xref: /linux/drivers/mtd/nand/raw/denali.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NAND Flash Controller Device Driver
4  * Copyright © 2009-2010, Intel Corporation and its suppliers.
5  *
6  * Copyright (c) 2017-2019 Socionext Inc.
7  *   Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/completion.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 
21 #include "denali.h"
22 
23 #define DENALI_NAND_NAME    "denali-nand"
24 #define DENALI_DEFAULT_OOB_SKIP_BYTES	8
25 
26 /* for Indexed Addressing */
27 #define DENALI_INDEXED_CTRL	0x00
28 #define DENALI_INDEXED_DATA	0x10
29 
30 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
31 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
32 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
33 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
34 
35 /* MAP11 access cycle type */
36 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
37 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
38 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
39 
40 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
41 
42 #define DENALI_INVALID_BANK	-1
43 
44 static struct denali_chip *to_denali_chip(struct nand_chip *chip)
45 {
46 	return container_of(chip, struct denali_chip, chip);
47 }
48 
49 static struct denali_controller *to_denali_controller(struct nand_chip *chip)
50 {
51 	return container_of(chip->controller, struct denali_controller,
52 			    controller);
53 }
54 
55 /*
56  * Direct Addressing - the slave address forms the control information (command
57  * type, bank, block, and page address).  The slave data is the actual data to
58  * be transferred.  This mode requires 28 bits of address region allocated.
59  */
60 static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
61 {
62 	return ioread32(denali->host + addr);
63 }
64 
65 static void denali_direct_write(struct denali_controller *denali, u32 addr,
66 				u32 data)
67 {
68 	iowrite32(data, denali->host + addr);
69 }
70 
71 /*
72  * Indexed Addressing - address translation module intervenes in passing the
73  * control information.  This mode reduces the required address range.  The
74  * control information and transferred data are latched by the registers in
75  * the translation module.
76  */
77 static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
78 {
79 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
80 	return ioread32(denali->host + DENALI_INDEXED_DATA);
81 }
82 
83 static void denali_indexed_write(struct denali_controller *denali, u32 addr,
84 				 u32 data)
85 {
86 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
87 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
88 }
89 
90 static void denali_enable_irq(struct denali_controller *denali)
91 {
92 	int i;
93 
94 	for (i = 0; i < denali->nbanks; i++)
95 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
96 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
97 }
98 
99 static void denali_disable_irq(struct denali_controller *denali)
100 {
101 	int i;
102 
103 	for (i = 0; i < denali->nbanks; i++)
104 		iowrite32(0, denali->reg + INTR_EN(i));
105 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
106 }
107 
108 static void denali_clear_irq(struct denali_controller *denali,
109 			     int bank, u32 irq_status)
110 {
111 	/* write one to clear bits */
112 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
113 }
114 
115 static void denali_clear_irq_all(struct denali_controller *denali)
116 {
117 	int i;
118 
119 	for (i = 0; i < denali->nbanks; i++)
120 		denali_clear_irq(denali, i, U32_MAX);
121 }
122 
123 static irqreturn_t denali_isr(int irq, void *dev_id)
124 {
125 	struct denali_controller *denali = dev_id;
126 	irqreturn_t ret = IRQ_NONE;
127 	u32 irq_status;
128 	int i;
129 
130 	spin_lock(&denali->irq_lock);
131 
132 	for (i = 0; i < denali->nbanks; i++) {
133 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
134 		if (irq_status)
135 			ret = IRQ_HANDLED;
136 
137 		denali_clear_irq(denali, i, irq_status);
138 
139 		if (i != denali->active_bank)
140 			continue;
141 
142 		denali->irq_status |= irq_status;
143 
144 		if (denali->irq_status & denali->irq_mask)
145 			complete(&denali->complete);
146 	}
147 
148 	spin_unlock(&denali->irq_lock);
149 
150 	return ret;
151 }
152 
153 static void denali_reset_irq(struct denali_controller *denali)
154 {
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&denali->irq_lock, flags);
158 	denali->irq_status = 0;
159 	denali->irq_mask = 0;
160 	spin_unlock_irqrestore(&denali->irq_lock, flags);
161 }
162 
163 static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
164 {
165 	unsigned long time_left, flags;
166 	u32 irq_status;
167 
168 	spin_lock_irqsave(&denali->irq_lock, flags);
169 
170 	irq_status = denali->irq_status;
171 
172 	if (irq_mask & irq_status) {
173 		/* return immediately if the IRQ has already happened. */
174 		spin_unlock_irqrestore(&denali->irq_lock, flags);
175 		return irq_status;
176 	}
177 
178 	denali->irq_mask = irq_mask;
179 	reinit_completion(&denali->complete);
180 	spin_unlock_irqrestore(&denali->irq_lock, flags);
181 
182 	time_left = wait_for_completion_timeout(&denali->complete,
183 						msecs_to_jiffies(1000));
184 	if (!time_left) {
185 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
186 			irq_mask);
187 		return 0;
188 	}
189 
190 	return denali->irq_status;
191 }
192 
193 static void denali_select_target(struct nand_chip *chip, int cs)
194 {
195 	struct denali_controller *denali = to_denali_controller(chip);
196 	struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
197 	struct mtd_info *mtd = nand_to_mtd(chip);
198 
199 	denali->active_bank = sel->bank;
200 
201 	iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
202 		  denali->reg + PAGES_PER_BLOCK);
203 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
204 		  denali->reg + DEVICE_WIDTH);
205 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
206 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
207 	iowrite32(chip->options & NAND_ROW_ADDR_3 ?
