1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale GPMI NAND Flash Driver
4 *
5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
27
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30
31 #define MXS_SET_ADDR 0x4
32 #define MXS_CLR_ADDR 0x8
33 /*
34 * Clear the bit and poll it cleared. This is usually called with
35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36 * (bit 30).
37 */
clear_poll_bit(void __iomem * addr,u32 mask)38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 int timeout = 0x400;
41
42 /* clear the bit */
43 writel(mask, addr + MXS_CLR_ADDR);
44
45 /*
46 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 * recommends to wait 1us.
48 */
49 udelay(1);
50
51 /* poll the bit becoming clear */
52 while ((readl(addr) & mask) && --timeout)
53 /* nothing */;
54
55 return !timeout;
56 }
57
58 #define MODULE_CLKGATE (1 << 30)
59 #define MODULE_SFTRST (1 << 31)
60 /*
61 * The current mxs_reset_block() will do two things:
62 * [1] enable the module.
63 * [2] reset the module.
64 *
65 * In most of the cases, it's ok.
66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67 * If you try to soft reset the BCH block, it becomes unusable until
68 * the next hard reset. This case occurs in the NAND boot mode. When the board
69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71 * You will see a DMA timeout in this case. The bug has been fixed
72 * in the following chips, such as MX28.
73 *
74 * To avoid this bug, just add a new parameter `just_enable` for
75 * the mxs_reset_block(), and rewrite it here.
76 */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 int ret;
80 int timeout = 0x400;
81
82 /* clear and poll SFTRST */
83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 if (unlikely(ret))
85 goto error;
86
87 /* clear CLKGATE */
88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89
90 if (!just_enable) {
91 /* set SFTRST to reset the block */
92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 udelay(1);
94
95 /* poll CLKGATE becoming set */
96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 /* nothing */;
98 if (unlikely(!timeout))
99 goto error;
100 }
101
102 /* clear and poll SFTRST */
103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 if (unlikely(ret))
105 goto error;
106
107 /* clear and poll CLKGATE */
108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 if (unlikely(ret))
110 goto error;
111
112 return 0;
113
114 error:
115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 return -ETIMEDOUT;
117 }
118
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 struct clk *clk;
122 int ret;
123 int i;
124
125 for (i = 0; i < GPMI_CLK_MAX; i++) {
126 clk = this->resources.clock[i];
127 if (!clk)
128 break;
129
130 if (v) {
131 ret = clk_prepare_enable(clk);
132 if (ret)
133 goto err_clk;
134 } else {
135 clk_disable_unprepare(clk);
136 }
137 }
138 return 0;
139
140 err_clk:
141 for (; i > 0; i--)
142 clk_disable_unprepare(this->resources.clock[i - 1]);
143 return ret;
144 }
145
gpmi_init(struct gpmi_nand_data * this)146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 struct resources *r = &this->resources;
149 int ret;
150
151 ret = pm_runtime_resume_and_get(this->dev);
152 if (ret < 0)
153 return ret;
154
155 ret = gpmi_reset_block(r->gpmi_regs, false);
156 if (ret)
157 goto err_out;
158
159 /*
160 * Reset BCH here, too. We got failures otherwise :(
161 * See later BCH reset for explanation of MX23 and MX28 handling
162 */
163 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
164 if (ret)
165 goto err_out;
166
167 /* Choose NAND mode. */
168 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
169
170 /* Set the IRQ polarity. */
171 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
172 r->gpmi_regs + HW_GPMI_CTRL1_SET);
173
174 /* Disable Write-Protection. */
175 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176
177 /* Select BCH ECC. */
178 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
179
180 /*
181 * Decouple the chip select from dma channel. We use dma0 for all
182 * the chips, force all NAND RDY_BUSY inputs to be sourced from
183 * RDY_BUSY0.
184 */
185 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
186 r->gpmi_regs + HW_GPMI_CTRL1_SET);
187
188 err_out:
189 pm_runtime_mark_last_busy(this->dev);
190 pm_runtime_put_autosuspend(this->dev);
191 return ret;
192 }
193
194 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)195 static void gpmi_dump_info(struct gpmi_nand_data *this)
196 {
197 struct resources *r = &this->resources;
198 struct bch_geometry *geo = &this->bch_geometry;
199 u32 reg;
200 int i;
201
202 dev_err(this->dev, "Show GPMI registers :\n");
203 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
204 reg = readl(r->gpmi_regs + i * 0x10);
205 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
206 }
207
208 /* start to print out the BCH info */
209 dev_err(this->dev, "Show BCH registers :\n");
210 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
211 reg = readl(r->bch_regs + i * 0x10);
212 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
213 }
214 dev_err(this->dev, "BCH Geometry :\n"
215 "GF length : %u\n"
216 "ECC Strength : %u\n"
217 "Page Size in Bytes : %u\n"
218 "Metadata Size in Bytes : %u\n"
219 "ECC0 Chunk Size in Bytes: %u\n"
220 "ECCn Chunk Size in Bytes: %u\n"
221 "ECC Chunk Count : %u\n"
222 "Payload Size in Bytes : %u\n"
223 "Auxiliary Size in Bytes: %u\n"
224 "Auxiliary Status Offset: %u\n"
225 "Block Mark Byte Offset : %u\n"
226 "Block Mark Bit Offset : %u\n",
227 geo->gf_len,
228 geo->ecc_strength,
229 geo->page_size,
230 geo->metadata_size,
231 geo->ecc0_chunk_size,
232 geo->eccn_chunk_size,
233 geo->ecc_chunk_count,
234 geo->payload_size,
235 geo->auxiliary_size,
236 geo->auxiliary_status_offset,
237 geo->block_mark_byte_offset,
238 geo->block_mark_bit_offset);
239 }
240
gpmi_check_ecc(struct gpmi_nand_data * this)241 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
242 {
243 struct nand_chip *chip = &this->nand;
244 struct bch_geometry *geo = &this->bch_geometry;
245 struct nand_device *nand = &chip->base;
246 struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
247
248 conf->step_size = geo->eccn_chunk_size;
249 conf->strength = geo->ecc_strength;
250
251 /* Do the sanity check. */
252 if (GPMI_IS_MXS(this)) {
253 /* The mx23/mx28 only support the GF13. */
254 if (geo->gf_len == 14)
255 return false;
256 }
257
258 if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
259 return false;
260
261 if (!nand_ecc_is_strong_enough(nand))
262 return false;
263
264 return true;
265 }
266
267 /* check if bbm locates in data chunk rather than ecc chunk */
bbm_in_data_chunk(struct gpmi_nand_data * this,unsigned int * chunk_num)268 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
269 unsigned int *chunk_num)
270 {
271 struct bch_geometry *geo = &this->bch_geometry;
272 struct nand_chip *chip = &this->nand;
273 struct mtd_info *mtd = nand_to_mtd(chip);
274 unsigned int i, j;
275
276 if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
277 dev_err(this->dev,
278 "The size of ecc0_chunk must equal to eccn_chunk\n");
279 return false;
280 }
281
282 i = (mtd->writesize * 8 - geo->metadata_size * 8) /
283 (geo->gf_len * geo->ecc_strength +
284 geo->eccn_chunk_size * 8);
285
286 j = (mtd->writesize * 8 - geo->metadata_size * 8) -
287 (geo->gf_len * geo->ecc_strength +
288 geo->eccn_chunk_size * 8) * i;
289
290 if (j < geo->eccn_chunk_size * 8) {
291 *chunk_num = i+1;
292 dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
293 geo->ecc_strength, *chunk_num);
294 return true;
295 }
296
297 return false;
298 }
299
300 /*
301 * If we can get the ECC information from the nand chip, we do not
302 * need to calculate them ourselves.
303 *
304 * We may have available oob space in this case.
305 */
set_geometry_by_ecc_info(struct gpmi_nand_data * this,unsigned int ecc_strength,unsigned int ecc_step)306 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
307 unsigned int ecc_strength,
308 unsigned int ecc_step)
309 {
310 struct bch_geometry *geo = &this->bch_geometry;
311 struct nand_chip *chip = &this->nand;
312 struct mtd_info *mtd = nand_to_mtd(chip);
313 unsigned int block_mark_bit_offset;
314
315 switch (ecc_step) {
316 case SZ_512:
317 geo->gf_len = 13;
318 break;
319 case SZ_1K:
320 geo->gf_len = 14;
321 break;
322 default:
323 dev_err(this->dev,
324 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
325 nanddev_get_ecc_requirements(&chip->base)->strength,
326 nanddev_get_ecc_requirements(&chip->base)->step_size);
327 return -EINVAL;
328 }
329 geo->ecc0_chunk_size = ecc_step;
330 geo->eccn_chunk_size = ecc_step;
331 geo->ecc_strength = round_up(ecc_strength, 2);
332 if (!gpmi_check_ecc(this))
333 return -EINVAL;
334
335 /* Keep the C >= O */
336 if (geo->eccn_chunk_size < mtd->oobsize) {
337 dev_err(this->dev,
338 "unsupported nand chip. ecc size: %d, oob size : %d\n",
339 ecc_step, mtd->oobsize);
340 return -EINVAL;
341 }
342
343 /* The default value, see comment in the legacy_set_geometry(). */
344 geo->metadata_size = 10;
345
346 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
347
348 /*
349 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
350 *
351 * | P |
352 * |<----------------------------------------------------->|
353 * | |
354 * | (Block Mark) |
355 * | P' | | | |
356 * |<-------------------------------------------->| D | | O' |
357 * | |<---->| |<--->|
358 * V V V V V
359 * +---+----------+-+----------+-+----------+-+----------+-+-----+
360 * | M | data |E| data |E| data |E| data |E| |
361 * +---+----------+-+----------+-+----------+-+----------+-+-----+
362 * ^ ^
363 * | O |
364 * |<------------>|
365 * | |
366 *
367 * P : the page size for BCH module.
368 * E : The ECC strength.
369 * G : the length of Galois Field.
370 * N : The chunk count of per page.
371 * M : the metasize of per page.
372 * C : the ecc chunk size, aka the "data" above.
373 * P': the nand chip's page size.
374 * O : the nand chip's oob size.
375 * O': the free oob.
376 *
377 * The formula for P is :
378 *
379 * E * G * N
380 * P = ------------ + P' + M
381 * 8
382 *
383 * The position of block mark moves forward in the ECC-based view
384 * of page, and the delta is:
385 *
386 * E * G * (N - 1)
387 * D = (---------------- + M)
388 * 8
389 *
390 * Please see the comment in legacy_set_geometry().
391 * With the condition C >= O , we still can get same result.
392 * So the bit position of the physical block mark within the ECC-based
393 * view of the page is :
394 * (P' - D) * 8
395 */
396 geo->page_size = mtd->writesize + geo->metadata_size +
397 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
398
399 geo->payload_size = mtd->writesize;
400
401 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
402 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
403 + ALIGN(geo->ecc_chunk_count, 4);
404
405 if (!this->swap_block_mark)
406 return 0;
407
408 /* For bit swap. */
409 block_mark_bit_offset = mtd->writesize * 8 -
410 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
411 + geo->metadata_size * 8);
412
413 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
414 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
415 return 0;
416 }
417
418 /*
419 * Calculate the ECC strength by hand:
420 * E : The ECC strength.
