1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 4 * 5 * The data sheet for this device can be found at: 6 * http://wiki.laptop.org/go/Datasheets 7 * 8 * Copyright © 2006 Red Hat, Inc. 9 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org> 10 */ 11 12 #define DEBUG 13 14 #include <linux/device.h> 15 #undef DEBUG 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/mtd/partitions.h> 19 #include <linux/rslib.h> 20 #include <linux/pci.h> 21 #include <linux/delay.h> 22 #include <linux/interrupt.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/slab.h> 25 #include <linux/module.h> 26 #include <asm/io.h> 27 28 #define CAFE_NAND_CTRL1 0x00 29 #define CAFE_NAND_CTRL2 0x04 30 #define CAFE_NAND_CTRL3 0x08 31 #define CAFE_NAND_STATUS 0x0c 32 #define CAFE_NAND_IRQ 0x10 33 #define CAFE_NAND_IRQ_MASK 0x14 34 #define CAFE_NAND_DATA_LEN 0x18 35 #define CAFE_NAND_ADDR1 0x1c 36 #define CAFE_NAND_ADDR2 0x20 37 #define CAFE_NAND_TIMING1 0x24 38 #define CAFE_NAND_TIMING2 0x28 39 #define CAFE_NAND_TIMING3 0x2c 40 #define CAFE_NAND_NONMEM 0x30 41 #define CAFE_NAND_ECC_RESULT 0x3C 42 #define CAFE_NAND_DMA_CTRL 0x40 43 #define CAFE_NAND_DMA_ADDR0 0x44 44 #define CAFE_NAND_DMA_ADDR1 0x48 45 #define CAFE_NAND_ECC_SYN01 0x50 46 #define CAFE_NAND_ECC_SYN23 0x54 47 #define CAFE_NAND_ECC_SYN45 0x58 48 #define CAFE_NAND_ECC_SYN67 0x5c 49 #define CAFE_NAND_READ_DATA 0x1000 50 #define CAFE_NAND_WRITE_DATA 0x2000 51 52 #define CAFE_GLOBAL_CTRL 0x3004 53 #define CAFE_GLOBAL_IRQ 0x3008 54 #define CAFE_GLOBAL_IRQ_MASK 0x300c 55 #define CAFE_NAND_RESET 0x3034 56 57 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ 58 #define CTRL1_CHIPSELECT (1<<19) 59 60 struct cafe_priv { 61 struct nand_chip nand; 62 struct pci_dev *pdev; 63 void __iomem *mmio; 64 struct rs_control *rs; 65 uint32_t ctl1; 66 uint32_t ctl2; 67 int datalen; 68 int nr_data; 69 int data_pos; 70 int page_addr; 71 bool usedma; 72 dma_addr_t dmaaddr; 73 unsigned char *dmabuf; 74 }; 75 76 static int usedma = 1; 77 module_param(usedma, int, 0644); 78 79 static int skipbbt = 0; 80 module_param(skipbbt, int, 0644); 81 82 static int debug = 0; 83 module_param(debug, int, 0644); 84 85 static int regdebug = 0; 86 module_param(regdebug, int, 0644); 87 88 static int checkecc = 1; 89 module_param(checkecc, int, 0644); 90 91 static unsigned int numtimings; 92 static int timing[3]; 93 module_param_array(timing, int, &numtimings, 0644); 94 95 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; 96 97 /* Hrm. Why isn't this already conditional on something in the struct device? */ 98 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) 99 100 /* Make it easier to switch to PIO if we need to */ 101 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr) 102 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr) 103 104 static int cafe_device_ready(struct nand_chip *chip) 105 { 106 struct cafe_priv *cafe = nand_get_controller_data(chip); 107 int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000); 108 uint32_t irqs = cafe_readl(cafe, NAND_IRQ); 109 110 cafe_writel(cafe, irqs, NAND_IRQ); 111 112 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", 113 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), 114 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); 115 116 return result; 117 } 118 119 120 static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) 121 { 122 struct cafe_priv *cafe = nand_get_controller_data(chip); 123 124 if (cafe->usedma) 125 memcpy(cafe->dmabuf + cafe->datalen, buf, len); 126 else 127 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); 128 129 cafe->datalen += len; 130 131 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", 132 len, cafe->datalen); 133 } 134 135 static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 136 { 137 