208 		  0 : TWO_ROW_ADDR_CYCLES__FLAG,
209 		  denali->reg + TWO_ROW_ADDR_CYCLES);
210 	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
211 		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
212 		  denali->reg + ECC_CORRECTION);
213 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
214 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
215 	iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
216 
217 	if (chip->options & NAND_KEEP_TIMINGS)
218 		return;
219 
220 	/* update timing registers unless NAND_KEEP_TIMINGS is set */
221 	iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
222 	iowrite32(sel->tcwaw_and_addr_2_data,
223 		  denali->reg + TCWAW_AND_ADDR_2_DATA);
224 	iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
225 	iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
226 	iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
227 	iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
228 	iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
229 	iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
230 }
231 
232 static int denali_change_column(struct nand_chip *chip, unsigned int offset,
233 				void *buf, unsigned int len, bool write)
234 {
235 	if (write)
236 		return nand_change_write_column_op(chip, offset, buf, len,
237 						   false);
238 	else
239 		return nand_change_read_column_op(chip, offset, buf, len,
240 						  false);
241 }
242 
243 static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
244 {
245 	struct denali_controller *denali = to_denali_controller(chip);
246 	struct mtd_info *mtd = nand_to_mtd(chip);
247 	struct nand_ecc_ctrl *ecc = &chip->ecc;
248 	int writesize = mtd->writesize;
249 	int oob_skip = denali->oob_skip_bytes;
250 	int ret, i, pos, len;
251 
252 	for (i = 0; i < ecc->steps; i++) {
253 		pos = i * (ecc->size + ecc->bytes);
254 		len = ecc->size;
255 
256 		if (pos >= writesize) {
257 			pos += oob_skip;
258 		} else if (pos + len > writesize) {
259 			/* This chunk overwraps the BBM area. Must be split */
260 			ret = denali_change_column(chip, pos, buf,
261 						   writesize - pos, write);
262 			if (ret)
263 				return ret;
264 
265 			buf += writesize - pos;
266 			len -= writesize - pos;
267 			pos = writesize + oob_skip;
268 		}
269 
270 		ret = denali_change_column(chip, pos, buf, len, write);
271 		if (ret)
272 			return ret;
273 
274 		buf += len;
275 	}
276 
277 	return 0;
278 }
279 
280 static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
281 {
282 	struct denali_controller *denali = to_denali_controller(chip);
283 	struct mtd_info *mtd = nand_to_mtd(chip);
284 	struct nand_ecc_ctrl *ecc = &chip->ecc;
285 	int writesize = mtd->writesize;
286 	int oobsize = mtd->oobsize;
287 	int oob_skip = denali->oob_skip_bytes;
288 	int ret, i, pos, len;
289 
290 	/* BBM at the beginning of the OOB area */
291 	ret = denali_change_column(chip, writesize, buf, oob_skip, write);
292 	if (ret)
293 		return ret;
294 
295 	buf += oob_skip;
296 
297 	for (i = 0; i < ecc->steps; i++) {
298 		pos = ecc->size + i * (ecc->size + ecc->bytes);
299 
300 		if (i == ecc->steps - 1)
301 			/* The last chunk includes OOB free */
302 			len = writesize + oobsize - pos - oob_skip;
303 		else
304 			len = ecc->bytes;
305 
306 		if (pos >= writesize) {
307 			pos += oob_skip;
308 		} else if (pos + len > writesize) {
309 			/* This chunk overwraps the BBM area. Must be split */
310 			ret = denali_change_column(chip, pos, buf,
311 						   writesize - pos, write);
312 			if (ret)
313 				return ret;
314 
315 			buf += writesize - pos;
316 			len -= writesize - pos;
317 			pos = writesize + oob_skip;
318 		}
319 
320 		ret = denali_change_column(chip, pos, buf, len, write);
321 		if (ret)
322 			return ret;
323 
324 		buf += len;
325 	}
326 
327 	return 0;
328 }
329 
330 static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
331 			   int page)
332 {
333 	int ret;
334 
335 	if (!buf && !oob_buf)
336 		return -EINVAL;
337 
338 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
339 	if (ret)
340 		return ret;
341 
342 	if (buf) {
343 		ret = denali_payload_xfer(chip, buf, false);
344 		if (ret)
345 			return ret;
346 	}
347 
348 	if (oob_buf) {
349 		ret = denali_oob_xfer(chip, oob_buf, false);
350 		if (ret)
351 			return ret;
352 	}
353 
354 	return 0;
355 }
356 
357 static int denali_write_raw(struct nand_chip *chip, const void *buf,
358 			    const void *oob_buf, int page)
359 {
360 	int ret;
361 
362 	if (!buf && !oob_buf)
363 		return -EINVAL;
364 
365 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
366 	if (ret)
367 		return ret;
368 
369 	if (buf) {
370 		ret = denali_payload_xfer(chip, (void *)buf, true);
371 		if (ret)
372 			return ret;
373 	}
374 
375 	if (oob_buf) {
376 		ret = denali_oob_xfer(chip, (void *)oob_buf, true);
377 		if (ret)
378 			return ret;
379 	}
380 
381 	return nand_prog_page_end_op(chip);
382 }
383 
384 static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
385 				int oob_required, int page)
386 {
387 	return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