421 * G : the length of Galois Field.
422 * N : The chunk count of per page.
423 * O : the oobsize of the NAND chip.
424 * M : the metasize of per page.
425 *
426 * The formula is :
427 * E * G * N
428 * ------------ <= (O - M)
429 * 8
430 *
431 * So, we get E by:
432 * (O - M) * 8
433 * E <= -------------
434 * G * N
435 */
get_ecc_strength(struct gpmi_nand_data * this)436 static inline int get_ecc_strength(struct gpmi_nand_data *this)
437 {
438 struct bch_geometry *geo = &this->bch_geometry;
439 struct mtd_info *mtd = nand_to_mtd(&this->nand);
440 int ecc_strength;
441
442 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
443 / (geo->gf_len * geo->ecc_chunk_count);
444
445 /* We need the minor even number. */
446 return round_down(ecc_strength, 2);
447 }
448
set_geometry_for_large_oob(struct gpmi_nand_data * this)449 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
450 {
451 struct bch_geometry *geo = &this->bch_geometry;
452 struct nand_chip *chip = &this->nand;
453 struct mtd_info *mtd = nand_to_mtd(chip);
454 const struct nand_ecc_props *requirements =
455 nanddev_get_ecc_requirements(&chip->base);
456 unsigned int block_mark_bit_offset;
457 unsigned int max_ecc;
458 unsigned int bbm_chunk;
459 unsigned int i;
460
461 /* sanity check for the minimum ecc nand required */
462 if (!(requirements->strength > 0 &&
463 requirements->step_size > 0))
464 return -EINVAL;
465 geo->ecc_strength = requirements->strength;
466
467 /* check if platform can support this nand */
468 if (!gpmi_check_ecc(this)) {
469 dev_err(this->dev,
470 "unsupported NAND chip, minimum ecc required %d\n",
471 geo->ecc_strength);
472 return -EINVAL;
473 }
474
475 /* calculate the maximum ecc platform can support*/
476 geo->metadata_size = 10;
477 geo->gf_len = 14;
478 geo->ecc0_chunk_size = 1024;
479 geo->eccn_chunk_size = 1024;
480 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
481 max_ecc = min(get_ecc_strength(this),
482 this->devdata->bch_max_ecc_strength);
483
484 /*
485 * search a supported ecc strength that makes bbm
486 * located in data chunk
487 */
488 geo->ecc_strength = max_ecc;
489 while (!(geo->ecc_strength < requirements->strength)) {
490 if (bbm_in_data_chunk(this, &bbm_chunk))
491 goto geo_setting;
492 geo->ecc_strength -= 2;
493 }
494
495 /* if none of them works, keep using the minimum ecc */
496 /* nand required but changing ecc page layout */
497 geo->ecc_strength = requirements->strength;
498 /* add extra ecc for meta data */
499 geo->ecc0_chunk_size = 0;
500 geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
501 geo->ecc_for_meta = 1;
502 /* check if oob can afford this extra ecc chunk */
503 if (mtd->oobsize * 8 < geo->metadata_size * 8 +
504 geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
505 dev_err(this->dev, "unsupported NAND chip with new layout\n");
506 return -EINVAL;
507 }
508
509 /* calculate in which chunk bbm located */
510 bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
511 geo->gf_len * geo->ecc_strength) /
512 (geo->gf_len * geo->ecc_strength +
513 geo->eccn_chunk_size * 8) + 1;
514
515 geo_setting:
516
517 geo->page_size = mtd->writesize + geo->metadata_size +
518 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
519 geo->payload_size = mtd->writesize;
520
521 /*
522 * The auxiliary buffer contains the metadata and the ECC status. The
523 * metadata is padded to the nearest 32-bit boundary. The ECC status
524 * contains one byte for every ECC chunk, and is also padded to the
525 * nearest 32-bit boundary.
526 */
527 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
528 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
529 + ALIGN(geo->ecc_chunk_count, 4);
530
531 if (!this->swap_block_mark)
532 return 0;
533
534 /* calculate the number of ecc chunk behind the bbm */
535 i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
536
537 block_mark_bit_offset = mtd->writesize * 8 -
538 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
539 + geo->metadata_size * 8);
540
541 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
542 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
543
544 dev_dbg(this->dev, "BCH Geometry :\n"
545 "GF length : %u\n"
546 "ECC Strength : %u\n"
547 "Page Size in Bytes : %u\n"
548 "Metadata Size in Bytes : %u\n"
549 "ECC0 Chunk Size in Bytes: %u\n"
550 "ECCn Chunk Size in Bytes: %u\n"
551 "ECC Chunk Count : %u\n"
552 "Payload Size in Bytes : %u\n"
553 "Auxiliary Size in Bytes: %u\n"
554 "Auxiliary Status Offset: %u\n"
555 "Block Mark Byte Offset : %u\n"
556 "Block Mark Bit Offset : %u\n"
557 "Block Mark in chunk : %u\n"
558 "Ecc for Meta data : %u\n",
559 geo->gf_len,
560 geo->ecc_strength,
561 geo->page_size,
562 geo->metadata_size,
563 geo->ecc0_chunk_size,
564 geo->eccn_chunk_size,
565 geo->ecc_chunk_count,
566 geo->payload_size,
567 geo->auxiliary_size,
568 geo->auxiliary_status_offset,
569 geo->block_mark_byte_offset,
570 geo->block_mark_bit_offset,
571 bbm_chunk,
572 geo->ecc_for_meta);
573
574 return 0;
575 }
576
legacy_set_geometry(struct gpmi_nand_data * this)577 static int legacy_set_geometry(struct gpmi_nand_data *this)
578 {
579 struct bch_geometry *geo = &this->bch_geometry;
580 struct mtd_info *mtd = nand_to_mtd(&this->nand);
581 unsigned int metadata_size;
582 unsigned int status_size;
583 unsigned int block_mark_bit_offset;
584
585 /*
586 * The size of the metadata can be changed, though we set it to 10
587 * bytes now. But it can't be too large, because we have to save
588 * enough space for BCH.
589 */
590 geo->metadata_size = 10;
591
592 /* The default for the length of Galois Field. */
593 geo->gf_len = 13;
594
595 /* The default for chunk size. */
596 geo->ecc0_chunk_size = 512;
597 geo->eccn_chunk_size = 512;
598 while (geo->eccn_chunk_size < mtd->oobsize) {
599 geo->ecc0_chunk_size *= 2; /* keep C >= O */
600 geo->eccn_chunk_size *= 2; /* keep C >= O */
601 geo->gf_len = 14;
602 }
603
604 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
605
606 /* We use the same ECC strength for all chunks. */
607 geo->ecc_strength = get_ecc_strength(this);
608 if (!gpmi_check_ecc(this)) {
609 dev_err(this->dev,
610 "ecc strength: %d cannot be supported by the controller (%d)\n"
611 "try to use minimum ecc strength that NAND chip required\n",
612 geo->ecc_strength,
613 this->devdata->bch_max_ecc_strength);
614 return -EINVAL;
615 }
616
617 geo->page_size = mtd->writesize + geo->metadata_size +
618 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
619 geo->payload_size = mtd->writesize;
620
621 /*
622 * The auxiliary buffer contains the metadata and the ECC status. The
623 * metadata is padded to the nearest 32-bit boundary. The ECC status
624 * contains one byte for every ECC chunk, and is also padded to the
625 * nearest 32-bit boundary.
626 */
627 metadata_size = ALIGN(geo->metadata_size, 4);
628 status_size = ALIGN(geo->ecc_chunk_count, 4);
629
630 geo->auxiliary_size = metadata_size + status_size;
631 geo->auxiliary_status_offset = metadata_size;
632
633 if (!this->swap_block_mark)
634 return 0;
635
636 /*
637 * We need to compute the byte and bit offsets of
638 * the physical block mark within the ECC-based view of the page.
639 *
640 * NAND chip with 2K page shows below:
641 * (Block Mark)
642 * | |
643 * | D |
644 * |<---->|
645 * V V
646 * +---+----------+-+----------+-+----------+-+----------+-+
647 * | M | data |E| data |E| data |E| data |E|
648 * +---+----------+-+----------+-+----------+-+----------+-+
649 *
650 * The position of block mark moves forward in the ECC-based view
651 * of page, and the delta is:
652 *
653 * E * G * (N - 1)
654 * D = (---------------- + M)
655 * 8
656 *
657 * With the formula to compute the ECC strength, and the condition
658 * : C >= O (C is the ecc chunk size)
659 *
660 * It's easy to deduce to the following result:
661 *
662 * E * G (O - M) C - M C - M
663 * ----------- <= ------- <= -------- < ---------
664 * 8 N N (N - 1)
665 *
666 * So, we get:
667 *
668 * E * G * (N - 1)
669 * D = (---------------- + M) < C
670 * 8
671 *
672 * The above inequality means the position of block mark
673 * within the ECC-based view of the page is still in the data chunk,
674 * and it's NOT in the ECC bits of the chunk.
675 *
676 * Use the following to compute the bit position of the
677 * physical block mark within the ECC-based view of the page:
678 * (page_size - D) * 8
679 *
680 * --Huang Shijie
681 */
682 block_mark_bit_offset = mtd->writesize * 8 -
683 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
684 + geo->metadata_size * 8);
685
686 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
687 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
688 return 0;
689 }
690
common_nfc_set_geometry(struct gpmi_nand_data * this)691 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
692 {
693 struct nand_chip *chip = &this->nand;
694 struct mtd_info *mtd = nand_to_mtd(&this->nand);
695 const struct nand_ecc_props *requirements =
696 nanddev_get_ecc_requirements(&chip->base);
697 bool use_minimun_ecc;
698 int err;
699
700 use_minimun_ecc = of_property_read_bool(this->dev->of_node,
701 "fsl,use-minimum-ecc");
702
703 /* use legacy bch geometry settings by default*/
704 if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
705 !(requirements->strength > 0 && requirements->step_size > 0)) {
706 dev_dbg(this->dev, "use legacy bch geometry\n");
707 err = legacy_set_geometry(this);
708 if (!err)
709 return 0;
710 }
711
712 /* for large oob nand */
713 if (mtd->oobsize > 1024) {
714 dev_dbg(this->dev, "use large oob bch geometry\n");
715 err = set_geometry_for_large_oob(this);
716 if (!err)
717 return 0;
718 }
719
720 /* otherwise use the minimum ecc nand chip required */
721 dev_dbg(this->dev, "use minimum ecc bch geometry\n");
722 err = set_geometry_by_ecc_info(this, requirements->strength,
723 requirements->step_size);
724 if (err)
725 dev_err(this->dev, "none of the bch geometry setting works\n");
726
727 return err;
728 }
729
730 /* Configures the geometry for BCH. */
bch_set_geometry(struct gpmi_nand_data * this)731 static int bch_set_geometry(struct gpmi_nand_data *this)
732 {
733 struct resources *r = &this->resources;
734 int ret;
735
736 ret = common_nfc_set_geometry(this);
737 if (ret)
738 return ret;
739
740 ret = pm_runtime_get_sync(this->dev);
741 if (ret < 0) {
742 pm_runtime_put_autosuspend(this->dev);
743 return ret;
744 }
745
746 /*
747 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
748 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
749 * and MX28.
