xref: /linux/drivers/mtd/nand/raw/cadence-nand-controller.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cadence NAND flash controller driver
4  *
5  * Copyright (C) 2019 Cadence
6  *
7  * Author: Piotr Sroka <piotrs@cadence.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/iopoll.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/property.h>
22 #include <linux/slab.h>
23 
24 /*
25  * HPNFC can work in 3 modes:
26  * -  PIO - can work in master or slave DMA
27  * -  CDMA - needs Master DMA for accessing command descriptors.
28  * -  Generic mode - can use only slave DMA.
29  * CDMA and PIO modes can be used to execute only base commands.
30  * Generic mode can be used to execute any command
31  * on NAND flash memory. Driver uses CDMA mode for
32  * block erasing, page reading, page programing.
33  * Generic mode is used for executing rest of commands.
34  */
35 
36 #define MAX_ADDRESS_CYC		6
37 #define MAX_ERASE_ADDRESS_CYC	3
38 #define MAX_DATA_SIZE		0xFFFC
39 #define DMA_DATA_SIZE_ALIGN	8
40 
41 /* Register definition. */
42 /*
43  * Command register 0.
44  * Writing data to this register will initiate a new transaction
45  * of the NF controller.
46  */
47 #define CMD_REG0			0x0000
48 /* Command type field mask. */
49 #define		CMD_REG0_CT		GENMASK(31, 30)
50 /* Command type CDMA. */
51 #define		CMD_REG0_CT_CDMA	0uL
52 /* Command type generic. */
53 #define		CMD_REG0_CT_GEN		3uL
54 /* Command thread number field mask. */
55 #define		CMD_REG0_TN		GENMASK(27, 24)
56 
57 /* Command register 2. */
58 #define CMD_REG2			0x0008
59 /* Command register 3. */
60 #define CMD_REG3			0x000C
61 /* Pointer register to select which thread status will be selected. */
62 #define CMD_STATUS_PTR			0x0010
63 /* Command status register for selected thread. */
64 #define CMD_STATUS			0x0014
65 
66 /* Interrupt status register. */
67 #define INTR_STATUS			0x0110
68 #define		INTR_STATUS_SDMA_ERR	BIT(22)
69 #define		INTR_STATUS_SDMA_TRIGG	BIT(21)
70 #define		INTR_STATUS_UNSUPP_CMD	BIT(19)
71 #define		INTR_STATUS_DDMA_TERR	BIT(18)
72 #define		INTR_STATUS_CDMA_TERR	BIT(17)
73 #define		INTR_STATUS_CDMA_IDL	BIT(16)
74 
75 /* Interrupt enable register. */
76 #define INTR_ENABLE				0x0114
77 #define		INTR_ENABLE_INTR_EN		BIT(31)
78 #define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
79 #define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
80 #define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
81 #define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
82 #define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
83 #define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
84 
85 /* Controller internal state. */
86 #define CTRL_STATUS				0x0118
87 #define		CTRL_STATUS_INIT_COMP		BIT(9)
88 #define		CTRL_STATUS_CTRL_BUSY		BIT(8)
89 
90 /* Command Engine threads state. */
91 #define TRD_STATUS				0x0120
92 
93 /* Command Engine interrupt thread error status. */
94 #define TRD_ERR_INT_STATUS			0x0128
95 /* Command Engine interrupt thread error enable. */
96 #define TRD_ERR_INT_STATUS_EN			0x0130
97 /* Command Engine interrupt thread complete status. */
98 #define TRD_COMP_INT_STATUS			0x0138
99 
100 /*
101  * Transfer config 0 register.
102  * Configures data transfer parameters.
103  */
104 #define TRAN_CFG_0				0x0400
105 /* Offset value from the beginning of the page. */
106 #define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
107 /* Numbers of sectors to transfer within singlNF device's page. */
108 #define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
109 
110 /*
111  * Transfer config 1 register.
112  * Configures data transfer parameters.
113  */
114 #define TRAN_CFG_1				0x0404
115 /* Size of last data sector. */
116 #define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
117 /* Size of not-last data sector. */
118 #define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
119 
120 /* ECC engine configuration register 0. */
121 #define ECC_CONFIG_0				0x0428
122 /* Correction strength. */
123 #define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
124 /* Enable erased pages detection mechanism. */
125 #define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
126 /* Enable controller ECC check bits generation and correction. */
127 #define		ECC_CONFIG_0_ECC_EN		BIT(0)
128 
129 /* ECC engine configuration register 1. */
130 #define ECC_CONFIG_1				0x042C
131 
132 /* Multiplane settings register. */
133 #define MULTIPLANE_CFG				0x0434
134 /* Cache operation settings. */
135 #define CACHE_CFG				0x0438
136 
137 /* DMA settings register. */
138 #define DMA_SETINGS				0x043C
139 /* Enable SDMA error report on access unprepared slave DMA interface. */
140 #define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
141 
142 /* Transferred data block size for the slave DMA module. */
143 #define SDMA_SIZE				0x0440
144 
145 /* Thread number associated with transferred data block
146  * for the slave DMA module.