388 			       page);
389 }
390 
391 static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
392 				 int oob_required, int page)
393 {
394 	return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
395 				page);
396 }
397 
398 static int denali_read_oob(struct nand_chip *chip, int page)
399 {
400 	return denali_read_raw(chip, NULL, chip->oob_poi, page);
401 }
402 
403 static int denali_write_oob(struct nand_chip *chip, int page)
404 {
405 	return denali_write_raw(chip, NULL, chip->oob_poi, page);
406 }
407 
408 static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
409 				    unsigned long uncor_ecc_flags,
410 				    unsigned int max_bitflips)
411 {
412 	struct denali_controller *denali = to_denali_controller(chip);
413 	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
414 	struct nand_ecc_ctrl *ecc = &chip->ecc;
415 	u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
416 	int i, stat;
417 
418 	for (i = 0; i < ecc->steps; i++) {
419 		if (!(uncor_ecc_flags & BIT(i)))
420 			continue;
421 
422 		stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code,
423 						   ecc->bytes, NULL, 0,
424 						   ecc->strength);
425 		if (stat < 0) {
426 			ecc_stats->failed++;
427 		} else {
428 			ecc_stats->corrected += stat;
429 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
430 		}
431 
432 		buf += ecc->size;
433 		ecc_code += ecc->bytes;
434 	}
435 
436 	return max_bitflips;
437 }
438 
439 static int denali_hw_ecc_fixup(struct nand_chip *chip,
440 			       unsigned long *uncor_ecc_flags)
441 {
442 	struct denali_controller *denali = to_denali_controller(chip);
443 	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
444 	int bank = denali->active_bank;
445 	u32 ecc_cor;
446 	unsigned int max_bitflips;
447 
448 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
449 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
450 
451 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
452 		/*
453 		 * This flag is set when uncorrectable error occurs at least in
454 		 * one ECC sector.  We can not know "how many sectors", or
455 		 * "which sector(s)".  We need erase-page check for all sectors.
456 		 */
457 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
458 		return 0;
459 	}
460 
461 	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
462 
463 	/*
464 	 * The register holds the maximum of per-sector corrected bitflips.
465 	 * This is suitable for the return value of the ->read_page() callback.
466 	 * Unfortunately, we can not know the total number of corrected bits in
467 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
468 	 */
469 	ecc_stats->corrected += max_bitflips;
470 
471 	return max_bitflips;
472 }
473 
474 static int denali_sw_ecc_fixup(struct nand_chip *chip,
475 			       unsigned long *uncor_ecc_flags, u8 *buf)
476 {
477 	struct denali_controller *denali = to_denali_controller(chip);
478 	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
479 	unsigned int ecc_size = chip->ecc.size;
480 	unsigned int bitflips = 0;
481 	unsigned int max_bitflips = 0;
482 	u32 err_addr, err_cor_info;
483 	unsigned int err_byte, err_sector, err_device;
484 	u8 err_cor_value;
485 	unsigned int prev_sector = 0;
486 	u32 irq_status;
487 
488 	denali_reset_irq(denali);
489 
490 	do {
491 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
492 		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
493 		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
494 
495 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
496 		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
497 					  err_cor_info);
498 		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
499 				       err_cor_info);
500 
501 		/* reset the bitflip counter when crossing ECC sector */
502 		if (err_sector != prev_sector)
503 			bitflips = 0;
504 
505 		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
506 			/*
507 			 * Check later if this is a real ECC error, or
508 			 * an erased sector.
509 			 */
510 			*uncor_ecc_flags |= BIT(err_sector);
511 		} else if (err_byte < ecc_size) {
512 			/*
513 			 * If err_byte is larger than ecc_size, means error
514 			 * happened in OOB, so we ignore it. It's no need for
515 			 * us to correct it err_device is represented the NAND
516 			 * error bits are happened in if there are more than
517 			 * one NAND connected.
518 			 */
519 			int offset;
520 			unsigned int flips_in_byte;
521 
522 			offset = (err_sector * ecc_size + err_byte) *
523 					denali->devs_per_cs + err_device;
524 
525 			/* correct the ECC error */
526 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
527 			buf[offset] ^= err_cor_value;
528 			ecc_stats->corrected += flips_in_byte;
529 			bitflips += flips_in_byte;
530 
531 			max_bitflips = max(max_bitflips, bitflips);
532 		}
533 
534 		prev_sector = err_sector;
535 	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
536 
537 	/*
538 	 * Once handle all ECC errors, controller will trigger an
539 	 * ECC_TRANSACTION_DONE interrupt.