750 */
751 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
752 if (ret)
753 goto err_out;
754
755 /* Set *all* chip selects to use layout 0. */
756 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
757
758 ret = 0;
759 err_out:
760 pm_runtime_mark_last_busy(this->dev);
761 pm_runtime_put_autosuspend(this->dev);
762
763 return ret;
764 }
765
766 /*
767 * <1> Firstly, we should know what's the GPMI-clock means.
768 * The GPMI-clock is the internal clock in the gpmi nand controller.
769 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
770 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
771 *
772 * <2> Secondly, we should know what's the frequency on the nand chip pins.
773 * The frequency on the nand chip pins is derived from the GPMI-clock.
774 * We can get it from the following equation:
775 *
776 * F = G / (DS + DH)
777 *
778 * F : the frequency on the nand chip pins.
779 * G : the GPMI clock, such as 100MHz.
780 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
781 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
782 *
783 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
784 * the nand EDO(extended Data Out) timing could be applied.
785 * The GPMI implements a feedback read strobe to sample the read data.
786 * The feedback read strobe can be delayed to support the nand EDO timing
787 * where the read strobe may deasserts before the read data is valid, and
788 * read data is valid for some time after read strobe.
789 *
790 * The following figure illustrates some aspects of a NAND Flash read:
791 *
792 * |<---tREA---->|
793 * | |
794 * | | |
795 * |<--tRP-->| |
796 * | | |
797 * __ ___|__________________________________
798 * RDN \________/ |
799 * |
800 * /---------\
801 * Read Data --------------< >---------
802 * \---------/
803 * | |
804 * |<-D->|
805 * FeedbackRDN ________ ____________
806 * \___________/
807 *
808 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
809 *
810 *
811 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
812 *
813 * 4.1) From the aspect of the nand chip pins:
814 * Delay = (tREA + C - tRP) {1}
815 *
816 * tREA : the maximum read access time.
817 * C : a constant to adjust the delay. default is 4000ps.
818 * tRP : the read pulse width, which is exactly:
819 * tRP = (GPMI-clock-period) * DATA_SETUP
820 *
821 * 4.2) From the aspect of the GPMI nand controller:
822 * Delay = RDN_DELAY * 0.125 * RP {2}
823 *
824 * RP : the DLL reference period.
825 * if (GPMI-clock-period > DLL_THRETHOLD)
826 * RP = GPMI-clock-period / 2;
827 * else
828 * RP = GPMI-clock-period;
829 *
830 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
831 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
832 * is 16000ps, but in mx6q, we use 12000ps.
833 *
834 * 4.3) since {1} equals {2}, we get:
835 *
836 * (tREA + 4000 - tRP) * 8
837 * RDN_DELAY = ----------------------- {3}
838 * RP
839 */
gpmi_nfc_compute_timings(struct gpmi_nand_data * this,const struct nand_sdr_timings * sdr)840 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
841 const struct nand_sdr_timings *sdr)
842 {
843 struct gpmi_nfc_hardware_timing *hw = &this->hw;
844 struct resources *r = &this->resources;
845 unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
846 unsigned int period_ps, reference_period_ps;
847 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
848 unsigned int tRP_ps;
849 bool use_half_period;
850 int sample_delay_ps, sample_delay_factor;
851 unsigned int busy_timeout_cycles;
852 u8 wrn_dly_sel;
853 unsigned long clk_rate, min_rate;
854 u64 busy_timeout_ps;
855
856 if (sdr->tRC_min >= 30000) {
857 /* ONFI non-EDO modes [0-3] */
858 hw->clk_rate = 22000000;
859 min_rate = 0;
860 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
861 } else if (sdr->tRC_min >= 25000) {
862 /* ONFI EDO mode 4 */
863 hw->clk_rate = 80000000;
864 min_rate = 22000000;
865 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
866 } else {
867 /* ONFI EDO mode 5 */
868 hw->clk_rate = 100000000;
869 min_rate = 80000000;
870 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
871 }
872
873 clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
874 if (clk_rate <= min_rate) {
875 dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
876 hw->clk_rate, clk_rate);
877 return -ENOTSUPP;
878 }
879
880 hw->clk_rate = clk_rate;
881 /* SDR core timings are given in picoseconds */
882 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
883
884 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
885 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
886 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
887 busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
888 busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
889
890 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
891 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
892 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
893 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
894
895 /*
896 * Derive NFC ideal delay from {3}:
897 *
898 * (tREA + 4000 - tRP) * 8
899 * RDN_DELAY = -----------------------
900 * RP
901 */
902 if (period_ps > dll_threshold_ps) {
903 use_half_period = true;
904 reference_period_ps = period_ps / 2;
905 } else {
906 use_half_period = false;
907 reference_period_ps = period_ps;
908 }
909
910 tRP_ps = data_setup_cycles * period_ps;
911 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
912 if (sample_delay_ps > 0)
913 sample_delay_factor = sample_delay_ps / reference_period_ps;
914 else
915 sample_delay_factor = 0;
916
917 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
918 if (sample_delay_factor)
919 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
920 BM_GPMI_CTRL1_DLL_ENABLE |
921 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
922 return 0;
923 }
924
gpmi_nfc_apply_timings(struct gpmi_nand_data * this)925 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
926 {
927 struct gpmi_nfc_hardware_timing *hw = &this->hw;
928 struct resources *r = &this->resources;
929 void __iomem *gpmi_regs = r->gpmi_regs;
930 unsigned int dll_wait_time_us;
931 int ret;
932
933 /* Clock dividers do NOT guarantee a clean clock signal on its output
934 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
935 * all clock dividers provide these guarantee.
936 */
937 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
938 clk_disable_unprepare(r->clock[0]);
939
940 ret = clk_set_rate(r->clock[0], hw->clk_rate);
941 if (ret) {
942 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
943 return ret;
944 }
945
946 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
947 ret = clk_prepare_enable(r->clock[0]);
948 if (ret)
949 return ret;
950 }
951
952 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
953 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
954
955 /*
956 * Clear several CTRL1 fields, DLL must be disabled when setting
957 * RDN_DELAY or HALF_PERIOD.
958 */
959 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
960 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
961
962 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
963 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
964 if (!dll_wait_time_us)
965 dll_wait_time_us = 1;
966
967 /* Wait for the DLL to settle. */
968 udelay(dll_wait_time_us);
969
970 return 0;
971 }
972
gpmi_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)973 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
974 const struct nand_interface_config *conf)
975 {
976 struct gpmi_nand_data *this = nand_get_controller_data(chip);
977 const struct nand_sdr_timings *sdr;
978 int ret;
979
980 /* Retrieve required NAND timings */
981 sdr = nand_get_sdr_timings(conf);
982 if (IS_ERR(sdr))
983 return PTR_ERR(sdr);
984
985 /* Only MX28/MX6 GPMI controller can reach EDO timings */
986 if (sdr->tRC_min <= 25000 && !this->devdata->support_edo_timing)
987 return -ENOTSUPP;
988
989 /* Stop here if this call was just a check */
990 if (chipnr < 0)
991 return 0;
992
993 /* Do the actual derivation of the controller timings */
994 ret = gpmi_nfc_compute_timings(this, sdr);
995 if (ret)
996 return ret;
997
998 this->hw.must_apply_timings = true;
999
1000 return 0;
1001 }
1002
1003 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)1004 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1005 {
1006 struct resources *r = &this->resources;
1007 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1008 }
1009
get_dma_chan(struct gpmi_nand_data * this)1010 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1011 {
1012 /* We use the DMA channel 0 to access all the nand chips. */
1013 return this->dma_chans[0];
1014 }
1015
1016 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)1017 static void dma_irq_callback(void *param)
1018 {
1019 struct gpmi_nand_data *this = param;
1020 struct completion *dma_c = &this->dma_done;
1021
1022 complete(dma_c);
1023 }
1024
bch_irq(int irq,void * cookie)1025 static irqreturn_t bch_irq(int irq, void *cookie)
1026 {
1027 struct gpmi_nand_data *this = cookie;
1028
1029 gpmi_clear_bch(this);
1030 complete(&this->bch_done);
1031 return IRQ_HANDLED;
1032 }
1033
gpmi_raw_len_to_len(struct gpmi_nand_data * this,int raw_len)1034 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1035 {
1036 /*
1037 * raw_len is the length to read/write including bch data which
1038 * we are passed in exec_op. Calculate the data length from it.
1039 */
1040 if (this->bch)
1041 return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1042 else
1043 return raw_len;
1044 }
1045
1046 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,const void * buf,int raw_len,struct scatterlist * sgl,enum dma_data_direction dr)1047 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1048 int raw_len, struct scatterlist *sgl,
1049 enum dma_data_direction dr)
1050 {
1051 int ret;
1052 int len = gpmi_raw_len_to_len(this, raw_len);
1053
1054 /* first try to map the upper buffer directly */
1055 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1056 sg_init_one(sgl, buf, len);
1057 ret = dma_map_sg(this->dev, sgl, 1, dr);
1058 if (ret == 0)
1059 goto map_fail;
1060
1061 return true;
1062 }
1063
1064 map_fail:
1065 /* We have to use our own DMA buffer. */
1066 sg_init_one(sgl, this->data_buffer_dma, len);
1067
1068 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1069 memcpy(this->data_buffer_dma, buf, len);
1070
1071 dma_map_sg(this->dev, sgl, 1, dr);
1072
1073 return false;
1074 }
1075
1076 /* add our owner bbt descriptor */
1077 static uint8_t scan_ff_pattern[] = { 0xff };
1078 static struct nand_bbt_descr gpmi_bbt_descr = {
1079 .options = 0,
1080 .offs = 0,
1081 .len = 1,
1082 .pattern = scan_ff_pattern
1083 };
1084
1085 /*
1086 * We may change the layout if we can get the ECC info from the datasheet,
1087 * else we will use all the (page + OOB).