147  */
148 #define SDMA_TRD_NUM				0x0444
149 /* Thread number mask. */
150 #define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
151 
152 #define CONTROL_DATA_CTRL			0x0494
153 /* Thread number mask. */
154 #define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
155 
156 #define CTRL_VERSION				0x800
157 #define		CTRL_VERSION_REV		GENMASK(7, 0)
158 
159 /* Available hardware features of the controller. */
160 #define CTRL_FEATURES				0x804
161 /* Support for NV-DDR2/3 work mode. */
162 #define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
163 /* Support for NV-DDR work mode. */
164 #define		CTRL_FEATURES_NVDDR		BIT(27)
165 /* Support for asynchronous work mode. */
166 #define		CTRL_FEATURES_ASYNC		BIT(26)
167 /* Support for asynchronous work mode. */
168 #define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
169 /* Slave and Master DMA data width. */
170 #define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
171 /* Availability of Control Data feature.*/
172 #define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
173 
174 /* BCH Engine identification register 0 - correction strengths. */
175 #define BCH_CFG_0				0x838
176 #define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
177 #define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
178 #define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
179 #define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
180 
181 /* BCH Engine identification register 1 - correction strengths. */
182 #define BCH_CFG_1				0x83C
183 #define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
184 #define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
185 #define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
186 #define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
187 
188 /* BCH Engine identification register 2 - sector sizes. */
189 #define BCH_CFG_2				0x840
190 #define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
191 #define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
192 
193 /* BCH Engine identification register 3. */
194 #define BCH_CFG_3				0x844
195 #define		BCH_CFG_3_METADATA_SIZE		GENMASK(23, 16)
196 
197 /* Ready/Busy# line status. */
198 #define RBN_SETINGS				0x1004
199 
200 /* Common settings. */
201 #define COMMON_SET				0x1008
202 /* 16 bit device connected to the NAND Flash interface. */
203 #define		COMMON_SET_DEVICE_16BIT		BIT(8)
204 
205 /* Skip_bytes registers. */
206 #define SKIP_BYTES_CONF				0x100C
207 #define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
208 #define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
209 
210 #define SKIP_BYTES_OFFSET			0x1010
211 #define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
212 
213 /* Timings configuration. */
214 #define ASYNC_TOGGLE_TIMINGS			0x101c
215 #define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
216 #define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
217 #define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
218 #define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
219 
220 #define	TIMINGS0				0x1024
221 #define		TIMINGS0_TADL			GENMASK(31, 24)
222 #define		TIMINGS0_TCCS			GENMASK(23, 16)
223 #define		TIMINGS0_TWHR			GENMASK(15, 8)
224 #define		TIMINGS0_TRHW			GENMASK(7, 0)
225 
226 #define	TIMINGS1				0x1028
227 #define		TIMINGS1_TRHZ			GENMASK(31, 24)
228 #define		TIMINGS1_TWB			GENMASK(23, 16)
229 #define		TIMINGS1_TVDLY			GENMASK(7, 0)
230 
231 #define	TIMINGS2				0x102c
232 #define		TIMINGS2_TFEAT			GENMASK(25, 16)
233 #define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
234 #define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
235 
236 /* Configuration of the resynchronization of slave DLL of PHY. */
237 #define DLL_PHY_CTRL				0x1034
238 #define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
239 #define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
240 #define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
241 #define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
242 #define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
243 
244 /* Register controlling DQ related timing. */
245 #define PHY_DQ_TIMING				0x2000
246 /* Register controlling DSQ related timing.  */
247 #define PHY_DQS_TIMING				0x2004
248 #define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
249 #define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
250 #define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
251 
252 /* Register controlling the gate and loopback control related timing. */
253 #define PHY_GATE_LPBK_CTRL			0x2008
254 #define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
255 
256 /* Register holds the control for the master DLL logic. */
257 #define PHY_DLL_MASTER_CTRL			0x200C
258 #define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
259 
260 /* Register holds the control for the slave DLL logic. */
261 #define PHY_DLL_SLAVE_CTRL			0x2010
262 
263 /* This register handles the global control settings for the PHY. */
264 #define PHY_CTRL				0x2080
265 #define		PHY_CTRL_SDR_DQS		BIT(14)
266 #define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
267 
268 /*
269  * This register handles the global control settings
270  * for the termination selects for reads.
271  */
272 #define PHY_TSEL				0x2084
273 
274 /* Generic command layout. */
275 #define GCMD_LAY_CS			GENMASK_ULL(11, 8)
276 /*
277  * This bit informs the minicotroller if it has to wait for tWB
278  * after sending the last CMD/ADDR/DATA in the sequence.
279  */
280 #define GCMD_LAY_TWB			BIT_ULL(6)
281 /* Type of generic instruction. */
282 #define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
283 
284 /* Generic CMD sequence type. */
285 #define		GCMD_LAY_INSTR_CMD	0
286 /* Generic ADDR sequence type. */
287 #define		GCMD_LAY_INSTR_ADDR	1
288 /* Generic data transfer sequence type. */
289 #define		GCMD_LAY_INSTR_DATA	2
290 
291 /* Input part of generic command type of input is command. */
292 #define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
293 
294 /* Generic command address sequence - address fields. */
295 #define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
296 /* Generic command address sequence - address size. */
297 #define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
298 
299 /* Transfer direction field of generic command data sequence. */
300 #define GCMD_DIR			BIT_ULL(11)
301 /* Read transfer direction of generic command data sequence. */
302 #define		GCMD_DIR_READ		0
303 /* Write transfer direction of generic command data sequence. */
304 #define		GCMD_DIR_WRITE		1
305 
306 /* ECC enabled flag of generic command data sequence - ECC enabled. */
307 #define GCMD_ECC_EN			BIT_ULL(12)
308 /* Generic command data sequence - sector size. */
309 #define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
310 /* Generic command data sequence - sector count. */
311 #define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
312 /* Generic command data sequence - last sector size. */
313 #define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
314 
315 /* CDMA descriptor fields. */
316 /* Erase command type of CDMA descriptor. */
317 #define CDMA_CT_ERASE		0x1000
318 /* Program page command type of CDMA descriptor. */
319 #define CDMA_CT_WR		0x2100
320 /* Read page command type of CDMA descriptor. */
321 #define CDMA_CT_RD		0x2200
322 
323 /* Flash pointer memory shift. */
324 #define CDMA_CFPTR_MEM_SHIFT	24
325 /* Flash pointer memory mask. */
326 #define CDMA_CFPTR_MEM		GENMASK(26, 24)
327 
328 /*
329  * Command DMA descriptor flags. If set causes issue interrupt after
330  * the completion of descriptor processing.
331  */
332 #define CDMA_CF_INT		BIT(8)
333 /*
334  * Command DMA descriptor flags - the next descriptor
335  * address field is valid and descriptor processing should continue.
336  */
337 #define CDMA_CF_CONT		BIT(9)
338 /* DMA master flag of command DMA descriptor. */
339 #define CDMA_CF_DMA_MASTER	BIT(10)
340 
341 /* Operation complete status of command descriptor. */
342 #define CDMA_CS_COMP		BIT(15)
343 /* Operation complete status of command descriptor. */
344 /* Command descriptor status - operation fail. */
345 #define CDMA_CS_FAIL		BIT(14)
346 /* Command descriptor status - page erased. */
347 #define CDMA_CS_ERP		BIT(11)
348 /* Command descriptor status - timeout occurred. */
349 #define CDMA_CS_TOUT		BIT(10)
350 /*
351  * Maximum amount of correction applied to one ECC sector.
352  * It is part of command descriptor status.
