1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 2005, 2006 Red Hat Inc. 4 * 5 * Author: David Woodhouse <dwmw2@infradead.org> 6 * Tom Sylla <tom.sylla@amd.com> 7 * 8 * Overview: 9 * This is a device driver for the NAND flash controller found on 10 * the AMD CS5535/CS5536 companion chipsets for the Geode processor. 11 * mtd-id for command line partitioning is cs553x_nand_cs[0-3] 12 * where 0-3 reflects the chip select for NAND. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/delay.h> 20 #include <linux/mtd/mtd.h> 21 #include <linux/mtd/rawnand.h> 22 #include <linux/mtd/partitions.h> 23 #include <linux/iopoll.h> 24 25 #include <asm/msr.h> 26 27 #define NR_CS553X_CONTROLLERS 4 28 29 #define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilities */ 30 #define CAP_CS5535 0x2df000ULL 31 #define CAP_CS5536 0x5df500ULL 32 33 /* NAND Timing MSRs */ 34 #define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ 35 #define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ 36 #define MSR_NANDF_RSVD 0x5140001d /* Reserved */ 37 38 /* NAND BAR MSRs */ 39 #define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ 40 #define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ 41 #define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ 42 #define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ 43 /* Each made up of... */ 44 #define FLSH_LBAR_EN (1ULL<<32) 45 #define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ 46 #define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ 47 /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ 48 /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ 49 50 /* Pin function selection MSR (IDE vs. flash on the IDE pins) */ 51 #define MSR_DIVIL_BALL_OPTS 0x51400015 52 #define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ 53 54 /* Registers within the NAND flash controller BAR -- memory mapped */ 55 #define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ 56 #define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ 57 #define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ 58 #define MM_NAND_STS 0x810 59 #define MM_NAND_ECC_LSB 0x811 60 #define MM_NAND_ECC_MSB 0x812 61 #define MM_NAND_ECC_COL 0x813 62 #define MM_NAND_LAC 0x814 63 #define MM_NAND_ECC_CTL 0x815 64 65 /* Registers within the NAND flash controller BAR -- I/O mapped */ 66 #define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ 67 #define IO_NAND_CTL 0x04 68 #define IO_NAND_IO 0x05 69 #define IO_NAND_STS 0x06 70 #define IO_NAND_ECC_CTL 0x08 71 #define IO_NAND_ECC_LSB 0x09 72 #define IO_NAND_ECC_MSB 0x0a 73 #define IO_NAND_ECC_COL 0x0b 74 #define IO_NAND_LAC 0x0c 75 76 #define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ 77 #define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ 78 #define CS_NAND_CTL_ALE (1<<2) 79 #define CS_NAND_CTL_CLE (1<<1) 80 #define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ 81 82 #define CS_NAND_STS_FLASH_RDY (1<<3) 83 #define CS_NAND_CTLR_BUSY (1<<2) 84 #define CS_NAND_CMD_COMP (1<<1) 85 #define CS_NAND_DIST_ST (1<<0) 86 87 #define CS_NAND_ECC_PARITY (1<<2) 88 #define CS_NAND_ECC_CLRECC (1<<1) 89 #define CS_NAND_ECC_ENECC (1<<0) 90 91 struct cs553x_nand_controller { 92 struct nand_controller base; 93 struct nand_chip chip; 94 void __iomem *mmio; 95 }; 96 97 static struct cs553x_nand_controller * 98 to_cs553x(struct nand_controller *controller) 99 { 100 return container_of(controller, struct cs553x_nand_controller, base); 101 } 102 103 static int cs553x_write_ctrl_byte(struct cs553x_nand_controller *cs553x, 104 u32 ctl, u8 data) 105 { 106 u8 status; 107 108 writeb(ctl, cs553x->mmio + MM_NAND_CTL); 109 writeb(data, cs553x->mmio + MM_NAND_IO); 110 return readb_poll_timeout_atomic(cs553x->mmio + MM_NAND_STS, status, 111 !