1 /* 2 * (C) 2003 Red Hat, Inc. 3 * (C) 2004 Dan Brown <dan_brown@ieee.org> 4 * (C) 2004 Kalev Lember <kalev@smartlink.ee> 5 * 6 * Author: David Woodhouse <dwmw2@infradead.org> 7 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> 8 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> 9 * 10 * Error correction code lifted from the old docecc code 11 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 12 * Copyright (C) 2000 Netgem S.A. 13 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> 14 * 15 * Interface to generic NAND code for M-Systems DiskOnChip devices 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/sched.h> 21 #include <linux/delay.h> 22 #include <linux/rslib.h> 23 #include <linux/moduleparam.h> 24 #include <linux/slab.h> 25 #include <linux/io.h> 26 27 #include <linux/mtd/mtd.h> 28 #include <linux/mtd/rawnand.h> 29 #include <linux/mtd/doc2000.h> 30 #include <linux/mtd/partitions.h> 31 #include <linux/mtd/inftl.h> 32 #include <linux/module.h> 33 34 /* Where to look for the devices? */ 35 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 36 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 37 #endif 38 39 static unsigned long doc_locations[] __initdata = { 40 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) 41 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 42 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 43 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 44 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 45 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 46 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, 47 #else 48 0xc8000, 0xca000, 0xcc000, 0xce000, 49 0xd0000, 0xd2000, 0xd4000, 0xd6000, 50 0xd8000, 0xda000, 0xdc000, 0xde000, 51 0xe0000, 0xe2000, 0xe4000, 0xe6000, 52 0xe8000, 0xea000, 0xec000, 0xee000, 53 #endif 54 #endif 55 0xffffffff }; 56 57 static struct mtd_info *doclist = NULL; 58 59 struct doc_priv { 60 void __iomem *virtadr; 61 unsigned long physadr; 62 u_char ChipID; 63 u_char CDSNControl; 64 int chips_per_floor; /* The number of chips detected on each floor */ 65 int curfloor; 66 int curchip; 67 int mh0_page; 68 int mh1_page; 69 struct rs_control *rs_decoder; 70 struct mtd_info *nextdoc; 71 72 /* Handle the last stage of initialization (BBT scan, partitioning) */ 73 int (*late_init)(struct mtd_info *mtd); 74 }; 75 76 /* This is the ecc value computed by the HW ecc generator upon writing an empty 77 page, one with all 0xff for data. */ 78 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; 79 80 #define INFTL_BBT_RESERVED_BLOCKS 4 81 82 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) 83 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) 84 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) 85 86 static void doc200x_hwcontrol(struct nand_chip *this, int cmd, 87 unsigned int bitmask); 88 static void doc200x_select_chip(struct nand_chip *this, int chip); 89 90 static int debug = 0; 91 module_param(debug, int, 0); 92 93 static int try_dword = 1; 94 module_param(try_dword, int, 0); 95 96 static int no_ecc_failures = 0; 97 module_param(no_ecc_failures, int, 0); 98 99 static int no_autopart = 0; 100 module_param(no_autopart, int, 0); 101 102 static int show_firmware_partition = 0; 103 module_param(show_firmware_partition, int, 0); 104 105 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE 106 static int inftl_bbt_write = 1; 107 #else 108 static int inftl_bbt_write = 0; 109 #endif 110 module_param(inftl_bbt_write, int, 0); 111 112 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; 113 module_param(doc_config_location, ulong, 0); 114 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); 115 116 /* Sector size for HW ECC */ 117 #define SECTOR_SIZE 512 118 /* The sector bytes are packed into NB_DATA 10 bit words */ 119 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) 120 /* Number of roots */ 121 #define NROOTS 4 122 /* First consective root */ 123 #define FCR 510 124 /* Number of symbols */ 125 #define NN 1023 126 127 /* 128 * The HW decoder in the DoC ASIC's provides us a error syndrome, 129 * which we must convert to a standard syndrome usable by the generic 130 * Reed-Solomon library code. 131 * 132 * Fabrice Bellard figured this out in the old docecc code. I added 133 * some comments, improved a minor bit and converted it to make use 134 * of the generic Reed-Solomon library. tglx 135 */ 136 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) 137 { 138 int i, j, nerr, errpos[8]; 139 uint8_t parity; 140 uint16_t ds[4], s[5], tmp, errval[8], syn[4]; 141 struct rs_codec *cd = rs->codec; 142 143 memset(syn, 0, sizeof(syn)); 144 /* Convert the ecc bytes into words */ 145 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); 146 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); 147 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); 148 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); 149 parity = ecc[1]; 150 151 /* Initialize the syndrome buffer */ 152 for (i = 0; i < NROOTS; i++) 153 s[i] = ds[0]; 154 /* 155 * Evaluate 156 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] 157 * where x = alpha^(FCR + i) 158 */ 159 for (j = 1; j < NROOTS; j++) { 160 if (ds[j] == 0) 161 continue; 162 tmp = cd->index_of[ds[j]]; 163 for (i = 0; i < NROOTS; i++) 164 s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)]; 165 } 166 167 /* Calc syn[i] = s[i] / alpha^(v + i) */ 168 for (i = 0; i < NROOTS; i++) { 169 if (s[i]) 170 syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i)); 171 } 172 /* Call the decoder library */ 173 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); 174 175 /* Incorrectable errors ? */ 176 if (nerr < 0) 177 return nerr; 178 179 /* 180 * Correct the errors. The bitpositions are a bit of magic, 181 * but they are given by the design of the de/encoder circuit 182 * in the DoC ASIC's. 183 */ 184 for (i = 0; i < nerr; i++) { 185 int index, bitpos, pos = 1015 - errpos[i]; 186 uint8_t val; 187 if (pos >= NB_DATA && pos < 1019) 188 continue; 189 if (pos < NB_DATA) { 190 /* extract bit position (MSB first) */ 191 pos = 10 * (NB_DATA - 1 - pos) - 6; 192 /* now correct the following 10 bits. At most two bytes 193 can be modified since pos is even */ 194 index = (pos >> 3) ^ 1; 195 bitpos = pos & 7; 196 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 197 val = (uint8_t) (errval[i] >> (2 + bitpos)); 198 parity ^= val; 199 if (index < SECTOR_SIZE) 200 data[index] ^= val; 201 } 202 index = ((pos >> 3) + 1) ^ 1; 203 bitpos = (bitpos + 10) & 7; 204 if (bitpos == 0) 205 bitpos = 8; 206 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 207 val = (uint8_t) (errval[i] << (8 - bitpos)); 208 parity ^= val; 209 if (index < SECTOR_SIZE) 210 data[index] ^= val; 211 } 212 } 213 } 214 /* If the parity is wrong, no rescue possible */ 215 return parity ? -EBADMSG : nerr; 216 } 217 218 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) 219 { 220 volatile char dummy; 221 int i; 222 223 for (i = 0; i < cycles; i++) { 224 if (DoC_is_Millennium(doc)) 225 dummy = ReadDOC(doc->virtadr, NOP); 226 else if (DoC_is_MillenniumPlus(doc)) 227 dummy = ReadDOC(doc->virtadr, Mplus_NOP); 228 else 229 dummy = ReadDOC(doc->virtadr, DOCStatus); 230 } 231 232 } 233 234 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) 235 236 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ 237 static int _DoC_WaitReady(struct doc_priv *doc) 238 { 239 void __iomem *docptr = doc->virtadr; 240 unsigned long timeo = jiffies + (HZ * 10); 241 242 if (debug) 243 printk("_DoC_WaitReady...\n"); 244 /* Out-of-line routine to wait for chip response */ 245 if (DoC_is_MillenniumPlus(doc)) { 246 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 247 if (time_after(jiffies, timeo)) { 248 printk("_DoC_WaitReady timed out.\n"); 249 return -EIO; 250 } 251 udelay(1); 252 cond_resched(); 253 } 254 } else { 255 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 256 if (time_after(jiffies, timeo)) { 257 printk("_DoC_WaitReady timed out.\n"); 258 return -EIO; 259 } 260 udelay(1); 261 cond_resched(); 262 } 263 } 264 265 return 0; 266 } 267 268 static inline int DoC_WaitReady(struct doc_priv *doc) 269 { 270 void __iomem *docptr = doc->virtadr; 271 int ret = 0; 272 273 if (DoC_is_MillenniumPlus(doc)) { 274 DoC_Delay(doc, 4); 275 276 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) 277 /* Call the out-of-line routine to wait */ 278 ret = _DoC_WaitReady(doc); 279 } else { 280 DoC_Delay(doc, 4); 281 282 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) 283 /* Call the out-of-line routine to wait */ 284 ret = _DoC_WaitReady(doc); 285 DoC_Delay(doc, 2); 286 } 287 288 if (debug) 289 printk("DoC_WaitReady OK\n"); 290 return ret; 291 } 292 293 static void doc2000_write_byte(struct nand_chip *this, u_char datum) 294 { 295 struct doc_priv *doc = nand_get_controller_data(this); 296 void __iomem *docptr = doc->virtadr; 297 298 if (debug) 299 printk("write_byte %02x\n", datum); 300 WriteDOC(datum, docptr, CDSNSlowIO); 301 WriteDOC(datum, docptr, 2k_CDSN_IO); 302 } 303 304 static u_char doc2000_read_byte(struct nand_chip *this) 305 { 306 struct doc_priv *doc = nand_get_controller_data(this); 307 void __iomem *docptr = doc->virtadr; 308 u_char ret; 309 310 ReadDOC(docptr, CDSNSlowIO); 311 DoC_Delay(doc, 2); 312 ret = ReadDOC(docptr, 2k_CDSN_IO); 313 if (debug) 314 printk("read_byte returns %02x\n", ret); 315 return ret; 316 } 317 318 static void doc2000_writebuf(struct nand_chip *this, const u_char *buf, 319 int len) 320 { 321 struct doc_priv *doc = nand_get_controller_data(this); 322 void __iomem *docptr = doc->virtadr; 323 int i; 324 if (debug) 325 printk("writebuf of %d bytes: ", len); 326 for (i = 0; i < len; i++) { 327 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); 328 if (debug && i < 16) 329 printk("%02x ", buf[i]); 330 } 331 if (debug) 332 printk("\n"); 333 } 334 335 static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len) 336 { 337 struct doc_priv *doc = nand_get_controller_data(this); 338 void __iomem *docptr = doc->virtadr; 339 int i; 340 341 if (debug) 342 printk("readbuf of %d bytes: ", len); 343 344 for (i = 0; i < len; i++) 345 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); 346 } 347 348 static void doc2000_readbuf_dword(struct nand_chip *this, u_char *buf, int len) 349 { 350 struct doc_priv *doc = nand_get_controller_data(this); 351 void __iomem *docptr = doc->virtadr; 352 int i; 353 354 if (debug) 355 printk("readbuf_dword of %d bytes: ", len); 356 357 if (unlikely((((unsigned long)buf) | len) & 3)) { 358 for (i = 0; i < len; i++) { 359 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); 360 } 361 } else { 362 for (i = 0; i < len; i += 4) { 363 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); 364 } 365 } 366 } 367 368 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) 369 { 370 struct nand_chip *this = mtd_to_nand(mtd); 371 struct doc_priv *doc = nand_get_controller_data(this); 372 uint16_t ret; 373 374 doc200x_select_chip(this, nr); 375 doc200x_hwcontrol(this, NAND_CMD_READID, 376 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 377 doc200x_hwcontrol(this, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 378 doc200x_hwcontrol(this, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 379 380 /* We can't use dev_ready here, but at least we wait for the 381 * command to complete 382 */ 383 udelay(50); 384 385 ret = this->legacy.read_byte(this) << 8; 386 ret |= this->legacy.read_byte(this); 387 388 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { 389 /* First chip probe. See if we get same results by 32-bit access */ 390 union { 391 uint32_t dword; 392 uint8_t byte[4]; 393 } ident; 394 void __iomem *docptr = doc->virtadr; 395 396 doc200x_hwcontrol(this, NAND_CMD_READID, 397 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 398 doc200x_hwcontrol(this, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 399 doc200x_hwcontrol(this, NAND_CMD_NONE, 400 NAND_NCE | NAND_CTRL_CHANGE); 401 402 udelay(50); 403 404 ident.dword = readl(docptr + DoC_2k_CDSN_IO); 405 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { 406 pr_info("DiskOnChip 2000 responds to DWORD access\n"); 407 this->legacy.read_buf = &doc2000_readbuf_dword; 408 } 409 } 410 411 return ret; 412 } 413 414 static void __init doc2000_count_chips(struct mtd_info *mtd) 415 { 416 struct nand_chip *this = mtd_to_nand(mtd); 417 struct doc_priv *doc = nand_get_controller_data(this); 418 uint16_t mfrid; 419 int i; 420 421 /* Max 4 chips per floor on DiskOnChip 2000 */ 422 doc->chips_per_floor = 4; 423 424 /* Find out what the first chip is */ 425 mfrid = doc200x_ident_chip(mtd, 0); 426 427 /* Find how many chips in each floor. */ 428 for (i = 1; i < 4; i++) { 429 if (doc200x_ident_chip(mtd, i) != mfrid) 430 break; 431 } 432 doc->chips_per_floor = i; 433 pr_debug("Detected %d chips per floor.