xref: /linux/drivers/mtd/nand/raw/fsl_upm.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale UPM NAND driver.
4  *
5  * Copyright © 2007-2008  MontaVista Software, Inc.
6  *
7  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/mtd/rawnand.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/of_platform.h>
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/fsl_lbc.h>
20 
21 struct fsl_upm_nand {
22 	struct nand_controller base;
23 	struct device *dev;
24 	struct nand_chip chip;
25 	struct fsl_upm upm;
26 	uint8_t upm_addr_offset;
27 	uint8_t upm_cmd_offset;
28 	void __iomem *io_base;
29 	struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS];
30 	uint32_t mchip_offsets[NAND_MAX_CHIPS];
31 	uint32_t mchip_count;
32 	uint32_t mchip_number;
33 };
34 
35 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
36 {
37 	return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
38 			    chip);
39 }
40 
41 static int fun_chip_init(struct fsl_upm_nand *fun,
42 			 const struct device_node *upm_np,
43 			 const struct resource *io_res)
44 {
45 	struct mtd_info *mtd = nand_to_mtd(&fun->chip);
46 	int ret;
47 	struct device_node *flash_np;
48 
49 	fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
50 	fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
51 	fun->chip.controller = &fun->base;
52 	mtd->dev.parent = fun->dev;
53 
54 	flash_np = of_get_next_child(upm_np, NULL);
55 	if (!flash_np)
56 		return -ENODEV;
57 
58 	nand_set_flash_node(&fun->chip, flash_np);
59 	mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn",
60 				   (u64)io_res->start,
61 				   flash_np);
62 	if (!mtd->name) {
63 		ret = -ENOMEM;
64 		goto err;
65 	}
66 
67 	ret = nand_scan(&fun->chip, fun->mchip_count);
68 	if (ret)
69 		goto err;
70 
71 	ret = mtd_device_register(mtd, NULL, 0);
72 err:
73 	of_node_put(flash_np);
74 	return ret;
75 }
76 
77 static int func_exec_instr(struct nand_chip *chip,
78 			   const struct nand_op_instr *instr)
79 {
80 	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
81 	u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number];
82 	unsigned int i;
83 	const u8 *out;
84 	u8 *in;
85 
86 	switch (instr->type) {
87 	case NAND_OP_CMD_INSTR:
88 		fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
89 		mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) |
90 		      reg_offs;
91 		fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
92 		fsl_upm_end_pattern(&fun->upm);
93 		return 0;
94 
95 	case NAND_OP_ADDR_INSTR:
96 		fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
97 		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
98 			mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) |
99 			      reg_offs;
100 			fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
101 		}
102 		fsl_upm_end_pattern(&fun->upm);
103 		return 0;
104 
105 	case NAND_OP_DATA_IN_INSTR:
106 		in = instr->ctx.data.buf.in;
107 		for (i = 0; i < instr->ctx.data.len; i++)
108 			in[i] = in_8(fun->io_base + reg_offs);
109 		return 0;
110 
111 	case NAND_OP_DATA_OUT_INSTR:
112 		out = instr->ctx.data.buf.out;
113 		for (i = 0; i < instr->ctx.data.len; i++)
114 			out_8(fun->io_base + reg_offs, out[i]);
115 		return 0;
116 
117 	case NAND_OP_WAITRDY_INSTR:
118 		if (!fun->rnb_gpio[fun->mchip_number])
119 			return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
120 
121 		return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number],
122 					 instr->ctx.waitrdy.timeout_ms);
123 
124 	default:
125 		return -EINVAL;
126 	}
127 
128 	return 0;
129 }
130 
131 static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op,
132 		       bool check_only)
133 {
134 	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