1088 */
gpmi_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1089 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1090 struct mtd_oob_region *oobregion)
1091 {
1092 struct nand_chip *chip = mtd_to_nand(mtd);
1093 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1094 struct bch_geometry *geo = &this->bch_geometry;
1095
1096 if (section)
1097 return -ERANGE;
1098
1099 oobregion->offset = 0;
1100 oobregion->length = geo->page_size - mtd->writesize;
1101
1102 return 0;
1103 }
1104
gpmi_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1105 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1106 struct mtd_oob_region *oobregion)
1107 {
1108 struct nand_chip *chip = mtd_to_nand(mtd);
1109 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1110 struct bch_geometry *geo = &this->bch_geometry;
1111
1112 if (section)
1113 return -ERANGE;
1114
1115 /* The available oob size we have. */
1116 if (geo->page_size < mtd->writesize + mtd->oobsize) {
1117 oobregion->offset = geo->page_size - mtd->writesize;
1118 oobregion->length = mtd->oobsize - oobregion->offset;
1119 }
1120
1121 return 0;
1122 }
1123
1124 static const char * const gpmi_clks_for_mx2x[] = {
1125 "gpmi_io",
1126 };
1127
1128 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1129 .ecc = gpmi_ooblayout_ecc,
1130 .free = gpmi_ooblayout_free,
1131 };
1132
1133 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1134 .type = IS_MX23,
1135 .bch_max_ecc_strength = 20,
1136 .max_chain_delay = 16000,
1137 .clks = gpmi_clks_for_mx2x,
1138 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1139 };
1140
1141 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1142 .type = IS_MX28,
1143 .bch_max_ecc_strength = 20,
1144 .max_chain_delay = 16000,
1145 .support_edo_timing = true,
1146 .clks = gpmi_clks_for_mx2x,
1147 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1148 };
1149
1150 static const char * const gpmi_clks_for_mx6[] = {
1151 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1152 };
1153
1154 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1155 .type = IS_MX6Q,
1156 .bch_max_ecc_strength = 40,
1157 .max_chain_delay = 12000,
1158 .support_edo_timing = true,
1159 .clks = gpmi_clks_for_mx6,
1160 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1161 };
1162
1163 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1164 .type = IS_MX6SX,
1165 .bch_max_ecc_strength = 62,
1166 .max_chain_delay = 12000,
1167 .support_edo_timing = true,
1168 .clks = gpmi_clks_for_mx6,
1169 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1170 };
1171
1172 static const char * const gpmi_clks_for_mx7d[] = {
1173 "gpmi_io", "gpmi_bch_apb",
1174 };
1175
1176 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1177 .type = IS_MX7D,
1178 .bch_max_ecc_strength = 62,
1179 .max_chain_delay = 12000,
1180 .support_edo_timing = true,
1181 .clks = gpmi_clks_for_mx7d,
1182 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1183 };
1184
1185 static const char *gpmi_clks_for_mx8qxp[GPMI_CLK_MAX] = {
1186 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb",
1187 };
1188
1189 static const struct gpmi_devdata gpmi_devdata_imx8qxp = {
1190 .type = IS_MX8QXP,
1191 .bch_max_ecc_strength = 62,
1192 .max_chain_delay = 12000,
1193 .support_edo_timing = true,
1194 .clks = gpmi_clks_for_mx8qxp,
1195 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx8qxp),
1196 };
1197
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)1198 static int acquire_register_block(struct gpmi_nand_data *this,
1199 const char *res_name)
1200 {
1201 struct platform_device *pdev = this->pdev;
1202 struct resources *res = &this->resources;
1203 void __iomem *p;
1204
1205 p = devm_platform_ioremap_resource_byname(pdev, res_name);
1206 if (IS_ERR(p))
1207 return PTR_ERR(p);
1208
1209 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1210 res->gpmi_regs = p;
1211 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1212 res->bch_regs = p;
1213 else
1214 dev_err(this->dev, "unknown resource name : %s\n", res_name);
1215
1216 return 0;
1217 }
1218
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)1219 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1220 {
1221 struct platform_device *pdev = this->pdev;
1222 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1223 int err;
1224
1225 err = platform_get_irq_byname(pdev, res_name);
1226 if (err < 0)
1227 return err;
1228
1229 err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1230 if (err)
1231 dev_err(this->dev, "error requesting BCH IRQ\n");
1232
1233 return err;
1234 }
1235
release_dma_channels(struct gpmi_nand_data * this)1236 static void release_dma_channels(struct gpmi_nand_data *this)
1237 {
1238 unsigned int i;
1239 for (i = 0; i < DMA_CHANS; i++)
1240 if (this->dma_chans[i]) {
1241 dma_release_channel(this->dma_chans[i]);
1242 this->dma_chans[i] = NULL;
1243 }
1244 }
1245
acquire_dma_channels(struct gpmi_nand_data * this)1246 static int acquire_dma_channels(struct gpmi_nand_data *this)
1247 {
1248 struct platform_device *pdev = this->pdev;
1249 struct dma_chan *dma_chan;
1250 int ret = 0;
1251
1252 /* request dma channel */
1253 dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1254 if (IS_ERR(dma_chan)) {
1255 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1256 "DMA channel request failed\n");
1257 release_dma_channels(this);
1258 } else {
1259 this->dma_chans[0] = dma_chan;
1260 }
1261
1262 return ret;
1263 }
1264
gpmi_get_clks(struct gpmi_nand_data * this)1265 static int gpmi_get_clks(struct gpmi_nand_data *this)
1266 {
1267 struct resources *r = &this->resources;
1268 struct clk *clk;
1269 int err, i;
1270
1271 for (i = 0; i < this->devdata->clks_count; i++) {
1272 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1273 if (IS_ERR(clk)) {
1274 err = PTR_ERR(clk);
1275 goto err_clock;
1276 }
1277
1278 r->clock[i] = clk;
1279 }
1280
1281 return 0;
1282
1283 err_clock:
1284 dev_dbg(this->dev, "failed in finding the clocks.\n");
1285 return err;
1286 }
1287
acquire_resources(struct gpmi_nand_data * this)1288 static int acquire_resources(struct gpmi_nand_data *this)
1289 {
1290 int ret;
1291
1292 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1293 if (ret)
1294 goto exit_regs;
1295
1296 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1297 if (ret)
1298 goto exit_regs;
1299
1300 ret = acquire_bch_irq(this, bch_irq);
1301 if (ret)
1302 goto exit_regs;
1303
1304 ret = acquire_dma_channels(this);
1305 if (ret)
1306 goto exit_regs;
1307
1308 ret = gpmi_get_clks(this);
1309 if (ret)
1310 goto exit_clock;
1311 return 0;
1312
1313 exit_clock:
1314 release_dma_channels(this);
1315 exit_regs:
1316 return ret;
1317 }
1318
release_resources(struct gpmi_nand_data * this)1319 static void release_resources(struct gpmi_nand_data *this)
1320 {
1321 release_dma_channels(this);
1322 }
1323
gpmi_free_dma_buffer(struct gpmi_nand_data * this)1324 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1325 {
1326 struct device *dev = this->dev;
1327 struct bch_geometry *geo = &this->bch_geometry;
1328
1329 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1330 dma_free_coherent(dev, geo->auxiliary_size,
1331 this->auxiliary_virt,
1332 this->auxiliary_phys);
1333 kfree(this->data_buffer_dma);
1334 kfree(this->raw_buffer);
1335
1336 this->data_buffer_dma = NULL;
1337 this->raw_buffer = NULL;
1338 }
1339
1340 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)1341 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1342 {
1343 struct bch_geometry *geo = &this->bch_geometry;
1344 struct device *dev = this->dev;
1345 struct mtd_info *mtd = nand_to_mtd(&this->nand);
1346
1347 /*
1348 * [2] Allocate a read/write data buffer.
1349 * The gpmi_alloc_dma_buffer can be called twice.
1350 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1351 * is called before the NAND identification; and we allocate a
1352 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1353 * is called after.
1354 */
1355 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1356 GFP_DMA | GFP_KERNEL);
1357 if (this->data_buffer_dma == NULL)
1358 goto error_alloc;
1359
1360 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1361 &this->auxiliary_phys, GFP_DMA);
1362 if (!this->auxiliary_virt)
1363 goto error_alloc;
1364
1365 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1366 if (!this->raw_buffer)
1367 goto error_alloc;
1368
1369 return 0;
1370
1371 error_alloc:
1372 gpmi_free_dma_buffer(this);
1373 return -ENOMEM;
1374 }
1375
1376 /*
1377 * Handles block mark swapping.
1378 * It can be called in swapping the block mark, or swapping it back,
1379 * because the operations are the same.
1380 */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)1381 static void block_mark_swapping(struct gpmi_nand_data *this,
1382 void *payload, void *auxiliary)
1383 {
1384 struct bch_geometry *nfc_geo = &this->bch_geometry;
1385 unsigned char *p;
1386 unsigned char *a;
1387 unsigned int bit;
1388 unsigned char mask;
1389 unsigned char from_data;
1390 unsigned char from_oob;
1391
1392 if (!this->swap_block_mark)
1393 return;
1394
1395 /*
1396 * If control arrives here, we're swapping. Make some convenience
1397 * variables.
1398 */
1399 bit = nfc_geo->block_mark_bit_offset;
1400 p = payload + nfc_geo->block_mark_byte_offset;
1401 a = auxiliary;
1402
1403 /*
1404 * Get the byte from the data area that overlays the block mark. Since
1405 * the ECC engine applies its own view to the bits in the page, the
1406 * physical block mark won't (in general) appear on a byte boundary in
1407 * the data.
1408 */
1409 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1410
1411 /* Get the byte from the OOB. */
1412 from_oob = a[0];
1413
1414 /* Swap them. */
1415 a[0] = from_data;
1416
1417 mask = (0x1 << bit) - 1;
1418 p[0] = (p[0] & mask) | (from_oob << bit);
1419
1420 mask = ~0 << bit;
1421 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1422 }
1423
gpmi_count_bitflips(struct nand_chip * chip,void * buf,int first,int last,int meta)1424 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1425 int last, int meta)
1426 {
1427 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1428 struct bch_geometry *nfc_geo = &this->bch_geometry;
1429 struct mtd_info *mtd = nand_to_mtd(chip);
1430 int i;
1431 unsigned char *status;
1432 unsigned int max_bitflips = 0;
1433
1434 /* Loop over status bytes, accumulating ECC status. */
1435 status = this->auxiliary_virt + ALIGN(meta, 4);
1436
1437 for (i = first; i < last; i++, status++) {
1438 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1439 continue;
1440
1441 if (*status == STATUS_UNCORRECTABLE) {
1442 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1443 u8 *eccbuf = this->raw_buffer;
1444 int offset, bitoffset;
1445 int eccbytes;
1446 int flips;
1447
1448 /* Read ECC bytes into our internal raw_buffer */
1449 offset = nfc_geo->metadata_size * 8;
1450 offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1451 offset -= eccbits;
1452 bitoffset = offset % 8;
1453 eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1454 offset /= 8;
1455 eccbytes -= offset;
1456 nand_change_read_column_op(chip, offset, eccbuf,
1457 eccbytes, false);
1458
1459 /*
1460 * ECC data are not byte aligned and we may have
1461 * in-band data in the first and last byte of
1462 * eccbuf. Set non-eccbits to one so that
1463 * nand_check_erased_ecc_chunk() does not count them
1464 * as bitflips.
1465 */
1466 if (bitoffset)
1467 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1468
1469 bitoffset = (bitoffset + eccbits) % 8;
1470 if (bitoffset)
1471 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1472
1473 /*
1474 * The ECC hardware has an uncorrectable ECC status
1475 * code in case we have bitflips in an erased page. As
1476 * nothing was written into this subpage the ECC is
1477 * obviously wrong and we can not trust it. We assume
1478 * at this point that we are reading an erased page and
1479 * try to correct the bitflips in buffer up to
1480 * ecc_strength bitflips. If this is a page with random
1481 * data, we exceed this number of bitflips and have a
1482 * ECC failure. Otherwise we use the corrected buffer.
