first:%d, last:%d, marker at:%d\n",
1527 				page, first, last, marker_pos);
1528 			return gpmi_ecc_read_page(chip, buf, 0, page);
1529 		}
1530 	}
1531 
1532 	meta = geo->metadata_size;
1533 	if (first) {
1534 		col = meta + (size + ecc_parity_size) * first;
1535 		meta = 0;
1536 		buf = buf + first * size;
1537 	}
1538 
1539 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1540 
1541 	n = last - first + 1;
1542 	page_size = meta + (size + ecc_parity_size) * n;
1543 	ecc_strength = geo->ecc_strength >> 1;
1544 
1545 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1546 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1547 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1548 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1549 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1550 
1551 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1552 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1553 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1554 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1555 
1556 	this->bch = true;
1557 
1558 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1559 	if (ret)
1560 		return ret;
1561 
1562 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1563 		page, offs, len, col, first, n, page_size);
1564 
1565 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1566 
1567 	return max_bitflips;
1568 }
1569 
1570 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1571 			       int oob_required, int page)
1572 {
1573 	struct mtd_info *mtd = nand_to_mtd(chip);
1574 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1575 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1576 	int ret;
1577 
1578 	dev_dbg(this->dev, "ecc write page.\n");
1579 
1580 	gpmi_bch_layout_std(this);
1581 	this->bch = true;
1582 
1583 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1584 
1585 	if (this->swap_block_mark) {
1586 		/*
1587 		 * When doing bad block marker swapping we must always copy the
1588 		 * input buffer as we can't modify the const buffer.
1589 		 */
1590 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1591 		buf = this->data_buffer_dma;
1592 		block_mark_swapping(this, this->data_buffer_dma,
1593 				    this->auxiliary_virt);
1594 	}
1595 
1596 	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1597 
1598 	return ret;
1599 }
1600 
1601 /*
1602  * There are several places in this driver where we have to handle the OOB and
1603  * block marks. This is the function where things are the most complicated, so
1604  * this is where we try to explain it all. All the other places refer back to
1605  * here.
1606  *
1607  * These are the rules, in order of decreasing importance:
1608  *
1609  * 1) Nothing the caller does can be allowed to imperil the block mark.
1610  *
1611  * 2) In read operations, the first byte of the OOB we return must reflect the
1612  *    true state of the block mark, no matter where that block mark appears in
1613  *    the physical page.
1614  *
1615  * 3) ECC-based read operations return an OOB full of set bits (since we never
1616  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1617  *    return).
1618  *
1619  * 4) "Raw" read operations return a direct view of the physical bytes in the
1620  *    page, using the conventional definition of which bytes are data and which
1621  *    are OOB. This gives the caller a way to see the actual, physical bytes
1622  *    in the page, without the distortions applied by our ECC engine.
1623  *
1624  *
1625  * What we do for this specific read operation depends on two questions:
1626  *
1627  * 1) Are we doing a "raw" read, or an ECC-based read?
1628  *
1629  * 2) Are we using block mark swapping or transcription?
1630  *
1631  * There are four cases, illustrated by the following Karnaugh map:
1632  *
1633  *                    |           Raw           |         ECC-based       |
1634  *       -------------+-------------------------+-------------------------+
1635  *                    | Read the conventional   |                         |
1636  *                    | OOB at the end of the   |                         |
1637  *       Swapping     | page and return it. It  |                         |
1638  *                    | contains exactly what   |                         |
1639  *                    | we want.                | Read the block mark and |
1640  *       -------------+-------------------------+ return it in a buffer   |
1641  *                    | Read the conventional   | full of set bits.       |
1642  *                    | OOB at the end of the   |                         |
1643  *                    | page and also the block |                         |
1644  *       Transcribing | mark in the metadata.   |                         |
1645  *                    | Copy the block mark     |                         |
1646  *                    | into the first byte of  |                         |
1647  *                    | the OOB.                |                         |
1648  *       -------------+-------------------------+-------------------------+
1649  *
1650  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1651  * giving an accurate view of the actual, physical bytes in the page (we're
1652  * overwriting the block mark). That's OK because it's more important to follow
1653  * rule #2.
1654  *
1655  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1656  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1657  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1658  * ECC-based or raw view of the page is implicit in which function it calls
1659  * (there is a similar pair of ECC-based/raw functions for writing).
1660  */
1661 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1662 {
1663 	struct mtd_info *mtd = nand_to_mtd(chip);
1664 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1665 	int ret;
1666 
1667 	/* clear the OOB buffer */
1668 	memset(chip->oob_poi, ~0, mtd->oobsize);
1669 
1670 	/* Read out the conventional OOB. */
1671 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1672 				mtd->oobsize);
1673 	if (ret)
1674 		return ret;
1675 
1676 	/*
1677 	 * Now, we want to make sure the block mark is correct. In the
1678 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1679 	 * Otherwise, we need to explicitly read it.