struct cafe_priv *cafe = nand_get_controller_data(chip); 138 139 if (cafe->usedma) 140 memcpy(buf, cafe->dmabuf + cafe->datalen, len); 141 else 142 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); 143 144 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", 145 len, cafe->datalen); 146 cafe->datalen += len; 147 } 148 149 static uint8_t cafe_read_byte(struct nand_chip *chip) 150 { 151 struct cafe_priv *cafe = nand_get_controller_data(chip); 152 uint8_t d; 153 154 cafe_read_buf(chip, &d, 1); 155 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); 156 157 return d; 158 } 159 160 static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command, 161 int column, int page_addr) 162 { 163 struct mtd_info *mtd = nand_to_mtd(chip); 164 struct cafe_priv *cafe = nand_get_controller_data(chip); 165 int adrbytes = 0; 166 uint32_t ctl1; 167 uint32_t doneint = 0x80000000; 168 169 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", 170 command, column, page_addr); 171 172 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { 173 /* Second half of a command we already calculated */ 174 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); 175 ctl1 = cafe->ctl1; 176 cafe->ctl2 &= ~(1<<30); 177 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", 178 cafe->ctl1, cafe->nr_data); 179 goto do_command; 180 } 181 /* Reset ECC engine */ 182 cafe_writel(cafe, 0, NAND_CTRL2); 183 184 /* Emulate NAND_CMD_READOOB on large-page chips */ 185 if (mtd->writesize > 512 && 186 command == NAND_CMD_READOOB) { 187 column += mtd->writesize; 188 command = NAND_CMD_READ0; 189 } 190 191 /* FIXME: Do we need to send read command before sending data 192 for small-page chips, to position the buffer correctly? */ 193 194 if (column != -1) { 195 cafe_writel(cafe, column, NAND_ADDR1); 196 adrbytes = 2; 197 if (page_addr != -1) 198 goto write_adr2; 199 } else if (page_addr != -1) { 200 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); 201 page_addr >>= 16; 202 write_adr2: 203 cafe_writel(cafe, page_addr, NAND_ADDR2); 204 adrbytes += 2; 205 if (mtd->size > mtd->writesize << 16) 206 adrbytes++; 207 } 208 209 cafe->data_pos = cafe->datalen = 0; 210 211 /* Set command valid bit, mask in the chip select bit */ 212 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); 213 214 /* Set RD or WR bits as appropriate */ 215 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { 216 ctl1 |= (1<<26); /* rd */ 217 /* Always 5 bytes, for now */ 218 cafe->datalen = 4; 219 /* And one address cycle -- even for STATUS, since the controller doesn't work without */ 220 adrbytes = 1; 221 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || 222 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { 223 ctl1 |= 1<<26; /* rd */ 224 /* For now, assume just read to end of page */ 225 cafe->datalen = mtd->writesize + mtd->oobsize - column; 226 } else if (command == NAND_CMD_SEQIN) 227 ctl1 |= 1<<25; /* wr */ 228 229 /* Set number of address bytes */ 230 if (adrbytes) 231 ctl1 |= ((adrbytes-1)|8) << 27; 232 233 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { 234 /* Ignore the first command of a pair; the hardware 235 deals with them both at once, later */ 236 cafe->ctl1 = ctl1; 237 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", 238 cafe->ctl1, cafe->datalen); 239 return; 240 } 241 /* RNDOUT and READ0 commands need a following byte */ 242 if (command == NAND_CMD_RNDOUT) 243 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); 244 else if (command == NAND_CMD_READ0 && mtd->writesize > 512) 245 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); 246 247 do_command: 248 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", 249 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); 250 251 /* NB: The datasheet lies -- we really