540 	 */
541 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
542 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
543 		return -EIO;
544 
545 	return max_bitflips;
546 }
547 
548 static void denali_setup_dma64(struct denali_controller *denali,
549 			       dma_addr_t dma_addr, int page, bool write)
550 {
551 	u32 mode;
552 	const int page_count = 1;
553 
554 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
555 
556 	/* DMA is a three step process */
557 
558 	/*
559 	 * 1. setup transfer type, interrupt when complete,
560 	 *    burst len = 64 bytes, the number of pages
561 	 */
562 	denali->host_write(denali, mode,
563 			   0x01002000 | (64 << 16) |
564 			   (write ? BIT(8) : 0) | page_count);
565 
566 	/* 2. set memory low address */
567 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
568 
569 	/* 3. set memory high address */
570 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
571 }
572 
573 static void denali_setup_dma32(struct denali_controller *denali,
574 			       dma_addr_t dma_addr, int page, bool write)
575 {
576 	u32 mode;
577 	const int page_count = 1;
578 
579 	mode = DENALI_MAP10 | DENALI_BANK(denali);
580 
581 	/* DMA is a four step process */
582 
583 	/* 1. setup transfer type and # of pages */
584 	denali->host_write(denali, mode | page,
585 			   0x2000 | (write ? BIT(8) : 0) | page_count);
586 
587 	/* 2. set memory high address bits 23:8 */
588 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
589 
590 	/* 3. set memory low address bits 23:8 */
591 	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
592 
593 	/* 4. interrupt when complete, burst len = 64 bytes */
594 	denali->host_write(denali, mode | 0x14000, 0x2400);
595 }
596 
597 static int denali_pio_read(struct denali_controller *denali, u32 *buf,
598 			   size_t size, int page)
599 {
600 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
601 	u32 irq_status, ecc_err_mask;
602 	int i;
603 
604 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
605 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
606 	else
607 		ecc_err_mask = INTR__ECC_ERR;
608 
609 	denali_reset_irq(denali);
610 
611 	for (i = 0; i < size / 4; i++)
612 		buf[i] = denali->host_read(denali, addr);
613 
614 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
615 	if (!(irq_status & INTR__PAGE_XFER_INC))
616 		return -EIO;
617 
618 	if (irq_status & INTR__ERASED_PAGE)
619 		memset(buf, 0xff, size);
620 
621 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
622 }
623 
624 static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
625 			    size_t size, int page)
626 {
627 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
628 	u32 irq_status;
629 	int i;
630 
631 	denali_reset_irq(denali);
632 
633 	for (i = 0; i < size / 4; i++)
634 		denali->host_write(denali, addr, buf[i]);
635 
636 	irq_status = denali_wait_for_irq(denali,
637 					 INTR__PROGRAM_COMP |
638 					 INTR__PROGRAM_FAIL);
639 	if (!(irq_status & INTR__PROGRAM_COMP))
640 		return -EIO;
641 
642 	return 0;
643 }
644 
645 static int denali_pio_xfer(struct denali_controller *denali, void *buf,
646 			   size_t size, int page, bool write)
647 {
648 	if (write)
649 		return denali_pio_write(denali, buf, size, page);
650 	else
651 		return denali_pio_read(denali, buf, size, page);
652 }
653 
654 static int denali_dma_xfer(struct denali_controller *denali, void *buf,
655 			   size_t size, int page, bool write)
656 {
657 	dma_addr_t dma_addr;
658 	u32 irq_mask, irq_status, ecc_err_mask;
659 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
660 	int ret = 0;
661 
662 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
663 	if (dma_mapping_error(denali->dev, dma_addr)) {
664 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
665 		return denali_pio_xfer(denali, buf, size, page, write);
666 	}
667 
668 	if (write) {
669 		/*
670 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
671 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
672 		 * when the page program is completed.
673 		 */
674 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
675 		ecc_err_mask = 0;
676 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
677 		irq_mask = INTR__DMA_CMD_COMP;
678 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
679 	} else {
680 		irq_mask = INTR__DMA_CMD_COMP;
681 		ecc_err_mask = INTR__ECC_ERR;
682 	}
683 
684 	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
685 	/*
686 	 * The ->setup_dma() hook kicks DMA by using the data/command
687 	 * interface, which belongs to a different AXI port from the
688 	 * register interface.  Read back the register to avoid a race.