1680 	 */
1681 	if (GPMI_IS_MX23(this)) {
1682 		/* Read the block mark into the first byte of the OOB buffer. */
1683 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1684 		if (ret)
1685 			return ret;
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1692 {
1693 	struct mtd_info *mtd = nand_to_mtd(chip);
1694 	struct mtd_oob_region of = { };
1695 
1696 	/* Do we have available oob area? */
1697 	mtd_ooblayout_free(mtd, 0, &of);
1698 	if (!of.length)
1699 		return -EPERM;
1700 
1701 	if (!nand_is_slc(chip))
1702 		return -EPERM;
1703 
1704 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1705 				 chip->oob_poi + of.offset, of.length);
1706 }
1707 
1708 /*
1709  * This function reads a NAND page without involving the ECC engine (no HW
1710  * ECC correction).
1711  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1712  * inline (interleaved with payload DATA), and do not align data chunk on
1713  * byte boundaries.
1714  * We thus need to take care moving the payload data and ECC bits stored in the
1715  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1716  *
1717  * See set_geometry_by_ecc_info inline comments to have a full description
1718  * of the layout used by the GPMI controller.
1719  */
1720 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1721 				  int oob_required, int page)
1722 {
1723 	struct mtd_info *mtd = nand_to_mtd(chip);
1724 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1725 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1726 	int eccsize = nfc_geo->ecc_chunk_size;
1727 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1728 	u8 *tmp_buf = this->raw_buffer;
1729 	size_t src_bit_off;
1730 	size_t oob_bit_off;
1731 	size_t oob_byte_off;
1732 	uint8_t *oob = chip->oob_poi;
1733 	int step;
1734 	int ret;
1735 
1736 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1737 				mtd->writesize + mtd->oobsize);
1738 	if (ret)
1739 		return ret;
1740 
1741 	/*
1742 	 * If required, swap the bad block marker and the data stored in the
1743 	 * metadata section, so that we don't wrongly consider a block as bad.
1744 	 *
1745 	 * See the layout description for a detailed explanation on why this
1746 	 * is needed.
1747 	 */
1748 	if (this->swap_block_mark)
1749 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1750 
1751 	/*
1752 	 * Copy the metadata section into the oob buffer (this section is
1753 	 * guaranteed to be aligned on a byte boundary).
1754 	 */
1755 	if (oob_required)
1756 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1757 
1758 	oob_bit_off = nfc_geo->metadata_size * 8;
1759 	src_bit_off = oob_bit_off;
1760 
1761 	/* Extract interleaved payload data and ECC bits */
1762 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1763 		if (buf)
1764 			gpmi_copy_bits(buf, step * eccsize * 8,
1765 				       tmp_buf, src_bit_off,
1766 				       eccsize * 8);
1767 		src_bit_off += eccsize * 8;
1768 
1769 		/* Align last ECC block to align a byte boundary */
1770 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1771 		    (oob_bit_off + eccbits) % 8)
1772 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1773 
1774 		if (oob_required)
1775 			gpmi_copy_bits(oob, oob_bit_off,
1776 				       tmp_buf, src_bit_off,
1777 				       eccbits);
1778 
1779 		src_bit_off += eccbits;
1780 		oob_bit_off += eccbits;
1781 	}
1782 
1783 	if (oob_required) {
1784 		oob_byte_off = oob_bit_off / 8;
1785 
1786 		if (oob_byte_off < mtd->oobsize)
1787 			memcpy(oob + oob_byte_off,
1788 			       tmp_buf + mtd->writesize + oob_byte_off,
1789 			       mtd->oobsize - oob_byte_off);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /*
1796  * This function writes a NAND page without involving the ECC engine (no HW
1797  * ECC generation).
1798  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1799  * inline (interleaved with payload DATA), and do not align data chunk on
1800  * byte boundaries.
1801  * We thus need to take care moving the OOB area at the right place in the
1802  * final page, which is why we're using gpmi_copy_bits.
1803  *
1804  * See set_geometry_by_ecc_info inline comments to have a full description
1805  * of the layout used by the GPMI controller.
1806  */
1807 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1808 				   int oob_required, int page)
1809 {
1810 	struct mtd_info *mtd = nand_to_mtd(chip);
1811 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1812 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1813 	int eccsize = nfc_geo->ecc_chunk_size;
1814 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1815 	u8 *tmp_buf = this->raw_buffer;
1816 	uint8_t *oob = chip->oob_poi;
1817 	size_t dst_bit_off;
1818 	size_t oob_bit_off;
1819 	size_t oob_byte_off;
1820 	int step;
1821 
1822 	/*
1823 	 * Initialize all bits to 1 in case we don't have a buffer for the
1824 	 * payload or oob data in order to leave unspecified bits of data
1825 	 * to their initial state.
