1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips 4 * 5 * Copyright © 2006 Texas Instruments. 6 * 7 * Port to 2.6.23 Copyright © 2008 by: 8 * Sander Huijsen <Shuijsen@optelecom-nkf.com> 9 * Troy Kisky <troy.kisky@boundarydevices.com> 10 * Dirk Behme <Dirk.Behme@gmail.com> 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/err.h> 17 #include <linux/iopoll.h> 18 #include <linux/mtd/rawnand.h> 19 #include <linux/mtd/partitions.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 23 #define NRCSR_OFFSET 0x00 24 #define NANDFCR_OFFSET 0x60 25 #define NANDFSR_OFFSET 0x64 26 #define NANDF1ECC_OFFSET 0x70 27 28 /* 4-bit ECC syndrome registers */ 29 #define NAND_4BIT_ECC_LOAD_OFFSET 0xbc 30 #define NAND_4BIT_ECC1_OFFSET 0xc0 31 #define NAND_4BIT_ECC2_OFFSET 0xc4 32 #define NAND_4BIT_ECC3_OFFSET 0xc8 33 #define NAND_4BIT_ECC4_OFFSET 0xcc 34 #define NAND_ERR_ADD1_OFFSET 0xd0 35 #define NAND_ERR_ADD2_OFFSET 0xd4 36 #define NAND_ERR_ERRVAL1_OFFSET 0xd8 37 #define NAND_ERR_ERRVAL2_OFFSET 0xdc 38 39 /* NOTE: boards don't need to use these address bits 40 * for ALE/CLE unless they support booting from NAND. 41 * They're used unless platform data overrides them. 42 */ 43 #define MASK_ALE 0x08 44 #define MASK_CLE 0x10 45 46 struct davinci_nand_pdata { 47 uint32_t mask_ale; 48 uint32_t mask_cle; 49 50 /* 51 * 0-indexed chip-select number of the asynchronous 52 * interface to which the NAND device has been connected. 53 * 54 * So, if you have NAND connected to CS3 of DA850, you 55 * will pass '1' here. Since the asynchronous interface 56 * on DA850 starts from CS2. 57 */ 58 uint32_t core_chipsel; 59 60 /* for packages using two chipselects */ 61 uint32_t mask_chipsel; 62 63 /* board's default static partition info */ 64 struct mtd_partition *parts; 65 unsigned int nr_parts; 66 67 /* none == NAND_ECC_ENGINE_TYPE_NONE (strongly *not* advised!!) 68 * soft == NAND_ECC_ENGINE_TYPE_SOFT 69 * else == NAND_ECC_ENGINE_TYPE_ON_HOST, according to ecc_bits 70 * 71 * All DaVinci-family chips support 1-bit hardware ECC. 72 * Newer ones also support 4-bit ECC, but are awkward 73 * using it with large page chips. 74 */ 75 enum nand_ecc_engine_type engine_type; 76 enum nand_ecc_placement ecc_placement; 77 u8 ecc_bits; 78 79 /* e.g. NAND_BUSWIDTH_16 */ 80 unsigned int options; 81 /* e.g. NAND_BBT_USE_FLASH */ 82 unsigned int bbt_options; 83 84 /* Main and mirror bbt descriptor overrides */ 85 struct nand_bbt_descr *bbt_td; 86 struct nand_bbt_descr *bbt_md; 87 }; 88 89 /* 90 * This is a device driver for the NAND flash controller found on the 91 * various DaVinci family chips. It handles up to four SoC chipselects, 92 * and some flavors of secondary chipselect (e.g. based on A12) as used 93 * with multichip packages. 94 * 95 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC 96 * available on chips like the DM355 and OMAP-L137 and needed with the 97 * more error-prone MLC NAND chips. 98 * 99 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY 100 * outputs in a "wire-AND" configuration, with no per-chip signals. 101 */ 102 struct davinci_nand_info { 103 struct nand_controller controller; 104 struct nand_chip chip; 105 106 struct platform_device *pdev; 107 108 bool is_readmode; 109 110 void __iomem *base; 111 void __iomem *vaddr; 112 113 void __iomem *current_cs; 114 115 uint32_t mask_chipsel; 116 uint32_t mask_ale; 117 uint32_t mask_cle; 118 119 uint32_t core_chipsel; 120 }; 121 122 static DEFINE_SPINLOCK(davinci_nand_lock); 123 static bool ecc4_busy; 124 125 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) 126 { 127 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); 128 } 129 130 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, 131 int offset) 132 { 133 return __raw_readl(info->base + offset); 134 } 135 136 static inline void davinci_nand_writel(struct davinci_nand_info *info, 137 int offset, unsigned long value) 138 { 139 __raw_writel(value, info->base + offset); 140 } 141 142 /*----------------------------------------------------------------------*/ 143 144 /* 145 * 1-bit hardware ECC ... context maintained for each core chipselect 146 */ 147 148 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) 149 { 150 struct davinci_nand_info *info = to_davinci_nand(mtd); 151 152 return davinci_nand_readl(info, NANDF1ECC_OFFSET 153 + 4 * info->core_chipsel); 154 } 155 156 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode) 157 { 158 struct davinci_nand_info *info; 159 uint32_t nandcfr; 160 unsigned long flags; 161 162 info = to_davinci_nand(nand_to_mtd(chip)); 163 164 /* Reset ECC hardware */ 165 nand_davinci_readecc_1bit(nand_to_mtd(chip)); 166 167 spin_lock_irqsave(&davinci_nand_lock, flags); 168 169 /* Restart ECC hardware */ 170 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); 171 nandcfr |= BIT(8 + info->core_chipsel); 172 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); 173 174 spin_unlock_irqrestore(&davinci_nand_lock, flags); 175 } 176 177 /* 178 * Read hardware ECC value and pack into three bytes 179 */ 180 static int nand_davinci_calculate_1bit(struct nand_chip *chip, 181 const u_char *dat, u_char *ecc_code) 182 { 183 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip)); 184 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); 185 186 /* invert so that erased block ecc is correct */ 187 ecc24 = ~ecc24; 188 ecc_code[0] = (u_char)(ecc24); 189 ecc_code[1] = (u_char)(ecc24 >> 8); 190 ecc_code[2] = (u_char)(ecc24 >> 16); 191 192 return 0; 193 } 194 195 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat, 196 u_char *read_ecc, u_char *calc_ecc) 197 { 198 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | 199 (read_ecc[2] << 16); 200 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | 201 (calc_ecc[2] << 16); 202 uint32_t diff = eccCalc ^ eccNand; 203 204 if (diff) { 205 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { 206 /* Correctable error */ 207 if ((diff >> (12 + 3)) < chip->ecc.size) { 208 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); 209 return 1; 210 } else { 211 return -EBADMSG; 212 } 213 } else if (!(diff & (diff - 1))) { 214 /* Single bit ECC error in the ECC itself, 215 * nothing to fix */ 216 return 1; 217 } else { 218 /* Uncorrectable error */ 219 return -EBADMSG; 220 } 221 222 } 223 return 0; 224 } 225 226 /*----------------------------------------------------------------------*/ 227 228 /* 229 * 4-bit hardware ECC ... context maintained over entire AEMIF 230 * 231 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED 232 * since that forces use of a problematic "infix OOB" layout. 233 * Among other things, it trashes manufacturer bad block markers. 234 * Also, and specific to this hardware, it ECC-protects the "prepad" 235 * in the OOB ... while having ECC protection for parts of OOB would 236 * seem useful, the current MTD stack sometimes wants to update the 237 * OOB without recomputing ECC. 238 */ 239 240 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode) 241 { 242 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 243 unsigned long flags; 244 u32 val; 245 246 /* Reset ECC hardware */ 247 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 248 249 spin_lock_irqsave(&davinci_nand_lock, flags); 250 251 /* Start 4-bit ECC calculation for read/write */ 252 val = davinci_nand_readl(info, NANDFCR_OFFSET); 253 val &= ~(0x03 << 4); 254 val |= (info->core_chipsel << 4) | BIT(12); 255 davinci_nand_writel(info, NANDFCR_OFFSET, val); 256 257 info->is_readmode = (mode == NAND_ECC_READ); 258 259 spin_unlock_irqrestore(&davinci_nand_lock, flags); 260 } 261 262 /* Read raw ECC code after writing to NAND. */ 263 static void 264 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) 265 { 266 const u32 mask = 0x03ff03ff; 267 268 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; 