xref: /linux/drivers/mtd/nand/raw/denali.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NAND Flash Controller Device Driver
4  * Copyright © 2009-2010, Intel Corporation and its suppliers.
5  *
6  * Copyright (c) 2017 Socionext Inc.
7  *   Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/completion.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 
21 #include "denali.h"
22 
23 #define DENALI_NAND_NAME    "denali-nand"
24 #define DENALI_DEFAULT_OOB_SKIP_BYTES	8
25 
26 /* for Indexed Addressing */
27 #define DENALI_INDEXED_CTRL	0x00
28 #define DENALI_INDEXED_DATA	0x10
29 
30 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
31 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
32 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
33 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
34 
35 /* MAP11 access cycle type */
36 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
37 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
38 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
39 
40 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
41 
42 #define DENALI_INVALID_BANK	-1
43 #define DENALI_NR_BANKS		4
44 
45 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
46 {
47 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
48 }
49 
50 /*
51  * Direct Addressing - the slave address forms the control information (command
52  * type, bank, block, and page address).  The slave data is the actual data to
53  * be transferred.  This mode requires 28 bits of address region allocated.
54  */
55 static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
56 {
57 	return ioread32(denali->host + addr);
58 }
59 
60 static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
61 				u32 data)
62 {
63 	iowrite32(data, denali->host + addr);
64 }
65 
66 /*
67  * Indexed Addressing - address translation module intervenes in passing the
68  * control information.  This mode reduces the required address range.  The
69  * control information and transferred data are latched by the registers in
70  * the translation module.
71  */
72 static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
73 {
74 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
75 	return ioread32(denali->host + DENALI_INDEXED_DATA);
76 }
77 
78 static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
79 				 u32 data)
80 {
81 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
82 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
83 }
84 
85 /*
86  * Use the configuration feature register to determine the maximum number of
87  * banks that the hardware supports.
88  */
89 static void denali_detect_max_banks(struct denali_nand_info *denali)
90 {
91 	uint32_t features = ioread32(denali->reg + FEATURES);
92 
93 	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
94 
95 	/* the encoding changed from rev 5.0 to 5.1 */
96 	if (denali->revision < 0x0501)
97 		denali->max_banks <<= 1;
98 }
99 
100 static void denali_enable_irq(struct denali_nand_info *denali)
101 {
102 	int i;
103 
104 	for (i = 0; i < DENALI_NR_BANKS; i++)
105 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
106 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
107 }
108 
109 static void denali_disable_irq(struct denali_nand_info *denali)
110 {
111 	int i;
112 
113 	for (i = 0; i < DENALI_NR_BANKS; i++)
114 		iowrite32(0, denali->reg + INTR_EN(i));
115 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
116 }
117 
118 static void denali_clear_irq(struct denali_nand_info *denali,
119 			     int bank, uint32_t irq_status)
120 {
121 	/* write one to clear bits */
122 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
123 }
124 
125 static void denali_clear_irq_all(struct denali_nand_info *denali)
126 {
127 	int i;
128 
129 	for (i = 0; i < DENALI_NR_BANKS; i++)
130 		denali_clear_irq(denali, i, U32_MAX);
131 }
132 
133 static irqreturn_t denali_isr(int irq, void *dev_id)
134 {
135 	struct denali_nand_info *denali = dev_id;
136 	irqreturn_t ret = IRQ_NONE;
137 	uint32_t irq_status;
138 	int i;
139 
140 	spin_lock(&denali->irq_lock);
141 
142 	for (i = 0; i < DENALI_NR_BANKS; i++) {
143 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
144 		if (irq_status)
145 			ret = IRQ_HANDLED;
146 
147 		denali_clear_irq(denali, i, irq_status);
148 
149 		if (i != denali->active_bank)
150 			continue;
151 
152 		denali->irq_status |= irq_status;
153 
154 		if (denali->irq_status & denali->irq_mask)
155 			complete(&denali->complete);
156 	}
157 
158 	spin_unlock(&denali->irq_lock);
159 
160 	return ret;
161 }
162 
163 static void denali_reset_irq(struct denali_nand_info *denali)
164 {
165 	unsigned long flags;
166 
167 	spin_lock_irqsave(&denali->irq_lock, flags);
168 	denali->irq_status = 0;
169 	denali->irq_mask = 0;
170 	spin_unlock_irqrestore(&denali->irq_lock, flags);
171 }
172 
173 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
174 				    uint32_t irq_mask)
175 {
176 	unsigned long time_left, flags;
177 	uint32_t irq_status;
178 