1826 	 */
1827 	if (!buf || !oob_required)
1828 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1829 
1830 	/*
1831 	 * First copy the metadata section (stored in oob buffer) at the
1832 	 * beginning of the page, as imposed by the GPMI layout.
1833 	 */
1834 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1835 	oob_bit_off = nfc_geo->metadata_size * 8;
1836 	dst_bit_off = oob_bit_off;
1837 
1838 	/* Interleave payload data and ECC bits */
1839 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1840 		if (buf)
1841 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1842 				       buf, step * eccsize * 8, eccsize * 8);
1843 		dst_bit_off += eccsize * 8;
1844 
1845 		/* Align last ECC block to align a byte boundary */
1846 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1847 		    (oob_bit_off + eccbits) % 8)
1848 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1849 
1850 		if (oob_required)
1851 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1852 				       oob, oob_bit_off, eccbits);
1853 
1854 		dst_bit_off += eccbits;
1855 		oob_bit_off += eccbits;
1856 	}
1857 
1858 	oob_byte_off = oob_bit_off / 8;
1859 
1860 	if (oob_required && oob_byte_off < mtd->oobsize)
1861 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1862 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1863 
1864 	/*
1865 	 * If required, swap the bad block marker and the first byte of the
1866 	 * metadata section, so that we don't modify the bad block marker.
1867 	 *
1868 	 * See the layout description for a detailed explanation on why this
1869 	 * is needed.
1870 	 */
1871 	if (this->swap_block_mark)
1872 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1873 
1874 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1875 				 mtd->writesize + mtd->oobsize);
1876 }
1877 
1878 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1879 {
1880 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1881 }
1882 
1883 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1884 {
1885 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1886 }
1887 
1888 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1889 {
1890 	struct mtd_info *mtd = nand_to_mtd(chip);
1891 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1892 	int ret = 0;
1893 	uint8_t *block_mark;
1894 	int column, page, chipnr;
1895 
1896 	chipnr = (int)(ofs >> chip->chip_shift);
1897 	nand_select_target(chip, chipnr);
1898 
1899 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1900 
1901 	/* Write the block mark. */
1902 	block_mark = this->data_buffer_dma;
1903 	block_mark[0] = 0; /* bad block marker */
1904 
1905 	/* Shift to get page */
1906 	page = (int)(ofs >> chip->page_shift);
1907 
1908 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1909 
1910 	nand_deselect_target(chip);
1911 
1912 	return ret;
1913 }
1914 
1915 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1916 {
1917 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1918 
1919 	/*
1920 	 * Set the boot block stride size.
1921 	 *
1922 	 * In principle, we should be reading this from the OTP bits, since
1923 	 * that's where the ROM is going to get it. In fact, we don't have any
1924 	 * way to read the OTP bits, so we go with the default and hope for the
1925 	 * best.
1926 	 */
1927 	geometry->stride_size_in_pages = 64;
1928 
1929 	/*
1930 	 * Set the search area stride exponent.
1931 	 *
1932 	 * In principle, we should be reading this from the OTP bits, since
1933 	 * that's where the ROM is going to get it. In fact, we don't have any
1934 	 * way to read the OTP bits, so we go with the default and hope for the
1935 	 * best.
1936 	 */
1937 	geometry->search_area_stride_exponent = 2;
1938 	return 0;
1939 }
1940 
1941 static const char  *fingerprint = "STMP";
1942 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1943 {
1944 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1945 	struct device *dev = this->dev;
1946 	struct nand_chip *chip = &this->nand;
1947 	unsigned int search_area_size_in_strides;
1948 	unsigned int stride;
1949 	unsigned int page;
1950 	u8 *buffer = nand_get_data_buf(chip);
1951 	int found_an_ncb_fingerprint = false;
1952 	int ret;
1953 
1954 	/* Compute the number of strides in a search area. */
1955 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1956 
1957 	nand_select_target(chip, 0);
1958 
1959 	/*
1960 	 * Loop through the first search area, looking for the NCB fingerprint.
1961 	 */
1962 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1963 
1964 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1965 		/* Compute the page addresses. */
1966 		page = stride * rom_geo->stride_size_in_pages;
1967 
1968 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1969 
1970 		/*
1971 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1972 		 * and starts in the 12th byte of the page.