689 	 */
690 	ioread32(denali->reg + DMA_ENABLE);
691 
692 	denali_reset_irq(denali);
693 	denali->setup_dma(denali, dma_addr, page, write);
694 
695 	irq_status = denali_wait_for_irq(denali, irq_mask);
696 	if (!(irq_status & INTR__DMA_CMD_COMP))
697 		ret = -EIO;
698 	else if (irq_status & ecc_err_mask)
699 		ret = -EBADMSG;
700 
701 	iowrite32(0, denali->reg + DMA_ENABLE);
702 
703 	dma_unmap_single(denali->dev, dma_addr, size, dir);
704 
705 	if (irq_status & INTR__ERASED_PAGE)
706 		memset(buf, 0xff, size);
707 
708 	return ret;
709 }
710 
711 static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
712 			    int page, bool write)
713 {
714 	struct denali_controller *denali = to_denali_controller(chip);
715 
716 	denali_select_target(chip, chip->cur_cs);
717 
718 	if (denali->dma_avail)
719 		return denali_dma_xfer(denali, buf, size, page, write);
720 	else
721 		return denali_pio_xfer(denali, buf, size, page, write);
722 }
723 
724 static int denali_read_page(struct nand_chip *chip, u8 *buf,
725 			    int oob_required, int page)
726 {
727 	struct denali_controller *denali = to_denali_controller(chip);
728 	struct mtd_info *mtd = nand_to_mtd(chip);
729 	unsigned long uncor_ecc_flags = 0;
730 	int stat = 0;
731 	int ret;
732 
733 	ret = denali_page_xfer(chip, buf, mtd->writesize, page, false);
734 	if (ret && ret != -EBADMSG)
735 		return ret;
736 
737 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
738 		stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
739 	else if (ret == -EBADMSG)
740 		stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
741 
742 	if (stat < 0)
743 		return stat;
744 
745 	if (uncor_ecc_flags) {
746 		ret = denali_read_oob(chip, page);
747 		if (ret)
748 			return ret;
749 
750 		stat = denali_check_erased_page(chip, buf,
751 						uncor_ecc_flags, stat);
752 	}
753 
754 	return stat;
755 }
756 
757 static int denali_write_page(struct nand_chip *chip, const u8 *buf,
758 			     int oob_required, int page)
759 {
760 	struct mtd_info *mtd = nand_to_mtd(chip);
761 
762 	return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true);
763 }
764 
765 static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
766 				       const struct nand_data_interface *conf)
767 {
768 	struct denali_controller *denali = to_denali_controller(chip);
769 	struct denali_chip_sel *sel;
770 	const struct nand_sdr_timings *timings;
771 	unsigned long t_x, mult_x;
772 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
773 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
774 	int addr_2_data_mask;
775 	u32 tmp;
776 
777 	timings = nand_get_sdr_timings(conf);
778 	if (IS_ERR(timings))
779 		return PTR_ERR(timings);
780 
781 	/* clk_x period in picoseconds */
782 	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
783 	if (!t_x)
784 		return -EINVAL;
785 
786 	/*
787 	 * The bus interface clock, clk_x, is phase aligned with the core clock.
788 	 * The clk_x is an integral multiple N of the core clk.  The value N is
789 	 * configured at IP delivery time, and its available value is 4, 5, 6.
790 	 */
791 	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
792 	if (mult_x < 4 || mult_x > 6)
793 		return -EINVAL;
794 
795 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
796 		return 0;
797 
798 	sel = &to_denali_chip(chip)->sels[chipnr];
799 
800 	/* tREA -> ACC_CLKS */
801 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
802 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
803 
804 	tmp = ioread32(denali->reg + ACC_CLKS);
805 	tmp &= ~ACC_CLKS__VALUE;
806 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
807 	sel->acc_clks = tmp;
808 
809 	/* tRWH -> RE_2_WE */
810 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
811 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
812 
813 	tmp = ioread32(denali->reg + RE_2_WE);
814 	tmp &= ~RE_2_WE__VALUE;
815 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
816 	sel->re_2_we = tmp;
817 
818 	/* tRHZ -> RE_2_RE */
819 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
820 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
821 
822 	tmp = ioread32(denali->reg + RE_2_RE);
823 	tmp &= ~RE_2_RE__VALUE;
824 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
825 	sel->re_2_re = tmp;
826 
827 	/*
828 	 * tCCS, tWHR -> WE_2_RE
829 	 *
830 	 * With WE_2_RE properly set, the Denali controller automatically takes
831 	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
832 	 */
833 	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
834 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
835 
836 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
837 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
838 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
839 	sel->hwhr2_and_we_2_re = tmp;
840 
841 	/* tADL -> ADDR_2_DATA */
842 
843 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
844 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
845 	if (denali->revision < 0x0501)
846 		addr_2_data_mask >>= 1;
847 
848 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
849 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
850 
851 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
852 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