353  */
354 #define CDMA_CS_MAXERR		GENMASK(9, 2)
355 /* Command descriptor status - uncorrectable ECC error. */
356 #define CDMA_CS_UNCE		BIT(1)
357 /* Command descriptor status - descriptor error. */
358 #define CDMA_CS_ERR		BIT(0)
359 
360 /* Status of operation - OK. */
361 #define STAT_OK			0
362 /* Status of operation - FAIL. */
363 #define STAT_FAIL		2
364 /* Status of operation - uncorrectable ECC error. */
365 #define STAT_ECC_UNCORR		3
366 /* Status of operation - page erased. */
367 #define STAT_ERASED		5
368 /* Status of operation - correctable ECC error. */
369 #define STAT_ECC_CORR		6
370 /* Status of operation - unsuspected state. */
371 #define STAT_UNKNOWN		7
372 /* Status of operation - operation is not completed yet. */
373 #define STAT_BUSY		0xFF
374 
375 #define BCH_MAX_NUM_CORR_CAPS		8
376 #define BCH_MAX_NUM_SECTOR_SIZES	2
377 
378 struct cadence_nand_timings {
379 	u32 async_toggle_timings;
380 	u32 timings0;
381 	u32 timings1;
382 	u32 timings2;
383 	u32 dll_phy_ctrl;
384 	u32 phy_ctrl;
385 	u32 phy_dqs_timing;
386 	u32 phy_gate_lpbk_ctrl;
387 };
388 
389 /* Command DMA descriptor. */
390 struct cadence_nand_cdma_desc {
391 	/* Next descriptor address. */
392 	u64 next_pointer;
393 
394 	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
395 	u32 flash_pointer;
396 	/*field appears in HPNFC version 13*/
397 	u16 bank;
398 	u16 rsvd0;
399 
400 	/* Operation the controller needs to perform. */
401 	u16 command_type;
402 	u16 rsvd1;
403 	/* Flags for operation of this command. */
404 	u16 command_flags;
405 	u16 rsvd2;
406 
407 	/* System/host memory address required for data DMA commands. */
408 	u64 memory_pointer;
409 
410 	/* Status of operation. */
411 	u32 status;
412 	u32 rsvd3;
413 
414 	/* Address pointer to sync buffer location. */
415 	u64 sync_flag_pointer;
416 
417 	/* Controls the buffer sync mechanism. */
418 	u32 sync_arguments;
419 	u32 rsvd4;
420 
421 	/* Control data pointer. */
422 	u64 ctrl_data_ptr;
423 };
424 
425 /* Interrupt status. */
426 struct cadence_nand_irq_status {
427 	/* Thread operation complete status. */
428 	u32 trd_status;
429 	/* Thread operation error. */
430 	u32 trd_error;
431 	/* Controller status. */
432 	u32 status;
433 };
434 
435 /* Cadence NAND flash controller capabilities get from driver data. */
436 struct cadence_nand_dt_devdata {
437 	/* Skew value of the output signals of the NAND Flash interface. */
438 	u32 if_skew;
439 	/* It informs if slave DMA interface is connected to DMA engine. */
440 	unsigned int has_dma:1;
441 };
442 
443 /* Cadence NAND flash controller capabilities read from registers. */
444 struct cdns_nand_caps {
445 	/* Maximum number of banks supported by hardware. */
446 	u8 max_banks;
447 	/* Slave and Master DMA data width in bytes (4 or 8). */
448 	u8 data_dma_width;
449 	/* Control Data feature supported. */
450 	bool data_control_supp;
451 	/* Is PHY type DLL. */
452 	bool is_phy_type_dll;
453 };
454 
455 struct cdns_nand_ctrl {
456 	struct device *dev;
457 	struct nand_controller controller;
458 	struct cadence_nand_cdma_desc *cdma_desc;
459 	/* IP capability. */
460 	const struct cadence_nand_dt_devdata *caps1;
461 	struct cdns_nand_caps caps2;
462 	u8 ctrl_rev;
463 	dma_addr_t dma_cdma_desc;
464 	u8 *buf;
465 	u32 buf_size;
466 	u8 curr_corr_str_idx;
467 
468 	/* Register interface. */
469 	void __iomem *reg;
470 
471 	struct {
472 		void __iomem *virt;
473 		dma_addr_t dma;
474 	} io;
475 
476 	int irq;
477 	/* Interrupts that have happened. */
478 	struct cadence_nand_irq_status irq_status;
479 	/* Interrupts we are waiting for. */
480 	struct cadence_nand_irq_status irq_mask;
481 	struct completion complete;
482 	/* Protect irq_mask and irq_status. */
483 	spinlock_t irq_lock;
484 
485 	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
486 	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
487 	struct nand_ecc_caps ecc_caps;
488 
489 	int curr_trans_type;
490 
491 	struct dma_chan *dmac;
492 
493 	u32 nf_clk_rate;
494 	/*
495 	 * Estimated Board delay. The value includes the total
496 	 * round trip delay for the signals and is used for deciding on values
497 	 * associated with data read capture.
498 	 */
499 	u32 board_delay;
500 
501 	struct nand_chip *selected_chip;
502 
503 	unsigned long assigned_cs;
504 	struct list_head chips;
505 	u8 bch_metadata_size;
506 };
507 
508 struct cdns_nand_chip {
509 	struct cadence_nand_timings timings;
510 	struct nand_chip chip;
511 	u8 nsels;
512 	struct list_head node;
513 
514 	/*
515 	 * part of oob area of NAND flash memory page.
516 	 * This part is available for user to read or write.
517 	 */
518 	u32 avail_oob_size;
519 
520 	/* Sector size. There are few sectors per mtd->writesize */
521 	u32 sector_size;
522 	u32 sector_count;
523 
524 	/* Offset of BBM. */
525 	u8 bbm_offs;
526 	/* Number of bytes reserved for BBM. */
527 	u8 bbm_len;
528 	/* ECC strength index. */
529 	u8 corr_str_idx;
530 
531 	u8 cs[] __counted_by(nsels);
532 };
533 
534 struct ecc_info {
535 	int (*calc_ecc_bytes)(int step_size, int strength);
536 	int max_step_size;
537 };
538 
539 static inline struct
540 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
541 {
542 	return container_of(chip, struct cdns_nand_chip, chip);
543 }
544 
545 static inline struct
546 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
547 {
548 	return container_of(controller, struct cdns_nand_ctrl, controller);
549 }
550 
551 static bool
552 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
553 			u32 buf_len)
554 {
555 	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
556 
557 	return buf && virt_addr_valid(buf) &&
558 		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
559 		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
560 }
561 
562 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
563 				       u32 reg_offset, u32 timeout_us,
564 				       u32 mask, bool is_clear)
565 {
566 	u32 val;
567 	int ret;
568 
569 	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
570 					 val, !(val & mask) == is_clear,
571 					 10, timeout_us);
572 
573 	if (ret < 0) {
574 		dev_err(cdns_ctrl->dev,
575 			"Timeout while waiting for reg %x with mask %x is clear %d\n",
576 			reg_offset, mask, is_clear);
577 	}
578 
579 	return ret;
580 }
581 
582 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
583 				       bool enable)
584 {
585 	u32 reg;
586 
587 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
588 					1000000,
589 					CTRL_STATUS_CTRL_BUSY, true))
590 		return -ETIMEDOUT;
591 
592 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
593 
594 	if (enable)
595 		reg |= ECC_CONFIG_0_ECC_EN;
596 	else
597 		reg &= ~ECC_CONFIG_0_ECC_EN;
598 
599 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
600 
601 	return 0;
602 }
603 
604 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
605 					  u8 corr_str_idx)
606 {
607 	u32 reg;
608 
609 	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
610 		return;
611 
612 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
613 	reg &= ~ECC_CONFIG_0_CORR_STR;
614 	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
615 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
616 
617 	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
618 }
619 
620 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
621 					     u8 strength)
622 {
623 	int i, corr_str_idx = -1;
624 
625 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
626 		if (cdns_ctrl->ecc_strengths[i] == strength) {
627 			corr_str_idx = i;
628 			break;
629 		}
630 	}
631 
632 	return corr_str_idx;
633 }
634 
635 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
636 					    u16 marker_value)
637 {
638 	u32 reg;
639 
640 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
641 					1000000,
642 					CTRL_STATUS_CTRL_BUSY, true))
643 		return -ETIMEDOUT;
644 
645 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
646 	reg &= ~SKIP_BYTES_MARKER_VALUE;
647 	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
648 			  marker_value);
649 
650 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
651 
652 	return 0;
653 }
654 
655 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
656 					    u8 num_of_bytes,
657 					    u32 offset_value,
658 					    int enable)
659 {
660 	u32 reg, skip_bytes_offset;
661 
662 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