135 	unsigned int i;
136 	int ret;
137 
138 	if (op->cs >= NAND_MAX_CHIPS)
139 		return -EINVAL;
140 
141 	if (check_only)
142 		return 0;
143 
144 	fun->mchip_number = op->cs;
145 
146 	for (i = 0; i < op->ninstrs; i++) {
147 		ret = func_exec_instr(chip, &op->instrs[i]);
148 		if (ret)
149 			return ret;
150 
151 		if (op->instrs[i].delay_ns)
152 			ndelay(op->instrs[i].delay_ns);
153 	}
154 
155 	return 0;
156 }
157 
158 static const struct nand_controller_ops fun_ops = {
159 	.exec_op = fun_exec_op,
160 };
161 
162 static int fun_probe(struct platform_device *ofdev)
163 {
164 	struct fsl_upm_nand *fun;
165 	struct resource *io_res;
166 	const __be32 *prop;
167 	int ret;
168 	int size;
169 	int i;
170 
171 	fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL);
172 	if (!fun)
173 		return -ENOMEM;
174 
175 	io_res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
176 	fun->io_base = devm_ioremap_resource(&ofdev->dev, io_res);
177 	if (IS_ERR(fun->io_base))
178 		return PTR_ERR(fun->io_base);
179 
180 	ret = fsl_upm_find(io_res->start, &fun->upm);
181 	if (ret) {
182 		dev_err(&ofdev->dev, "can't find UPM\n");
183 		return ret;
184 	}
185 
186 	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
187 			       &size);
188 	if (!prop || size != sizeof(uint32_t)) {
189 		dev_err(&ofdev->dev, "can't get UPM address offset\n");
190 		return -EINVAL;
191 	}
192 	fun->upm_addr_offset = *prop;
193 
194 	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
195 	if (!prop || size != sizeof(uint32_t)) {
196 		dev_err(&ofdev->dev, "can't get UPM command offset\n");
197 		return -EINVAL;
198 	}
199 	fun->upm_cmd_offset = *prop;
200 
201 	prop = of_get_property(ofdev->dev.of_node,
202 			       "fsl,upm-addr-line-cs-offsets", &size);
203 	if (prop && (size / sizeof(uint32_t)) > 0) {
204 		fun->mchip_count = size / sizeof(uint32_t);
205 		if (fun->mchip_count >= NAND_MAX_CHIPS) {
206 			dev_err(&ofdev->dev, "too much multiple chips\n");
207 			return -EINVAL;
208 		}
209 		for (i = 0; i < fun->mchip_count; i++)
210 			fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
211 	} else {
212 		fun->mchip_count = 1;
213 	}
214 
215 	for (i = 0; i < fun->mchip_count; i++) {
216 		fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev,
217 								 NULL, i,
218 								 GPIOD_IN);
219 		if (IS_ERR(fun->rnb_gpio[i])) {
220 			dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
221 			return PTR_ERR(fun->rnb_gpio[i]);
222 		}
223 	}
224 
225 	nand_controller_init(&fun->base);
226 	fun->base.ops = &fun_ops;
227 	fun->dev = &ofdev->dev;
228 
229 	ret = fun_chip_init(fun, ofdev->dev.of_node, io_res);
230 	if (ret)
231 		return ret;
232 
233 	dev_set_drvdata(&ofdev->dev, fun);
234 
235 	return 0;
236 }
237 
238 static void fun_remove(struct platform_device *ofdev)
239 {
240 	struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
241 	struct nand_chip *chip = &fun->chip;
242 	struct mtd_info *mtd = nand_to_mtd(chip);
243 	int ret;
244 
245 	ret = mtd_device_unregister(mtd);
246 	WARN_ON(ret);
247 	nand_cleanup(chip);
248 }
249 
250 static const struct of_device_id of_fun_match[] = {
251 	{ .compatible = "fsl,upm-nand" },
252 	{},
253 };
254 MODULE_DEVICE_TABLE(of, of_fun_match);
255 
256 static struct platform_driver of_fun_driver = {
257 	.driver = {
258 		.name = "fsl,upm-nand",
259 		.of_match_table = of_fun_match,
260 	},
261 	.probe		= fun_probe,
262 	.remove_new	= fun_remove,
263 };
264 
265 module_platform_driver(of_fun_driver);
266 
267 MODULE_LICENSE("GPL");
268 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
269 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
270 		   "LocalBus User-Programmable Machine");
271