1973 		 */
1974 		ret = nand_read_page_op(chip, page, 12, buffer,
1975 					strlen(fingerprint));
1976 		if (ret)
1977 			continue;
1978 
1979 		/* Look for the fingerprint. */
1980 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1981 			found_an_ncb_fingerprint = true;
1982 			break;
1983 		}
1984 
1985 	}
1986 
1987 	nand_deselect_target(chip);
1988 
1989 	if (found_an_ncb_fingerprint)
1990 		dev_dbg(dev, "\tFound a fingerprint\n");
1991 	else
1992 		dev_dbg(dev, "\tNo fingerprint found\n");
1993 	return found_an_ncb_fingerprint;
1994 }
1995 
1996 /* Writes a transcription stamp. */
1997 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1998 {
1999 	struct device *dev = this->dev;
2000 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2001 	struct nand_chip *chip = &this->nand;
2002 	struct mtd_info *mtd = nand_to_mtd(chip);
2003 	unsigned int block_size_in_pages;
2004 	unsigned int search_area_size_in_strides;
2005 	unsigned int search_area_size_in_pages;
2006 	unsigned int search_area_size_in_blocks;
2007 	unsigned int block;
2008 	unsigned int stride;
2009 	unsigned int page;
2010 	u8 *buffer = nand_get_data_buf(chip);
2011 	int status;
2012 
2013 	/* Compute the search area geometry. */
2014 	block_size_in_pages = mtd->erasesize / mtd->writesize;
2015 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2016 	search_area_size_in_pages = search_area_size_in_strides *
2017 					rom_geo->stride_size_in_pages;
2018 	search_area_size_in_blocks =
2019 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
2020 				    block_size_in_pages;
2021 
2022 	dev_dbg(dev, "Search Area Geometry :\n");
2023 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2024 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2025 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2026 
2027 	nand_select_target(chip, 0);
2028 
2029 	/* Loop over blocks in the first search area, erasing them. */
2030 	dev_dbg(dev, "Erasing the search area...\n");
2031 
2032 	for (block = 0; block < search_area_size_in_blocks; block++) {
2033 		/* Erase this block. */
2034 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
2035 		status = nand_erase_op(chip, block);
2036 		if (status)
2037 			dev_err(dev, "[%s] Erase failed.\n", __func__);
2038 	}
2039 
2040 	/* Write the NCB fingerprint into the page buffer. */
2041 	memset(buffer, ~0, mtd->writesize);
2042 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2043 
2044 	/* Loop through the first search area, writing NCB fingerprints. */
2045 	dev_dbg(dev, "Writing NCB fingerprints...\n");
2046 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2047 		/* Compute the page addresses. */
2048 		page = stride * rom_geo->stride_size_in_pages;
2049 
2050 		/* Write the first page of the current stride. */
2051 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2052 
2053 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2054 		if (status)
2055 			dev_err(dev, "[%s] Write failed.\n", __func__);
2056 	}
2057 
2058 	nand_deselect_target(chip);
2059 
2060 	return 0;
2061 }
2062 
2063 static int mx23_boot_init(struct gpmi_nand_data  *this)
2064 {
2065 	struct device *dev = this->dev;
2066 	struct nand_chip *chip = &this->nand;
2067 	struct mtd_info *mtd = nand_to_mtd(chip);
2068 	unsigned int block_count;
2069 	unsigned int block;
2070 	int     chipnr;
2071 	int     page;
2072 	loff_t  byte;
2073 	uint8_t block_mark;
2074 	int     ret = 0;
2075 
2076 	/*
2077 	 * If control arrives here, we can't use block mark swapping, which
2078 	 * means we're forced to use transcription. First, scan for the
2079 	 * transcription stamp. If we find it, then we don't have to do
2080 	 * anything -- the block marks are already transcribed.
2081 	 */
2082 	if (mx23_check_transcription_stamp(this))
2083 		return 0;
2084 
2085 	/*
2086 	 * If control arrives here, we couldn't find a transcription stamp, so
2087 	 * so we presume the block marks are in the conventional location.
2088 	 */
2089 	dev_dbg(dev, "Transcribing bad block marks...\n");
2090 
2091 	/* Compute the number of blocks in the entire medium. */
2092 	block_count = nanddev_eraseblocks_per_target(&chip->base);
2093 
2094 	/*
2095 	 * Loop over all the blocks in the medium, transcribing block marks as
2096 	 * we go.
2097 	 */
2098 	for (block = 0; block < block_count; block++) {
2099 		/*
2100 		 * Compute the chip, page and byte addresses for this block's
2101 		 * conventional mark.
2102 		 */
2103 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2104 		page = block << (chip->phys_erase_shift - chip->page_shift);
2105 		byte = block <<  chip->phys_erase_shift;
2106 
2107 		/* Send the command to read the conventional block mark. */
2108 		nand_select_target(chip, chipnr);
2109 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2110 					1);
2111 		nand_deselect_target(chip);
2112 
2113 		if (ret)
2114 			continue;
2115 
2116 		/*
2117 		 * Check if the block is marked bad. If so, we need to mark it
2118 		 * again, but this time the result will be a mark in the
2119 		 * location where we transcribe block marks.