853 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
854 	sel->tcwaw_and_addr_2_data = tmp;
855 
856 	/* tREH, tWH -> RDWR_EN_HI_CNT */
857 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
858 				  t_x);
859 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
860 
861 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
862 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
863 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
864 	sel->rdwr_en_hi_cnt = tmp;
865 
866 	/* tRP, tWP -> RDWR_EN_LO_CNT */
867 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
868 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
869 				     t_x);
870 	rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
871 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
872 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
873 
874 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
875 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
876 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
877 	sel->rdwr_en_lo_cnt = tmp;
878 
879 	/* tCS, tCEA -> CS_SETUP_CNT */
880 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
881 			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
882 			0);
883 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
884 
885 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
886 	tmp &= ~CS_SETUP_CNT__VALUE;
887 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
888 	sel->cs_setup_cnt = tmp;
889 
890 	return 0;
891 }
892 
893 int denali_calc_ecc_bytes(int step_size, int strength)
894 {
895 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
896 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
897 }
898 EXPORT_SYMBOL(denali_calc_ecc_bytes);
899 
900 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
901 				struct mtd_oob_region *oobregion)
902 {
903 	struct nand_chip *chip = mtd_to_nand(mtd);
904 	struct denali_controller *denali = to_denali_controller(chip);
905 
906 	if (section > 0)
907 		return -ERANGE;
908 
909 	oobregion->offset = denali->oob_skip_bytes;
910 	oobregion->length = chip->ecc.total;
911 
912 	return 0;
913 }
914 
915 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
916 				 struct mtd_oob_region *oobregion)
917 {
918 	struct nand_chip *chip = mtd_to_nand(mtd);
919 	struct denali_controller *denali = to_denali_controller(chip);
920 
921 	if (section > 0)
922 		return -ERANGE;
923 
924 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
925 	oobregion->length = mtd->oobsize - oobregion->offset;
926 
927 	return 0;
928 }
929 
930 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
931 	.ecc = denali_ooblayout_ecc,
932 	.free = denali_ooblayout_free,
933 };
934 
935 static int denali_multidev_fixup(struct nand_chip *chip)
936 {
937 	struct denali_controller *denali = to_denali_controller(chip);
938 	struct mtd_info *mtd = nand_to_mtd(chip);
939 	struct nand_memory_organization *memorg;
940 
941 	memorg = nanddev_get_memorg(&chip->base);
942 
943 	/*
944 	 * Support for multi device:
945 	 * When the IP configuration is x16 capable and two x8 chips are
946 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
947 	 * In this case, the core framework knows nothing about this fact,
948 	 * so we should tell it the _logical_ pagesize and anything necessary.
949 	 */
950 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
951 
952 	/*
953 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
954 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
955 	 */
956 	if (denali->devs_per_cs == 0) {
957 		denali->devs_per_cs = 1;
958 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
959 	}
960 
961 	if (denali->devs_per_cs == 1)
962 		return 0;
963 
964 	if (denali->devs_per_cs != 2) {
965 		dev_err(denali->dev, "unsupported number of devices %d\n",
966 			denali->devs_per_cs);
967 		return -EINVAL;
968 	}
969 
970 	/* 2 chips in parallel */
971 	memorg->pagesize <<= 1;
972 	memorg->oobsize <<= 1;
973 	mtd->size <<= 1;
974 	mtd->erasesize <<= 1;
975 	mtd->writesize <<= 1;
976 	mtd->oobsize <<= 1;
977 	chip->page_shift += 1;
978 	chip->phys_erase_shift += 1;
979 	chip->bbt_erase_shift += 1;
980 	chip->chip_shift += 1;
981 	chip->pagemask <<= 1;
982 	chip->ecc.size <<= 1;
983 	chip->ecc.bytes <<= 1;
984 	chip->ecc.strength <<= 1;
985 	denali->oob_skip_bytes <<= 1;
986 
987 	return 0;
988 }
989 
990 static int denali_attach_chip(struct nand_chip *chip)
991 {
992 	struct denali_controller *denali = to_denali_controller(chip);
993 	struct mtd_info *mtd = nand_to_mtd(chip);
994 	int ret;
995 
996 	ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
997 				   mtd->oobsize - denali->oob_skip_bytes);
998 	if (ret) {
999 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1000 		return ret;
1001 	}
1002 
1003 	dev_dbg(denali->dev,
1004 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1005 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1006 
1007 	ret = denali_multidev_fixup(chip);
1008 	if (ret)
1009 		return ret;
1010 
1011 	return 0;
1012 }
1013 
1014 static void denali_exec_in8(struct denali_controller *denali, u32 type,
1015 			    u8 *buf, unsigned int len)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < len; i++)
1020 		buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