663 					1000000,
664 					CTRL_STATUS_CTRL_BUSY, true))
665 		return -ETIMEDOUT;
666 
667 	if (!enable) {
668 		num_of_bytes = 0;
669 		offset_value = 0;
670 	}
671 
672 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
673 	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
674 	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
675 			  num_of_bytes);
676 	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
677 				       offset_value);
678 
679 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
680 	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
681 
682 	return 0;
683 }
684 
685 /* Functions enables/disables hardware detection of erased data */
686 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
687 					     bool enable,
688 					     u8 bitflips_threshold)
689 {
690 	u32 reg;
691 
692 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
693 
694 	if (enable)
695 		reg |= ECC_CONFIG_0_ERASE_DET_EN;
696 	else
697 		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
698 
699 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
700 	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
701 }
702 
703 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
704 					   bool bit_bus16)
705 {
706 	u32 reg;
707 
708 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
709 					1000000,
710 					CTRL_STATUS_CTRL_BUSY, true))
711 		return -ETIMEDOUT;
712 
713 	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
714 
715 	if (!bit_bus16)
716 		reg &= ~COMMON_SET_DEVICE_16BIT;
717 	else
718 		reg |= COMMON_SET_DEVICE_16BIT;
719 	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
720 
721 	return 0;
722 }
723 
724 static void
725 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
726 			     struct cadence_nand_irq_status *irq_status)
727 {
728 	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
729 	writel_relaxed(irq_status->trd_status,
730 		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
731 	writel_relaxed(irq_status->trd_error,
732 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
733 }
734 
735 static void
736 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
737 			     struct cadence_nand_irq_status *irq_status)
738 {
739 	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
740 	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
741 					       + TRD_COMP_INT_STATUS);
742 	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
743 					      + TRD_ERR_INT_STATUS);
744 }
745 
746 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
747 			struct cadence_nand_irq_status *irq_status)
748 {
749 	cadence_nand_read_int_status(cdns_ctrl, irq_status);
750 
751 	return irq_status->status || irq_status->trd_status ||
752 		irq_status->trd_error;
753 }
754 
755 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
756 {
757 	unsigned long flags;
758 
759 	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
760 	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
761 	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
762 	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
763 }
764 
765 /*
766  * This is the interrupt service routine. It handles all interrupts
767  * sent to this device.
768  */
769 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
770 {
771 	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
772 	struct cadence_nand_irq_status irq_status;
773 	irqreturn_t result = IRQ_NONE;
774 
775 	spin_lock(&cdns_ctrl->irq_lock);
776 
777 	if (irq_detected(cdns_ctrl, &irq_status)) {
778 		/* Handle interrupt. */
779 		/* First acknowledge it. */
780 		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
781 		/* Status in the device context for someone to read. */
782 		cdns_ctrl->irq_status.status |= irq_status.status;
783 		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
784 		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
785 		/* Notify anyone who cares that it happened. */
786 		complete(&cdns_ctrl->complete);
787 		/* Tell the OS that we've handled this. */
788 		result = IRQ_HANDLED;
789 	}
790 	spin_unlock(&cdns_ctrl->irq_lock);
791 
792 	return result;
793 }
794 
795 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
796 				      struct cadence_nand_irq_status *irq_mask)
797 {
798 	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
799 		       cdns_ctrl->reg + INTR_ENABLE);
800 
801 	writel_relaxed(irq_mask->trd_error,
802 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
803 }
804 
805 static void
806 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
807 			  struct cadence_nand_irq_status *irq_mask,
808 			  struct cadence_nand_irq_status *irq_status)
809 {
810 	unsigned long timeout = msecs_to_jiffies(10000);
811 	unsigned long time_left;
812 
813 	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
814 						timeout);
815 
816 	*irq_status = cdns_ctrl->irq_status;
817 	if (time_left == 0) {
818 		/* Timeout error. */
819 		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
820 		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
821 			irq_status->status, irq_mask->status);
822 		dev_err(cdns_ctrl->dev,
823 			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
824 			irq_status->trd_status, irq_mask->trd_status);
825 		dev_err(cdns_ctrl->dev,
826 			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
827 			irq_status->trd_error, irq_mask->trd_error);
828 	}
829 }
830 
831 /* Execute generic command on NAND controller. */
832 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
833 					 u8 chip_nr,
834 					 u64 mini_ctrl_cmd)
835 {
836 	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
837 
838 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
839 	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
840 	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
841 
842 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
843 					1000000,
844 					CTRL_STATUS_CTRL_BUSY, true))
845 		return -ETIMEDOUT;
846 
847 	cadence_nand_reset_irq(cdns_ctrl);
848 
849 	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
850 	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
851 
852 	/* Select generic command. */
853 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
854 	/* Thread number. */
855 	reg |= FIELD_PREP(CMD_REG0_TN, 0);
856 
857 	/* Issue command. */
858 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
859 
860 	return 0;
861 }
862 
863 /* Wait for data on slave DMA interface. */
864 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
865 				     u8 *out_sdma_trd,
866 				     u32 *out_sdma_size)
867 {
868 	struct cadence_nand_irq_status irq_mask, irq_status;
869 
870 	irq_mask.trd_status = 0;
871 	irq_mask.trd_error = 0;
872 	irq_mask.status = INTR_STATUS_SDMA_TRIGG
873 		| INTR_STATUS_SDMA_ERR
874 		| INTR_STATUS_UNSUPP_CMD;
875 
876 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
877 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
878 	if (irq_status.status == 0) {
879 		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
880 		return -ETIMEDOUT;
881 	}
882 
883 	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
884 		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
885 		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
886 		*out_sdma_trd =
887 			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
888 	} else {
889 		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
890 			irq_status.status);
891 		return -EIO;
892 	}
893 
894 	return 0;
895 }
896 
897 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
898 {
899 	u32  reg;
900 
901 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
902 
903 	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
904 
905 	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
906 		cdns_ctrl->caps2.data_dma_width = 8;
907 	else
908 		cdns_ctrl->caps2.data_dma_width = 4;
909 
910 	if (reg & CTRL_FEATURES_CONTROL_DATA)
911 		cdns_ctrl->caps2.data_control_supp = true;
912 
913 	if (reg & (CTRL_FEATURES_NVDDR_2_3
914 		   | CTRL_FEATURES_NVDDR))
915 		cdns_ctrl->caps2.is_phy_type_dll = true;
916 }
917 
918 /* Prepare CDMA descriptor. */
919 static void
920 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
921 			       char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
922 				   dma_addr_t ctrl_data_ptr, u16 ctype)
923 {
924 	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
925 