1483 */
1484 if (i == 0) {
1485 /* The first block includes metadata */
1486 flips = nand_check_erased_ecc_chunk(
1487 buf + i * nfc_geo->eccn_chunk_size,
1488 nfc_geo->eccn_chunk_size,
1489 eccbuf, eccbytes,
1490 this->auxiliary_virt,
1491 nfc_geo->metadata_size,
1492 nfc_geo->ecc_strength);
1493 } else {
1494 flips = nand_check_erased_ecc_chunk(
1495 buf + i * nfc_geo->eccn_chunk_size,
1496 nfc_geo->eccn_chunk_size,
1497 eccbuf, eccbytes,
1498 NULL, 0,
1499 nfc_geo->ecc_strength);
1500 }
1501
1502 if (flips > 0) {
1503 max_bitflips = max_t(unsigned int, max_bitflips,
1504 flips);
1505 mtd->ecc_stats.corrected += flips;
1506 continue;
1507 }
1508
1509 mtd->ecc_stats.failed++;
1510 continue;
1511 }
1512
1513 mtd->ecc_stats.corrected += *status;
1514 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1515 }
1516
1517 return max_bitflips;
1518 }
1519
gpmi_bch_layout_std(struct gpmi_nand_data * this)1520 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1521 {
1522 struct bch_geometry *geo = &this->bch_geometry;
1523 unsigned int ecc_strength = geo->ecc_strength >> 1;
1524 unsigned int gf_len = geo->gf_len;
1525 unsigned int block0_size = geo->ecc0_chunk_size;
1526 unsigned int blockn_size = geo->eccn_chunk_size;
1527
1528 this->bch_flashlayout0 =
1529 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1530 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1531 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1532 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1533 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1534
1535 this->bch_flashlayout1 =
1536 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1537 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1538 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1539 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1540 }
1541
gpmi_ecc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1542 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1543 int oob_required, int page)
1544 {
1545 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1546 struct mtd_info *mtd = nand_to_mtd(chip);
1547 struct bch_geometry *geo = &this->bch_geometry;
1548 unsigned int max_bitflips;
1549 int ret;
1550
1551 gpmi_bch_layout_std(this);
1552 this->bch = true;
1553
1554 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1555 if (ret)
1556 return ret;
1557
1558 max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1559 geo->ecc_chunk_count,
1560 geo->auxiliary_status_offset);
1561
1562 /* handle the block mark swapping */
1563 block_mark_swapping(this, buf, this->auxiliary_virt);
1564
1565 if (oob_required) {
1566 /*
1567 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1568 * for details about our policy for delivering the OOB.
1569 *
1570 * We fill the caller's buffer with set bits, and then copy the
1571 * block mark to th caller's buffer. Note that, if block mark
1572 * swapping was necessary, it has already been done, so we can
1573 * rely on the first byte of the auxiliary buffer to contain
1574 * the block mark.
1575 */
1576 memset(chip->oob_poi, ~0, mtd->oobsize);
1577 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1578 }
1579
1580 return max_bitflips;
1581 }
1582
1583 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1584 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1585 uint32_t len, uint8_t *buf, int page)
1586 {
1587 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1588 struct bch_geometry *geo = &this->bch_geometry;
1589 int size = chip->ecc.size; /* ECC chunk size */
1590 int meta, n, page_size;
1591 unsigned int max_bitflips;
1592 unsigned int ecc_strength;
1593 int first, last, marker_pos;
1594 int ecc_parity_size;
1595 int col = 0;
1596 int ret;
1597
1598 /* The size of ECC parity */
1599 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1600
1601 /* Align it with the chunk size */
1602 first = offs / size;
1603 last = (offs + len - 1) / size;
1604
1605 if (this->swap_block_mark) {
1606 /*
1607 * Find the chunk which contains the Block Marker.
1608 * If this chunk is in the range of [first, last],
1609 * we have to read out the whole page.
1610 * Why? since we had swapped the data at the position of Block
1611 * Marker to the metadata which is bound with the chunk 0.
1612 */
1613 marker_pos = geo->block_mark_byte_offset / size;
1614 if (last >= marker_pos && first <= marker_pos) {
1615 dev_dbg(this->dev,
1616 "page:%d, first:%d, last:%d, marker at:%d\n",
1617 page, first, last, marker_pos);
1618 return gpmi_ecc_read_page(chip, buf, 0, page);
1619 }
1620 }
1621
1622 /*
1623 * if there is an ECC dedicate for meta:
1624 * - need to add an extra ECC size when calculating col and page_size,
1625 * if the meta size is NOT zero.
1626 * - ecc0_chunk size need to set to the same size as other chunks,
1627 * if the meta size is zero.
1628 */
1629
1630 meta = geo->metadata_size;
1631 if (first) {
1632 if (geo->ecc_for_meta)
1633 col = meta + ecc_parity_size
1634 + (size + ecc_parity_size) * first;
1635 else
1636 col = meta + (size + ecc_parity_size) * first;
1637
1638 meta = 0;
1639 buf = buf + first * size;
1640 }
1641
1642 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1643 n = last - first + 1;
1644
1645 if (geo->ecc_for_meta && meta)
1646 page_size = meta + ecc_parity_size
1647 + (size + ecc_parity_size) * n;
1648 else
1649 page_size = meta + (size + ecc_parity_size) * n;
1650
1651 ecc_strength = geo->ecc_strength >> 1;
1652
1653 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1654 (geo->ecc_for_meta ? n : n - 1)) |
1655 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1656 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1657 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1658 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1659 0 : geo->ecc0_chunk_size), this);
1660
1661 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1662 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1663 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1664 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1665
1666 this->bch = true;
1667
1668 ret = nand_read_page_op(chip, page, col, buf, page_size);
1669 if (ret)
1670 return ret;
1671
1672 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1673 page, offs, len, col, first, n, page_size);
1674
1675 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1676
1677 return max_bitflips;
1678 }
1679
gpmi_ecc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1680 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1681 int oob_required, int page)
1682 {
1683 struct mtd_info *mtd = nand_to_mtd(chip);
1684 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1685 struct bch_geometry *nfc_geo = &this->bch_geometry;
1686
1687 dev_dbg(this->dev, "ecc write page.\n");
1688
1689 gpmi_bch_layout_std(this);
1690 this->bch = true;
1691
1692 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1693
1694 if (this->swap_block_mark) {
1695 /*
1696 * When doing bad block marker swapping we must always copy the
1697 * input buffer as we can't modify the const buffer.
1698 */
1699 memcpy(this->data_buffer_dma, buf, mtd->writesize);
1700 buf = this->data_buffer_dma;
1701 block_mark_swapping(this, this->data_buffer_dma,
1702 this->auxiliary_virt);
1703 }
1704
1705 return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1706 }
1707
1708 /*
1709 * There are several places in this driver where we have to handle the OOB and
1710 * block marks. This is the function where things are the most complicated, so
1711 * this is where we try to explain it all. All the other places refer back to
1712 * here.
1713 *
1714 * These are the rules, in order of decreasing importance:
1715 *
1716 * 1) Nothing the caller does can be allowed to imperil the block mark.
1717 *
1718 * 2) In read operations, the first byte of the OOB we return must reflect the
1719 * true state of the block mark, no matter where that block mark appears in
1720 * the physical page.
1721 *
1722 * 3) ECC-based read operations return an OOB full of set bits (since we never
1723 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1724 * return).
1725 *
1726 * 4) "Raw" read operations return a direct view of the physical bytes in the
1727 * page, using the conventional definition of which bytes are data and which
1728 * are OOB. This gives the caller a way to see the actual, physical bytes
1729 * in the page, without the distortions applied by our ECC engine.
1730 *
1731 *
1732 * What we do for this specific read operation depends on two questions:
1733 *
1734 * 1) Are we doing a "raw" read, or an ECC-based read?
1735 *
1736 * 2) Are we using block mark swapping or transcription?
1737 *
1738 * There are four cases, illustrated by the following Karnaugh map:
1739 *
1740 * | Raw | ECC-based |
1741 * -------------+-------------------------+-------------------------+
1742 * | Read the conventional | |
1743 * | OOB at the end of the | |
1744 * Swapping | page and return it. It | |
1745 * | contains exactly what | |
1746 * | we want. | Read the block mark and |
1747 * -------------+-------------------------+ return it in a buffer |
1748 * | Read the conventional | full of set bits. |
1749 * | OOB at the end of the | |
1750 * | page and also the block | |
1751 * Transcribing | mark in the metadata. | |
1752 * | Copy the block mark | |
1753 * | into the first byte of | |
1754 * | the OOB. | |
1755 * -------------+-------------------------+-------------------------+
1756 *
1757 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1758 * giving an accurate view of the actual, physical bytes in the page (we're
1759 * overwriting the block mark). That's OK because it's more important to follow
1760 * rule #2.
1761 *
1762 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1763 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1764 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1765 * ECC-based or raw view of the page is implicit in which function it calls
1766 * (there is a similar pair of ECC-based/raw functions for writing).
1767 */
gpmi_ecc_read_oob(struct nand_chip * chip,int page)1768 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1769 {
1770 struct mtd_info *mtd = nand_to_mtd(chip);
1771 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1772 int ret;
1773
1774 /* clear the OOB buffer */
1775 memset(chip->oob_poi, ~0, mtd->oobsize);
1776
1777 /* Read out the conventional OOB. */
1778 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1779 mtd->oobsize);
1780 if (ret)
1781 return ret;
1782
1783 /*
1784 * Now, we want to make sure the block mark is correct. In the
1785 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1786 * Otherwise, we need to explicitly read it.
1787 */
1788 if (GPMI_IS_MX23(this)) {
1789 /* Read the block mark into the first byte of the OOB buffer. */
1790 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1791 if (ret)
1792 return ret;
1793 }
1794
1795 return 0;
1796 }
1797
gpmi_ecc_write_oob(struct nand_chip * chip,int page)1798 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1799 {
1800 struct mtd_info *mtd = nand_to_mtd(chip);
1801 struct mtd_oob_region of = { };
1802
1803 /* Do we have available oob area? */
1804 mtd_ooblayout_free(mtd, 0, &of);
1805 if (!of.length)
1806 return -EPERM;
1807
1808 if (!nand_is_slc(chip))
1809 return -EPERM;
1810
1811 return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1812 chip->oob_poi + of.offset, of.length);
1813 }
1814
1815 /*
1816 * This function reads a NAND page without involving the ECC engine (no HW
1817 * ECC correction).
1818 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1819 * inline (interleaved with payload DATA), and do not align data chunk on
1820 * byte boundaries.
1821 * We thus need to take care moving the payload data and ECC bits stored in the
1822 * page into the provided buffers, which is why we're using nand_extract_bits().
1823 *
1824 * See set_geometry_by_ecc_info inline comments to have a full description
1825 * of the layout used by the GPMI controller.