should be subtracting 1 here */ 252 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); 253 cafe_writel(cafe, 0x90000000, NAND_IRQ); 254 if (cafe->usedma && (ctl1 & (3<<25))) { 255 uint32_t dmactl = 0xc0000000 + cafe->datalen; 256 /* If WR or RD bits set, set up DMA */ 257 if (ctl1 & (1<<26)) { 258 /* It's a read */ 259 dmactl |= (1<<29); 260 /* ... so it's done when the DMA is done, not just 261 the command. */ 262 doneint = 0x10000000; 263 } 264 cafe_writel(cafe, dmactl, NAND_DMA_CTRL); 265 } 266 cafe->datalen = 0; 267 268 if (unlikely(regdebug)) { 269 int i; 270 printk("About to write command %08x to register 0\n", ctl1); 271 for (i=4; i< 0x5c; i+=4) 272 printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); 273 } 274 275 cafe_writel(cafe, ctl1, NAND_CTRL1); 276 /* Apply this short delay always to ensure that we do wait tWB in 277 * any case on any machine. */ 278 ndelay(100); 279 280 if (1) { 281 int c; 282 uint32_t irqs; 283 284 for (c = 500000; c != 0; c--) { 285 irqs = cafe_readl(cafe, NAND_IRQ); 286 if (irqs & doneint) 287 break; 288 udelay(1); 289 if (!(c % 100000)) 290 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); 291 cpu_relax(); 292 } 293 cafe_writel(cafe, doneint, NAND_IRQ); 294 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", 295 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); 296 } 297 298 WARN_ON(cafe->ctl2 & (1<<30)); 299 300 switch (command) { 301 302 case NAND_CMD_CACHEDPROG: 303 case NAND_CMD_PAGEPROG: 304 case NAND_CMD_ERASE1: 305 case NAND_CMD_ERASE2: 306 case NAND_CMD_SEQIN: 307 case NAND_CMD_RNDIN: 308 case NAND_CMD_STATUS: 309 case NAND_CMD_RNDOUT: 310 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); 311 return; 312 } 313 nand_wait_ready(chip); 314 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); 315 } 316 317 static void cafe_select_chip(struct nand_chip *chip, int chipnr) 318 { 319 struct cafe_priv *cafe = nand_get_controller_data(chip); 320 321 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); 322 323 /* Mask the appropriate bit into the stored value of ctl1 324 which will be used by cafe_nand_cmdfunc() */ 325 if (chipnr) 326 cafe->ctl1 |= CTRL1_CHIPSELECT; 327 else 328 cafe->ctl1 &= ~CTRL1_CHIPSELECT; 329 } 330 331 static irqreturn_t cafe_nand_interrupt(int irq, void *id) 332 { 333 struct mtd_info *mtd = id; 334 struct nand_chip *chip = mtd_to_nand(mtd); 335 struct cafe_priv *cafe = nand_get_controller_data(chip); 336 uint32_t irqs = cafe_readl(cafe, NAND_IRQ); 337 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); 338 if (!irqs) 339 return IRQ_NONE; 340 341 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); 342 return IRQ_HANDLED; 343 } 344 345 static int cafe_nand_write_oob(struct nand_chip *chip, int page) 346 { 347 struct mtd_info *mtd = nand_to_mtd(chip); 348 349 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 350 mtd->oobsize); 351 } 352 353 /* Don't use -- use nand_read_oob_std for now */ 354 static int cafe_nand_read_oob(struct nand_chip *chip, int page) 355 { 356 struct mtd_info *mtd = nand_to_mtd(chip); 357 358 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 359 } 360 /** 361 * cafe_nand_read_page - [REPLACEABLE] hardware ecc syndrome based page read 362 * @chip: nand chip info structure 363 * @buf: buffer to store read data 364 * @oob_required: caller expects OOB data read to chip->oob_poi 365 * @page: page number to read 366 * 367 * The hw generator calculates the error syndrome automatically. Therefore 368 * we need a special oob layout and handling. 