926 	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
927 
928 	/* Set fields for one descriptor. */
929 	cdma_desc->flash_pointer = flash_ptr;
930 	if (cdns_ctrl->ctrl_rev >= 13)
931 		cdma_desc->bank = nf_mem;
932 	else
933 		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
934 
935 	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
936 	cdma_desc->command_flags  |= CDMA_CF_INT;
937 
938 	cdma_desc->memory_pointer = mem_ptr;
939 	cdma_desc->status = 0;
940 	cdma_desc->sync_flag_pointer = 0;
941 	cdma_desc->sync_arguments = 0;
942 
943 	cdma_desc->command_type = ctype;
944 	cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
945 }
946 
947 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
948 					u32 desc_status)
949 {
950 	if (desc_status & CDMA_CS_ERP)
951 		return STAT_ERASED;
952 
953 	if (desc_status & CDMA_CS_UNCE)
954 		return STAT_ECC_UNCORR;
955 
956 	if (desc_status & CDMA_CS_ERR) {
957 		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
958 		return STAT_FAIL;
959 	}
960 
961 	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
962 		return STAT_ECC_CORR;
963 
964 	return STAT_FAIL;
965 }
966 
967 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
968 {
969 	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
970 	u8 status = STAT_BUSY;
971 
972 	if (desc_ptr->status & CDMA_CS_FAIL) {
973 		status = cadence_nand_check_desc_error(cdns_ctrl,
974 						       desc_ptr->status);
975 		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
976 	} else if (desc_ptr->status & CDMA_CS_COMP) {
977 		/* Descriptor finished with no errors. */
978 		if (desc_ptr->command_flags & CDMA_CF_CONT) {
979 			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
980 			status = STAT_UNKNOWN;
981 		} else {
982 			/* Last descriptor.  */
983 			status = STAT_OK;
984 		}
985 	}
986 
987 	return status;
988 }
989 
990 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
991 				  u8 thread)
992 {
993 	u32 reg;
994 	int status;
995 
996 	/* Wait for thread ready. */
997 	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
998 					     1000000,
999 					     BIT(thread), true);
1000 	if (status)
1001 		return status;
1002 
1003 	cadence_nand_reset_irq(cdns_ctrl);
1004 	reinit_completion(&cdns_ctrl->complete);
1005 
1006 	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1007 		       cdns_ctrl->reg + CMD_REG2);
1008 	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1009 
1010 	/* Select CDMA mode. */
1011 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1012 	/* Thread number. */
1013 	reg |= FIELD_PREP(CMD_REG0_TN, thread);
1014 	/* Issue command. */
1015 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1016 
1017 	return 0;
1018 }
1019 
1020 /* Send SDMA command and wait for finish. */
1021 static u32
1022 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1023 				u8 thread)
1024 {
1025 	struct cadence_nand_irq_status irq_mask, irq_status = {0};
1026 	int status;
1027 
1028 	irq_mask.trd_status = BIT(thread);
1029 	irq_mask.trd_error = BIT(thread);
1030 	irq_mask.status = INTR_STATUS_CDMA_TERR;
1031 
1032 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1033 
1034 	status = cadence_nand_cdma_send(cdns_ctrl, thread);
1035 	if (status)
1036 		return status;
1037 
1038 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1039 
1040 	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1041 	    irq_status.trd_error == 0) {
1042 		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1043 		return -ETIMEDOUT;
1044 	}
1045 	if (irq_status.status & irq_mask.status) {
1046 		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1047 		return -EIO;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /*
1054  * ECC size depends on configured ECC strength and on maximum supported
1055  * ECC step size.
1056  */
1057 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1058 {
1059 	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1060 
1061 	return ALIGN(nbytes, 2);
1062 }
1063 
1064 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1065 	static int \
1066 	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1067 						    int strength)\
1068 	{\
1069 		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1070 	}
1071 
1072 CADENCE_NAND_CALC_ECC_BYTES(256)
1073 CADENCE_NAND_CALC_ECC_BYTES(512)
1074 CADENCE_NAND_CALC_ECC_BYTES(1024)
1075 CADENCE_NAND_CALC_ECC_BYTES(2048)
1076 CADENCE_NAND_CALC_ECC_BYTES(4096)
1077 
1078 /* Function reads BCH capabilities. */
1079 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1080 {
1081 	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1082 	int max_step_size = 0, nstrengths, i;
1083 	u32 reg;
1084 
1085 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1086 	cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1087 	if (cdns_ctrl->bch_metadata_size < 4) {
1088 		dev_err(cdns_ctrl->dev,
1089 			"Driver needs at least 4 bytes of BCH meta data\n");
1090 		return -EIO;
1091 	}
1092 
1093 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1094 	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1095 	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1096 	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1097 	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1098 
1099 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1100 	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1101 	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1102 	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1103 	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1104 
1105 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1106 	cdns_ctrl->ecc_stepinfos[0].stepsize =
1107 		FIELD_GET(BCH_CFG_2_SECT_0, reg);
1108 
1109 	cdns_ctrl->ecc_stepinfos[1].stepsize =
1110 		FIELD_GET(BCH_CFG_2_SECT_1, reg);
1111 
1112 	nstrengths = 0;
1113 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1114 		if (cdns_ctrl->ecc_strengths[i] != 0)
1115 			nstrengths++;
1116 	}
1117 
1118 	ecc_caps->nstepinfos = 0;
1119 	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1120 		/* ECC strengths are common for all step infos. */
1121 		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1122 		cdns_ctrl->ecc_stepinfos[i].strengths =
1123 			cdns_ctrl->ecc_strengths;
1124 
1125 		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1126 			ecc_caps->nstepinfos++;
1127 
1128 		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1129 			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1130 	}
1131 	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1132 
1133 	switch (max_step_size) {
1134 	case 256:
1135 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1136 		break;
1137 	case 512:
1138 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1139 		break;
1140 	case 1024:
1141 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1142 		break;
1143 	case 2048:
1144 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1145 		break;
1146 	case 4096:
1147 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1148 		break;
1149 	default:
1150 		dev_err(cdns_ctrl->dev,
1151 			"Unsupported sector size(ecc step size) %d\n",
1152 			max_step_size);
1153 		return -EIO;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 /* Hardware initialization. */
1160 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1161 {
1162 	int status;
1163 	u32 reg;
1164 
1165 	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1166 					     1000000,
1167 					     CTRL_STATUS_INIT_COMP, false);
1168 	if (status)
1169 		return status;
1170 
1171 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1172 	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1173 
1174 	dev_info(cdns_ctrl->dev,
1175 		 "%s: cadence nand controller version reg %x\n",
1176 		 __func__, reg);
1177 
1178 	/* Disable cache and multiplane. */
1179 	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1180 	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1181 
1182 	/* Clear all interrupts. */
1183 	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1184 
1185 	cadence_nand_get_caps(cdns_ctrl);
1186 	if (cadence_nand_read_bch_caps(cdns_ctrl))
1187 		return -EIO;
1188 
1189 #ifndef CONFIG_64BIT
1190 	if (cdns_ctrl->caps2.data_dma_width == 8) {
1191 		dev_err(cdns_ctrl->dev,
1192 			"cannot access 64-bit dma on !64-bit architectures");
1193 		return -EIO;
1194 	}
1195 #endif
1196 
1197 	/*
1198 	 * Set IO width access to 8.