269 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; 270 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; 271 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; 272 } 273 274 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ 275 static int nand_davinci_calculate_4bit(struct nand_chip *chip, 276 const u_char *dat, u_char *ecc_code) 277 { 278 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 279 u32 raw_ecc[4], *p; 280 unsigned i; 281 282 /* After a read, terminate ECC calculation by a dummy read 283 * of some 4-bit ECC register. ECC covers everything that 284 * was read; correct() just uses the hardware state, so 285 * ecc_code is not needed. 286 */ 287 if (info->is_readmode) { 288 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 289 return 0; 290 } 291 292 /* Pack eight raw 10-bit ecc values into ten bytes, making 293 * two passes which each convert four values (in upper and 294 * lower halves of two 32-bit words) into five bytes. The 295 * ROM boot loader uses this same packing scheme. 296 */ 297 nand_davinci_readecc_4bit(info, raw_ecc); 298 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { 299 *ecc_code++ = p[0] & 0xff; 300 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); 301 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); 302 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); 303 *ecc_code++ = (p[1] >> 18) & 0xff; 304 } 305 306 return 0; 307 } 308 309 /* Correct up to 4 bits in data we just read, using state left in the 310 * hardware plus the ecc_code computed when it was first written. 311 */ 312 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data, 313 u_char *ecc_code, u_char *null) 314 { 315 int i; 316 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 317 unsigned short ecc10[8]; 318 unsigned short *ecc16; 319 u32 syndrome[4]; 320 u32 ecc_state; 321 unsigned num_errors, corrected; 322 unsigned long timeo; 323 324 /* Unpack ten bytes into eight 10 bit values. We know we're 325 * little-endian, and use type punning for less shifting/masking. 326 */ 327 if (WARN_ON(0x01 & (uintptr_t)ecc_code)) 328 return -EINVAL; 329 ecc16 = (unsigned short *)ecc_code; 330 331 ecc10[0] = (ecc16[0] >> 0) & 0x3ff; 332 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); 333 ecc10[2] = (ecc16[1] >> 4) & 0x3ff; 334 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); 335 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); 336 ecc10[5] = (ecc16[3] >> 2) & 0x3ff; 337 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); 338 ecc10[7] = (ecc16[4] >> 6) & 0x3ff; 339 340 /* Tell ECC controller about the expected ECC codes. */ 341 for (i = 7; i >= 0; i--) 342 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); 343 344 /* Allow time for syndrome calculation ... then read it. 345 * A syndrome of all zeroes 0 means no detected errors. 346 */ 347 davinci_nand_readl(info, NANDFSR_OFFSET); 348 nand_davinci_readecc_4bit(info, syndrome); 349 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) 350 return 0; 351 352 /* 353 * Clear any previous address calculation by doing a dummy read of an 354 * error address register. 355 */ 356 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); 357 358 /* Start address calculation, and wait for it to complete. 359 * We _could_ start reading more data while this is working, 360 * to speed up the overall page read. 361 */ 362 davinci_nand_writel(info, NANDFCR_OFFSET, 363 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); 364 365 /* 366 * ECC_STATE field reads 0x3 (Error correction complete) immediately 367 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately 368 * begin trying to poll for the state, you may fall right out of your 369 * loop without any of the correction calculations having taken place. 370 * The recommendation from the hardware team is to initially delay as 371 * long as ECC_STATE reads less than 4. After that, ECC HW has entered 372 * correction state. 