179 	spin_lock_irqsave(&denali->irq_lock, flags);
180 
181 	irq_status = denali->irq_status;
182 
183 	if (irq_mask & irq_status) {
184 		/* return immediately if the IRQ has already happened. */
185 		spin_unlock_irqrestore(&denali->irq_lock, flags);
186 		return irq_status;
187 	}
188 
189 	denali->irq_mask = irq_mask;
190 	reinit_completion(&denali->complete);
191 	spin_unlock_irqrestore(&denali->irq_lock, flags);
192 
193 	time_left = wait_for_completion_timeout(&denali->complete,
194 						msecs_to_jiffies(1000));
195 	if (!time_left) {
196 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
197 			irq_mask);
198 		return 0;
199 	}
200 
201 	return denali->irq_status;
202 }
203 
204 static void denali_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
205 {
206 	struct mtd_info *mtd = nand_to_mtd(chip);
207 	struct denali_nand_info *denali = mtd_to_denali(mtd);
208 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
209 	int i;
210 
211 	for (i = 0; i < len; i++)
212 		buf[i] = denali->host_read(denali, addr);
213 }
214 
215 static void denali_write_buf(struct nand_chip *chip, const uint8_t *buf,
216 			     int len)
217 {
218 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
219 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
220 	int i;
221 
222 	for (i = 0; i < len; i++)
223 		denali->host_write(denali, addr, buf[i]);
224 }
225 
226 static void denali_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
227 {
228 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
229 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
230 	uint16_t *buf16 = (uint16_t *)buf;
231 	int i;
232 
233 	for (i = 0; i < len / 2; i++)
234 		buf16[i] = denali->host_read(denali, addr);
235 }
236 
237 static void denali_write_buf16(struct nand_chip *chip, const uint8_t *buf,
238 			       int len)
239 {
240 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
241 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
242 	const uint16_t *buf16 = (const uint16_t *)buf;
243 	int i;
244 
245 	for (i = 0; i < len / 2; i++)
246 		denali->host_write(denali, addr, buf16[i]);
247 }
248 
249 static uint8_t denali_read_byte(struct nand_chip *chip)
250 {
251 	uint8_t byte;
252 
253 	denali_read_buf(chip, &byte, 1);
254 
255 	return byte;
256 }
257 
258 static void denali_write_byte(struct nand_chip *chip, uint8_t byte)
259 {
260 	denali_write_buf(chip, &byte, 1);
261 }
262 
263 static void denali_cmd_ctrl(struct nand_chip *chip, int dat, unsigned int ctrl)
264 {
265 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
266 	uint32_t type;
267 
268 	if (ctrl & NAND_CLE)
269 		type = DENALI_MAP11_CMD;
270 	else if (ctrl & NAND_ALE)
271 		type = DENALI_MAP11_ADDR;
272 	else
273 		return;
274 
275 	/*
276 	 * Some commands are followed by chip->legacy.waitfunc.
277 	 * irq_status must be cleared here to catch the R/B# interrupt later.
278 	 */
279 	if (ctrl & NAND_CTRL_CHANGE)
280 		denali_reset_irq(denali);
281 
282 	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
283 }
284 
285 static int denali_check_erased_page(struct mtd_info *mtd,
286 				    struct nand_chip *chip, uint8_t *buf,
287 				    unsigned long uncor_ecc_flags,
288 				    unsigned int max_bitflips)
289 {
290 	struct denali_nand_info *denali = mtd_to_denali(mtd);
291 	uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
292 	int ecc_steps = chip->ecc.steps;
293 	int ecc_size = chip->ecc.size;
294 	int ecc_bytes = chip->ecc.bytes;
295 	int i, stat;
296 
297 	for (i = 0; i < ecc_steps; i++) {
298 		if (!(uncor_ecc_flags & BIT(i)))
299 			continue;
300 
301 		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
302 						  ecc_code, ecc_bytes,
303 						  NULL, 0,
304 						  chip->ecc.strength);
305 		if (stat < 0) {
306 			mtd->ecc_stats.failed++;
307 		} else {
308 			mtd->ecc_stats.corrected += stat;
309 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
310 		}
311 
312 		buf += ecc_size;
313 		ecc_code += ecc_bytes;
314 	}
315 
316 	return max_bitflips;
317 }
318 
319 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
320 			       struct denali_nand_info *denali,
321 			       unsigned long *uncor_ecc_flags)
322 {
323 	struct nand_chip *chip = mtd_to_nand(mtd);
324 	int bank = denali->active_bank;
325 	uint32_t ecc_cor;
326 	unsigned int max_bitflips;
327 
328 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
329 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
330 
331 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
332 		/*
333 		 * This flag is set when uncorrectable error occurs at least in
334 		 * one ECC sector.  We can not know "how many sectors", or
335 		 * "which sector(s)".  We need erase-page check for all sectors.
336 		 */
337 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
338 		return 0;
339 	}
340 
341 	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
342 
343 	/*
344 	 * The register holds the maximum of per-sector corrected bitflips.
345 	 * This is suitable for the return value of the ->read_page() callback.