2120 		 */
2121 		if (block_mark != 0xff) {
2122 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
2123 			ret = chip->legacy.block_markbad(chip, byte);
2124 			if (ret)
2125 				dev_err(dev,
2126 					"Failed to mark block bad with ret %d\n",
2127 					ret);
2128 		}
2129 	}
2130 
2131 	/* Write the stamp that indicates we've transcribed the block marks. */
2132 	mx23_write_transcription_stamp(this);
2133 	return 0;
2134 }
2135 
2136 static int nand_boot_init(struct gpmi_nand_data  *this)
2137 {
2138 	nand_boot_set_geometry(this);
2139 
2140 	/* This is ROM arch-specific initilization before the BBT scanning. */
2141 	if (GPMI_IS_MX23(this))
2142 		return mx23_boot_init(this);
2143 	return 0;
2144 }
2145 
2146 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2147 {
2148 	int ret;
2149 
2150 	/* Free the temporary DMA memory for reading ID. */
2151 	gpmi_free_dma_buffer(this);
2152 
2153 	/* Set up the NFC geometry which is used by BCH. */
2154 	ret = bch_set_geometry(this);
2155 	if (ret) {
2156 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2157 		return ret;
2158 	}
2159 
2160 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2161 	return gpmi_alloc_dma_buffer(this);
2162 }
2163 
2164 static int gpmi_init_last(struct gpmi_nand_data *this)
2165 {
2166 	struct nand_chip *chip = &this->nand;
2167 	struct mtd_info *mtd = nand_to_mtd(chip);
2168 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2169 	struct bch_geometry *bch_geo = &this->bch_geometry;
2170 	int ret;
2171 
2172 	/* Set up the medium geometry */
2173 	ret = gpmi_set_geometry(this);
2174 	if (ret)
2175 		return ret;
2176 
2177 	/* Init the nand_ecc_ctrl{} */
2178 	ecc->read_page	= gpmi_ecc_read_page;
2179 	ecc->write_page	= gpmi_ecc_write_page;
2180 	ecc->read_oob	= gpmi_ecc_read_oob;
2181 	ecc->write_oob	= gpmi_ecc_write_oob;
2182 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2183 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2184 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2185 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2186 	ecc->mode	= NAND_ECC_HW;
2187 	ecc->size	= bch_geo->ecc_chunk_size;
2188 	ecc->strength	= bch_geo->ecc_strength;
2189 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2190 
2191 	/*
2192 	 * We only enable the subpage read when:
2193 	 *  (1) the chip is imx6, and
2194 	 *  (2) the size of the ECC parity is byte aligned.
2195 	 */
2196 	if (GPMI_IS_MX6(this) &&
2197 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2198 		ecc->read_subpage = gpmi_ecc_read_subpage;
2199 		chip->options |= NAND_SUBPAGE_READ;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2206 {
2207 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2208 	int ret;
2209 
2210 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2211 		chip->bbt_options |= NAND_BBT_NO_OOB;
2212 
2213 		if (of_property_read_bool(this->dev->of_node,
2214 					  "fsl,no-blockmark-swap"))
2215 			this->swap_block_mark = false;
2216 	}
2217 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2218 		this->swap_block_mark ? "en" : "dis");
2219 
2220 	ret = gpmi_init_last(this);
2221 	if (ret)
2222 		return ret;
2223 
2224 	chip->options |= NAND_SKIP_BBTSCAN;
2225 
2226 	return 0;
2227 }
2228 
2229 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2230 {
2231 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2232 
2233 	this->ntransfers++;
2234 
2235 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2236 		return NULL;
2237 
2238 	return transfer;
2239 }
2240 
2241 static struct dma_async_tx_descriptor *gpmi_chain_command(
2242 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2243 {
2244 	struct dma_chan *channel = get_dma_chan(this);
2245 	struct dma_async_tx_descriptor *desc;
2246 	struct gpmi_transfer *transfer;
2247 	int chip = this->nand.cur_cs;
2248 	u32 pio[3];
2249 
2250 	/* [1] send out the PIO words */
2251 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2252 		| BM_GPMI_CTRL0_WORD_LENGTH
2253 		| BF_GPMI_CTRL0_CS(chip, this)
2254 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2255 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2256 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2257 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2258 	pio[1] = 0;
2259 	pio[2] = 0;
2260 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2261 				      DMA_TRANS_NONE, 0);
2262 	if (!desc)
2263 		return NULL;
2264 
2265 	transfer = get_next_transfer(this);
2266 	if (!transfer)
2267 		return NULL;
2268 
2269 	transfer->cmdbuf[0] = cmd;
2270 	if (naddr)
2271 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2272 
2273 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2274 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2275 
2276 	transfer->direction = DMA_TO_DEVICE;
2277 
2278 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2279 				       MXS_DMA_CTRL_WAIT4END);