369 */ 370 static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf, 371 int oob_required, int page) 372 { 373 struct mtd_info *mtd = nand_to_mtd(chip); 374 struct cafe_priv *cafe = nand_get_controller_data(chip); 375 unsigned int max_bitflips = 0; 376 377 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", 378 cafe_readl(cafe, NAND_ECC_RESULT), 379 cafe_readl(cafe, NAND_ECC_SYN01)); 380 381 nand_read_page_op(chip, page, 0, buf, mtd->writesize); 382 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); 383 384 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { 385 unsigned short syn[8], pat[4]; 386 int pos[4]; 387 u8 *oob = chip->oob_poi; 388 int i, n; 389 390 for (i=0; i<8; i+=2) { 391 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); 392 393 syn[i] = cafe->rs->codec->index_of[tmp & 0xfff]; 394 syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff]; 395 } 396 397 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, 398 pat); 399 400 for (i = 0; i < n; i++) { 401 int p = pos[i]; 402 403 /* The 12-bit symbols are mapped to bytes here */ 404 405 if (p > 1374) { 406 /* out of range */ 407 n = -1374; 408 } else if (p == 0) { 409 /* high four bits do not correspond to data */ 410 if (pat[i] > 0xff) 411 n = -2048; 412 else 413 buf[0] ^= pat[i]; 414 } else if (p == 1365) { 415 buf[2047] ^= pat[i] >> 4; 416 oob[0] ^= pat[i] << 4; 417 } else if (p > 1365) { 418 if ((p & 1) == 1) { 419 oob[3*p/2 - 2048] ^= pat[i] >> 4; 420 oob[3*p/2 - 2047] ^= pat[i] << 4; 421 } else { 422 oob[3*p/2 - 2049] ^= pat[i] >> 8; 423 oob[3*p/2 - 2048] ^= pat[i]; 424 } 425 } else if ((p & 1) == 1) { 426 buf[3*p/2] ^= pat[i] >> 4; 427 buf[3*p/2 + 1] ^= pat[i] << 4; 428 } else { 429 buf[3*p/2 - 1] ^= pat[i] >> 8; 430 buf[3*p/2] ^= pat[i]; 431 } 432 } 433 434 if (n < 0) { 435 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", 436 cafe_readl(cafe, NAND_ADDR2) * 2048); 437 for (i = 0; i < 0x5c; i += 4) 438 printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); 439 mtd->ecc_stats.failed++; 440 } else { 441 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); 442 mtd->ecc_stats.corrected += n; 443 max_bitflips = max_t(unsigned int, max_bitflips, n); 444 } 445 } 446 447 return max_bitflips; 448 } 449 450 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section, 451 struct mtd_oob_region *oobregion) 452 { 453 struct nand_chip *chip = mtd_to_nand(mtd); 454 455 if (section) 456 return -ERANGE; 457 458 oobregion->offset = 0; 459 oobregion->length = chip->ecc.total; 460 461 return 0; 462 } 463 464 static int cafe_ooblayout_free(struct mtd_info *mtd, int section, 465 struct mtd_oob_region *oobregion) 466 { 467 struct nand_chip *chip = mtd_to_nand(mtd); 468 469 if (section) 470 return -ERANGE; 471 472 oobregion->offset = chip->ecc.total; 473 oobregion->length = mtd->oobsize - chip->ecc.total; 474 475 return 0; 476 } 477 478 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = { 479 .ecc = cafe_ooblayout_ecc, 480 .free = cafe_ooblayout_free, 481 }; 482 483 /* Ick. The BBT code really ought to be able to work this bit out 484 for itself from the above, at least for the 2KiB case */ 485 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; 486 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; 487 488 static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; 489 static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; 490 491 492 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { 493 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 494 | NAND_BBT_2BIT | NAND_BBT_VERSION, 495 .offs = 14, 496 .len = 4, 497 .veroffs = 18, 498 .maxblocks = 4, 499 .pattern = cafe_bbt_pattern_2048 500 }; 501 502 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { 503 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 504 | NAND_BBT_2BIT | NAND_BBT_VERSION, 505 .offs = 14, 506 .len = 4, 507 .veroffs = 18, 508 .maxblocks = 4, 509 .pattern = cafe_mirror_pattern_2048 510 }; 511 512 static struct nand_bbt_descr cafe_bbt_main_descr_512 = { 513 