1199 	 * It is because during SW device discovering width access
1200 	 * is expected to be 8.
1201 	 */
1202 	status = cadence_nand_set_access_width16(cdns_ctrl, false);
1203 
1204 	return status;
1205 }
1206 
1207 #define TT_MAIN_OOB_AREAS	2
1208 #define TT_RAW_PAGE		3
1209 #define TT_BBM			4
1210 #define TT_MAIN_OOB_AREA_EXT	5
1211 
1212 /* Prepare size of data to transfer. */
1213 static void
1214 cadence_nand_prepare_data_size(struct nand_chip *chip,
1215 			       int transfer_type)
1216 {
1217 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1218 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1219 	struct mtd_info *mtd = nand_to_mtd(chip);
1220 	u32 sec_size = 0, offset = 0, sec_cnt = 1;
1221 	u32 last_sec_size = cdns_chip->sector_size;
1222 	u32 data_ctrl_size = 0;
1223 	u32 reg = 0;
1224 
1225 	if (cdns_ctrl->curr_trans_type == transfer_type)
1226 		return;
1227 
1228 	switch (transfer_type) {
1229 	case TT_MAIN_OOB_AREA_EXT:
1230 		sec_cnt = cdns_chip->sector_count;
1231 		sec_size = cdns_chip->sector_size;
1232 		data_ctrl_size = cdns_chip->avail_oob_size;
1233 		break;
1234 	case TT_MAIN_OOB_AREAS:
1235 		sec_cnt = cdns_chip->sector_count;
1236 		last_sec_size = cdns_chip->sector_size
1237 			+ cdns_chip->avail_oob_size;
1238 		sec_size = cdns_chip->sector_size;
1239 		break;
1240 	case TT_RAW_PAGE:
1241 		last_sec_size = mtd->writesize + mtd->oobsize;
1242 		break;
1243 	case TT_BBM:
1244 		offset = mtd->writesize + cdns_chip->bbm_offs;
1245 		last_sec_size = 8;
1246 		break;
1247 	}
1248 
1249 	reg = 0;
1250 	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1251 	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1252 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1253 
1254 	reg = 0;
1255 	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1256 	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1257 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1258 
1259 	if (cdns_ctrl->caps2.data_control_supp) {
1260 		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1261 		reg &= ~CONTROL_DATA_CTRL_SIZE;
1262 		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1263 		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1264 	}
1265 
1266 	cdns_ctrl->curr_trans_type = transfer_type;
1267 }
1268 
1269 static int
1270 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1271 			   int page, void *buf, void *ctrl_dat, u32 buf_size,
1272 			   u32 ctrl_dat_size, enum dma_data_direction dir,
1273 			   bool with_ecc)
1274 {
1275 	dma_addr_t dma_buf, dma_ctrl_dat = 0;
1276 	u8 thread_nr = chip_nr;
1277 	int status;
1278 	u16 ctype;
1279 
1280 	if (dir == DMA_FROM_DEVICE)
1281 		ctype = CDMA_CT_RD;
1282 	else
1283 		ctype = CDMA_CT_WR;
1284 
1285 	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1286 
1287 	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1288 	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1289 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1290 		return -EIO;
1291 	}
1292 
1293 	if (ctrl_dat && ctrl_dat_size) {
1294 		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1295 					      ctrl_dat_size, dir);
1296 		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1297 			dma_unmap_single(cdns_ctrl->dev, dma_buf,
1298 					 buf_size, dir);
1299 			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1300 			return -EIO;
1301 		}
1302 	}
1303 
1304 	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1305 				       dma_buf, dma_ctrl_dat, ctype);
1306 
1307 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1308 
1309 	dma_unmap_single(cdns_ctrl->dev, dma_buf,
1310 			 buf_size, dir);
1311 
1312 	if (ctrl_dat && ctrl_dat_size)
1313 		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1314 				 ctrl_dat_size, dir);
1315 	if (status)
1316 		return status;
1317 
1318 	return cadence_nand_cdma_finish(cdns_ctrl);
1319 }
1320 
1321 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1322 				     struct cadence_nand_timings *t)
1323 {
1324 	writel_relaxed(t->async_toggle_timings,
1325 		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1326 	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1327 	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1328 	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1329 
1330 	if (cdns_ctrl->caps2.is_phy_type_dll)
1331 		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1332 
1333 	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1334 
1335 	if (cdns_ctrl->caps2.is_phy_type_dll) {
1336 		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1337 		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1338 		writel_relaxed(t->phy_dqs_timing,
1339 			       cdns_ctrl->reg + PHY_DQS_TIMING);
1340 		writel_relaxed(t->phy_gate_lpbk_ctrl,
1341 			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1342 		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1343 			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1344 		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1345 	}
1346 }
1347 
1348 static int cadence_nand_select_target(struct nand_chip *chip)
1349 {
1350 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1351 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1352 
1353 	if (chip == cdns_ctrl->selected_chip)
1354 		return 0;
1355 
1356 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1357 					1000000,
1358 					CTRL_STATUS_CTRL_BUSY, true))
1359 		return -ETIMEDOUT;
1360 
1361 	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1362 
1363 	cadence_nand_set_ecc_strength(cdns_ctrl,
1364 				      cdns_chip->corr_str_idx);
1365 
1366 	cadence_nand_set_erase_detection(cdns_ctrl, true,
1367 					 chip->ecc.strength);
1368 
1369 	cdns_ctrl->curr_trans_type = -1;
1370 	cdns_ctrl->selected_chip = chip;
1371 
1372 	return 0;
1373 }
1374 
1375 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1376 {
1377 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1378 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1379 	int status;
1380 	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1381 
1382 	cadence_nand_cdma_desc_prepare(cdns_ctrl,
1383 				       cdns_chip->cs[chip->cur_cs],
1384 				       page, 0, 0,
1385 				       CDMA_CT_ERASE);
1386 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1387 	if (status) {
1388 		dev_err(cdns_ctrl->dev, "erase operation failed\n");
1389 		return -EIO;
1390 	}
1391 
1392 	status = cadence_nand_cdma_finish(cdns_ctrl);
1393 	if (status)
1394 		return status;
1395 
1396 	return 0;
1397 }
1398 
1399 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1400 {
1401 	int status;
1402 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1403 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1404 	struct mtd_info *mtd = nand_to_mtd(chip);
1405 
1406 	cadence_nand_prepare_data_size(chip, TT_BBM);
1407 
1408 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1409 
1410 	/*
1411 	 * Read only bad block marker from offset
1412 	 * defined by a memory manufacturer.