\n", i); 434 } 435 436 static int doc200x_wait(struct nand_chip *this) 437 { 438 struct doc_priv *doc = nand_get_controller_data(this); 439 440 int status; 441 442 DoC_WaitReady(doc); 443 nand_status_op(this, NULL); 444 DoC_WaitReady(doc); 445 status = (int)this->legacy.read_byte(this); 446 447 return status; 448 } 449 450 static void doc2001_write_byte(struct nand_chip *this, u_char datum) 451 { 452 struct doc_priv *doc = nand_get_controller_data(this); 453 void __iomem *docptr = doc->virtadr; 454 455 WriteDOC(datum, docptr, CDSNSlowIO); 456 WriteDOC(datum, docptr, Mil_CDSN_IO); 457 WriteDOC(datum, docptr, WritePipeTerm); 458 } 459 460 static u_char doc2001_read_byte(struct nand_chip *this) 461 { 462 struct doc_priv *doc = nand_get_controller_data(this); 463 void __iomem *docptr = doc->virtadr; 464 465 //ReadDOC(docptr, CDSNSlowIO); 466 /* 11.4.5 -- delay twice to allow extended length cycle */ 467 DoC_Delay(doc, 2); 468 ReadDOC(docptr, ReadPipeInit); 469 //return ReadDOC(docptr, Mil_CDSN_IO); 470 return ReadDOC(docptr, LastDataRead); 471 } 472 473 static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len) 474 { 475 struct doc_priv *doc = nand_get_controller_data(this); 476 void __iomem *docptr = doc->virtadr; 477 int i; 478 479 for (i = 0; i < len; i++) 480 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 481 /* Terminate write pipeline */ 482 WriteDOC(0x00, docptr, WritePipeTerm); 483 } 484 485 static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len) 486 { 487 struct doc_priv *doc = nand_get_controller_data(this); 488 void __iomem *docptr = doc->virtadr; 489 int i; 490 491 /* Start read pipeline */ 492 ReadDOC(docptr, ReadPipeInit); 493 494 for (i = 0; i < len - 1; i++) 495 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); 496 497 /* Terminate read pipeline */ 498 buf[i] = ReadDOC(docptr, LastDataRead); 499 } 500 501 static u_char doc2001plus_read_byte(struct nand_chip *this) 502 { 503 struct doc_priv *doc = nand_get_controller_data(this); 504 void __iomem *docptr = doc->virtadr; 505 u_char ret; 506 507 ReadDOC(docptr, Mplus_ReadPipeInit); 508 ReadDOC(docptr, Mplus_ReadPipeInit); 509 ret = ReadDOC(docptr, Mplus_LastDataRead); 510 if (debug) 511 printk("read_byte returns %02x\n", ret); 512 return ret; 513 } 514 515 static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len) 516 { 517 struct doc_priv *doc = nand_get_controller_data(this); 518 void __iomem *docptr = doc->virtadr; 519 int i; 520 521 if (debug) 522 printk("writebuf of %d bytes: ", len); 523 for (i = 0; i < len; i++) { 524 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 525 if (debug && i < 16) 526 printk("%02x ", buf[i]); 527 } 528 if (debug) 529 printk("\n"); 530 } 531 532 static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len) 533 { 534 struct doc_priv *doc = nand_get_controller_data(this); 535 void __iomem *docptr = doc->virtadr; 536 int i; 537 538 if (debug) 539 printk("readbuf of %d bytes: ", len); 540 541 /* Start read pipeline */ 542 ReadDOC(docptr, Mplus_ReadPipeInit); 543 ReadDOC(docptr, Mplus_ReadPipeInit); 544 545 for (i = 0; i < len - 2; i++) { 546 buf[i] = ReadDOC(docptr, Mil_CDSN_IO); 547 if (debug && i < 16) 548 printk("%02x ", buf[i]); 549 } 550 551 /* Terminate read pipeline */ 552 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); 553 if (debug && i < 16) 554 printk("%02x ", buf[len - 2]); 555 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); 556 if (debug && i < 16) 557 printk("%02x ", buf[len - 1]); 558 if (debug) 559 printk("\n"); 560 } 561 562 static void doc2001plus_select_chip(struct nand_chip *this, int chip) 563 { 564 struct doc_priv *doc = nand_get_controller_data(this); 565 void __iomem *docptr = doc->virtadr; 566 int floor = 0; 567 568 if (debug) 569 printk("select chip (%d)\n", chip); 570 571 if (chip == -1) { 572 /* Disable flash internally */ 573 WriteDOC(0, docptr, Mplus_FlashSelect); 574 return; 575 } 576 577 floor = chip / doc->chips_per_floor; 578 chip -= (floor * doc->chips_per_floor); 579 580 /* Assert ChipEnable and deassert WriteProtect */ 581 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); 582 nand_reset_op(this); 583 584 doc->curchip = chip; 585 doc->curfloor = floor; 586 } 587 588 static void doc200x_select_chip(struct nand_chip *this, int chip) 589 { 590 struct doc_priv *doc = nand_get_controller_data(this); 591 void __iomem *docptr = doc->virtadr; 592 int floor = 0; 593 594 if (debug) 595 printk("select chip (%d)\n", chip); 596 597 if (chip == -1) 598 return; 599 600 floor = chip / doc->chips_per_floor; 601 chip -= (floor * doc->chips_per_floor); 602 603 /* 11.4.4 -- deassert CE before changing chip */ 604 doc200x_hwcontrol(this, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 605 606 WriteDOC(floor, docptr, FloorSelect); 607 WriteDOC(chip, docptr, CDSNDeviceSelect); 608 609 doc200x_hwcontrol(this, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 610 611 doc->curchip = chip; 612 doc->curfloor = floor; 613 } 614 615 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) 616 617 static void doc200x_hwcontrol(struct nand_chip *this, int cmd, 618 unsigned int ctrl) 619 { 620 struct doc_priv *doc = nand_get_controller_data(this); 621 void __iomem *docptr = doc->virtadr; 622 623 if (ctrl & NAND_CTRL_CHANGE) { 624 doc->CDSNControl &= ~CDSN_CTRL_MSK; 625 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; 626 if (debug) 627 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); 628 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 629 /* 11.4.3 -- 4 NOPs after CSDNControl write */ 630 DoC_Delay(doc, 4); 631 } 632 if (cmd != NAND_CMD_NONE) { 633 if (DoC_is_2000(doc)) 634 doc2000_write_byte(this, cmd); 635 else 636 doc2001_write_byte(this, cmd); 637 } 638 } 639 640 static void doc2001plus_command(struct nand_chip *this, unsigned command, 641 int column, int page_addr) 642 { 643 struct mtd_info *mtd = nand_to_mtd(this); 644 struct doc_priv *doc = nand_get_controller_data(this); 645 void __iomem *docptr = doc->virtadr; 646 647 /* 648 * Must terminate write pipeline before sending any commands 649 * to the device. 650 */ 651 if (command == NAND_CMD_PAGEPROG) { 652 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 653 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 654 } 655 656 /* 657 * Write out the command to the device. 