373 */ 374 timeo = jiffies + usecs_to_jiffies(100); 375 do { 376 ecc_state = (davinci_nand_readl(info, 377 NANDFSR_OFFSET) >> 8) & 0x0f; 378 cpu_relax(); 379 } while ((ecc_state < 4) && time_before(jiffies, timeo)); 380 381 for (;;) { 382 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); 383 384 switch ((fsr >> 8) & 0x0f) { 385 case 0: /* no error, should not happen */ 386 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 387 return 0; 388 case 1: /* five or more errors detected */ 389 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 390 return -EBADMSG; 391 case 2: /* error addresses computed */ 392 case 3: 393 num_errors = 1 + ((fsr >> 16) & 0x03); 394 goto correct; 395 default: /* still working on it */ 396 cpu_relax(); 397 continue; 398 } 399 } 400 401 correct: 402 /* correct each error */ 403 for (i = 0, corrected = 0; i < num_errors; i++) { 404 int error_address, error_value; 405 406 if (i > 1) { 407 error_address = davinci_nand_readl(info, 408 NAND_ERR_ADD2_OFFSET); 409 error_value = davinci_nand_readl(info, 410 NAND_ERR_ERRVAL2_OFFSET); 411 } else { 412 error_address = davinci_nand_readl(info, 413 NAND_ERR_ADD1_OFFSET); 414 error_value = davinci_nand_readl(info, 415 NAND_ERR_ERRVAL1_OFFSET); 416 } 417 418 if (i & 1) { 419 error_address >>= 16; 420 error_value >>= 16; 421 } 422 error_address &= 0x3ff; 423 error_address = (512 + 7) - error_address; 424 425 if (error_address < 512) { 426 data[error_address] ^= error_value; 427 corrected++; 428 } 429 } 430 431 return corrected; 432 } 433 434 /*----------------------------------------------------------------------*/ 435 436 /* An ECC layout for using 4-bit ECC with small-page flash, storing 437 * ten ECC bytes plus the manufacturer's bad block marker byte, and 438 * and not overlapping the default BBT markers. 439 */ 440 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, 441 struct mtd_oob_region *oobregion) 442 { 443 if (section > 2) 444 return -ERANGE; 445 446 if (!section) { 447 oobregion->offset = 0; 448 oobregion->length = 5; 449 } else if (section == 1) { 450 oobregion->offset = 6; 451 oobregion->length = 2; 452 } else { 453 oobregion->offset = 13; 454 oobregion->length = 3; 455 } 456 457 return 0; 458 } 459 460 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, 461 struct mtd_oob_region *oobregion) 462 { 463 if (section > 1) 464 return -ERANGE; 465 466 if (!section) { 467 oobregion->offset = 8; 468 oobregion->length = 5; 469 } else { 470 oobregion->offset = 16; 471 oobregion->length = mtd->oobsize - 16; 472 } 473 474 return 0; 475 } 476 477 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { 478 .ecc = hwecc4_ooblayout_small_ecc, 479 .free = hwecc4_ooblayout_small_free, 480 }; 481 482 #if defined(CONFIG_OF) 483 static const struct of_device_id davinci_nand_of_match[] = { 484 {.compatible = "ti,davinci-nand", }, 485 {.compatible = "ti,keystone-nand", }, 486 {}, 487 }; 488 MODULE_DEVICE_TABLE(of, davinci_nand_of_match); 489 490 static struct davinci_nand_pdata 491 *nand_davinci_get_pdata(struct platform_device *pdev) 492 { 493 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { 494 struct davinci_nand_pdata *pdata; 495 const char *mode; 496 u32 prop; 497 498 pdata = devm_kzalloc(&pdev->dev, 499 sizeof(struct davinci_nand_pdata), 500 GFP_KERNEL); 501 pdev->dev.platform_data = pdata; 502 if (!pdata) 503 return ERR_PTR(-ENOMEM); 504 if (!of_property_read_u32(pdev->dev.of_node, 505 "ti,davinci-chipselect", &prop)) 506 pdata->core_chipsel = prop; 507 else 508 return ERR_PTR(-EINVAL); 509 510 if (!of_property_read_u32(pdev->dev.of_node, 511 "ti,davinci-mask-ale", &prop)) 512 pdata->mask_ale = prop; 513 if (!of_property_read_u32(pdev->dev.of_node, 514 "ti,davinci-mask-cle", &prop)) 515 pdata->mask_cle = prop; 516 if (!of_property_read_u32(pdev->dev.of_node, 517 "ti,davinci-mask-chipsel", &prop)) 