2280 	return desc;
2281 }
2282 
2283 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2284 	struct gpmi_nand_data *this)
2285 {
2286 	struct dma_chan *channel = get_dma_chan(this);
2287 	u32 pio[2];
2288 
2289 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2290 		| BM_GPMI_CTRL0_WORD_LENGTH
2291 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2292 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2293 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2294 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2295 	pio[1] = 0;
2296 
2297 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2298 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2299 }
2300 
2301 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2302 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2303 {
2304 	struct dma_async_tx_descriptor *desc;
2305 	struct dma_chan *channel = get_dma_chan(this);
2306 	struct gpmi_transfer *transfer;
2307 	u32 pio[6] = {};
2308 
2309 	transfer = get_next_transfer(this);
2310 	if (!transfer)
2311 		return NULL;
2312 
2313 	transfer->direction = DMA_FROM_DEVICE;
2314 
2315 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2316 				   DMA_FROM_DEVICE);
2317 
2318 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2319 		| BM_GPMI_CTRL0_WORD_LENGTH
2320 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2321 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2322 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2323 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2324 
2325 	if (this->bch) {
2326 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2327 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2328 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2329 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2330 		pio[3] = raw_len;
2331 		pio[4] = transfer->sgl.dma_address;
2332 		pio[5] = this->auxiliary_phys;
2333 	}
2334 
2335 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2336 				      DMA_TRANS_NONE, 0);
2337 	if (!desc)
2338 		return NULL;
2339 
2340 	if (!this->bch)
2341 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2342 					     DMA_DEV_TO_MEM,
2343 					     MXS_DMA_CTRL_WAIT4END);
2344 
2345 	return desc;
2346 }
2347 
2348 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2349 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2350 {
2351 	struct dma_chan *channel = get_dma_chan(this);
2352 	struct dma_async_tx_descriptor *desc;
2353 	struct gpmi_transfer *transfer;
2354 	u32 pio[6] = {};
2355 
2356 	transfer = get_next_transfer(this);
2357 	if (!transfer)
2358 		return NULL;
2359 
2360 	transfer->direction = DMA_TO_DEVICE;
2361 
2362 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2363 
2364 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2365 		| BM_GPMI_CTRL0_WORD_LENGTH
2366 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2367 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2368 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2369 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2370 
2371 	if (this->bch) {
2372 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2373 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2374 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2375 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2376 		pio[3] = raw_len;
2377 		pio[4] = transfer->sgl.dma_address;
2378 		pio[5] = this->auxiliary_phys;
2379 	}
2380 
2381 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2382 				      DMA_TRANS_NONE,
2383 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2384 	if (!desc)
2385 		return NULL;
2386 
2387 	if (!this->bch)
2388 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2389 					       DMA_MEM_TO_DEV,
2390 					       MXS_DMA_CTRL_WAIT4END);
2391 
2392 	return desc;
2393 }
2394 
2395 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2396 			     const struct nand_operation *op,
2397 			     bool check_only)
2398 {
2399 	const struct nand_op_instr *instr;
2400 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2401 	struct dma_async_tx_descriptor *desc = NULL;
2402 	int i, ret, buf_len = 0, nbufs = 0;
2403 	u8 cmd = 0;
2404 	void *buf_read = NULL;
2405 	const void *buf_write = NULL;
2406 	bool direct = false;
2407 	struct completion *completion;
2408 	unsigned long to;
2409 
2410 	this->ntransfers = 0;
2411 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2412 		this->transfers[i].direction = DMA_NONE;
2413 
2414 	ret = pm_runtime_get_sync(this->dev);
2415 	if (ret < 0)
2416 		return ret;
2417 
2418 	/*
2419 	 * This driver currently supports only one NAND chip. Plus, dies share
2420 	 * the same configuration. So once timings have been applied on the
2421 	 * controller side, they will not change anymore. When the time will
2422 	 * come, the check on must_apply_timings will have to be dropped.