658 */ 659 if (command == NAND_CMD_SEQIN) { 660 int readcmd; 661 662 if (column >= mtd->writesize) { 663 /* OOB area */ 664 column -= mtd->writesize; 665 readcmd = NAND_CMD_READOOB; 666 } else if (column < 256) { 667 /* First 256 bytes --> READ0 */ 668 readcmd = NAND_CMD_READ0; 669 } else { 670 column -= 256; 671 readcmd = NAND_CMD_READ1; 672 } 673 WriteDOC(readcmd, docptr, Mplus_FlashCmd); 674 } 675 WriteDOC(command, docptr, Mplus_FlashCmd); 676 WriteDOC(0, docptr, Mplus_WritePipeTerm); 677 WriteDOC(0, docptr, Mplus_WritePipeTerm); 678 679 if (column != -1 || page_addr != -1) { 680 /* Serially input address */ 681 if (column != -1) { 682 /* Adjust columns for 16 bit buswidth */ 683 if (this->options & NAND_BUSWIDTH_16 && 684 !nand_opcode_8bits(command)) 685 column >>= 1; 686 WriteDOC(column, docptr, Mplus_FlashAddress); 687 } 688 if (page_addr != -1) { 689 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); 690 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); 691 if (this->options & NAND_ROW_ADDR_3) { 692 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); 693 printk("high density\n"); 694 } 695 } 696 WriteDOC(0, docptr, Mplus_WritePipeTerm); 697 WriteDOC(0, docptr, Mplus_WritePipeTerm); 698 /* deassert ALE */ 699 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || 700 command == NAND_CMD_READOOB || command == NAND_CMD_READID) 701 WriteDOC(0, docptr, Mplus_FlashControl); 702 } 703 704 /* 705 * program and erase have their own busy handlers 706 * status and sequential in needs no delay 707 */ 708 switch (command) { 709 710 case NAND_CMD_PAGEPROG: 711 case NAND_CMD_ERASE1: 712 case NAND_CMD_ERASE2: 713 case NAND_CMD_SEQIN: 714 case NAND_CMD_STATUS: 715 return; 716 717 case NAND_CMD_RESET: 718 if (this->legacy.dev_ready) 719 break; 720 udelay(this->legacy.chip_delay); 721 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); 722 WriteDOC(0, docptr, Mplus_WritePipeTerm); 723 WriteDOC(0, docptr, Mplus_WritePipeTerm); 724 while (!(this->legacy.read_byte(this) & 0x40)) ; 725 return; 726 727 /* This applies to read commands */ 728 default: 729 /* 730 * If we don't have access to the busy pin, we apply the given 731 * command delay 732 */ 733 if (!this->legacy.dev_ready) { 734 udelay(this->legacy.chip_delay); 735 return; 736 } 737 } 738 739 /* Apply this short delay always to ensure that we do wait tWB in 740 * any case on any machine. */ 741 ndelay(100); 742 /* wait until command is processed */ 743 while (!this->legacy.dev_ready(this)) ; 744 } 745 746 static int doc200x_dev_ready(struct nand_chip *this) 747 { 748 struct doc_priv *doc = nand_get_controller_data(this); 749 void __iomem *docptr = doc->virtadr; 750 751 if (DoC_is_MillenniumPlus(doc)) { 752 /* 11.4.2 -- must NOP four times before checking FR/B# */ 753 DoC_Delay(doc, 4); 754 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 755 if (debug) 756 printk("not ready\n"); 757 return 0; 758 } 759 if (debug) 760 printk("was ready\n"); 761 return 1; 762 } else { 763 /* 11.4.2 -- must NOP four times before checking FR/B# */ 764 DoC_Delay(doc, 4); 765 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 766 if (debug) 767 printk("not ready\n"); 768 return 0; 769 } 770 /* 11.4.2 -- Must NOP twice if it's ready */ 771 DoC_Delay(doc, 2); 772 if (debug) 773 printk("was ready\n"); 774 return 1; 775 } 776 } 777 778 static int doc200x_block_bad(struct nand_chip *this, loff_t ofs) 779 { 780 /* This is our last resort if we couldn't find or create a BBT. Just 781 pretend all blocks are good. */ 782 return 0; 783 } 784 785 static void doc200x_enable_hwecc(struct nand_chip *this, int mode) 786 { 787 struct doc_priv *doc = nand_get_controller_data(this); 788 void __iomem *docptr = doc->virtadr; 789 790 /* Prime the ECC engine */ 791 switch (mode) { 792 case NAND_ECC_READ: 793 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 794 WriteDOC(DOC_ECC_EN, docptr, ECCConf); 795 break; 796 case NAND_ECC_WRITE: 797 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 798 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); 799 break; 800 } 801 } 802 803 static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode) 804 { 805 struct doc_priv *doc = nand_get_controller_data(this); 806 void __iomem *docptr = doc->virtadr; 807 808 /* Prime the ECC engine */ 809 switch (mode) { 810 case NAND_ECC_READ: 811 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 812 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); 813 break; 814 case NAND_ECC_WRITE: 815 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 816 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); 817 break; 818 } 819 } 820 821 /* This code is only called on write */ 822 static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat, 823 unsigned char *ecc_code) 824 { 825 struct doc_priv *doc = nand_get_controller_data(this); 826 void __iomem *docptr = doc->virtadr; 827 int i; 828 int emptymatch = 1; 829 830 /* flush the pipeline */ 831 if (DoC_is_2000(doc)) { 832 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); 833 WriteDOC(0, docptr, 2k_CDSN_IO); 834 WriteDOC(0, docptr, 2k_CDSN_IO); 835 WriteDOC(0, docptr, 2k_CDSN_IO); 836 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 837 } else if (DoC_is_MillenniumPlus(doc)) { 838 WriteDOC(0, docptr, Mplus_NOP); 839 WriteDOC(0, docptr, Mplus_NOP); 840 WriteDOC(0, docptr, Mplus_NOP); 841 } else { 842 WriteDOC(0, docptr, NOP); 843 WriteDOC(0, docptr, NOP); 844 WriteDOC(0, docptr, NOP); 845 } 846 847 for (i = 0; i < 6; i++) { 848 if (DoC_is_MillenniumPlus(doc)) 849 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 850 else 851 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 852 if (ecc_code[i] != empty_write_ecc[i]) 853 emptymatch = 0; 854 } 855 if (DoC_is_MillenniumPlus(doc)) 856 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 857 else 858 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 859 #if 0 860 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ 861 if (emptymatch) { 862 /* Note: this somewhat expensive test should not be triggered 863 often. It could be optimized away by examining the data in 864 the writebuf routine, and remembering the result. */ 865 for (i = 0; i < 512; i++) { 866 if (dat[i] == 0xff) 867 continue; 868 emptymatch = 0; 869 break; 870 } 871 } 872 /* If emptymatch still =1, we do have an all-0xff data buffer. 