1826 */
gpmi_ecc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1827 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1828 int oob_required, int page)
1829 {
1830 struct mtd_info *mtd = nand_to_mtd(chip);
1831 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1832 struct bch_geometry *nfc_geo = &this->bch_geometry;
1833 int eccsize = nfc_geo->eccn_chunk_size;
1834 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1835 u8 *tmp_buf = this->raw_buffer;
1836 size_t src_bit_off;
1837 size_t oob_bit_off;
1838 size_t oob_byte_off;
1839 uint8_t *oob = chip->oob_poi;
1840 int step;
1841 int ret;
1842
1843 ret = nand_read_page_op(chip, page, 0, tmp_buf,
1844 mtd->writesize + mtd->oobsize);
1845 if (ret)
1846 return ret;
1847
1848 /*
1849 * If required, swap the bad block marker and the data stored in the
1850 * metadata section, so that we don't wrongly consider a block as bad.
1851 *
1852 * See the layout description for a detailed explanation on why this
1853 * is needed.
1854 */
1855 if (this->swap_block_mark)
1856 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1857
1858 /*
1859 * Copy the metadata section into the oob buffer (this section is
1860 * guaranteed to be aligned on a byte boundary).
1861 */
1862 if (oob_required)
1863 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1864
1865 oob_bit_off = nfc_geo->metadata_size * 8;
1866 src_bit_off = oob_bit_off;
1867
1868 /* Extract interleaved payload data and ECC bits */
1869 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1870 if (buf)
1871 nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1872 src_bit_off, eccsize * 8);
1873 src_bit_off += eccsize * 8;
1874
1875 /* Align last ECC block to align a byte boundary */
1876 if (step == nfc_geo->ecc_chunk_count - 1 &&
1877 (oob_bit_off + eccbits) % 8)
1878 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1879
1880 if (oob_required)
1881 nand_extract_bits(oob, oob_bit_off, tmp_buf,
1882 src_bit_off, eccbits);
1883
1884 src_bit_off += eccbits;
1885 oob_bit_off += eccbits;
1886 }
1887
1888 if (oob_required) {
1889 oob_byte_off = oob_bit_off / 8;
1890
1891 if (oob_byte_off < mtd->oobsize)
1892 memcpy(oob + oob_byte_off,
1893 tmp_buf + mtd->writesize + oob_byte_off,
1894 mtd->oobsize - oob_byte_off);
1895 }
1896
1897 return 0;
1898 }
1899
1900 /*
1901 * This function writes a NAND page without involving the ECC engine (no HW
1902 * ECC generation).
1903 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1904 * inline (interleaved with payload DATA), and do not align data chunk on
1905 * byte boundaries.
1906 * We thus need to take care moving the OOB area at the right place in the
1907 * final page, which is why we're using nand_extract_bits().
1908 *
1909 * See set_geometry_by_ecc_info inline comments to have a full description
1910 * of the layout used by the GPMI controller.
1911 */
gpmi_ecc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1912 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1913 int oob_required, int page)
1914 {
1915 struct mtd_info *mtd = nand_to_mtd(chip);
1916 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1917 struct bch_geometry *nfc_geo = &this->bch_geometry;
1918 int eccsize = nfc_geo->eccn_chunk_size;
1919 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1920 u8 *tmp_buf = this->raw_buffer;
1921 uint8_t *oob = chip->oob_poi;
1922 size_t dst_bit_off;
1923 size_t oob_bit_off;
1924 size_t oob_byte_off;
1925 int step;
1926
1927 /*
1928 * Initialize all bits to 1 in case we don't have a buffer for the
1929 * payload or oob data in order to leave unspecified bits of data
1930 * to their initial state.
1931 */
1932 if (!buf || !oob_required)
1933 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1934
1935 /*
1936 * First copy the metadata section (stored in oob buffer) at the
1937 * beginning of the page, as imposed by the GPMI layout.
1938 */
1939 memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1940 oob_bit_off = nfc_geo->metadata_size * 8;
1941 dst_bit_off = oob_bit_off;
1942
1943 /* Interleave payload data and ECC bits */
1944 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1945 if (buf)
1946 nand_extract_bits(tmp_buf, dst_bit_off, buf,
1947 step * eccsize * 8, eccsize * 8);
1948 dst_bit_off += eccsize * 8;
1949
1950 /* Align last ECC block to align a byte boundary */
1951 if (step == nfc_geo->ecc_chunk_count - 1 &&
1952 (oob_bit_off + eccbits) % 8)
1953 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1954
1955 if (oob_required)
1956 nand_extract_bits(tmp_buf, dst_bit_off, oob,
1957 oob_bit_off, eccbits);
1958
1959 dst_bit_off += eccbits;
1960 oob_bit_off += eccbits;
1961 }
1962
1963 oob_byte_off = oob_bit_off / 8;
1964
1965 if (oob_required && oob_byte_off < mtd->oobsize)
1966 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1967 oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1968
1969 /*
1970 * If required, swap the bad block marker and the first byte of the
1971 * metadata section, so that we don't modify the bad block marker.
1972 *
1973 * See the layout description for a detailed explanation on why this
1974 * is needed.
1975 */
1976 if (this->swap_block_mark)
1977 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1978
1979 return nand_prog_page_op(chip, page, 0, tmp_buf,
1980 mtd->writesize + mtd->oobsize);
1981 }
1982
gpmi_ecc_read_oob_raw(struct nand_chip * chip,int page)1983 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1984 {
1985 return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1986 }
1987
gpmi_ecc_write_oob_raw(struct nand_chip * chip,int page)1988 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1989 {
1990 return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1991 }
1992
gpmi_block_markbad(struct nand_chip * chip,loff_t ofs)1993 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1994 {
1995 struct mtd_info *mtd = nand_to_mtd(chip);
1996 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1997 int ret = 0;
1998 uint8_t *block_mark;
1999 int column, page, chipnr;
2000
2001 chipnr = (int)(ofs >> chip->chip_shift);
2002 nand_select_target(chip, chipnr);
2003
2004 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
2005
2006 /* Write the block mark. */
2007 block_mark = this->data_buffer_dma;
2008 block_mark[0] = 0; /* bad block marker */
2009
2010 /* Shift to get page */
2011 page = (int)(ofs >> chip->page_shift);
2012
2013 ret = nand_prog_page_op(chip, page, column, block_mark, 1);
2014
2015 nand_deselect_target(chip);
2016
2017 return ret;
2018 }
2019
nand_boot_set_geometry(struct gpmi_nand_data * this)2020 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2021 {
2022 struct boot_rom_geometry *geometry = &this->rom_geometry;
2023
2024 /*
2025 * Set the boot block stride size.
2026 *
2027 * In principle, we should be reading this from the OTP bits, since
2028 * that's where the ROM is going to get it. In fact, we don't have any
2029 * way to read the OTP bits, so we go with the default and hope for the
2030 * best.
2031 */
2032 geometry->stride_size_in_pages = 64;
2033
2034 /*
2035 * Set the search area stride exponent.
2036 *
2037 * In principle, we should be reading this from the OTP bits, since
2038 * that's where the ROM is going to get it. In fact, we don't have any
2039 * way to read the OTP bits, so we go with the default and hope for the
2040 * best.
2041 */
2042 geometry->search_area_stride_exponent = 2;
2043 return 0;
2044 }
2045
2046 static const char *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)2047 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2048 {
2049 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2050 struct device *dev = this->dev;
2051 struct nand_chip *chip = &this->nand;
2052 unsigned int search_area_size_in_strides;
2053 unsigned int stride;
2054 unsigned int page;
2055 u8 *buffer = nand_get_data_buf(chip);
2056 int found_an_ncb_fingerprint = false;
2057 int ret;
2058
2059 /* Compute the number of strides in a search area. */
2060 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2061
2062 nand_select_target(chip, 0);
2063
2064 /*
2065 * Loop through the first search area, looking for the NCB fingerprint.
2066 */
2067 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2068
2069 for (stride = 0; stride < search_area_size_in_strides; stride++) {
2070 /* Compute the page addresses. */
2071 page = stride * rom_geo->stride_size_in_pages;
2072
2073 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2074
2075 /*
2076 * Read the NCB fingerprint. The fingerprint is four bytes long
2077 * and starts in the 12th byte of the page.
2078 */
2079 ret = nand_read_page_op(chip, page, 12, buffer,
2080 strlen(fingerprint));
2081 if (ret)
2082 continue;
2083
2084 /* Look for the fingerprint. */
2085 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2086 found_an_ncb_fingerprint = true;
2087 break;
2088 }
2089
2090 }
2091
2092 nand_deselect_target(chip);
2093
2094 if (found_an_ncb_fingerprint)
2095 dev_dbg(dev, "\tFound a fingerprint\n");
2096 else
2097 dev_dbg(dev, "\tNo fingerprint found\n");
2098 return found_an_ncb_fingerprint;
2099 }
2100
2101 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)2102 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2103 {
2104 struct device *dev = this->dev;
2105 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2106 struct nand_chip *chip = &this->nand;
2107 struct mtd_info *mtd = nand_to_mtd(chip);
2108 unsigned int block_size_in_pages;
2109 unsigned int search_area_size_in_strides;
2110 unsigned int search_area_size_in_pages;
2111 unsigned int search_area_size_in_blocks;
2112 unsigned int block;
2113 unsigned int stride;
2114 unsigned int page;
2115 u8 *buffer = nand_get_data_buf(chip);
2116 int status;
2117
2118 /* Compute the search area geometry. */
2119 block_size_in_pages = mtd->erasesize / mtd->writesize;
2120 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2121 search_area_size_in_pages = search_area_size_in_strides *
2122 rom_geo->stride_size_in_pages;
2123 search_area_size_in_blocks =
2124 (search_area_size_in_pages + (block_size_in_pages - 1)) /
2125 block_size_in_pages;
2126
2127 dev_dbg(dev, "Search Area Geometry :\n");
2128 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2129 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2130 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
2131
2132 nand_select_target(chip, 0);
2133
2134 /* Loop over blocks in the first search area, erasing them. */
2135 dev_dbg(dev, "Erasing the search area...\n");
2136
2137 for (block = 0; block < search_area_size_in_blocks; block++) {
2138 /* Erase this block. */
2139 dev_dbg(dev, "\tErasing block 0x%x\n", block);
2140 status = nand_erase_op(chip, block);
2141 if (status)
2142 dev_err(dev, "[%s] Erase failed.\n", __func__);
2143 }
2144
2145 /* Write the NCB fingerprint into the page buffer. */
2146 memset(buffer, ~0, mtd->writesize);
2147 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2148
2149 /* Loop through the first search area, writing NCB fingerprints. */
2150 dev_dbg(dev, "Writing NCB fingerprints...\n");
2151 for (stride = 0; stride < search_area_size_in_strides; stride++) {
2152 /* Compute the page addresses. */
2153 page = stride * rom_geo->stride_size_in_pages;
2154
2155 /* Write the first page of the current stride. */
2156 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2157
2158 status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2159 if (status)
2160 dev_err(dev, "[%s] Write failed.\n", __func__);
2161 }
2162
2163 nand_deselect_target(chip);
2164
2165 return 0;
2166 }
2167
mx23_boot_init(struct gpmi_nand_data * this)2168 static int mx23_boot_init(struct gpmi_nand_data *this)
2169 {
2170 struct device *dev = this->dev;
2171 struct nand_chip *chip = &this->nand;
2172 struct mtd_info *mtd = nand_to_mtd(chip);
2173 unsigned int block_count;
2174 unsigned int block;
2175 int chipnr;
2176 int page;
2177 loff_t byte;
2178 uint8_t block_mark;
2179 int ret = 0;
2180
2181 /*
2182 * If control arrives here, we can't use block mark swapping, which
2183 * means we're forced to use transcription. First, scan for the
2184 * transcription stamp. If we find it, then we don't have to do
2185 * anything -- the block marks are already transcribed.