2423 	 */
2424 	if (this->hw.must_apply_timings) {
2425 		this->hw.must_apply_timings = false;
2426 		gpmi_nfc_apply_timings(this);
2427 	}
2428 
2429 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2430 
2431 	for (i = 0; i < op->ninstrs; i++) {
2432 		instr = &op->instrs[i];
2433 
2434 		nand_op_trace("  ", instr);
2435 
2436 		switch (instr->type) {
2437 		case NAND_OP_WAITRDY_INSTR:
2438 			desc = gpmi_chain_wait_ready(this);
2439 			break;
2440 		case NAND_OP_CMD_INSTR:
2441 			cmd = instr->ctx.cmd.opcode;
2442 
2443 			/*
2444 			 * When this command has an address cycle chain it
2445 			 * together with the address cycle
2446 			 */
2447 			if (i + 1 != op->ninstrs &&
2448 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2449 				continue;
2450 
2451 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2452 
2453 			break;
2454 		case NAND_OP_ADDR_INSTR:
2455 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2456 						  instr->ctx.addr.naddrs);
2457 			break;
2458 		case NAND_OP_DATA_OUT_INSTR:
2459 			buf_write = instr->ctx.data.buf.out;
2460 			buf_len = instr->ctx.data.len;
2461 			nbufs++;
2462 
2463 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2464 
2465 			break;
2466 		case NAND_OP_DATA_IN_INSTR:
2467 			if (!instr->ctx.data.len)
2468 				break;
2469 			buf_read = instr->ctx.data.buf.in;
2470 			buf_len = instr->ctx.data.len;
2471 			nbufs++;
2472 
2473 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2474 						   &direct);
2475 			break;
2476 		}
2477 
2478 		if (!desc) {
2479 			ret = -ENXIO;
2480 			goto unmap;
2481 		}
2482 	}
2483 
2484 	dev_dbg(this->dev, "%s setup done\n", __func__);
2485 
2486 	if (nbufs > 1) {
2487 		dev_err(this->dev, "Multiple data instructions not supported\n");
2488 		ret = -EINVAL;
2489 		goto unmap;
2490 	}
2491 
2492 	if (this->bch) {
2493 		writel(this->bch_flashlayout0,
2494 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2495 		writel(this->bch_flashlayout1,
2496 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2497 	}
2498 
2499 	if (this->bch && buf_read) {
2500 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2501 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2502 		completion = &this->bch_done;
2503 	} else {
2504 		desc->callback = dma_irq_callback;
2505 		desc->callback_param = this;
2506 		completion = &this->dma_done;
2507 	}
2508 
2509 	init_completion(completion);
2510 
2511 	dmaengine_submit(desc);
2512 	dma_async_issue_pending(get_dma_chan(this));
2513 
2514 	to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
2515 	if (!to) {
2516 		dev_err(this->dev, "DMA timeout, last DMA\n");
2517 		gpmi_dump_info(this);
2518 		ret = -ETIMEDOUT;
2519 		goto unmap;
2520 	}
2521 
2522 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2523 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2524 	gpmi_clear_bch(this);
2525 
2526 	ret = 0;
2527 
2528 unmap:
2529 	for (i = 0; i < this->ntransfers; i++) {
2530 		struct gpmi_transfer *transfer = &this->transfers[i];
2531 
2532 		if (transfer->direction != DMA_NONE)
2533 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2534 				     transfer->direction);
2535 	}
2536 
2537 	if (!ret && buf_read && !direct)
2538 		memcpy(buf_read, this->data_buffer_dma,
2539 		       gpmi_raw_len_to_len(this, buf_len));
2540 
2541 	this->bch = false;
2542 
2543 	pm_runtime_mark_last_busy(this->dev);
2544 	pm_runtime_put_autosuspend(this->dev);
2545 
2546 	return ret;
2547 }
2548 
2549 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2550 	.attach_chip = gpmi_nand_attach_chip,
2551 	.setup_data_interface = gpmi_setup_data_interface,
2552 	.exec_op = gpmi_nfc_exec_op,
2553 };
2554 
2555 static int gpmi_nand_init(struct gpmi_nand_data *this)
2556 {
2557 	struct nand_chip *chip = &this->nand;
2558 	struct mtd_info  *mtd = nand_to_mtd(chip);
2559 	int ret;
2560 
2561 	/* init the MTD data structures */
2562 	mtd->name		= "gpmi-nand";
2563 	mtd->dev.parent		= this->dev;
2564 
2565 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2566 	nand_set_controller_data(chip, this);
2567 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2568 	chip->legacy.block_markbad = gpmi_block_markbad;
2569 	chip->badblock_pattern	= &gpmi_bbt_descr;
2570 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2571 
2572 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2573 	this->swap_block_mark = !GPMI_IS_MX23(this);
2574 
2575 	/*
2576 	 * Allocate a temporary DMA buffer for reading ID in the
2577 	 * nand_scan_ident().