1021 }
1022 
1023 static void denali_exec_in16(struct denali_controller *denali, u32 type,
1024 			     u8 *buf, unsigned int len)
1025 {
1026 	u32 data;
1027 	int i;
1028 
1029 	for (i = 0; i < len; i += 2) {
1030 		data = denali->host_read(denali, type | DENALI_BANK(denali));
1031 		/* bit 31:24 and 15:8 are used for DDR */
1032 		buf[i] = data;
1033 		buf[i + 1] = data >> 16;
1034 	}
1035 }
1036 
1037 static void denali_exec_in(struct denali_controller *denali, u32 type,
1038 			   u8 *buf, unsigned int len, bool width16)
1039 {
1040 	if (width16)
1041 		denali_exec_in16(denali, type, buf, len);
1042 	else
1043 		denali_exec_in8(denali, type, buf, len);
1044 }
1045 
1046 static void denali_exec_out8(struct denali_controller *denali, u32 type,
1047 			     const u8 *buf, unsigned int len)
1048 {
1049 	int i;
1050 
1051 	for (i = 0; i < len; i++)
1052 		denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
1053 }
1054 
1055 static void denali_exec_out16(struct denali_controller *denali, u32 type,
1056 			      const u8 *buf, unsigned int len)
1057 {
1058 	int i;
1059 
1060 	for (i = 0; i < len; i += 2)
1061 		denali->host_write(denali, type | DENALI_BANK(denali),
1062 				   buf[i + 1] << 16 | buf[i]);
1063 }
1064 
1065 static void denali_exec_out(struct denali_controller *denali, u32 type,
1066 			    const u8 *buf, unsigned int len, bool width16)
1067 {
1068 	if (width16)
1069 		denali_exec_out16(denali, type, buf, len);
1070 	else
1071 		denali_exec_out8(denali, type, buf, len);
1072 }
1073 
1074 static int denali_exec_waitrdy(struct denali_controller *denali)
1075 {
1076 	u32 irq_stat;
1077 
1078 	/* R/B# pin transitioned from low to high? */
1079 	irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
1080 
1081 	/* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
1082 	denali_reset_irq(denali);
1083 
1084 	return irq_stat & INTR__INT_ACT ? 0 : -EIO;
1085 }
1086 
1087 static int denali_exec_instr(struct nand_chip *chip,
1088 			     const struct nand_op_instr *instr)
1089 {
1090 	struct denali_controller *denali = to_denali_controller(chip);
1091 
1092 	switch (instr->type) {
1093 	case NAND_OP_CMD_INSTR:
1094 		denali_exec_out8(denali, DENALI_MAP11_CMD,
1095 				 &instr->ctx.cmd.opcode, 1);
1096 		return 0;
1097 	case NAND_OP_ADDR_INSTR:
1098 		denali_exec_out8(denali, DENALI_MAP11_ADDR,
1099 				 instr->ctx.addr.addrs,
1100 				 instr->ctx.addr.naddrs);
1101 		return 0;
1102 	case NAND_OP_DATA_IN_INSTR:
1103 		denali_exec_in(denali, DENALI_MAP11_DATA,
1104 			       instr->ctx.data.buf.in,
1105 			       instr->ctx.data.len,
1106 			       !instr->ctx.data.force_8bit &&
1107 			       chip->options & NAND_BUSWIDTH_16);
1108 		return 0;
1109 	case NAND_OP_DATA_OUT_INSTR:
1110 		denali_exec_out(denali, DENALI_MAP11_DATA,
1111 				instr->ctx.data.buf.out,
1112 				instr->ctx.data.len,
1113 				!instr->ctx.data.force_8bit &&
1114 				chip->options & NAND_BUSWIDTH_16);
1115 		return 0;
1116 	case NAND_OP_WAITRDY_INSTR:
1117 		return denali_exec_waitrdy(denali);
1118 	default:
1119 		WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
1120 			  instr->type);
1121 
1122 		return -EINVAL;
1123 	}
1124 }
1125 
1126 static int denali_exec_op(struct nand_chip *chip,
1127 			  const struct nand_operation *op, bool check_only)
1128 {
1129 	int i, ret;
1130 
1131 	if (check_only)
1132 		return 0;
1133 
1134 	denali_select_target(chip, op->cs);
1135 
1136 	/*
1137 	 * Some commands contain NAND_OP_WAITRDY_INSTR.
1138 	 * irq must be cleared here to catch the R/B# interrupt there.
1139 	 */
1140 	denali_reset_irq(to_denali_controller(chip));
1141 
1142 	for (i = 0; i < op->ninstrs; i++) {
1143 		ret = denali_exec_instr(chip, &op->instrs[i]);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 static const struct nand_controller_ops denali_controller_ops = {
1152 	.attach_chip = denali_attach_chip,
1153 	.exec_op = denali_exec_op,
1154 	.setup_data_interface = denali_setup_data_interface,
1155 };
1156 
1157 int denali_chip_init(struct denali_controller *denali,
1158 		     struct denali_chip *dchip)
1159 {
1160 	struct nand_chip *chip = &dchip->chip;
1161 	struct mtd_info *mtd = nand_to_mtd(chip);
1162 	struct denali_chip *dchip2;
1163 	int i, j, ret;
1164 
1165 	chip->controller = &denali->controller;
1166 
1167 	/* sanity checks for bank numbers */
1168 	for (i = 0; i < dchip->nsels; i++) {
1169 		unsigned int bank = dchip->sels[i].bank;
1170 
1171 		if (bank >= denali->nbanks) {
1172 			dev_err(denali->dev, "unsupported bank %d\n", bank);
1173 			return -EINVAL;
1174 		}
1175 
1176 		for (j = 0; j < i; j++) {
1177 			if (bank == dchip->sels[j].bank) {
1178 				dev_err(denali->dev,
1179 					"bank %d is assigned twice in the same chip\n",
1180 					bank);
1181 				return -EINVAL;
1182 			}
1183 		}
1184 
1185 		list_for_each_entry(dchip2, &denali->chips, node) {
1186 			for (j = 0; j < dchip2->nsels; j++) {
1187 				if (bank == dchip2->sels[j].bank) {
1188 					dev_err(denali->dev,
1189 						"bank %d is already used\n",
1190 						bank);
1191 					return -EINVAL;
1192 				}
1193 			}
1194 		}
1195 	}
1196 
1197 	mtd->dev.parent = denali->dev;
1198 
1199 	/*
1200 	 * Fallback to the default name if DT did not give "label" property.