873 Return all-0xff ecc value instead of the computed one, so 874 it'll look just like a freshly-erased page. */ 875 if (emptymatch) 876 memset(ecc_code, 0xff, 6); 877 #endif 878 return 0; 879 } 880 881 static int doc200x_correct_data(struct nand_chip *this, u_char *dat, 882 u_char *read_ecc, u_char *isnull) 883 { 884 int i, ret = 0; 885 struct doc_priv *doc = nand_get_controller_data(this); 886 void __iomem *docptr = doc->virtadr; 887 uint8_t calc_ecc[6]; 888 volatile u_char dummy; 889 890 /* flush the pipeline */ 891 if (DoC_is_2000(doc)) { 892 dummy = ReadDOC(docptr, 2k_ECCStatus); 893 dummy = ReadDOC(docptr, 2k_ECCStatus); 894 dummy = ReadDOC(docptr, 2k_ECCStatus); 895 } else if (DoC_is_MillenniumPlus(doc)) { 896 dummy = ReadDOC(docptr, Mplus_ECCConf); 897 dummy = ReadDOC(docptr, Mplus_ECCConf); 898 dummy = ReadDOC(docptr, Mplus_ECCConf); 899 } else { 900 dummy = ReadDOC(docptr, ECCConf); 901 dummy = ReadDOC(docptr, ECCConf); 902 dummy = ReadDOC(docptr, ECCConf); 903 } 904 905 /* Error occurred ? */ 906 if (dummy & 0x80) { 907 for (i = 0; i < 6; i++) { 908 if (DoC_is_MillenniumPlus(doc)) 909 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 910 else 911 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 912 } 913 914 ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc); 915 if (ret > 0) 916 pr_err("doc200x_correct_data corrected %d errors\n", 917 ret); 918 } 919 if (DoC_is_MillenniumPlus(doc)) 920 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 921 else 922 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 923 if (no_ecc_failures && mtd_is_eccerr(ret)) { 924 pr_err("suppressing ECC failure\n"); 925 ret = 0; 926 } 927 return ret; 928 } 929 930 //u_char mydatabuf[528]; 931 932 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, 933 struct mtd_oob_region *oobregion) 934 { 935 if (section) 936 return -ERANGE; 937 938 oobregion->offset = 0; 939 oobregion->length = 6; 940 941 return 0; 942 } 943 944 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, 945 struct mtd_oob_region *oobregion) 946 { 947 if (section > 1) 948 return -ERANGE; 949 950 /* 951 * The strange out-of-order free bytes definition is a (possibly 952 * unneeded) attempt to retain compatibility. It used to read: 953 * .oobfree = { {8, 8} } 954 * Since that leaves two bytes unusable, it was changed. But the 955 * following scheme might affect existing jffs2 installs by moving the 956 * cleanmarker: 957 * .oobfree = { {6, 10} } 958 * jffs2 seems to handle the above gracefully, but the current scheme 959 * seems safer. The only problem with it is that any code retrieving 960 * free bytes position must be able to handle out-of-order segments. 961 */ 962 if (!section) { 963 oobregion->offset = 8; 964 oobregion->length = 8; 965 } else { 966 oobregion->offset = 6; 967 oobregion->length = 2; 968 } 969 970 return 0; 971 } 972 973 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { 974 .ecc = doc200x_ooblayout_ecc, 975 .free = doc200x_ooblayout_free, 976 }; 977 978 /* Find the (I)NFTL Media Header, and optionally also the mirror media header. 979 On successful return, buf will contain a copy of the media header for 980 further processing. id is the string to scan for, and will presumably be 981 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media 982 header. The page #s of the found media headers are placed in mh0_page and 983 mh1_page in the DOC private structure. */ 984 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) 985 { 986 struct nand_chip *this = mtd_to_nand(mtd); 987 struct doc_priv *doc = nand_get_controller_data(this); 988 unsigned offs; 989 int ret; 990 size_t retlen; 991 992 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { 993 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 994 if (retlen != mtd->writesize) 995 continue; 996 if (ret) { 997 pr_warn("ECC error scanning DOC at 0x%x\n", offs); 998 } 999 if (memcmp(buf, id, 6)) 1000 continue; 1001 pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs); 1002 if (doc->mh0_page == -1) { 1003 doc->mh0_page = offs >> this->page_shift; 1004 if (!findmirror) 1005 return 1; 1006 continue; 1007 } 1008 doc->mh1_page = offs >> this->page_shift; 1009 return 2; 1010 } 1011 if (doc->mh0_page == -1) { 1012 pr_warn("DiskOnChip %s Media Header not found.\n", id); 1013 return 0; 1014 } 1015 /* Only one mediaheader was found. We want buf to contain a 1016 mediaheader on return, so we'll have to re-read the one we found. */ 1017 offs = doc->mh0_page << this->page_shift; 1018 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 1019 if (retlen != mtd->writesize) { 1020 /* Insanity. Give up. */ 1021 pr_err("Read DiskOnChip Media Header once, but can't reread it???\n"); 1022 return 0; 1023 } 1024 return 1; 1025 } 1026 1027 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1028 { 1029 struct nand_chip *this = mtd_to_nand(mtd); 1030 struct doc_priv *doc = nand_get_controller_data(this); 1031 int ret = 0; 1032 u_char *buf; 1033 struct NFTLMediaHeader *mh; 1034 const unsigned psize = 1 << this->page_shift; 1035 int numparts = 0; 1036 unsigned blocks, maxblocks; 1037 int offs, numheaders; 1038 1039 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1040 if (!buf) { 1041 return 0; 1042 } 1043 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) 1044 goto out; 1045 mh = (struct NFTLMediaHeader *)buf; 1046 1047 le16_to_cpus(&mh->NumEraseUnits); 1048 le16_to_cpus(&mh->FirstPhysicalEUN); 1049 le32_to_cpus(&mh->FormattedSize); 1050 1051 pr_info(" DataOrgID = %s\n" 1052 " NumEraseUnits = %d\n" 1053 " FirstPhysicalEUN = %d\n" 1054 " FormattedSize = %d\n" 1055 " UnitSizeFactor = %d\n", 1056 mh->DataOrgID, mh->NumEraseUnits, 1057 mh->FirstPhysicalEUN, mh->FormattedSize, 1058 mh->UnitSizeFactor); 1059 1060 blocks = mtd->size >> this->phys_erase_shift; 1061 maxblocks = min(32768U, mtd->erasesize - psize); 1062 1063 if (mh->UnitSizeFactor == 0x00) { 1064 /* Auto-determine UnitSizeFactor. The constraints are: 1065 - There can be at most 32768 virtual blocks. 1066 - There can be at most (virtual block size - page size) 1067 virtual blocks (because MediaHeader+BBT must fit in 1). 