518 pdata->mask_chipsel = prop; 519 if (!of_property_read_string(pdev->dev.of_node, 520 "ti,davinci-ecc-mode", &mode)) { 521 if (!strncmp("none", mode, 4)) 522 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE; 523 if (!strncmp("soft", mode, 4)) 524 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 525 if (!strncmp("hw", mode, 2)) 526 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 527 } 528 if (!of_property_read_u32(pdev->dev.of_node, 529 "ti,davinci-ecc-bits", &prop)) 530 pdata->ecc_bits = prop; 531 532 if (!of_property_read_u32(pdev->dev.of_node, 533 "ti,davinci-nand-buswidth", &prop) && prop == 16) 534 pdata->options |= NAND_BUSWIDTH_16; 535 536 if (of_property_read_bool(pdev->dev.of_node, 537 "ti,davinci-nand-use-bbt")) 538 pdata->bbt_options = NAND_BBT_USE_FLASH; 539 540 /* 541 * Since kernel v4.8, this driver has been fixed to enable 542 * use of 4-bit hardware ECC with subpages and verified on 543 * TI's keystone EVMs (K2L, K2HK and K2E). 544 * However, in the interest of not breaking systems using 545 * existing UBI partitions, sub-page writes are not being 546 * (re)enabled. If you want to use subpage writes on Keystone 547 * platforms (i.e. do not have any existing UBI partitions), 548 * then use "ti,davinci-nand" as the compatible in your 549 * device-tree file. 550 */ 551 if (of_device_is_compatible(pdev->dev.of_node, 552 "ti,keystone-nand")) { 553 pdata->options |= NAND_NO_SUBPAGE_WRITE; 554 } 555 } 556 557 return dev_get_platdata(&pdev->dev); 558 } 559 #else 560 static struct davinci_nand_pdata 561 *nand_davinci_get_pdata(struct platform_device *pdev) 562 { 563 return dev_get_platdata(&pdev->dev); 564 } 565 #endif 566 567 static int davinci_nand_attach_chip(struct nand_chip *chip) 568 { 569 struct mtd_info *mtd = nand_to_mtd(chip); 570 struct davinci_nand_info *info = to_davinci_nand(mtd); 571 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); 572 int ret = 0; 573 574 if (IS_ERR(pdata)) 575 return PTR_ERR(pdata); 576 577 /* Use board-specific ECC config */ 578 chip->ecc.engine_type = pdata->engine_type; 579 chip->ecc.placement = pdata->ecc_placement; 580 581 switch (chip->ecc.engine_type) { 582 case NAND_ECC_ENGINE_TYPE_NONE: 583 pdata->ecc_bits = 0; 584 break; 585 case NAND_ECC_ENGINE_TYPE_SOFT: 586 pdata->ecc_bits = 0; 587 /* 588 * This driver expects Hamming based ECC when engine_type is set 589 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to 590 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo 591 * field to davinci_nand_pdata. 592 */ 593 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 594 break; 595 case NAND_ECC_ENGINE_TYPE_ON_HOST: 596 if (pdata->ecc_bits == 4) { 597 int chunks = mtd->writesize / 512; 598 599 if (!chunks || mtd->oobsize < 16) { 600 dev_dbg(&info->pdev->dev, "too small\n"); 601 return -EINVAL; 602 } 603 604 /* 605 * No sanity checks: CPUs must support this, 606 * and the chips may not use NAND_BUSWIDTH_16. 607 */ 608 609 /* No sharing 4-bit hardware between chipselects yet */ 610 spin_lock_irq(&davinci_nand_lock); 611 if (ecc4_busy) 612 ret = -EBUSY; 613 else 614 ecc4_busy = true; 615 spin_unlock_irq(&davinci_nand_lock); 616 617 if (ret == -EBUSY) 618 return ret; 619 620 chip->ecc.calculate = nand_davinci_calculate_4bit; 621 chip->ecc.correct = nand_davinci_correct_4bit; 622 chip->ecc.hwctl = nand_davinci_hwctl_4bit; 623 chip->ecc.bytes = 10; 624 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 625 chip->ecc.algo = NAND_ECC_ALGO_BCH; 626 627 /* 628 * Update ECC layout if needed ... for 1-bit HW ECC, the 629 * default is OK, but it allocates 6 bytes when only 3 630 * are needed (for each 512 bytes). For 4-bit HW ECC, 631 * the default is not usable: 10 bytes needed, not 6. 632 * 633 * For small page chips, preserve the manufacturer's 634 * badblock marking data ... and make sure a flash BBT 635 * table marker fits in the free bytes. 