1201 	 * Use "label" property if multiple chips are connected.
1202 	 */
1203 	if (!mtd->name && list_empty(&denali->chips))
1204 		mtd->name = "denali-nand";
1205 
1206 	if (denali->dma_avail) {
1207 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1208 		chip->buf_align = 16;
1209 	}
1210 
1211 	/* clk rate info is needed for setup_data_interface */
1212 	if (!denali->clk_rate || !denali->clk_x_rate)
1213 		chip->options |= NAND_KEEP_TIMINGS;
1214 
1215 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1216 	chip->bbt_options |= NAND_BBT_NO_OOB;
1217 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1218 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1219 	chip->ecc.read_page = denali_read_page;
1220 	chip->ecc.write_page = denali_write_page;
1221 	chip->ecc.read_page_raw = denali_read_page_raw;
1222 	chip->ecc.write_page_raw = denali_write_page_raw;
1223 	chip->ecc.read_oob = denali_read_oob;
1224 	chip->ecc.write_oob = denali_write_oob;
1225 
1226 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1227 
1228 	ret = nand_scan(chip, dchip->nsels);
1229 	if (ret)
1230 		return ret;
1231 
1232 	ret = mtd_device_register(mtd, NULL, 0);
1233 	if (ret) {
1234 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1235 		goto cleanup_nand;
1236 	}
1237 
1238 	list_add_tail(&dchip->node, &denali->chips);
1239 
1240 	return 0;
1241 
1242 cleanup_nand:
1243 	nand_cleanup(chip);
1244 
1245 	return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(denali_chip_init);
1248 
1249 int denali_init(struct denali_controller *denali)
1250 {
1251 	u32 features = ioread32(denali->reg + FEATURES);
1252 	int ret;
1253 
1254 	nand_controller_init(&denali->controller);
1255 	denali->controller.ops = &denali_controller_ops;
1256 	init_completion(&denali->complete);
1257 	spin_lock_init(&denali->irq_lock);
1258 	INIT_LIST_HEAD(&denali->chips);
1259 	denali->active_bank = DENALI_INVALID_BANK;
1260 
1261 	/*
1262 	 * The REVISION register may not be reliable. Platforms are allowed to
1263 	 * override it.
1264 	 */
1265 	if (!denali->revision)
1266 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1267 
1268 	denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
1269 
1270 	/* the encoding changed from rev 5.0 to 5.1 */
1271 	if (denali->revision < 0x0501)
1272 		denali->nbanks <<= 1;
1273 
1274 	if (features & FEATURES__DMA)
1275 		denali->dma_avail = true;
1276 
1277 	if (denali->dma_avail) {
1278 		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1279 
1280 		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1281 		if (ret) {
1282 			dev_info(denali->dev,
1283 				 "Failed to set DMA mask. Disabling DMA.\n");
1284 			denali->dma_avail = false;
1285 		}
1286 	}
1287 
1288 	if (denali->dma_avail) {
1289 		if (denali->caps & DENALI_CAP_DMA_64BIT)
1290 			denali->setup_dma = denali_setup_dma64;
1291 		else
1292 			denali->setup_dma = denali_setup_dma32;
1293 	}
1294 
1295 	if (features & FEATURES__INDEX_ADDR) {
1296 		denali->host_read = denali_indexed_read;
1297 		denali->host_write = denali_indexed_write;
1298 	} else {
1299 		denali->host_read = denali_direct_read;
1300 		denali->host_write = denali_direct_write;
1301 	}
1302 
1303 	/*
1304 	 * Set how many bytes should be skipped before writing data in OOB.
1305 	 * If a non-zero value has already been set (by firmware or something),
1306 	 * just use it. Otherwise, set the driver's default.
1307 	 */
1308 	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1309 	if (!denali->oob_skip_bytes) {
1310 		denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
1311 		iowrite32(denali->oob_skip_bytes,
1312 			  denali->reg + SPARE_AREA_SKIP_BYTES);
1313 	}
1314 
1315 	iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
1316 	iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
1317 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1318 	iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
1319 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1320 
1321 	denali_clear_irq_all(denali);
1322 
1323 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1324 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
1325 	if (ret) {
1326 		dev_err(denali->dev, "Unable to request IRQ\n");
1327 		return ret;
1328 	}
1329 
1330 	denali_enable_irq(denali);
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL(denali_init);
1335 
1336 void denali_remove(struct denali_controller *denali)
1337 {
1338 	struct denali_chip *dchip;
1339 
1340 	list_for_each_entry(dchip, &denali->chips, node)
1341 		nand_release(&dchip->chip);
1342 
1343 	denali_disable_irq(denali);
1344 }
1345 EXPORT_SYMBOL(denali_remove);
1346 
1347 MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1348 MODULE_AUTHOR("Intel Corporation and its suppliers");
1349 MODULE_LICENSE("GPL v2");
1350