346 	 * Unfortunately, we can not know the total number of corrected bits in
347 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
348 	 */
349 	mtd->ecc_stats.corrected += max_bitflips;
350 
351 	return max_bitflips;
352 }
353 
354 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
355 			       struct denali_nand_info *denali,
356 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
357 {
358 	unsigned int ecc_size = denali->nand.ecc.size;
359 	unsigned int bitflips = 0;
360 	unsigned int max_bitflips = 0;
361 	uint32_t err_addr, err_cor_info;
362 	unsigned int err_byte, err_sector, err_device;
363 	uint8_t err_cor_value;
364 	unsigned int prev_sector = 0;
365 	uint32_t irq_status;
366 
367 	denali_reset_irq(denali);
368 
369 	do {
370 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
371 		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
372 		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
373 
374 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
375 		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
376 					  err_cor_info);
377 		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
378 				       err_cor_info);
379 
380 		/* reset the bitflip counter when crossing ECC sector */
381 		if (err_sector != prev_sector)
382 			bitflips = 0;
383 
384 		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
385 			/*
386 			 * Check later if this is a real ECC error, or
387 			 * an erased sector.
388 			 */
389 			*uncor_ecc_flags |= BIT(err_sector);
390 		} else if (err_byte < ecc_size) {
391 			/*
392 			 * If err_byte is larger than ecc_size, means error
393 			 * happened in OOB, so we ignore it. It's no need for
394 			 * us to correct it err_device is represented the NAND
395 			 * error bits are happened in if there are more than
396 			 * one NAND connected.
397 			 */
398 			int offset;
399 			unsigned int flips_in_byte;
400 
401 			offset = (err_sector * ecc_size + err_byte) *
402 					denali->devs_per_cs + err_device;
403 
404 			/* correct the ECC error */
405 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
406 			buf[offset] ^= err_cor_value;
407 			mtd->ecc_stats.corrected += flips_in_byte;
408 			bitflips += flips_in_byte;
409 
410 			max_bitflips = max(max_bitflips, bitflips);
411 		}
412 
413 		prev_sector = err_sector;
414 	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
415 
416 	/*
417 	 * Once handle all ECC errors, controller will trigger an
418 	 * ECC_TRANSACTION_DONE interrupt.
419 	 */
420 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
421 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
422 		return -EIO;
423 
424 	return max_bitflips;
425 }
426 
427 static void denali_setup_dma64(struct denali_nand_info *denali,
428 			       dma_addr_t dma_addr, int page, int write)
429 {
430 	uint32_t mode;
431 	const int page_count = 1;
432 
433 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
434 
435 	/* DMA is a three step process */
436 
437 	/*
438 	 * 1. setup transfer type, interrupt when complete,
439 	 *    burst len = 64 bytes, the number of pages
440 	 */
441 	denali->host_write(denali, mode,
442 			   0x01002000 | (64 << 16) | (write << 8) | page_count);
443 
444 	/* 2. set memory low address */
445 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
446 
447 	/* 3. set memory high address */
448 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
449 }
450 
451 static void denali_setup_dma32(struct denali_nand_info *denali,
452 			       dma_addr_t dma_addr, int page, int write)
453 {
454 	uint32_t mode;
455 	const int page_count = 1;
456 
457 	mode = DENALI_MAP10 | DENALI_BANK(denali);
458 
459 	/* DMA is a four step process */
460 
461 	/* 1. setup transfer type and # of pages */
462 	denali->host_write(denali, mode | page,
463 			   0x2000 | (write << 8) | page_count);
464 
465 	/* 2. set memory high address bits 23:8 */
466 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
467 
468 	/* 3. set memory low address bits 23:8 */
469 	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
470 
471 	/* 4. interrupt when complete, burst len = 64 bytes */
472 	denali->host_write(denali, mode | 0x14000, 0x2400);
473 }
474 
475 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
476 			   size_t size, int page)
477 {
478 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
479 	uint32_t *buf32 = (uint32_t *)buf;
480 	uint32_t irq_status, ecc_err_mask;
481 	int i;
482 
483 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
484 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
485 	else
486 		ecc_err_mask = INTR__ECC_ERR;
487 
488 	denali_reset_irq(denali);
489 
490 	for (i = 0; i < size / 4; i++)
491 		*buf32++ = denali->host_read(denali, addr);
492 
493 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
494 	if (!(irq_status & INTR__PAGE_XFER_INC))
495 		return -EIO;
496 
497 	if (irq_status & INTR__ERASED_PAGE)
498 		memset(buf, 0xff, size);
499 
500 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
501 }
502 
503 static int denali_pio_write(struct denali_nand_info *denali,
504 			    const void *buf, size_t size, int page)
505 {
506 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
507 	const uint32_t *buf32 = (uint32_t *)buf;
508 	uint32_t irq_status;
509 	int i;
510 
511 	denali_reset_irq(denali);
512 
513 	for (i = 0; i < size / 4; i++)
514 		denali->host_write(denali, addr, *buf32++);
515 
516 	irq_status = denali_wait_for_irq(denali,
517 				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
518 	if (!(irq_status & INTR__PROGRAM_COMP))
519 		return -EIO;
520 
521 	return 0;
522 }
523 
524 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
525 			   size_t size, int page, int write)
526 {
527 	if (write)
528 		return denali_pio_write(denali, buf, size, page);
529 	else
530 		return denali_pio_read(denali, buf, size, page);
531 }
532 
533 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
534 			   size_t size, int page, int write)
535 {
536 	dma_addr_t dma_addr;
537 	uint32_t irq_mask, irq_status, ecc_err_mask;
538 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 	int ret = 0;
540 
541 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
542 	if (dma_mapping_error(denali->dev, dma_addr)) {
543 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
544 		return denali_pio_xfer(denali, buf, size, page, write);
545 	}
546 
547 	if (write) {
548 		/*
549 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
550 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
551 		 * when the page program is completed.