(status & CS_NAND_CTLR_BUSY), 1, 112 100000); 113 } 114 115 static void cs553x_data_in(struct cs553x_nand_controller *cs553x, void *buf, 116 unsigned int len) 117 { 118 writeb(0, cs553x->mmio + MM_NAND_CTL); 119 while (unlikely(len > 0x800)) { 120 memcpy_fromio(buf, cs553x->mmio, 0x800); 121 buf += 0x800; 122 len -= 0x800; 123 } 124 memcpy_fromio(buf, cs553x->mmio, len); 125 } 126 127 static void cs553x_data_out(struct cs553x_nand_controller *cs553x, 128 const void *buf, unsigned int len) 129 { 130 writeb(0, cs553x->mmio + MM_NAND_CTL); 131 while (unlikely(len > 0x800)) { 132 memcpy_toio(cs553x->mmio, buf, 0x800); 133 buf += 0x800; 134 len -= 0x800; 135 } 136 memcpy_toio(cs553x->mmio, buf, len); 137 } 138 139 static int cs553x_wait_ready(struct cs553x_nand_controller *cs553x, 140 unsigned int timeout_ms) 141 { 142 u8 mask = CS_NAND_CTLR_BUSY | CS_NAND_STS_FLASH_RDY; 143 u8 status; 144 145 return readb_poll_timeout(cs553x->mmio + MM_NAND_STS, status, 146 (status & mask) == CS_NAND_STS_FLASH_RDY, 100, 147 timeout_ms * 1000); 148 } 149 150 static int cs553x_exec_instr(struct cs553x_nand_controller *cs553x, 151 const struct nand_op_instr *instr) 152 { 153 unsigned int i; 154 int ret = 0; 155 156 switch (instr->type) { 157 case NAND_OP_CMD_INSTR: 158 ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_CLE, 159 instr->ctx.cmd.opcode); 160 break; 161 162 case NAND_OP_ADDR_INSTR: 163 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 164 ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_ALE, 165 instr->ctx.addr.addrs[i]); 166 if (ret) 167 break; 168 } 169 break; 170 171 case NAND_OP_DATA_IN_INSTR: 172 cs553x_data_in(cs553x, instr->ctx.data.buf.in, 173 instr->ctx.data.len); 174 break; 175 176 case NAND_OP_DATA_OUT_INSTR: 177 cs553x_data_out(cs553x, instr->ctx.data.buf.out, 178 instr->ctx.data.len); 179 break; 180 181 case NAND_OP_WAITRDY_INSTR: 182 ret = cs553x_wait_ready(cs553x, instr->ctx.waitrdy.timeout_ms); 183 break; 184 } 185 186 if (instr->delay_ns) 187 ndelay(instr->delay_ns); 188 189 return ret; 190 } 191 192 static int cs553x_exec_op(struct nand_chip *this, 193 const struct nand_operation *op, 194 bool check_only) 195 { 196 struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); 197 unsigned int i; 198 int ret; 199 200 if (check_only) 201 return true; 202 203 /* De-assert the CE pin */ 204 writeb(0, cs553x->mmio + MM_NAND_CTL); 205 for (i = 0; i < op->ninstrs; i++) { 206 ret = cs553x_exec_instr(cs553x, &op->instrs[i]); 207 if (ret) 208 break; 209 } 210 211 /* Re-assert the CE pin. */ 212 writeb(CS_NAND_CTL_CE, cs553x->mmio + MM_NAND_CTL); 213 214 return ret; 215 } 216 217 static void cs_enable_hwecc(struct nand_chip *this, int mode) 218 { 219 struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); 220 221 writeb(0x07, cs553x->mmio + MM_NAND_ECC_CTL); 222 } 223 224 static int cs_calculate_ecc(struct nand_chip *this, const u_char *dat, 225 u_char *ecc_code) 226 { 227 struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); 228 uint32_t ecc; 229 230 ecc = readl(cs553x->mmio + MM_NAND_STS); 231 232 ecc_code[1] = ecc >> 8; 233 ecc_code[0] = ecc >> 16; 234 ecc_code[2] = ecc >> 24; 235 return 0; 236 } 237 238 static struct cs553x_nand_controller *controllers[4]; 239 240 static int cs553x_attach_chip(struct nand_chip *chip) 241 { 242 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 243 return 0; 244 245 chip->ecc.size = 256; 246 chip->ecc.bytes = 3; 247 chip->ecc.hwctl = cs_enable_hwecc; 248 chip->ecc.calculate = cs_calculate_ecc; 249 chip->ecc.correct = rawnand_sw_hamming_correct; 250 chip->ecc.strength = 1; 251 252 return 0; 253 } 254 255 static const struct nand_controller_ops cs553x_nand_controller_ops = { 256 .exec_op = cs553x_exec_op, 257 .attach_chip = cs553x_attach_chip, 258 }; 259 260 static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) 261 { 262 struct cs553x_nand_controller *controller; 263 int err = 0; 264 struct nand_chip *this; 265 struct mtd_info *new_mtd; 266 267 pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", 268 cs, mmio ? "MM" : "P", adr); 269 270 if (!mmio) { 271 pr_notice("PIO mode not yet implemented for CS553X NAND controller\n"); 