1068 */ 1069 mh->UnitSizeFactor = 0xff; 1070 while (blocks > maxblocks) { 1071 blocks >>= 1; 1072 maxblocks = min(32768U, (maxblocks << 1) + psize); 1073 mh->UnitSizeFactor--; 1074 } 1075 pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); 1076 } 1077 1078 /* NOTE: The lines below modify internal variables of the NAND and MTD 1079 layers; variables with have already been configured by nand_scan. 1080 Unfortunately, we didn't know before this point what these values 1081 should be. Thus, this code is somewhat dependent on the exact 1082 implementation of the NAND layer. */ 1083 if (mh->UnitSizeFactor != 0xff) { 1084 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); 1085 mtd->erasesize <<= (0xff - mh->UnitSizeFactor); 1086 pr_info("Setting virtual erase size to %d\n", mtd->erasesize); 1087 blocks = mtd->size >> this->bbt_erase_shift; 1088 maxblocks = min(32768U, mtd->erasesize - psize); 1089 } 1090 1091 if (blocks > maxblocks) { 1092 pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); 1093 goto out; 1094 } 1095 1096 /* Skip past the media headers. */ 1097 offs = max(doc->mh0_page, doc->mh1_page); 1098 offs <<= this->page_shift; 1099 offs += mtd->erasesize; 1100 1101 if (show_firmware_partition == 1) { 1102 parts[0].name = " DiskOnChip Firmware / Media Header partition"; 1103 parts[0].offset = 0; 1104 parts[0].size = offs; 1105 numparts = 1; 1106 } 1107 1108 parts[numparts].name = " DiskOnChip BDTL partition"; 1109 parts[numparts].offset = offs; 1110 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; 1111 1112 offs += parts[numparts].size; 1113 numparts++; 1114 1115 if (offs < mtd->size) { 1116 parts[numparts].name = " DiskOnChip Remainder partition"; 1117 parts[numparts].offset = offs; 1118 parts[numparts].size = mtd->size - offs; 1119 numparts++; 1120 } 1121 1122 ret = numparts; 1123 out: 1124 kfree(buf); 1125 return ret; 1126 } 1127 1128 /* This is a stripped-down copy of the code in inftlmount.c */ 1129 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1130 { 1131 struct nand_chip *this = mtd_to_nand(mtd); 1132 struct doc_priv *doc = nand_get_controller_data(this); 1133 int ret = 0; 1134 u_char *buf; 1135 struct INFTLMediaHeader *mh; 1136 struct INFTLPartition *ip; 1137 int numparts = 0; 1138 int blocks; 1139 int vshift, lastvunit = 0; 1140 int i; 1141 int end = mtd->size; 1142 1143 if (inftl_bbt_write) 1144 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); 1145 1146 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1147 if (!buf) { 1148 return 0; 1149 } 1150 1151 if (!find_media_headers(mtd, buf, "BNAND", 0)) 1152 goto out; 1153 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); 1154 mh = (struct INFTLMediaHeader *)buf; 1155 1156 le32_to_cpus(&mh->NoOfBootImageBlocks); 1157 le32_to_cpus(&mh->NoOfBinaryPartitions); 1158 le32_to_cpus(&mh->NoOfBDTLPartitions); 1159 le32_to_cpus(&mh->BlockMultiplierBits); 1160 le32_to_cpus(&mh->FormatFlags); 1161 le32_to_cpus(&mh->PercentUsed); 1162 1163 pr_info(" bootRecordID = %s\n" 1164 " NoOfBootImageBlocks = %d\n" 1165 " NoOfBinaryPartitions = %d\n" 1166 " NoOfBDTLPartitions = %d\n" 1167 " BlockMultiplerBits = %d\n" 1168 " FormatFlgs = %d\n" 1169 " OsakVersion = %d.%d.%d.%d\n" 1170 " PercentUsed = %d\n", 1171 mh->bootRecordID, mh->NoOfBootImageBlocks, 1172 mh->NoOfBinaryPartitions, 1173 mh->NoOfBDTLPartitions, 1174 mh->BlockMultiplierBits, mh->FormatFlags, 1175 ((unsigned char *) &mh->OsakVersion)[0] & 0xf, 1176 ((unsigned char *) &mh->OsakVersion)[1] & 0xf, 1177 ((unsigned char *) &mh->OsakVersion)[2] & 0xf, 1178 ((unsigned char *) &mh->OsakVersion)[3] & 0xf, 1179 mh->PercentUsed); 1180 1181 vshift = this->phys_erase_shift + mh->BlockMultiplierBits; 1182 1183 blocks = mtd->size >> vshift; 1184 if (blocks > 32768) { 1185 pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); 1186 goto out; 1187 } 1188 1189 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); 1190 if (inftl_bbt_write && (blocks > mtd->erasesize)) { 1191 pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); 1192 goto out; 1193 } 1194 1195 /* Scan the partitions */ 1196 for (i = 0; (i < 4); i++) { 1197 ip = &(mh->Partitions[i]); 1198 le32_to_cpus(&ip->virtualUnits); 1199 le32_to_cpus(&ip->firstUnit); 1200 le32_to_cpus(&ip->lastUnit); 1201 le32_to_cpus(&ip->flags); 1202 le32_to_cpus(&ip->spareUnits); 1203 le32_to_cpus(&ip->Reserved0); 1204 1205 pr_info(" PARTITION[%d] ->\n" 1206 " virtualUnits = %d\n" 1207 " firstUnit = %d\n" 1208 " lastUnit = %d\n" 1209 " flags = 0x%x\n" 1210 " spareUnits = %d\n", 1211 i, ip->virtualUnits, ip->firstUnit, 1212 ip->lastUnit, ip->flags, 1213 ip->spareUnits); 1214 1215 if ((show_firmware_partition == 1) && 1216 (i == 0) && (ip->firstUnit > 0)) { 1217 parts[0].name = " DiskOnChip IPL / Media Header partition"; 1218 parts[0].offset = 0; 1219 parts[0].size = mtd->erasesize * ip->firstUnit; 1220 numparts = 1; 1221 } 1222 1223 if (ip->flags & INFTL_BINARY) 1224 parts[numparts].name = " DiskOnChip BDK partition"; 1225 else 1226 parts[numparts].name = " DiskOnChip BDTL partition"; 1227 parts[numparts].offset = ip->firstUnit << vshift; 1228 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; 1229 numparts++; 1230 if (ip->lastUnit > lastvunit) 1231 lastvunit = ip->lastUnit; 1232 if (ip->flags & INFTL_LAST) 1233 break; 1234 } 1235 lastvunit++; 1236 if ((lastvunit << vshift) < end) { 1237 parts[numparts].name = " DiskOnChip Remainder partition"; 1238 parts[numparts].offset = lastvunit << vshift; 1239 parts[numparts].size = end - parts[numparts].offset; 1240 numparts++; 1241 } 1242 ret = numparts; 1243 out: 1244 kfree(buf); 1245 return ret; 1246 } 1247 1248 static int __init nftl_scan_bbt(struct mtd_info *mtd) 1249 { 1250 int ret, numparts; 1251 struct nand_chip *this = mtd_to_nand(mtd); 1252 struct doc_priv *doc = nand_get_controller_data(this); 1253 struct mtd_partition parts[2]; 1254 1255 memset((char *)parts, 0, sizeof(parts)); 1256 /* On NFTL, we have to find the media headers before we can read the 1257 BBTs, since they're stored in the media header eraseblocks. */ 1258 numparts = nftl_partscan(mtd, parts); 1259 if (!numparts) 1260 return -EIO; 1261 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1262 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1263 NAND_BBT_VERSION; 1264 this->bbt_td->veroffs = 7; 1265 this->bbt_td->pages[0] = doc->mh0_page + 1; 1266 if (doc->mh1_page != -1) { 1267 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1268 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1269 NAND_BBT_VERSION; 1270 this->bbt_md->veroffs = 7; 1271 this->bbt_md->pages[0] = doc->mh1_page + 1; 1272 } else { 1273 this->bbt_md = NULL; 1274 } 1275 1276 ret = nand_create_bbt(this); 1277 if (ret) 1278 return ret; 1279 1280 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); 1281 } 1282 1283 static int __init inftl_scan_bbt(struct mtd_info *mtd) 1284 { 1285 int ret, numparts; 1286 struct nand_chip *this = mtd_to_nand(mtd); 1287 struct doc_priv *doc = nand_get_controller_data(this); 1288 struct mtd_partition parts[5]; 1289 1290 if (this->numchips > doc->chips_per_floor) { 1291 pr_err("Multi-floor INFTL devices not yet supported.