552 		 */
553 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
554 		ecc_err_mask = 0;
555 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
556 		irq_mask = INTR__DMA_CMD_COMP;
557 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
558 	} else {
559 		irq_mask = INTR__DMA_CMD_COMP;
560 		ecc_err_mask = INTR__ECC_ERR;
561 	}
562 
563 	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
564 	/*
565 	 * The ->setup_dma() hook kicks DMA by using the data/command
566 	 * interface, which belongs to a different AXI port from the
567 	 * register interface.  Read back the register to avoid a race.
568 	 */
569 	ioread32(denali->reg + DMA_ENABLE);
570 
571 	denali_reset_irq(denali);
572 	denali->setup_dma(denali, dma_addr, page, write);
573 
574 	irq_status = denali_wait_for_irq(denali, irq_mask);
575 	if (!(irq_status & INTR__DMA_CMD_COMP))
576 		ret = -EIO;
577 	else if (irq_status & ecc_err_mask)
578 		ret = -EBADMSG;
579 
580 	iowrite32(0, denali->reg + DMA_ENABLE);
581 
582 	dma_unmap_single(denali->dev, dma_addr, size, dir);
583 
584 	if (irq_status & INTR__ERASED_PAGE)
585 		memset(buf, 0xff, size);
586 
587 	return ret;
588 }
589 
590 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
591 			    size_t size, int page, int raw, int write)
592 {
593 	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
594 	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
595 		  denali->reg + TRANSFER_SPARE_REG);
596 
597 	if (denali->dma_avail)
598 		return denali_dma_xfer(denali, buf, size, page, write);
599 	else
600 		return denali_pio_xfer(denali, buf, size, page, write);
601 }
602 
603 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
604 			    int page, int write)
605 {
606 	struct denali_nand_info *denali = mtd_to_denali(mtd);
607 	int writesize = mtd->writesize;
608 	int oobsize = mtd->oobsize;
609 	uint8_t *bufpoi = chip->oob_poi;
610 	int ecc_steps = chip->ecc.steps;
611 	int ecc_size = chip->ecc.size;
612 	int ecc_bytes = chip->ecc.bytes;
613 	int oob_skip = denali->oob_skip_bytes;
614 	size_t size = writesize + oobsize;
615 	int i, pos, len;
616 
617 	/* BBM at the beginning of the OOB area */
618 	if (write)
619 		nand_prog_page_begin_op(chip, page, writesize, bufpoi,
620 					oob_skip);
621 	else
622 		nand_read_page_op(chip, page, writesize, bufpoi, oob_skip);
623 	bufpoi += oob_skip;
624 
625 	/* OOB ECC */
626 	for (i = 0; i < ecc_steps; i++) {
627 		pos = ecc_size + i * (ecc_size + ecc_bytes);
628 		len = ecc_bytes;
629 
630 		if (pos >= writesize)
631 			pos += oob_skip;
632 		else if (pos + len > writesize)
633 			len = writesize - pos;
634 
635 		if (write)
636 			nand_change_write_column_op(chip, pos, bufpoi, len,
637 						    false);
638 		else
639 			nand_change_read_column_op(chip, pos, bufpoi, len,
640 						   false);
641 		bufpoi += len;
642 		if (len < ecc_bytes) {
643 			len = ecc_bytes - len;
644 			if (write)
645 				nand_change_write_column_op(chip, writesize +
646 							    oob_skip, bufpoi,
647 							    len, false);
648 			else
649 				nand_change_read_column_op(chip, writesize +
650 							   oob_skip, bufpoi,
651 							   len, false);
652 			bufpoi += len;
653 		}
654 	}
655 
656 	/* OOB free */
657 	len = oobsize - (bufpoi - chip->oob_poi);
658 	if (write)
659 		nand_change_write_column_op(chip, size - len, bufpoi, len,
660 					    false);
661 	else
662 		nand_change_read_column_op(chip, size - len, bufpoi, len,
663 					   false);
664 }
665 
666 static int denali_read_page_raw(struct nand_chip *chip, uint8_t *buf,
667 				int oob_required, int page)
668 {
669 	struct mtd_info *mtd = nand_to_mtd(chip);
670 	struct denali_nand_info *denali = mtd_to_denali(mtd);
671 	int writesize = mtd->writesize;
672 	int oobsize = mtd->oobsize;