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 514 | NAND_BBT_2BIT | NAND_BBT_VERSION, 515 .offs = 14, 516 .len = 1, 517 .veroffs = 15, 518 .maxblocks = 4, 519 .pattern = cafe_bbt_pattern_512 520 }; 521 522 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { 523 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 524 | NAND_BBT_2BIT | NAND_BBT_VERSION, 525 .offs = 14, 526 .len = 1, 527 .veroffs = 15, 528 .maxblocks = 4, 529 .pattern = cafe_mirror_pattern_512 530 }; 531 532 533 static int cafe_nand_write_page_lowlevel(struct nand_chip *chip, 534 const uint8_t *buf, int oob_required, 535 int page) 536 { 537 struct mtd_info *mtd = nand_to_mtd(chip); 538 struct cafe_priv *cafe = nand_get_controller_data(chip); 539 540 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 541 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); 542 543 /* Set up ECC autogeneration */ 544 cafe->ctl2 |= (1<<30); 545 546 return nand_prog_page_end_op(chip); 547 } 548 549 /* F_2[X]/(X**6+X+1) */ 550 static unsigned short gf64_mul(u8 a, u8 b) 551 { 552 u8 c; 553 unsigned int i; 554 555 c = 0; 556 for (i = 0; i < 6; i++) { 557 if (a & 1) 558 c ^= b; 559 a >>= 1; 560 b <<= 1; 561 if ((b & 0x40) != 0) 562 b ^= 0x43; 563 } 564 565 return c; 566 } 567 568 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ 569 static u16 gf4096_mul(u16 a, u16 b) 570 { 571 u8 ah, al, bh, bl, ch, cl; 572 573 ah = a >> 6; 574 al = a & 0x3f; 575 bh = b >> 6; 576 bl = b & 0x3f; 577 578 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); 579 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); 580 581 return (ch << 6) ^ cl; 582 } 583 584 static int cafe_mul(int x) 585 { 586 if (x == 0) 587 return 1; 588 return gf4096_mul(x, 0xe01); 589 } 590 591 static int cafe_nand_attach_chip(struct nand_chip *chip) 592 { 593 struct mtd_info *mtd = nand_to_mtd(chip); 594 struct cafe_priv *cafe = nand_get_controller_data(chip); 595 int err = 0; 596 597 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112, 598 &cafe->dmaaddr, GFP_KERNEL); 599 if (!cafe->dmabuf) 600 return -ENOMEM; 601 602 /* Set up DMA address */ 603 cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0); 604 cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1); 605 606 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", 607 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); 608 609 /* Restore the DMA flag */ 610 cafe->usedma = usedma; 611 612 cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */ 613 if (mtd->writesize == 2048) 614 cafe->ctl2 |= BIT(29); /* 2KiB page size */ 615 616 /* Set up ECC according to the type of chip we found */ 617 mtd_set_ooblayout(mtd, &cafe_ooblayout_ops); 618 if (mtd->writesize == 2048) { 619 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; 620 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; 621 } else if (mtd->writesize == 512) { 622 cafe->nand.bbt_td = &cafe_bbt_main_descr_512; 623 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; 624 } else { 625 dev_warn(&cafe->pdev->dev, 626 "Unexpected NAND flash writesize %d. Aborting\n", 627 mtd->writesize); 628 err = -ENOTSUPP; 629 goto out_free_dma; 630 } 631 632 cafe->nand.ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 633 cafe->nand.ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; 634 cafe->nand.ecc.size = mtd->writesize; 635 cafe->nand.ecc.bytes = 14; 636 cafe->nand.ecc.strength = 4; 637 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; 638 cafe->nand.ecc.write_oob = cafe_nand_write_oob; 639 cafe->nand.ecc.read_page = cafe_nand_read_page; 640 cafe->nand.ecc.read_oob = cafe_nand_read_oob; 641 642 return 0; 643 644 out_free_dma: 645 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); 646 647 return err; 648 } 649 650 static void cafe_nand_detach_chip(struct nand_chip *chip) 651 { 652 struct cafe_priv *cafe = nand_get_controller_data(chip); 653 654 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); 655 } 656 657 static const struct nand_controller_ops cafe_nand_controller_ops = { 658 .attach_chip = cafe_nand_attach_chip, 659 .detach_chip = cafe_nand_detach_chip, 660 }; 661 662 static int cafe_nand_probe(struct pci_dev *pdev, 663 const struct pci_device_id *ent) 664 { 665 struct mtd_info *mtd; 666 struct cafe_priv *cafe; 667 uint32_t ctrl; 668 int err = 0; 669 670 /* Very old versions shared the same PCI ident for all three 671 functions on the chip. Verify the class too... */ 672 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH) 673 return -ENODEV; 674 675 err = pci_enable_device(pdev); 676 if (err) 677 return err; 678 679 pci_set_master(pdev); 680 681 cafe = kzalloc(sizeof(*cafe), GFP_KERNEL); 682 if (!cafe) { 683 err = -ENOMEM; 684 goto out_disable_device; 685 } 686 687 mtd = nand_to_mtd(&cafe->nand); 688 mtd->dev.parent = &pdev->dev; 689 nand_set_controller_data(&cafe->nand, cafe); 690 691 cafe->pdev = pdev; 692 cafe->mmio = pci_iomap(pdev, 0, 0); 693 if (!cafe->mmio) { 694 dev_warn(&pdev->dev, "failed to iomap\n"); 695 err = -ENOMEM; 696 goto out_free_mtd; 697 } 698 699 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); 700 if (!cafe->rs) { 701 err = -ENOMEM; 702 goto out_ior; 703 } 704 705 cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc; 706 cafe->nand.legacy.dev_ready = cafe_device_ready; 707 cafe->nand.legacy.read_byte = cafe_read_byte; 708 cafe->nand.legacy.read_buf = cafe_read_buf; 709 cafe->nand.legacy.write_buf = cafe_write_buf; 710 cafe->nand.legacy.select_chip = cafe_select_chip; 711 cafe->nand.legacy.set_features = nand_get_set_features_notsupp; 712 cafe->nand.legacy.get_features = nand_get_set_features_notsupp; 713 714 cafe->nand.legacy.chip_delay = 0; 715 716 /* Enable the following for a flash based bad block table */ 717 cafe->nand.bbt_options = NAND_BBT_USE_FLASH; 718 719 if (skipbbt) 720 cafe->nand.options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK; 721 722 if (numtimings && numtimings != 3) { 723 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); 724 } 725 726 if (numtimings == 3) { 727 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", 728 timing[0], timing[1], timing[2]); 729 } else { 730 timing[0] = cafe_readl(cafe, NAND_TIMING1); 731 timing[1] = cafe_readl(cafe, NAND_TIMING2); 732 timing[2] = cafe_readl(cafe, NAND_TIMING3); 733 734 if (timing[0] | timing[1] | timing[2]) { 735 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", 736 timing[0], timing[1], timing[2]); 737 } else { 738 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); 739 timing[0] = timing[1] = timing[2] = 0xffffffff; 740 } 741 } 742 743 /* Start off by resetting the NAND controller completely */ 744 cafe_writel(cafe, 1, NAND_RESET); 745 cafe_writel(cafe, 0, NAND_RESET); 746 747 cafe_writel(cafe, timing[0], NAND_TIMING1); 748 cafe_writel(cafe, timing[1], NAND_TIMING2); 749 cafe_writel(cafe, timing[2], NAND_TIMING3); 750 751 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); 752 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, 753 "CAFE NAND", mtd); 754 if (err) { 755 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); 756 goto out_free_rs; 757 } 758 759 /* Disable master reset, enable NAND clock */ 760 ctrl = cafe_readl(cafe, GLOBAL_CTRL); 761 ctrl &= 0xffffeff0; 762 ctrl |= 0x00007000; 763 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); 764 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); 765 cafe_writel(cafe, 0, NAND_DMA_CTRL); 766 767 cafe_writel(cafe, 0x7006, GLOBAL_CTRL); 768 cafe_writel(cafe, 0x700a, GLOBAL_CTRL); 769 770 /* Enable NAND IRQ in global IRQ mask register */ 771 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); 