\n"); 1292 return -EIO; 1293 } 1294 1295 if (DoC_is_MillenniumPlus(doc)) { 1296 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; 1297 if (inftl_bbt_write) 1298 this->bbt_td->options |= NAND_BBT_WRITE; 1299 this->bbt_td->pages[0] = 2; 1300 this->bbt_md = NULL; 1301 } else { 1302 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1303 if (inftl_bbt_write) 1304 this->bbt_td->options |= NAND_BBT_WRITE; 1305 this->bbt_td->offs = 8; 1306 this->bbt_td->len = 8; 1307 this->bbt_td->veroffs = 7; 1308 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1309 this->bbt_td->reserved_block_code = 0x01; 1310 this->bbt_td->pattern = "MSYS_BBT"; 1311 1312 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1313 if (inftl_bbt_write) 1314 this->bbt_md->options |= NAND_BBT_WRITE; 1315 this->bbt_md->offs = 8; 1316 this->bbt_md->len = 8; 1317 this->bbt_md->veroffs = 7; 1318 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1319 this->bbt_md->reserved_block_code = 0x01; 1320 this->bbt_md->pattern = "TBB_SYSM"; 1321 } 1322 1323 ret = nand_create_bbt(this); 1324 if (ret) 1325 return ret; 1326 1327 memset((char *)parts, 0, sizeof(parts)); 1328 numparts = inftl_partscan(mtd, parts); 1329 /* At least for now, require the INFTL Media Header. We could probably 1330 do without it for non-INFTL use, since all it gives us is 1331 autopartitioning, but I want to give it more thought. */ 1332 if (!numparts) 1333 return -EIO; 1334 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); 1335 } 1336 1337 static inline int __init doc2000_init(struct mtd_info *mtd) 1338 { 1339 struct nand_chip *this = mtd_to_nand(mtd); 1340 struct doc_priv *doc = nand_get_controller_data(this); 1341 1342 this->legacy.read_byte = doc2000_read_byte; 1343 this->legacy.write_buf = doc2000_writebuf; 1344 this->legacy.read_buf = doc2000_readbuf; 1345 doc->late_init = nftl_scan_bbt; 1346 1347 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; 1348 doc2000_count_chips(mtd); 1349 mtd->name = "DiskOnChip 2000 (NFTL Model)"; 1350 return (4 * doc->chips_per_floor); 1351 } 1352 1353 static inline int __init doc2001_init(struct mtd_info *mtd) 1354 { 1355 struct nand_chip *this = mtd_to_nand(mtd); 1356 struct doc_priv *doc = nand_get_controller_data(this); 1357 1358 this->legacy.read_byte = doc2001_read_byte; 1359 this->legacy.write_buf = doc2001_writebuf; 1360 this->legacy.read_buf = doc2001_readbuf; 1361 1362 ReadDOC(doc->virtadr, ChipID); 1363 ReadDOC(doc->virtadr, ChipID); 1364 ReadDOC(doc->virtadr, ChipID); 1365 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { 1366 /* It's not a Millennium; it's one of the newer 1367 DiskOnChip 2000 units with a similar ASIC. 1368 Treat it like a Millennium, except that it 1369 can have multiple chips. */ 1370 doc2000_count_chips(mtd); 1371 mtd->name = "DiskOnChip 2000 (INFTL Model)"; 1372 doc->late_init = inftl_scan_bbt; 1373 return (4 * doc->chips_per_floor); 1374 } else { 1375 /* Bog-standard Millennium */ 1376 doc->chips_per_floor = 1; 1377 mtd->name = "DiskOnChip Millennium"; 1378 doc->late_init = nftl_scan_bbt; 1379 return 1; 1380 } 1381 } 1382 1383 static inline int __init doc2001plus_init(struct mtd_info *mtd) 1384 { 1385 struct nand_chip *this = mtd_to_nand(mtd); 1386 struct doc_priv *doc = nand_get_controller_data(this); 1387 1388 this->legacy.read_byte = doc2001plus_read_byte; 1389 this->legacy.write_buf = doc2001plus_writebuf; 1390 this->legacy.read_buf = doc2001plus_readbuf; 1391 doc->late_init = inftl_scan_bbt; 1392 this->legacy.cmd_ctrl = NULL; 1393 this->legacy.select_chip = doc2001plus_select_chip; 1394 this->legacy.cmdfunc = doc2001plus_command; 1395 this->ecc.hwctl = doc2001plus_enable_hwecc; 1396 1397 doc->chips_per_floor = 1; 1398 mtd->name = "DiskOnChip Millennium Plus"; 1399 1400 return 1; 1401 } 1402 1403 static int __init doc_probe(unsigned long physadr) 1404 { 1405 struct nand_chip *nand = NULL; 1406 struct doc_priv *doc = NULL; 1407 unsigned char ChipID; 1408 struct mtd_info *mtd; 1409 void __iomem *virtadr; 1410 unsigned char save_control; 1411 unsigned char tmp, tmpb, tmpc; 1412 int reg, len, numchips; 1413 int ret = 0; 1414 1415 if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) 1416 return -EBUSY; 1417 virtadr = ioremap(physadr, DOC_IOREMAP_LEN); 1418 if (!virtadr) { 1419 pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", 1420 DOC_IOREMAP_LEN, physadr); 1421 ret = -EIO; 1422 goto error_ioremap; 1423 } 1424 1425 /* It's not possible to cleanly detect the DiskOnChip - the 1426 * bootup procedure will put the device into reset mode, and 1427 * it's not possible to talk to it without actually writing 1428 * to the DOCControl register. So we store the current contents 1429 * of the DOCControl register's location, in case we later decide 1430 * that it's not a DiskOnChip, and want to put it back how we 1431 * found it. 1432 */ 1433 save_control = ReadDOC(virtadr, DOCControl); 1434 1435 /* Reset the DiskOnChip ASIC */ 1436 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1437 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1438 1439 /* Enable the DiskOnChip ASIC */ 1440 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1441 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1442 1443 ChipID = ReadDOC(virtadr, ChipID); 1444 1445 switch (ChipID) { 1446 case DOC_ChipID_Doc2k: 1447 reg = DoC_2k_ECCStatus; 1448 break; 1449 case DOC_ChipID_DocMil: 1450 reg = DoC_ECCConf; 1451 break; 1452 case DOC_ChipID_DocMilPlus16: 1453 case DOC_ChipID_DocMilPlus32: 1454 case 0: 1455 /* Possible Millennium Plus, need to do more checks */ 1456 /* Possibly release from power down mode */ 1457 for (tmp = 0; (tmp < 4); tmp++) 1458 ReadDOC(virtadr, Mplus_Power); 1459 1460 /* Reset the Millennium Plus ASIC */ 1461 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1462 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1463 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1464 1465 usleep_range(1000, 2000); 1466 /* Enable the Millennium Plus ASIC */ 1467 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1468 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1469 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1470 usleep_range(1000, 2000); 1471 1472 ChipID = ReadDOC(virtadr, ChipID); 1473 1474 switch (ChipID) { 1475 case DOC_ChipID_DocMilPlus16: 1476 reg = DoC_Mplus_Toggle; 1477 break; 1478 case DOC_ChipID_DocMilPlus32: 1479 pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); 1480 default: 1481 ret = -ENODEV; 1482 goto notfound; 1483 } 1484 break; 1485 1486 default: 1487 ret = -ENODEV; 1488 goto notfound; 1489 } 1490 /* Check the TOGGLE bit in the ECC register */ 1491 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1492 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1493 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1494 if ((tmp == tmpb) || (tmp != tmpc)) { 1495 pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); 1496 ret = -ENODEV; 1497 goto notfound; 1498 } 1499 1500 for (mtd = doclist; mtd; mtd = doc->nextdoc) { 1501 unsigned char oldval; 1502 unsigned char newval; 1503 nand = mtd_to_nand(mtd); 1504 doc = nand_get_controller_data(nand); 1505 /* Use the alias resolution register to determine if this is 1506 in fact the same DOC aliased to a new address. If writes 1507 to one chip's alias resolution register change the value on 1508 the other chip, they're the same chip. */ 1509 if (ChipID == DOC_ChipID_DocMilPlus16) { 1510 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1511 newval = ReadDOC(virtadr, Mplus_AliasResolution); 1512 } else { 1513 oldval = ReadDOC(doc->virtadr, AliasResolution); 1514 newval = ReadDOC(virtadr, AliasResolution); 1515 } 1516 if (oldval != newval) 1517 continue; 1518 if (ChipID == DOC_ChipID_DocMilPlus16) { 1519 WriteDOC(~newval, virtadr, Mplus_AliasResolution); 1520 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1521 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it 1522 } else { 1523 WriteDOC(~newval, virtadr, AliasResolution); 1524 oldval = ReadDOC(doc->virtadr, AliasResolution); 1525 WriteDOC(newval, virtadr, AliasResolution); // restore it 1526 } 1527 newval = ~newval; 1528 if (oldval == newval) { 1529 pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n", 1530 doc->physadr, physadr); 1531 goto notfound; 1532 } 1533 } 1534 1535 pr_notice("DiskOnChip found at 0x%lx\n", physadr); 1536 1537 len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + 1538 (2 * sizeof(struct nand_bbt_descr)); 1539 nand = kzalloc(len, GFP_KERNEL); 1540 if (!nand) { 1541 ret = -ENOMEM; 1542 goto fail; 1543 } 1544 1545 1546 /* 1547 * Allocate a RS codec instance 1548 * 1549 * Symbolsize is 10 (bits) 1550 * Primitve polynomial is x^10+x^3+1 1551 * First consecutive root is 510 1552 * Primitve element to generate roots = 1 1553 * Generator polinomial degree = 4 1554 */ 1555 doc = (struct doc_priv *) (nand + 1); 1556 doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); 1557 if (!doc->rs_decoder) { 1558 pr_err("DiskOnChip: Could not create a RS codec\n"); 1559 ret = -ENOMEM; 1560 goto fail; 1561 } 1562 1563 mtd = nand_to_mtd(nand); 1564 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); 1565 nand->bbt_md = nand->bbt_td + 1; 1566 1567 mtd->owner = THIS_MODULE; 1568 mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); 1569 1570 nand_set_controller_data(nand, doc); 1571 nand->legacy.select_chip = doc200x_select_chip; 1572 nand->legacy.cmd_ctrl = doc200x_hwcontrol; 1573 nand->legacy.dev_ready = doc200x_dev_ready; 1574 nand->legacy.waitfunc = doc200x_wait; 1575 nand->legacy.block_bad = doc200x_block_bad; 1576 nand->ecc.hwctl = doc200x_enable_hwecc; 1577 nand->ecc.calculate = doc200x_calculate_ecc; 1578 nand->ecc.correct = doc200x_correct_data; 1579 1580 nand->ecc.mode = NAND_ECC_HW_SYNDROME; 1581 nand->ecc.size = 512; 1582 nand->ecc.bytes = 6; 1583 nand->ecc.strength = 2; 1584 nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 1585 nand->bbt_options = NAND_BBT_USE_FLASH; 1586 /* Skip the automatic BBT scan so we can run it manually */ 1587 nand->options |= NAND_SKIP_BBTSCAN; 1588 1589 doc->physadr = physadr; 1590 doc->virtadr = virtadr; 1591 doc->ChipID = ChipID; 1592 doc->curfloor = -1; 1593 doc->curchip = -1; 1594 doc->mh0_page = -1; 1595 doc->mh1_page = -1; 1596 doc->nextdoc = doclist; 1597 1598 if (ChipID == DOC_ChipID_Doc2k) 1599 numchips = doc2000_init(mtd); 1600 else if (ChipID == DOC_ChipID_DocMilPlus16) 1601 numchips = doc2001plus_init(mtd); 1602 else 1603 numchips = doc2001_init(mtd); 1604 1605 if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) { 1606 /* DBB note: i believe nand_release is necessary here, as 1607 buffers may have been allocated in nand_base. Check with 1608 Thomas. FIX ME! */ 1609 /* nand_release will call mtd_device_unregister, but we 1610 haven't yet added it. This is handled without incident by 1611 mtd_device_unregister, as far as I can tell. */ 1612 nand_release(nand); 1613 goto fail; 1614 } 1615 1616 /* Success! */ 1617 doclist = mtd; 1618 return 0; 1619 1620 notfound: 1621 /* Put back the contents of the DOCControl register, in case it's not 1622 actually a DiskOnChip. */ 1623 WriteDOC(save_control, virtadr, DOCControl); 1624 fail: 1625 if (doc) 1626 free_rs(doc->rs_decoder); 1627 kfree(nand); 1628 iounmap(virtadr); 1629 1630 error_ioremap: 1631 release_mem_region(physadr, DOC_IOREMAP_LEN); 1632 1633 return ret; 1634 } 1635 1636 static void release_nanddoc(void) 1637 { 1638 struct mtd_info *mtd, *nextmtd; 1639 struct nand_chip *nand; 1640 struct doc_priv *doc; 1641 1642 for (mtd = doclist; mtd; mtd = nextmtd) { 1643 nand = mtd_to_nand(mtd); 1644 doc = nand_get_controller_data(nand); 1645 1646 nextmtd = doc->nextdoc; 1647 nand_release(nand); 1648 iounmap(doc->virtadr); 1649 release_mem_region(doc->physadr, DOC_IOREMAP_LEN); 1650 free_rs(doc->rs_decoder); 1651 kfree(nand); 1652 } 1653 } 1654 1655 static int __init init_nanddoc(void) 1656 { 1657 int i, ret = 0; 1658 1659 if (doc_config_location) { 1660 pr_info("Using configured DiskOnChip probe address 0x%lx\n", 1661 doc_config_location); 1662 ret = doc_probe(doc_config_location); 1663 if (ret < 0) 1664 return ret; 1665 } else { 1666 for (i = 0; (doc_locations[i] != 0xffffffff); i++) { 1667 doc_probe(doc_locations[i]); 1668 } 1669 } 1670 /* No banner message any more. Print a message if no DiskOnChip 1671 found, so the user knows we at least tried. */ 1672 if (!doclist) { 1673 pr_info("No valid DiskOnChip devices found\n"); 1674 ret = -ENODEV; 1675 } 1676 return ret; 1677 } 1678 1679 static void __exit cleanup_nanddoc(void) 1680 { 1681 /* Cleanup the nand/DoC resources */ 1682 release_nanddoc(); 1683 } 1684 1685 module_init(init_nanddoc); 1686 module_exit(cleanup_nanddoc); 1687 1688 MODULE_LICENSE("GPL"); 1689 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1690 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); 1691