636 */ 637 if (chunks == 1) { 638 mtd_set_ooblayout(mtd, 639 &hwecc4_small_ooblayout_ops); 640 } else if (chunks == 4 || chunks == 8) { 641 mtd_set_ooblayout(mtd, 642 nand_get_large_page_ooblayout()); 643 chip->ecc.read_page = nand_read_page_hwecc_oob_first; 644 } else { 645 return -EIO; 646 } 647 } else { 648 /* 1bit ecc hamming */ 649 chip->ecc.calculate = nand_davinci_calculate_1bit; 650 chip->ecc.correct = nand_davinci_correct_1bit; 651 chip->ecc.hwctl = nand_davinci_hwctl_1bit; 652 chip->ecc.bytes = 3; 653 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 654 } 655 chip->ecc.size = 512; 656 chip->ecc.strength = pdata->ecc_bits; 657 break; 658 default: 659 return -EINVAL; 660 } 661 662 return ret; 663 } 664 665 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf, 666 unsigned int len, bool force_8bit) 667 { 668 u32 alignment = ((uintptr_t)buf | len) & 3; 669 670 if (force_8bit || (alignment & 1)) 671 ioread8_rep(info->current_cs, buf, len); 672 else if (alignment & 3) 673 ioread16_rep(info->current_cs, buf, len >> 1); 674 else 675 ioread32_rep(info->current_cs, buf, len >> 2); 676 } 677 678 static void nand_davinci_data_out(struct davinci_nand_info *info, 679 const void *buf, unsigned int len, 680 bool force_8bit) 681 { 682 u32 alignment = ((uintptr_t)buf | len) & 3; 683 684 if (force_8bit || (alignment & 1)) 685 iowrite8_rep(info->current_cs, buf, len); 686 else if (alignment & 3) 687 iowrite16_rep(info->current_cs, buf, len >> 1); 688 else 689 iowrite32_rep(info->current_cs, buf, len >> 2); 690 } 691 692 static int davinci_nand_exec_instr(struct davinci_nand_info *info, 693 const struct nand_op_instr *instr) 694 { 695 unsigned int i, timeout_us; 696 u32 status; 697 int ret; 698 699 switch (instr->type) { 700 case NAND_OP_CMD_INSTR: 701 iowrite8(instr->ctx.cmd.opcode, 702 info->current_cs + info->mask_cle); 703 break; 704 705 case NAND_OP_ADDR_INSTR: 706 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 707 iowrite8(instr->ctx.addr.addrs[i], 708 info->current_cs + info->mask_ale); 709 } 710 break; 711 712 case NAND_OP_DATA_IN_INSTR: 713 nand_davinci_data_in(info, instr->ctx.data.buf.in, 714 instr->ctx.data.len, 715 instr->ctx.data.force_8bit); 716 break; 717 718 case NAND_OP_DATA_OUT_INSTR: 719 nand_davinci_data_out(info, instr->ctx.data.buf.out, 720 instr->ctx.data.len, 721 instr->ctx.data.force_8bit); 722 break; 723 724 case NAND_OP_WAITRDY_INSTR: 725 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 726 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET, 727 status, status & BIT(0), 100, 728 timeout_us); 729 if (ret) 730 return ret; 731 732 break; 733 } 734 735 if (instr->delay_ns) { 736 /* Dummy read to be sure that command is sent before ndelay starts */ 737 davinci_nand_readl(info, 0); 738 ndelay(instr->delay_ns); 739 } 740 741 return 0; 742 } 743 744 static int davinci_nand_exec_op(struct nand_chip *chip, 745 const struct nand_operation *op, 746 bool check_only) 747 { 748 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 749 unsigned int i; 750 751 if (check_only) 752 return 0; 753 754 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel); 755 756 for (i = 0; i < op->ninstrs; i++) { 757 int ret; 758 759 ret = davinci_nand_exec_instr(info, &op->instrs[i]); 760 if (ret) 761 return ret; 762 } 763 764 return 0; 765 } 766 767 static const struct nand_controller_ops davinci_nand_controller_ops = { 768 .attach_chip = davinci_nand_attach_chip, 769 .exec_op = davinci_nand_exec_op, 770 }; 771 772 static int nand_davinci_probe(struct platform_device *pdev) 773 { 774 struct davinci_nand_pdata *pdata; 775 struct davinci_nand_info *info; 776 struct resource *res1; 777 struct resource *res2; 778 void __iomem *vaddr; 779 void __iomem *base; 780 int ret; 781 uint32_t val; 782 struct mtd_info *mtd; 783 784 pdata = nand_davinci_get_pdata(pdev); 785 if (IS_ERR(pdata)) 786 return PTR_ERR(pdata); 787 788 /* insist on board-specific configuration */ 789 if (!pdata) 790 return -ENODEV; 791 792 /* which external chipselect will we be managing? */ 793 if (pdata->core_chipsel > 3) 794 return -ENODEV; 795 796 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 797 if (!info) 798 return -ENOMEM; 799 800 platform_set_drvdata(pdev, info); 801 802 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 803 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 804 if (!res1 || !res2) { 805 dev_err(&pdev->dev, "resource missing\n"); 806 return -EINVAL; 807 } 808 809 vaddr = devm_ioremap_resource(&pdev->dev, res1); 810 if (IS_ERR(vaddr)) 811 return PTR_ERR(vaddr); 812 813 /* 814 * This registers range is used to setup NAND settings. In case with 815 * TI AEMIF driver, the same memory address range is requested already 816 * by AEMIF, so we cannot request it twice, just ioremap. 817 * The AEMIF and NAND drivers not use the same registers in this range. 818 */ 819 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); 820 if (!base) { 821 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); 822 return -EADDRNOTAVAIL; 823 } 824 825 info->pdev = pdev; 826 info->base = base; 827 info->vaddr = vaddr; 828 829 mtd = nand_to_mtd(&info->chip); 830 mtd->dev.parent = &pdev->dev; 831 nand_set_flash_node(&info->chip, pdev->dev.of_node); 832 833 /* options such as NAND_BBT_USE_FLASH */ 834 info->chip.bbt_options = pdata->bbt_options; 835 /* options such as 16-bit widths */ 836 info->chip.options = pdata->options; 837 info->chip.bbt_td = pdata->bbt_td; 838 info->chip.bbt_md = pdata->bbt_md; 839 840 info->current_cs = info->vaddr; 841 info->core_chipsel = pdata->core_chipsel; 842 info->mask_chipsel = pdata->mask_chipsel; 843 844 /* use nandboot-capable ALE/CLE masks by default */ 845 info->mask_ale = pdata->mask_ale ? : MASK_ALE; 846 info->mask_cle = pdata->mask_cle ? : MASK_CLE; 847 848 spin_lock_irq(&davinci_nand_lock); 849 850 /* put CSxNAND into NAND mode */ 851 val = davinci_nand_readl(info, NANDFCR_OFFSET); 852 val |= BIT(info->core_chipsel); 853 davinci_nand_writel(info, NANDFCR_OFFSET, val); 854 855 spin_unlock_irq(&davinci_nand_lock); 856 857 /* Scan to find existence of the device(s) */ 858 nand_controller_init(&info->controller); 859 info->controller.ops = &davinci_nand_controller_ops; 860 info->chip.controller = &info->controller; 861 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1); 862 if (ret < 0) { 863 dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); 864 return ret; 865 } 866 867 if (pdata->parts) 868 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 869 else 870 ret = mtd_device_register(mtd, NULL, 0); 871 if (ret < 0) 872 goto err_cleanup_nand; 873 874 val = davinci_nand_readl(info, NRCSR_OFFSET); 875 dev_info(&pdev->dev, "controller rev. %d.%d\n", 876 (val >> 8) & 0xff, val & 0xff); 877 878 return 0; 879 880 err_cleanup_nand: 881 nand_cleanup(&info->chip); 882 883 return ret; 884 } 885 886 static void nand_davinci_remove(struct platform_device *pdev) 887 { 888 struct davinci_nand_info *info = platform_get_drvdata(pdev); 889 struct nand_chip *chip = &info->chip; 890 int ret; 891 892 spin_lock_irq(&davinci_nand_lock); 893 if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED) 894 ecc4_busy = false; 895 spin_unlock_irq(&davinci_nand_lock); 896 897 ret = mtd_device_unregister(nand_to_mtd(chip)); 898 WARN_ON(ret); 899 nand_cleanup(chip); 900 } 901 902 static struct platform_driver nand_davinci_driver = { 903 .probe = nand_davinci_probe, 904 .remove_new = nand_davinci_remove, 905 .driver = { 906 .name = "davinci_nand", 907 .of_match_table = of_match_ptr(davinci_nand_of_match), 908 }, 909 }; 910 MODULE_ALIAS("platform:davinci_nand"); 911 912 module_platform_driver(nand_davinci_driver); 913 914 MODULE_LICENSE("GPL"); 915 MODULE_AUTHOR("Texas Instruments"); 916 MODULE_DESCRIPTION("Davinci NAND flash driver"); 917 918