673 	int ecc_steps = chip->ecc.steps;
674 	int ecc_size = chip->ecc.size;
675 	int ecc_bytes = chip->ecc.bytes;
676 	void *tmp_buf = denali->buf;
677 	int oob_skip = denali->oob_skip_bytes;
678 	size_t size = writesize + oobsize;
679 	int ret, i, pos, len;
680 
681 	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
682 	if (ret)
683 		return ret;
684 
685 	/* Arrange the buffer for syndrome payload/ecc layout */
686 	if (buf) {
687 		for (i = 0; i < ecc_steps; i++) {
688 			pos = i * (ecc_size + ecc_bytes);
689 			len = ecc_size;
690 
691 			if (pos >= writesize)
692 				pos += oob_skip;
693 			else if (pos + len > writesize)
694 				len = writesize - pos;
695 
696 			memcpy(buf, tmp_buf + pos, len);
697 			buf += len;
698 			if (len < ecc_size) {
699 				len = ecc_size - len;
700 				memcpy(buf, tmp_buf + writesize + oob_skip,
701 				       len);
702 				buf += len;
703 			}
704 		}
705 	}
706 
707 	if (oob_required) {
708 		uint8_t *oob = chip->oob_poi;
709 
710 		/* BBM at the beginning of the OOB area */
711 		memcpy(oob, tmp_buf + writesize, oob_skip);
712 		oob += oob_skip;
713 
714 		/* OOB ECC */
715 		for (i = 0; i < ecc_steps; i++) {
716 			pos = ecc_size + i * (ecc_size + ecc_bytes);
717 			len = ecc_bytes;
718 
719 			if (pos >= writesize)
720 				pos += oob_skip;
721 			else if (pos + len > writesize)
722 				len = writesize - pos;
723 
724 			memcpy(oob, tmp_buf + pos, len);
725 			oob += len;
726 			if (len < ecc_bytes) {
727 				len = ecc_bytes - len;
728 				memcpy(oob, tmp_buf + writesize + oob_skip,
729 				       len);
730 				oob += len;
731 			}
732 		}
733 
734 		/* OOB free */
735 		len = oobsize - (oob - chip->oob_poi);
736 		memcpy(oob, tmp_buf + size - len, len);
737 	}
738 
739 	return 0;
740 }
741 
742 static int denali_read_oob(struct nand_chip *chip, int page)
743 {
744 	struct mtd_info *mtd = nand_to_mtd(chip);
745 
746 	denali_oob_xfer(mtd, chip, page, 0);
747 
748 	return 0;
749 }
750 
751 static int denali_write_oob(struct nand_chip *chip, int page)
752 {
753 	struct mtd_info *mtd = nand_to_mtd(chip);
754 
755 	denali_oob_xfer(mtd, chip, page, 1);
756 
757 	return nand_prog_page_end_op(chip);
758 }
759 
760 static int denali_read_page(struct nand_chip *chip, uint8_t *buf,
761 			    int oob_required, int page)
762 {
763 	struct mtd_info *mtd = nand_to_mtd(chip);
764 	struct denali_nand_info *denali = mtd_to_denali(mtd);
765 	unsigned long uncor_ecc_flags = 0;
766 	int stat = 0;
767 	int ret;
768 
769 	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
770 	if (ret && ret != -EBADMSG)
771 		return ret;
772 
773 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
774 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
775 	else if (ret == -EBADMSG)
776 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
777 
778 	if (stat < 0)
779 		return stat;
780 
781 	if (uncor_ecc_flags) {
782 		ret = denali_read_oob(chip, page);
783 		if (ret)
784 			return ret;
785 
786 		stat = denali_check_erased_page(mtd, chip, buf,
787 						uncor_ecc_flags, stat);
788 	}
789 
790 	return stat;
791 }
792 
793 static int denali_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
794 				 int oob_required, int page)
795 {
796 	struct mtd_info *mtd = nand_to_mtd(chip);
797 	struct denali_nand_info *denali = mtd_to_denali(mtd);
798 	int writesize = mtd->writesize;
799 	int oobsize = mtd->oobsize;
800 	int ecc_steps = chip->ecc.steps;
801 	int ecc_size = chip->ecc.size;
802 	int ecc_bytes = chip->ecc.bytes;
803 	void *tmp_buf = denali->buf;
804 	int oob_skip = denali->oob_skip_bytes;
805 	size_t size = writesize + oobsize;
806 	int i, pos, len;
807 
808 	/*
809 	 * Fill the buffer with 0xff first except the full page transfer.
810 	 * This simplifies the logic.