772 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", 773 cafe_readl(cafe, GLOBAL_CTRL), 774 cafe_readl(cafe, GLOBAL_IRQ_MASK)); 775 776 /* Do not use the DMA during the NAND identification */ 777 cafe->usedma = 0; 778 779 /* Scan to find existence of the device */ 780 cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops; 781 err = nand_scan(&cafe->nand, 2); 782 if (err) 783 goto out_irq; 784 785 pci_set_drvdata(pdev, mtd); 786 787 mtd->name = "cafe_nand"; 788 err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); 789 if (err) 790 goto out_cleanup_nand; 791 792 goto out; 793 794 out_cleanup_nand: 795 nand_cleanup(&cafe->nand); 796 out_irq: 797 /* Disable NAND IRQ in global IRQ mask register */ 798 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); 799 free_irq(pdev->irq, mtd); 800 out_free_rs: 801 free_rs(cafe->rs); 802 out_ior: 803 pci_iounmap(pdev, cafe->mmio); 804 out_free_mtd: 805 kfree(cafe); 806 out_disable_device: 807 pci_disable_device(pdev); 808 out: 809 return err; 810 } 811 812 static void cafe_nand_remove(struct pci_dev *pdev) 813 { 814 struct mtd_info *mtd = pci_get_drvdata(pdev); 815 struct nand_chip *chip = mtd_to_nand(mtd); 816 struct cafe_priv *cafe = nand_get_controller_data(chip); 817 int ret; 818 819 /* Disable NAND IRQ in global IRQ mask register */ 820 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); 821 free_irq(pdev->irq, mtd); 822 ret = mtd_device_unregister(mtd); 823 WARN_ON(ret); 824 nand_cleanup(chip); 825 free_rs(cafe->rs); 826 pci_iounmap(pdev, cafe->mmio); 827 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); 828 kfree(cafe); 829 pci_disable_device(pdev); 830 } 831 832 static const struct pci_device_id cafe_nand_tbl[] = { 833 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND, 834 PCI_ANY_ID, PCI_ANY_ID }, 835 { } 836 }; 837 838 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); 839 840 static int cafe_nand_resume(struct pci_dev *pdev) 841 { 842 uint32_t ctrl; 843 struct mtd_info *mtd = pci_get_drvdata(pdev); 844 struct nand_chip *chip = mtd_to_nand(mtd); 845 struct cafe_priv *cafe = nand_get_controller_data(chip); 846 847 /* Start off by resetting the NAND controller completely */ 848 cafe_writel(cafe, 1, NAND_RESET); 849 cafe_writel(cafe, 0, NAND_RESET); 850 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); 851 852 /* Restore timing configuration */ 853 cafe_writel(cafe, timing[0], NAND_TIMING1); 854 cafe_writel(cafe, timing[1], NAND_TIMING2); 855 cafe_writel(cafe, timing[2], NAND_TIMING3); 856 857 /* Disable master reset, enable NAND clock */ 858 ctrl = cafe_readl(cafe, GLOBAL_CTRL); 859 ctrl &= 0xffffeff0; 860 ctrl |= 0x00007000; 861 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); 862 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); 863 cafe_writel(cafe, 0, NAND_DMA_CTRL); 864 cafe_writel(cafe, 0x7006, GLOBAL_CTRL); 865 cafe_writel(cafe, 0x700a, GLOBAL_CTRL); 866 867 /* Set up DMA address */ 868 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); 869 if (sizeof(cafe->dmaaddr) > 4) 870 /* Shift in two parts to shut the compiler up */ 871 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); 872 else 873 cafe_writel(cafe, 0, NAND_DMA_ADDR1); 874 875 /* Enable NAND IRQ in global IRQ mask register */ 876 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); 877 return 0; 878 } 879 880 static struct pci_driver cafe_nand_pci_driver = { 881 .name = "CAFÉ NAND", 882 .id_table = cafe_nand_tbl, 883 .probe = cafe_nand_probe, 884 .remove = cafe_nand_remove, 885 .resume = cafe_nand_resume, 886 }; 887 888 module_pci_driver(cafe_nand_pci_driver); 889 890 MODULE_LICENSE("GPL"); 891 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 892 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip"); 893