2186 */
2187 if (mx23_check_transcription_stamp(this))
2188 return 0;
2189
2190 /*
2191 * If control arrives here, we couldn't find a transcription stamp, so
2192 * so we presume the block marks are in the conventional location.
2193 */
2194 dev_dbg(dev, "Transcribing bad block marks...\n");
2195
2196 /* Compute the number of blocks in the entire medium. */
2197 block_count = nanddev_eraseblocks_per_target(&chip->base);
2198
2199 /*
2200 * Loop over all the blocks in the medium, transcribing block marks as
2201 * we go.
2202 */
2203 for (block = 0; block < block_count; block++) {
2204 /*
2205 * Compute the chip, page and byte addresses for this block's
2206 * conventional mark.
2207 */
2208 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2209 page = block << (chip->phys_erase_shift - chip->page_shift);
2210 byte = block << chip->phys_erase_shift;
2211
2212 /* Send the command to read the conventional block mark. */
2213 nand_select_target(chip, chipnr);
2214 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2215 1);
2216 nand_deselect_target(chip);
2217
2218 if (ret)
2219 continue;
2220
2221 /*
2222 * Check if the block is marked bad. If so, we need to mark it
2223 * again, but this time the result will be a mark in the
2224 * location where we transcribe block marks.
2225 */
2226 if (block_mark != 0xff) {
2227 dev_dbg(dev, "Transcribing mark in block %u\n", block);
2228 ret = chip->legacy.block_markbad(chip, byte);
2229 if (ret)
2230 dev_err(dev,
2231 "Failed to mark block bad with ret %d\n",
2232 ret);
2233 }
2234 }
2235
2236 /* Write the stamp that indicates we've transcribed the block marks. */
2237 mx23_write_transcription_stamp(this);
2238 return 0;
2239 }
2240
nand_boot_init(struct gpmi_nand_data * this)2241 static int nand_boot_init(struct gpmi_nand_data *this)
2242 {
2243 nand_boot_set_geometry(this);
2244
2245 /* This is ROM arch-specific initilization before the BBT scanning. */
2246 if (GPMI_IS_MX23(this))
2247 return mx23_boot_init(this);
2248 return 0;
2249 }
2250
gpmi_set_geometry(struct gpmi_nand_data * this)2251 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2252 {
2253 int ret;
2254
2255 /* Free the temporary DMA memory for reading ID. */
2256 gpmi_free_dma_buffer(this);
2257
2258 /* Set up the NFC geometry which is used by BCH. */
2259 ret = bch_set_geometry(this);
2260 if (ret) {
2261 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2262 return ret;
2263 }
2264
2265 /* Alloc the new DMA buffers according to the pagesize and oobsize */
2266 return gpmi_alloc_dma_buffer(this);
2267 }
2268
gpmi_init_last(struct gpmi_nand_data * this)2269 static int gpmi_init_last(struct gpmi_nand_data *this)
2270 {
2271 struct nand_chip *chip = &this->nand;
2272 struct mtd_info *mtd = nand_to_mtd(chip);
2273 struct nand_ecc_ctrl *ecc = &chip->ecc;
2274 struct bch_geometry *bch_geo = &this->bch_geometry;
2275 int ret;
2276
2277 /* Set up the medium geometry */
2278 ret = gpmi_set_geometry(this);
2279 if (ret)
2280 return ret;
2281
2282 /* Init the nand_ecc_ctrl{} */
2283 ecc->read_page = gpmi_ecc_read_page;
2284 ecc->write_page = gpmi_ecc_write_page;
2285 ecc->read_oob = gpmi_ecc_read_oob;
2286 ecc->write_oob = gpmi_ecc_write_oob;
2287 ecc->read_page_raw = gpmi_ecc_read_page_raw;
2288 ecc->write_page_raw = gpmi_ecc_write_page_raw;
2289 ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2290 ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2291 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2292 ecc->size = bch_geo->eccn_chunk_size;
2293 ecc->strength = bch_geo->ecc_strength;
2294 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2295
2296 /*
2297 * We only enable the subpage read when:
2298 * (1) the chip is imx6, and
2299 * (2) the size of the ECC parity is byte aligned.
2300 */
2301 if (GPMI_IS_MX6(this) &&
2302 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2303 ecc->read_subpage = gpmi_ecc_read_subpage;
2304 chip->options |= NAND_SUBPAGE_READ;
2305 }
2306
2307 return 0;
2308 }
2309
gpmi_nand_attach_chip(struct nand_chip * chip)2310 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2311 {
2312 struct gpmi_nand_data *this = nand_get_controller_data(chip);
2313 int ret;
2314
2315 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2316 chip->bbt_options |= NAND_BBT_NO_OOB;
2317
2318 if (of_property_read_bool(this->dev->of_node,
2319 "fsl,no-blockmark-swap"))
2320 this->swap_block_mark = false;
2321 }
2322 dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2323 this->swap_block_mark ? "en" : "dis");
2324
2325 ret = gpmi_init_last(this);
2326 if (ret)
2327 return ret;
2328
2329 chip->options |= NAND_SKIP_BBTSCAN;
2330
2331 return 0;
2332 }
2333
get_next_transfer(struct gpmi_nand_data * this)2334 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2335 {
2336 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2337
2338 this->ntransfers++;
2339
2340 if (this->ntransfers == GPMI_MAX_TRANSFERS)
2341 return NULL;
2342
2343 return transfer;
2344 }
2345
gpmi_chain_command(struct gpmi_nand_data * this,u8 cmd,const u8 * addr,int naddr)2346 static struct dma_async_tx_descriptor *gpmi_chain_command(
2347 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2348 {
2349 struct dma_chan *channel = get_dma_chan(this);
2350 struct dma_async_tx_descriptor *desc;
2351 struct gpmi_transfer *transfer;
2352 int chip = this->nand.cur_cs;
2353 u32 pio[3];
2354
2355 /* [1] send out the PIO words */
2356 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2357 | BM_GPMI_CTRL0_WORD_LENGTH
2358 | BF_GPMI_CTRL0_CS(chip, this)
2359 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2360 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2361 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
2362 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2363 pio[1] = 0;
2364 pio[2] = 0;
2365 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2366 DMA_TRANS_NONE, 0);
2367 if (!desc)
2368 return NULL;
2369
2370 transfer = get_next_transfer(this);
2371 if (!transfer)
2372 return NULL;
2373
2374 transfer->cmdbuf[0] = cmd;
2375 if (naddr)
2376 memcpy(&transfer->cmdbuf[1], addr, naddr);
2377
2378 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2379 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2380
2381 transfer->direction = DMA_TO_DEVICE;
2382
2383 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2384 MXS_DMA_CTRL_WAIT4END);
2385 return desc;
2386 }
2387
gpmi_chain_wait_ready(struct gpmi_nand_data * this)2388 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2389 struct gpmi_nand_data *this)
2390 {
2391 struct dma_chan *channel = get_dma_chan(this);
2392 u32 pio[2];
2393
2394 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2395 | BM_GPMI_CTRL0_WORD_LENGTH
2396 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2397 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2398 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2399 | BF_GPMI_CTRL0_XFER_COUNT(0);
2400 pio[1] = 0;
2401
2402 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2403 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2404 }
2405
gpmi_chain_data_read(struct gpmi_nand_data * this,void * buf,int raw_len,bool * direct)2406 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2407 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2408 {
2409 struct dma_async_tx_descriptor *desc;
2410 struct dma_chan *channel = get_dma_chan(this);
2411 struct gpmi_transfer *transfer;
2412 u32 pio[6] = {};
2413
2414 transfer = get_next_transfer(this);
2415 if (!transfer)
2416 return NULL;
2417
2418 transfer->direction = DMA_FROM_DEVICE;
2419
2420 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2421 DMA_FROM_DEVICE);
2422
2423 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2424 | BM_GPMI_CTRL0_WORD_LENGTH
2425 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2426 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2427 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2428 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2429
2430 if (this->bch) {
2431 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2432 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2433 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2434 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2435 pio[3] = raw_len;
2436 pio[4] = transfer->sgl.dma_address;
2437 pio[5] = this->auxiliary_phys;
2438 }
2439
2440 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2441 DMA_TRANS_NONE, 0);
2442 if (!desc)
2443 return NULL;
2444
2445 if (!this->bch)
2446 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2447 DMA_DEV_TO_MEM,
2448 MXS_DMA_CTRL_WAIT4END);
2449
2450 return desc;
2451 }
2452
gpmi_chain_data_write(struct gpmi_nand_data * this,const void * buf,int raw_len)2453 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2454 struct gpmi_nand_data *this, const void *buf, int raw_len)
2455 {
2456 struct dma_chan *channel = get_dma_chan(this);
2457 struct dma_async_tx_descriptor *desc;
2458 struct gpmi_transfer *transfer;
2459 u32 pio[6] = {};
2460
2461 transfer = get_next_transfer(this);
2462 if (!transfer)
2463 return NULL;
2464
2465 transfer->direction = DMA_TO_DEVICE;
2466
2467 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2468
2469 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2470 | BM_GPMI_CTRL0_WORD_LENGTH
2471 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2472 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2473 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2474 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2475
2476 if (this->bch) {
2477 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2478 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2479 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2480 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2481 pio[3] = raw_len;
2482 pio[4] = transfer->sgl.dma_address;
2483 pio[5] = this->auxiliary_phys;
2484 }
2485
2486 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2487 DMA_TRANS_NONE,
2488 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2489 if (!desc)
2490 return NULL;
2491
2492 if (!this->bch)
2493 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2494 DMA_MEM_TO_DEV,
2495 MXS_DMA_CTRL_WAIT4END);
2496
2497 return desc;
2498 }
2499
gpmi_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2500 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2501 const struct nand_operation *op,
2502 bool check_only)
2503 {
2504 const struct nand_op_instr *instr;
2505 struct gpmi_nand_data *this = nand_get_controller_data(chip);
2506 struct dma_async_tx_descriptor *desc = NULL;
2507 int i, ret, buf_len = 0, nbufs = 0;
2508 u8 cmd = 0;
2509 void *buf_read = NULL;
2510 const void *buf_write = NULL;
2511 bool direct = false;
2512 struct completion *dma_completion, *bch_completion;
2513 unsigned long to;
2514
2515 if (check_only)
2516 return 0;
2517
2518 this->ntransfers = 0;
2519 for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2520 this->transfers[i].direction = DMA_NONE;
2521
2522 ret = pm_runtime_resume_and_get(this->dev);
2523 if (ret < 0)
2524 return ret;
2525
2526 /*
2527 * This driver currently supports only one NAND chip. Plus, dies share
2528 * the same configuration. So once timings have been applied on the
2529 * controller side, they will not change anymore. When the time will
2530 * come, the check on must_apply_timings will have to be dropped.