811 	 */
812 	if (!buf || !oob_required)
813 		memset(tmp_buf, 0xff, size);
814 
815 	/* Arrange the buffer for syndrome payload/ecc layout */
816 	if (buf) {
817 		for (i = 0; i < ecc_steps; i++) {
818 			pos = i * (ecc_size + ecc_bytes);
819 			len = ecc_size;
820 
821 			if (pos >= writesize)
822 				pos += oob_skip;
823 			else if (pos + len > writesize)
824 				len = writesize - pos;
825 
826 			memcpy(tmp_buf + pos, buf, len);
827 			buf += len;
828 			if (len < ecc_size) {
829 				len = ecc_size - len;
830 				memcpy(tmp_buf + writesize + oob_skip, buf,
831 				       len);
832 				buf += len;
833 			}
834 		}
835 	}
836 
837 	if (oob_required) {
838 		const uint8_t *oob = chip->oob_poi;
839 
840 		/* BBM at the beginning of the OOB area */
841 		memcpy(tmp_buf + writesize, oob, oob_skip);
842 		oob += oob_skip;
843 
844 		/* OOB ECC */
845 		for (i = 0; i < ecc_steps; i++) {
846 			pos = ecc_size + i * (ecc_size + ecc_bytes);
847 			len = ecc_bytes;
848 
849 			if (pos >= writesize)
850 				pos += oob_skip;
851 			else if (pos + len > writesize)
852 				len = writesize - pos;
853 
854 			memcpy(tmp_buf + pos, oob, len);
855 			oob += len;
856 			if (len < ecc_bytes) {
857 				len = ecc_bytes - len;
858 				memcpy(tmp_buf + writesize + oob_skip, oob,
859 				       len);
860 				oob += len;
861 			}
862 		}
863 
864 		/* OOB free */
865 		len = oobsize - (oob - chip->oob_poi);
866 		memcpy(tmp_buf + size - len, oob, len);
867 	}
868 
869 	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
870 }
871 
872 static int denali_write_page(struct nand_chip *chip, const uint8_t *buf,
873 			     int oob_required, int page)
874 {
875 	struct mtd_info *mtd = nand_to_mtd(chip);
876 	struct denali_nand_info *denali = mtd_to_denali(mtd);
877 
878 	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
879 				page, 0, 1);
880 }
881 
882 static void denali_select_chip(struct nand_chip *chip, int cs)
883 {
884 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
885 
886 	denali->active_bank = cs;
887 }
888 
889 static int denali_waitfunc(struct nand_chip *chip)
890 {
891 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
892 	uint32_t irq_status;
893 
894 	/* R/B# pin transitioned from low to high? */
895 	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
896 
897 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
898 }
899 
900 static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
901 				       const struct nand_data_interface *conf)
902 {
903 	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
904 	const struct nand_sdr_timings *timings;
905 	unsigned long t_x, mult_x;
906 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
907 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
908 	int addr_2_data_mask;
909 	uint32_t tmp;
910 
911 	timings = nand_get_sdr_timings(conf);
912 	if (IS_ERR(timings))
913 		return PTR_ERR(timings);
914 
915 	/* clk_x period in picoseconds */
916 	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
917 	if (!t_x)
918 		return -EINVAL;
919 
920 	/*
921 	 * The bus interface clock, clk_x, is phase aligned with the core clock.
922 	 * The clk_x is an integral multiple N of the core clk.  The value N is
923 	 * configured at IP delivery time, and its available value is 4, 5, 6.
924 	 */
925 	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
926 	if (mult_x < 4 || mult_x > 6)
927 		return -EINVAL;
928 
929 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
930 		return 0;
931 
932 	/* tREA -> ACC_CLKS */
933 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
934 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
935 
936 	tmp = ioread32(denali->reg + ACC_CLKS);
937 	tmp &= ~ACC_CLKS__VALUE;
938 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
939 	iowrite32(tmp, denali->reg + ACC_CLKS);
940 
941 	/* tRWH -> RE_2_WE */
942 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
943 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
944 
945 	tmp = ioread32(denali->reg + RE_2_WE);
946 	tmp &= ~RE_2_WE__VALUE;
947 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
948 	iowrite32(tmp, denali->reg + RE_2_WE);
949 
950 	/* tRHZ -> RE_2_RE */
951 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
952 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
953 
954 	tmp = ioread32(denali->reg + RE_2_RE);
955 	tmp &= ~RE_2_RE__VALUE;
956 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
957 	iowrite32(tmp, denali->reg + RE_2_RE);
958 
959 	/*
960 	 * tCCS, tWHR -> WE_2_RE
961 	 *
962 	 * With WE_2_RE properly set, the Denali controller automatically takes
963 	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
964 	 */
965 	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
966 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
967 
968 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
969 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
970 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
971 	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
972 
973 	/* tADL -> ADDR_2_DATA */
974 
975 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
976 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
977 	if (denali->revision < 0x0501)
978 		addr_2_data_mask >>= 1;
979 
980 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
981 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
982 
983 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
984 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
985 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
986 	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
987 
988 	/* tREH, tWH -> RDWR_EN_HI_CNT */
989 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
990 				  t_x);
991 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
992 
993 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
994 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
995 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
996 	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
997 
998 	/* tRP, tWP -> RDWR_EN_LO_CNT */
999 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
1000 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1001 				     t_x);
1002 	rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
1003 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1004 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1005 
1006 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1007 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
1008 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
1009 	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1010 
1011 	/* tCS, tCEA -> CS_SETUP_CNT */
1012 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
1013 			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
1014 			0);
1015 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1016 
1017 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
1018 	tmp &= ~CS_SETUP_CNT__VALUE;
1019 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
1020 	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1021 
1022 	return 0;
1023 }
1024 
1025 static void denali_hw_init(struct denali_nand_info *denali)
1026 {
1027 	/*
1028 	 * The REVISION register may not be reliable.  Platforms are allowed to
1029 	 * override it.