2578 	 */
2579 	this->bch_geometry.payload_size = 1024;
2580 	this->bch_geometry.auxiliary_size = 128;
2581 	ret = gpmi_alloc_dma_buffer(this);
2582 	if (ret)
2583 		goto err_out;
2584 
2585 	nand_controller_init(&this->base);
2586 	this->base.ops = &gpmi_nand_controller_ops;
2587 	chip->controller = &this->base;
2588 
2589 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2590 	if (ret)
2591 		goto err_out;
2592 
2593 	ret = nand_boot_init(this);
2594 	if (ret)
2595 		goto err_nand_cleanup;
2596 	ret = nand_create_bbt(chip);
2597 	if (ret)
2598 		goto err_nand_cleanup;
2599 
2600 	ret = mtd_device_register(mtd, NULL, 0);
2601 	if (ret)
2602 		goto err_nand_cleanup;
2603 	return 0;
2604 
2605 err_nand_cleanup:
2606 	nand_cleanup(chip);
2607 err_out:
2608 	gpmi_free_dma_buffer(this);
2609 	return ret;
2610 }
2611 
2612 static const struct of_device_id gpmi_nand_id_table[] = {
2613 	{
2614 		.compatible = "fsl,imx23-gpmi-nand",
2615 		.data = &gpmi_devdata_imx23,
2616 	}, {
2617 		.compatible = "fsl,imx28-gpmi-nand",
2618 		.data = &gpmi_devdata_imx28,
2619 	}, {
2620 		.compatible = "fsl,imx6q-gpmi-nand",
2621 		.data = &gpmi_devdata_imx6q,
2622 	}, {
2623 		.compatible = "fsl,imx6sx-gpmi-nand",
2624 		.data = &gpmi_devdata_imx6sx,
2625 	}, {
2626 		.compatible = "fsl,imx7d-gpmi-nand",
2627 		.data = &gpmi_devdata_imx7d,
2628 	}, {}
2629 };
2630 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2631 
2632 static int gpmi_nand_probe(struct platform_device *pdev)
2633 {
2634 	struct gpmi_nand_data *this;
2635 	const struct of_device_id *of_id;
2636 	int ret;
2637 
2638 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2639 	if (!this)
2640 		return -ENOMEM;
2641 
2642 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2643 	if (of_id) {
2644 		this->devdata = of_id->data;
2645 	} else {
2646 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2647 		return -ENODEV;
2648 	}
2649 
2650 	platform_set_drvdata(pdev, this);
2651 	this->pdev  = pdev;
2652 	this->dev   = &pdev->dev;
2653 
2654 	ret = acquire_resources(this);
2655 	if (ret)
2656 		goto exit_acquire_resources;
2657 
2658 	ret = __gpmi_enable_clk(this, true);
2659 	if (ret)
2660 		goto exit_nfc_init;
2661 
2662 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2663 	pm_runtime_use_autosuspend(&pdev->dev);
2664 	pm_runtime_set_active(&pdev->dev);
2665 	pm_runtime_enable(&pdev->dev);
2666 	pm_runtime_get_sync(&pdev->dev);
2667 
2668 	ret = gpmi_init(this);
2669 	if (ret)
2670 		goto exit_nfc_init;
2671 
2672 	ret = gpmi_nand_init(this);
2673 	if (ret)
2674 		goto exit_nfc_init;
2675 
2676 	pm_runtime_mark_last_busy(&pdev->dev);
2677 	pm_runtime_put_autosuspend(&pdev->dev);
2678 
2679 	dev_info(this->dev, "driver registered.\n");
2680 
2681 	return 0;
2682 
2683 exit_nfc_init:
2684 	pm_runtime_put(&pdev->dev);
2685 	pm_runtime_disable(&pdev->dev);
2686 	release_resources(this);
2687 exit_acquire_resources:
2688 
2689 	return ret;
2690 }
2691 
2692 static int gpmi_nand_remove(struct platform_device *pdev)
2693 {
2694 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2695 
2696 	pm_runtime_put_sync(&pdev->dev);
2697 	pm_runtime_disable(&pdev->dev);
2698 
2699 	nand_release(&this->nand);
2700 	gpmi_free_dma_buffer(this);
2701 	release_resources(this);
2702 	return 0;
2703 }
2704 
2705 #ifdef CONFIG_PM_SLEEP
2706 static int gpmi_pm_suspend(struct device *dev)
2707 {
2708 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2709 
2710 	release_dma_channels(this);
2711 	return 0;
2712 }
2713 
2714 static int gpmi_pm_resume(struct device *dev)
2715 {
2716 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2717 	int ret;
2718 
2719 	ret = acquire_dma_channels(this);
2720 	if (ret < 0)
2721 		return ret;
2722 
2723 	/* re-init the GPMI registers */
2724 	ret = gpmi_init(this);
2725 	if (ret) {
2726 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2727 		return ret;
2728 	}
2729 
2730 	/* Set flag to get timing setup restored for next exec_op */
2731 	if (this->hw.clk_rate)
2732 		this->hw.must_apply_timings = true;
2733 
2734 	/* re-init the BCH registers */
2735 	ret = bch_set_geometry(this);
2736 	if (ret) {
2737 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2738 		return ret;
2739 	}
2740 
2741 	return 0;
2742 }
2743 #endif /* CONFIG_PM_SLEEP */
2744 
2745 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2746 {
2747 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2748 
2749 	return __gpmi_enable_clk(this, false);
2750 }
2751 
2752 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2753 {
2754 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2755 
2756 	return __gpmi_enable_clk(this, true);
2757 }
2758 
2759 static const struct dev_pm_ops gpmi_pm_ops = {
2760 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2761 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2762 };
2763 
2764 static struct platform_driver gpmi_nand_driver = {
2765 	.driver = {
2766 		.name = "gpmi-nand",
2767 		.pm = &gpmi_pm_ops,
2768 		.of_match_table = gpmi_nand_id_table,
2769 	},
2770 	.probe   = gpmi_nand_probe,
2771 	.remove  = gpmi_nand_remove,
2772 };
2773 module_platform_driver(gpmi_nand_driver);
2774 
2775 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2776 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2777 MODULE_LICENSE("GPL");
2778