272 return -ENXIO; 273 } 274 275 /* Allocate memory for MTD device structure and private data */ 276 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 277 if (!controller) { 278 err = -ENOMEM; 279 goto out; 280 } 281 282 this = &controller->chip; 283 nand_controller_init(&controller->base); 284 controller->base.ops = &cs553x_nand_controller_ops; 285 this->controller = &controller->base; 286 new_mtd = nand_to_mtd(this); 287 288 /* Link the private data with the MTD structure */ 289 new_mtd->owner = THIS_MODULE; 290 291 /* map physical address */ 292 controller->mmio = ioremap(adr, 4096); 293 if (!controller->mmio) { 294 pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr); 295 err = -EIO; 296 goto out_mtd; 297 } 298 299 /* Enable the following for a flash based bad block table */ 300 this->bbt_options = NAND_BBT_USE_FLASH; 301 302 new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); 303 if (!new_mtd->name) { 304 err = -ENOMEM; 305 goto out_ior; 306 } 307 308 /* Scan to find existence of the device */ 309 err = nand_scan(this, 1); 310 if (err) 311 goto out_free; 312 313 controllers[cs] = controller; 314 goto out; 315 316 out_free: 317 kfree(new_mtd->name); 318 out_ior: 319 iounmap(controller->mmio); 320 out_mtd: 321 kfree(controller); 322 out: 323 return err; 324 } 325 326 static int is_geode(void) 327 { 328 /* These are the CPUs which will have a CS553[56] companion chip */ 329 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 330 boot_cpu_data.x86 == 5 && 331 boot_cpu_data.x86_model == 10) 332 return 1; /* Geode LX */ 333 334 if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || 335 boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && 336 boot_cpu_data.x86 == 5 && 337 boot_cpu_data.x86_model == 5) 338 return 1; /* Geode GX (née GX2) */ 339 340 return 0; 341 } 342 343 static int __init cs553x_init(void) 344 { 345 int err = -ENXIO; 346 int i; 347 uint64_t val; 348 349 /* If the CPU isn't a Geode GX or LX, abort */ 350 if (!is_geode()) 351 return -ENXIO; 352 353 /* If it doesn't have the CS553[56], abort */ 354 rdmsrl(MSR_DIVIL_GLD_CAP, val); 355 val &= ~0xFFULL; 356 if (val != CAP_CS5535 && val != CAP_CS5536) 357 return -ENXIO; 358 359 /* If it doesn't have the NAND controller enabled, abort */ 360 rdmsrl(MSR_DIVIL_BALL_OPTS, val); 361 if (val & PIN_OPT_IDE) { 362 pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); 363 return -ENXIO; 364 } 365 366 for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { 367 rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); 368 369 if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) 370 err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); 371 } 372 373 /* Register all devices together here. This means we can easily hack it to 374 do mtdconcat etc. if we want to. */ 375 for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { 376 if (controllers[i]) { 377 /* If any devices registered, return success. Else the last error. */ 378 mtd_device_register(nand_to_mtd(&controllers[i]->chip), 379 NULL, 0); 380 err = 0; 381 } 382 } 383 384 return err; 385 } 386 387 module_init(cs553x_init); 388 389 static void __exit cs553x_cleanup(void) 390 { 391 int i; 392 393 for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { 394 struct cs553x_nand_controller *controller = controllers[i]; 395 struct nand_chip *this = &controller->chip; 396 struct mtd_info *mtd = nand_to_mtd(this); 397 int ret; 398 399 if (!mtd) 400 continue; 401 402 /* Release resources, unregister device */ 403 ret = mtd_device_unregister(mtd); 404 WARN_ON(ret); 405 nand_cleanup(this); 406 kfree(mtd->name); 407 controllers[i] = NULL; 408 409 /* unmap physical address */ 410 iounmap(controller->mmio); 411 412 /* Free the MTD device structure */ 413 kfree(controller); 414 } 415 } 416 417 module_exit(cs553x_cleanup); 418 419 MODULE_LICENSE("GPL"); 420 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 421 MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip"); 422