1413 	 */
1414 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1415 					    cdns_chip->cs[chip->cur_cs],
1416 					    page, cdns_ctrl->buf, NULL,
1417 					    mtd->oobsize,
1418 					    0, DMA_FROM_DEVICE, false);
1419 	if (status) {
1420 		dev_err(cdns_ctrl->dev, "read BBM failed\n");
1421 		return -EIO;
1422 	}
1423 
1424 	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1425 
1426 	return 0;
1427 }
1428 
1429 static int cadence_nand_write_page(struct nand_chip *chip,
1430 				   const u8 *buf, int oob_required,
1431 				   int page)
1432 {
1433 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1434 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1435 	struct mtd_info *mtd = nand_to_mtd(chip);
1436 	int status;
1437 	u16 marker_val = 0xFFFF;
1438 
1439 	status = cadence_nand_select_target(chip);
1440 	if (status)
1441 		return status;
1442 
1443 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1444 					 mtd->writesize
1445 					 + cdns_chip->bbm_offs,
1446 					 1);
1447 
1448 	if (oob_required) {
1449 		marker_val = *(u16 *)(chip->oob_poi
1450 				      + cdns_chip->bbm_offs);
1451 	} else {
1452 		/* Set oob data to 0xFF. */
1453 		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1454 		       cdns_chip->avail_oob_size);
1455 	}
1456 
1457 	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1458 
1459 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1460 
1461 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1462 	    cdns_ctrl->caps2.data_control_supp) {
1463 		u8 *oob;
1464 
1465 		if (oob_required)
1466 			oob = chip->oob_poi;
1467 		else
1468 			oob = cdns_ctrl->buf + mtd->writesize;
1469 
1470 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1471 						    cdns_chip->cs[chip->cur_cs],
1472 						    page, (void *)buf, oob,
1473 						    mtd->writesize,
1474 						    cdns_chip->avail_oob_size,
1475 						    DMA_TO_DEVICE, true);
1476 		if (status) {
1477 			dev_err(cdns_ctrl->dev, "write page failed\n");
1478 			return -EIO;
1479 		}
1480 
1481 		return 0;
1482 	}
1483 
1484 	if (oob_required) {
1485 		/* Transfer the data to the oob area. */
1486 		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1487 		       cdns_chip->avail_oob_size);
1488 	}
1489 
1490 	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1491 
1492 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1493 
1494 	return cadence_nand_cdma_transfer(cdns_ctrl,
1495 					  cdns_chip->cs[chip->cur_cs],
1496 					  page, cdns_ctrl->buf, NULL,
1497 					  mtd->writesize
1498 					  + cdns_chip->avail_oob_size,
1499 					  0, DMA_TO_DEVICE, true);
1500 }
1501 
1502 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1503 {
1504 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1505 	struct mtd_info *mtd = nand_to_mtd(chip);
1506 
1507 	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1508 
1509 	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1510 }
1511 
1512 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1513 				       const u8 *buf, int oob_required,
1514 				       int page)
1515 {
1516 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1517 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1518 	struct mtd_info *mtd = nand_to_mtd(chip);
1519 	int writesize = mtd->writesize;
1520 	int oobsize = mtd->oobsize;
1521 	int ecc_steps = chip->ecc.steps;
1522 	int ecc_size = chip->ecc.size;
1523 	int ecc_bytes = chip->ecc.bytes;
1524 	void *tmp_buf = cdns_ctrl->buf;
1525 	int oob_skip = cdns_chip->bbm_len;
1526 	size_t size = writesize + oobsize;
1527 	int i, pos, len;
1528 	int status = 0;
1529 
1530 	status = cadence_nand_select_target(chip);
1531 	if (status)
1532 		return status;
1533 
1534 	/*
1535 	 * Fill the buffer with 0xff first except the full page transfer.
1536 	 * This simplifies the logic.
1537 	 */
1538 	if (!buf || !oob_required)
1539 		memset(tmp_buf, 0xff, size);
1540 
1541 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1542 
1543 	/* Arrange the buffer for syndrome payload/ecc layout. */
1544 	if (buf) {
1545 		for (i = 0; i < ecc_steps; i++) {
1546 			pos = i * (ecc_size + ecc_bytes);
1547 			len = ecc_size;
1548 
1549 			if (pos >= writesize)
1550 				pos += oob_skip;
1551 			else if (pos + len > writesize)
1552 				len = writesize - pos;
1553 
1554 			memcpy(tmp_buf + pos, buf, len);
1555 			buf += len;
1556 			if (len < ecc_size) {
1557 				len = ecc_size - len;
1558 				memcpy(tmp_buf + writesize + oob_skip, buf,
1559 				       len);
1560 				buf += len;
1561 			}
1562 		}
1563 	}
1564 
1565 	if (oob_required) {
1566 		const u8 *oob = chip->oob_poi;
1567 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1568 			(cdns_chip->sector_size + chip->ecc.bytes)
1569 			+ cdns_chip->sector_size + oob_skip;
1570 
1571 		/* BBM at the beginning of the OOB area. */
1572 		memcpy(tmp_buf + writesize, oob, oob_skip);
1573 
1574 		/* OOB free. */
1575 		memcpy(tmp_buf + oob_data_offset, oob,
1576 		       cdns_chip->avail_oob_size);
1577 		oob += cdns_chip->avail_oob_size;
1578 
1579 		/* OOB ECC. */
1580 		for (i = 0; i < ecc_steps; i++) {
1581 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1582 			if (i == (ecc_steps - 1))
1583 				pos += cdns_chip->avail_oob_size;
1584 
1585 			len = ecc_bytes;
1586 
1587 			if (pos >= writesize)
1588 				pos += oob_skip;
1589 			else if (pos + len > writesize)
1590 				len = writesize - pos;
1591 
1592 			memcpy(tmp_buf + pos, oob, len);
1593 			oob += len;
1594 			if (len < ecc_bytes) {
1595 				len = ecc_bytes - len;
1596 				memcpy(tmp_buf + writesize + oob_skip, oob,
1597 				       len);
1598 				oob += len;
1599 			}
1600 		}
1601 	}
1602 
1603 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1604 
1605 	return cadence_nand_cdma_transfer(cdns_ctrl,
1606 					  cdns_chip->cs[chip->cur_cs],
1607 					  page, cdns_ctrl->buf, NULL,
1608 					  mtd->writesize +
1609 					  mtd->oobsize,
1610 					  0, DMA_TO_DEVICE, false);
1611 }
1612 
1613 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1614 				      int page)
1615 {
1616 	return cadence_nand_write_page_raw(chip, NULL, true, page);
1617 }
1618 
1619 static int cadence_nand_read_page(struct nand_chip *chip,
1620 				  u8 *buf, int oob_required, int page)
1621 {
1622 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1623 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1624 	struct mtd_info *mtd = nand_to_mtd(chip);
1625 	int status = 0;
1626 	int ecc_err_count = 0;
1627 
1628 	status = cadence_nand_select_target(chip);
1629 	if (status)
1630 		return status;
1631 
1632 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1633 					 mtd->writesize
1634 					 + cdns_chip->bbm_offs, 1);
1635 
1636 	/*
1637 	 * If data buffer can be accessed by DMA and data_control feature
1638 	 * is supported then transfer data and oob directly.