2531 */
2532 if (this->hw.must_apply_timings) {
2533 this->hw.must_apply_timings = false;
2534 ret = gpmi_nfc_apply_timings(this);
2535 if (ret)
2536 goto out_pm;
2537 }
2538
2539 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2540
2541 for (i = 0; i < op->ninstrs; i++) {
2542 instr = &op->instrs[i];
2543
2544 nand_op_trace(" ", instr);
2545
2546 switch (instr->type) {
2547 case NAND_OP_WAITRDY_INSTR:
2548 desc = gpmi_chain_wait_ready(this);
2549 break;
2550 case NAND_OP_CMD_INSTR:
2551 cmd = instr->ctx.cmd.opcode;
2552
2553 /*
2554 * When this command has an address cycle chain it
2555 * together with the address cycle
2556 */
2557 if (i + 1 != op->ninstrs &&
2558 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2559 continue;
2560
2561 desc = gpmi_chain_command(this, cmd, NULL, 0);
2562
2563 break;
2564 case NAND_OP_ADDR_INSTR:
2565 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2566 instr->ctx.addr.naddrs);
2567 break;
2568 case NAND_OP_DATA_OUT_INSTR:
2569 buf_write = instr->ctx.data.buf.out;
2570 buf_len = instr->ctx.data.len;
2571 nbufs++;
2572
2573 desc = gpmi_chain_data_write(this, buf_write, buf_len);
2574
2575 break;
2576 case NAND_OP_DATA_IN_INSTR:
2577 if (!instr->ctx.data.len)
2578 break;
2579 buf_read = instr->ctx.data.buf.in;
2580 buf_len = instr->ctx.data.len;
2581 nbufs++;
2582
2583 desc = gpmi_chain_data_read(this, buf_read, buf_len,
2584 &direct);
2585 break;
2586 }
2587
2588 if (!desc) {
2589 ret = -ENXIO;
2590 goto unmap;
2591 }
2592 }
2593
2594 dev_dbg(this->dev, "%s setup done\n", __func__);
2595
2596 if (nbufs > 1) {
2597 dev_err(this->dev, "Multiple data instructions not supported\n");
2598 ret = -EINVAL;
2599 goto unmap;
2600 }
2601
2602 if (this->bch) {
2603 writel(this->bch_flashlayout0,
2604 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2605 writel(this->bch_flashlayout1,
2606 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2607 }
2608
2609 desc->callback = dma_irq_callback;
2610 desc->callback_param = this;
2611 dma_completion = &this->dma_done;
2612 bch_completion = NULL;
2613
2614 init_completion(dma_completion);
2615
2616 if (this->bch && buf_read) {
2617 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2618 this->resources.bch_regs + HW_BCH_CTRL_SET);
2619 bch_completion = &this->bch_done;
2620 init_completion(bch_completion);
2621 }
2622
2623 dmaengine_submit(desc);
2624 dma_async_issue_pending(get_dma_chan(this));
2625
2626 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2627 if (!to) {
2628 dev_err(this->dev, "DMA timeout, last DMA\n");
2629 gpmi_dump_info(this);
2630 ret = -ETIMEDOUT;
2631 goto unmap;
2632 }
2633
2634 if (this->bch && buf_read) {
2635 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2636 if (!to) {
2637 dev_err(this->dev, "BCH timeout, last DMA\n");
2638 gpmi_dump_info(this);
2639 ret = -ETIMEDOUT;
2640 goto unmap;
2641 }
2642 }
2643
2644 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2645 this->resources.bch_regs + HW_BCH_CTRL_CLR);
2646 gpmi_clear_bch(this);
2647
2648 ret = 0;
2649
2650 unmap:
2651 for (i = 0; i < this->ntransfers; i++) {
2652 struct gpmi_transfer *transfer = &this->transfers[i];
2653
2654 if (transfer->direction != DMA_NONE)
2655 dma_unmap_sg(this->dev, &transfer->sgl, 1,
2656 transfer->direction);
2657 }
2658
2659 if (!ret && buf_read && !direct)
2660 memcpy(buf_read, this->data_buffer_dma,
2661 gpmi_raw_len_to_len(this, buf_len));
2662
2663 this->bch = false;
2664
2665 out_pm:
2666 pm_runtime_mark_last_busy(this->dev);
2667 pm_runtime_put_autosuspend(this->dev);
2668
2669 return ret;
2670 }
2671
2672 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2673 .attach_chip = gpmi_nand_attach_chip,
2674 .setup_interface = gpmi_setup_interface,
2675 .exec_op = gpmi_nfc_exec_op,
2676 };
2677
gpmi_nand_init(struct gpmi_nand_data * this)2678 static int gpmi_nand_init(struct gpmi_nand_data *this)
2679 {
2680 struct nand_chip *chip = &this->nand;
2681 struct mtd_info *mtd = nand_to_mtd(chip);
2682 int ret;
2683
2684 /* init the MTD data structures */
2685 mtd->name = "gpmi-nand";
2686 mtd->dev.parent = this->dev;
2687
2688 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2689 nand_set_controller_data(chip, this);
2690 nand_set_flash_node(chip, this->pdev->dev.of_node);
2691 chip->legacy.block_markbad = gpmi_block_markbad;
2692 chip->badblock_pattern = &gpmi_bbt_descr;
2693 chip->options |= NAND_NO_SUBPAGE_WRITE;
2694
2695 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2696 this->swap_block_mark = !GPMI_IS_MX23(this);
2697
2698 /*
2699 * Allocate a temporary DMA buffer for reading ID in the
2700 * nand_scan_ident().
2701 */
2702 this->bch_geometry.payload_size = 1024;
2703 this->bch_geometry.auxiliary_size = 128;
2704 ret = gpmi_alloc_dma_buffer(this);
2705 if (ret)
2706 return ret;
2707
2708 nand_controller_init(&this->base);
2709 this->base.ops = &gpmi_nand_controller_ops;
2710 chip->controller = &this->base;
2711
2712 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2713 if (ret)
2714 goto err_out;
2715
2716 ret = nand_boot_init(this);
2717 if (ret)
2718 goto err_nand_cleanup;
2719 ret = nand_create_bbt(chip);
2720 if (ret)
2721 goto err_nand_cleanup;
2722
2723 ret = mtd_device_register(mtd, NULL, 0);
2724 if (ret)
2725 goto err_nand_cleanup;
2726 return 0;
2727
2728 err_nand_cleanup:
2729 nand_cleanup(chip);
2730 err_out:
2731 gpmi_free_dma_buffer(this);
2732 return ret;
2733 }
2734
2735 static const struct of_device_id gpmi_nand_id_table[] = {
2736 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2737 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2738 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2739 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2740 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2741 { .compatible = "fsl,imx8qxp-gpmi-nand", .data = &gpmi_devdata_imx8qxp, },
2742 {}
2743 };
2744 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2745
gpmi_nand_probe(struct platform_device * pdev)2746 static int gpmi_nand_probe(struct platform_device *pdev)
2747 {
2748 struct gpmi_nand_data *this;
2749 int ret;
2750
2751 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2752 if (!this)
2753 return -ENOMEM;
2754
2755 this->devdata = of_device_get_match_data(&pdev->dev);
2756 platform_set_drvdata(pdev, this);
2757 this->pdev = pdev;
2758 this->dev = &pdev->dev;
2759
2760 ret = acquire_resources(this);
2761 if (ret)
2762 goto exit_acquire_resources;
2763
2764 ret = __gpmi_enable_clk(this, true);
2765 if (ret)
2766 goto exit_acquire_resources;
2767
2768 pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2769 pm_runtime_use_autosuspend(&pdev->dev);
2770 pm_runtime_set_active(&pdev->dev);
2771 pm_runtime_enable(&pdev->dev);
2772 pm_runtime_get_sync(&pdev->dev);
2773
2774 ret = gpmi_init(this);
2775 if (ret)
2776 goto exit_nfc_init;
2777
2778 ret = gpmi_nand_init(this);
2779 if (ret)
2780 goto exit_nfc_init;
2781
2782 pm_runtime_mark_last_busy(&pdev->dev);
2783 pm_runtime_put_autosuspend(&pdev->dev);
2784
2785 dev_info(this->dev, "driver registered.\n");
2786
2787 return 0;
2788
2789 exit_nfc_init:
2790 pm_runtime_put(&pdev->dev);
2791 pm_runtime_disable(&pdev->dev);
2792 release_resources(this);
2793 exit_acquire_resources:
2794
2795 return ret;
2796 }
2797
gpmi_nand_remove(struct platform_device * pdev)2798 static void gpmi_nand_remove(struct platform_device *pdev)
2799 {
2800 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2801 struct nand_chip *chip = &this->nand;
2802 int ret;
2803
2804 pm_runtime_put_sync(&pdev->dev);
2805 pm_runtime_disable(&pdev->dev);
2806
2807 ret = mtd_device_unregister(nand_to_mtd(chip));
2808 WARN_ON(ret);
2809 nand_cleanup(chip);
2810 gpmi_free_dma_buffer(this);
2811 release_resources(this);
2812 }
2813
2814 #ifdef CONFIG_PM_SLEEP
gpmi_pm_suspend(struct device * dev)2815 static int gpmi_pm_suspend(struct device *dev)
2816 {
2817 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2818
2819 release_dma_channels(this);
2820 return 0;
2821 }
2822
gpmi_pm_resume(struct device * dev)2823 static int gpmi_pm_resume(struct device *dev)
2824 {
2825 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2826 int ret;
2827
2828 ret = acquire_dma_channels(this);
2829 if (ret < 0)
2830 return ret;
2831
2832 /* re-init the GPMI registers */
2833 ret = gpmi_init(this);
2834 if (ret) {
2835 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2836 return ret;
2837 }
2838
2839 /* Set flag to get timing setup restored for next exec_op */
2840 if (this->hw.clk_rate)
2841 this->hw.must_apply_timings = true;
2842
2843 /* re-init the BCH registers */
2844 ret = bch_set_geometry(this);
2845 if (ret) {
2846 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2847 return ret;
2848 }
2849
2850 return 0;
2851 }
2852 #endif /* CONFIG_PM_SLEEP */
2853
gpmi_runtime_suspend(struct device * dev)2854 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2855 {
2856 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2857
2858 return __gpmi_enable_clk(this, false);
2859 }
2860
gpmi_runtime_resume(struct device * dev)2861 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2862 {
2863 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2864
2865 return __gpmi_enable_clk(this, true);
2866 }
2867
2868 static const struct dev_pm_ops gpmi_pm_ops = {
2869 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2870 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2871 };
2872
2873 static struct platform_driver gpmi_nand_driver = {
2874 .driver = {
2875 .name = "gpmi-nand",
2876 .pm = &gpmi_pm_ops,
2877 .of_match_table = gpmi_nand_id_table,
2878 },
2879 .probe = gpmi_nand_probe,
2880 .remove_new = gpmi_nand_remove,
2881 };
2882 module_platform_driver(gpmi_nand_driver);
2883
2884 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2885 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2886 MODULE_LICENSE("GPL");
2887