1030 	 */
1031 	if (!denali->revision)
1032 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1033 
1034 	/*
1035 	 * Set how many bytes should be skipped before writing data in OOB.
1036 	 * If a non-zero value has already been set (by firmware or something),
1037 	 * just use it.  Otherwise, set the driver default.
1038 	 */
1039 	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1040 	if (!denali->oob_skip_bytes) {
1041 		denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
1042 		iowrite32(denali->oob_skip_bytes,
1043 			  denali->reg + SPARE_AREA_SKIP_BYTES);
1044 	}
1045 
1046 	denali_detect_max_banks(denali);
1047 	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1048 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1049 
1050 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1051 }
1052 
1053 int denali_calc_ecc_bytes(int step_size, int strength)
1054 {
1055 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
1056 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1057 }
1058 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1059 
1060 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1061 				struct mtd_oob_region *oobregion)
1062 {
1063 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1064 	struct nand_chip *chip = mtd_to_nand(mtd);
1065 
1066 	if (section)
1067 		return -ERANGE;
1068 
1069 	oobregion->offset = denali->oob_skip_bytes;
1070 	oobregion->length = chip->ecc.total;
1071 
1072 	return 0;
1073 }
1074 
1075 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1076 				 struct mtd_oob_region *oobregion)
1077 {
1078 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1079 	struct nand_chip *chip = mtd_to_nand(mtd);
1080 
1081 	if (section)
1082 		return -ERANGE;
1083 
1084 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1085 	oobregion->length = mtd->oobsize - oobregion->offset;
1086 
1087 	return 0;
1088 }
1089 
1090 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1091 	.ecc = denali_ooblayout_ecc,
1092 	.free = denali_ooblayout_free,
1093 };
1094 
1095 static int denali_multidev_fixup(struct denali_nand_info *denali)
1096 {
1097 	struct nand_chip *chip = &denali->nand;
1098 	struct mtd_info *mtd = nand_to_mtd(chip);
1099 
1100 	/*
1101 	 * Support for multi device:
1102 	 * When the IP configuration is x16 capable and two x8 chips are
1103 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1104 	 * In this case, the core framework knows nothing about this fact,
1105 	 * so we should tell it the _logical_ pagesize and anything necessary.
1106 	 */
1107 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1108 
1109 	/*
1110 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1111 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
1112 	 */
1113 	if (denali->devs_per_cs == 0) {
1114 		denali->devs_per_cs = 1;
1115 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
1116 	}
1117 
1118 	if (denali->devs_per_cs == 1)
1119 		return 0;
1120 
1121 	if (denali->devs_per_cs != 2) {
1122 		dev_err(denali->dev, "unsupported number of devices %d\n",
1123 			denali->devs_per_cs);
1124 		return -EINVAL;
1125 	}
1126 
1127 	/* 2 chips in parallel */
1128 	mtd->size <<= 1;
1129 	mtd->erasesize <<= 1;
1130 	mtd->writesize <<= 1;
1131 	mtd->oobsize <<= 1;
1132 	chip->chipsize <<= 1;
1133 	chip->page_shift += 1;
1134 	chip->phys_erase_shift += 1;
1135 	chip->bbt_erase_shift += 1;
1136 	chip->chip_shift += 1;
1137 	chip->pagemask <<= 1;
1138 	chip->ecc.size <<= 1;
1139 	chip->ecc.bytes <<= 1;
1140 	chip->ecc.strength <<= 1;
1141 	denali->oob_skip_bytes <<= 1;
1142 
1143 	return 0;
1144 }
1145 
1146 static int denali_attach_chip(struct nand_chip *chip)
1147 {
1148 	struct mtd_info *mtd = nand_to_mtd(chip);
1149 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1150 	int ret;
1151 
1152 	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1153 		denali->dma_avail = 1;
1154 
1155 	if (denali->dma_avail) {
1156 		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1157 
1158 		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1159 		if (ret) {
1160 			dev_info(denali->dev,
1161 				 "Failed to set DMA mask. Disabling DMA.\n");
1162 			denali->dma_avail = 0;
1163 		}
1164 	}
1165 
1166 	if (denali->dma_avail) {
1167 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1168 		chip->buf_align = 16;
1169 		if (denali->caps & DENALI_CAP_DMA_64BIT)
1170 			denali->setup_dma = denali_setup_dma64;
1171 		else
1172 			denali->setup_dma = denali_setup_dma32;
1173 	}
1174 
1175 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1176 	chip->bbt_options |= NAND_BBT_NO_OOB;
1177 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1178 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1179 
1180 	ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
1181 				   mtd->oobsize - denali->oob_skip_bytes);
1182 	if (ret) {
1183 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1184 		return ret;
1185 	}
1186 
1187 	dev_dbg(denali->dev,
1188 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1189 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1190 
1191 	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
1192 		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
1193 		  denali->reg + ECC_CORRECTION);
1194 	iowrite32(mtd->erasesize / mtd->writesize,
1195 		  denali->reg + PAGES_PER_BLOCK);
1196 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1197 		  denali->reg + DEVICE_WIDTH);
1198 	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
1199 		  denali->reg + TWO_ROW_ADDR_CYCLES);
1200 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1201 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1202 
1203 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1204 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1205 	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
1206 	iowrite32(mtd->writesize / chip->ecc.size,
1207 		  denali->reg + CFG_NUM_DATA_BLOCKS);
1208 
1209 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1210 
1211 	if (chip->options & NAND_BUSWIDTH_16) {
1212 		chip->legacy.read_buf = denali_read_buf16;
1213 		chip->legacy.write_buf = denali_write_buf16;
1214 	} else {
1215 		chip->legacy.read_buf = denali_read_buf;
1216 		chip->legacy.write_buf = denali_write_buf;
1217 	}
1218 	chip->ecc.read_page = denali_read_page;
1219 	chip->ecc.read_page_raw = denali_read_page_raw;
1220 	chip->ecc.write_page = denali_write_page;
1221 	chip->ecc.write_page_raw = denali_write_page_raw;
1222 	chip->ecc.read_oob = denali_read_oob;
1223 	chip->ecc.write_oob = denali_write_oob;
1224 
1225 	ret = denali_multidev_fixup(denali);
1226 	if (ret)
1227 		return ret;
1228 
1229 	/*
1230 	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
1231 	 * use devm_kmalloc() because the memory allocated by devm_ does not
1232 	 * guarantee DMA-safe alignment.
1233 	 */
1234 	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1235 	if (!denali->buf)
1236 		return -ENOMEM;
1237 
1238 	return 0;
1239 }
1240 
1241 static void denali_detach_chip(struct nand_chip *chip)
1242 {
1243 	struct mtd_info *mtd = nand_to_mtd(chip);
1244 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1245 
1246 	kfree(denali->buf);
1247 }
1248 
1249 static const struct nand_controller_ops denali_controller_ops = {
1250 	.attach_chip = denali_attach_chip,
1251 	.detach_chip = denali_detach_chip,
1252 	.setup_data_interface = denali_setup_data_interface,
1253 };
1254 
1255 int denali_init(struct denali_nand_info *denali)
1256 {
1257 	struct nand_chip *chip = &denali->nand;
1258 	struct mtd_info *mtd = nand_to_mtd(chip);
1259 	u32 features = ioread32(denali->reg + FEATURES);
1260 	int ret;
1261 
1262 	mtd->dev.parent = denali->dev;
1263 	denali_hw_init(denali);
1264 
1265 	init_completion(&denali->complete);
1266 	spin_lock_init(&denali->irq_lock);
1267 
1268 	denali_clear_irq_all(denali);
1269 
1270 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1271 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
1272 	if (ret) {
1273 		dev_err(denali->dev, "Unable to request IRQ\n");
1274 		return ret;
1275 	}
1276 
1277 	denali_enable_irq(denali);
1278 
1279 	denali->active_bank = DENALI_INVALID_BANK;
1280 
1281 	nand_set_flash_node(chip, denali->dev->of_node);
1282 	/* Fallback to the default name if DT did not give "label" property */
1283 	if (!mtd->name)
1284 		mtd->name = "denali-nand";
1285 
1286 	chip->legacy.select_chip = denali_select_chip;
1287 	chip->legacy.read_byte = denali_read_byte;
1288 	chip->legacy.write_byte = denali_write_byte;
1289 	chip->legacy.cmd_ctrl = denali_cmd_ctrl;
1290 	chip->legacy.waitfunc = denali_waitfunc;
1291 
1292 	if (features & FEATURES__INDEX_ADDR) {
1293 		denali->host_read = denali_indexed_read;
1294 		denali->host_write = denali_indexed_write;
1295 	} else {
1296 		denali->host_read = denali_direct_read;
1297 		denali->host_write = denali_direct_write;
1298 	}
1299 
1300 	/* clk rate info is needed for setup_data_interface */
1301 	if (!denali->clk_rate || !denali->clk_x_rate)
1302 		chip->options |= NAND_KEEP_TIMINGS;
1303 
1304 	chip->legacy.dummy_controller.ops = &denali_controller_ops;
1305 	ret = nand_scan(chip, denali->max_banks);
1306 	if (ret)
1307 		goto disable_irq;
1308 
1309 	ret = mtd_device_register(mtd, NULL, 0);
1310 	if (ret) {
1311 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1312 		goto cleanup_nand;
1313 	}
1314 
1315 	return 0;
1316 
1317 cleanup_nand:
1318 	nand_cleanup(chip);
1319 disable_irq:
1320 	denali_disable_irq(denali);
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(denali_init);
1325 
1326 void denali_remove(struct denali_nand_info *denali)
1327 {
1328 	nand_release(&denali->nand);
1329 	denali_disable_irq(denali);
1330 }
1331 EXPORT_SYMBOL(denali_remove);
1332 
1333 MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1334 MODULE_AUTHOR("Intel Corporation and its suppliers");
1335 MODULE_LICENSE("GPL v2");
1336