1639 	 */
1640 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1641 	    cdns_ctrl->caps2.data_control_supp) {
1642 		u8 *oob;
1643 
1644 		if (oob_required)
1645 			oob = chip->oob_poi;
1646 		else
1647 			oob = cdns_ctrl->buf + mtd->writesize;
1648 
1649 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1650 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1651 						    cdns_chip->cs[chip->cur_cs],
1652 						    page, buf, oob,
1653 						    mtd->writesize,
1654 						    cdns_chip->avail_oob_size,
1655 						    DMA_FROM_DEVICE, true);
1656 	/* Otherwise use bounce buffer. */
1657 	} else {
1658 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1659 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1660 						    cdns_chip->cs[chip->cur_cs],
1661 						    page, cdns_ctrl->buf,
1662 						    NULL, mtd->writesize
1663 						    + cdns_chip->avail_oob_size,
1664 						    0, DMA_FROM_DEVICE, true);
1665 
1666 		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1667 		if (oob_required)
1668 			memcpy(chip->oob_poi,
1669 			       cdns_ctrl->buf + mtd->writesize,
1670 			       mtd->oobsize);
1671 	}
1672 
1673 	switch (status) {
1674 	case STAT_ECC_UNCORR:
1675 		mtd->ecc_stats.failed++;
1676 		ecc_err_count++;
1677 		break;
1678 	case STAT_ECC_CORR:
1679 		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1680 					  cdns_ctrl->cdma_desc->status);
1681 		mtd->ecc_stats.corrected += ecc_err_count;
1682 		break;
1683 	case STAT_ERASED:
1684 	case STAT_OK:
1685 		break;
1686 	default:
1687 		dev_err(cdns_ctrl->dev, "read page failed\n");
1688 		return -EIO;
1689 	}
1690 
1691 	if (oob_required)
1692 		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1693 			return -EIO;
1694 
1695 	return ecc_err_count;
1696 }
1697 
1698 /* Reads OOB data from the device. */
1699 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1700 {
1701 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1702 
1703 	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1704 }
1705 
1706 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1707 				      u8 *buf, int oob_required, int page)
1708 {
1709 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1710 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1711 	struct mtd_info *mtd = nand_to_mtd(chip);
1712 	int oob_skip = cdns_chip->bbm_len;
1713 	int writesize = mtd->writesize;
1714 	int ecc_steps = chip->ecc.steps;
1715 	int ecc_size = chip->ecc.size;
1716 	int ecc_bytes = chip->ecc.bytes;
1717 	void *tmp_buf = cdns_ctrl->buf;
1718 	int i, pos, len;
1719 	int status = 0;
1720 
1721 	status = cadence_nand_select_target(chip);
1722 	if (status)
1723 		return status;
1724 
1725 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1726 
1727 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1728 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1729 					    cdns_chip->cs[chip->cur_cs],
1730 					    page, cdns_ctrl->buf, NULL,
1731 					    mtd->writesize
1732 					    + mtd->oobsize,
1733 					    0, DMA_FROM_DEVICE, false);
1734 
1735 	switch (status) {
1736 	case STAT_ERASED:
1737 	case STAT_OK:
1738 		break;
1739 	default:
1740 		dev_err(cdns_ctrl->dev, "read raw page failed\n");
1741 		return -EIO;
1742 	}
1743 
1744 	/* Arrange the buffer for syndrome payload/ecc layout. */
1745 	if (buf) {
1746 		for (i = 0; i < ecc_steps; i++) {
1747 			pos = i * (ecc_size + ecc_bytes);
1748 			len = ecc_size;
1749 
1750 			if (pos >= writesize)
1751 				pos += oob_skip;
1752 			else if (pos + len > writesize)
1753 				len = writesize - pos;
1754 
1755 			memcpy(buf, tmp_buf + pos, len);
1756 			buf += len;
1757 			if (len < ecc_size) {
1758 				len = ecc_size - len;
1759 				memcpy(buf, tmp_buf + writesize + oob_skip,
1760 				       len);
1761 				buf += len;
1762 			}
1763 		}
1764 	}
1765 
1766 	if (oob_required) {
1767 		u8 *oob = chip->oob_poi;
1768 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1769 			(cdns_chip->sector_size + chip->ecc.bytes)
1770 			+ cdns_chip->sector_size + oob_skip;
1771 
1772 		/* OOB free. */
1773 		memcpy(oob, tmp_buf + oob_data_offset,
1774 		       cdns_chip->avail_oob_size);
1775 
1776 		/* BBM at the beginning of the OOB area. */
1777 		memcpy(oob, tmp_buf + writesize, oob_skip);
1778 
1779 		oob += cdns_chip->avail_oob_size;
1780 
1781 		/* OOB ECC */
1782 		for (i = 0; i < ecc_steps; i++) {
1783 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1784 			len = ecc_bytes;
1785 
1786 			if (i == (ecc_steps - 1))
1787 				pos += cdns_chip->avail_oob_size;
1788 
1789 			if (pos >= writesize)
1790 				pos += oob_skip;
1791 			else if (pos + len > writesize)
1792 				len = writesize - pos;
1793 
1794 			memcpy(oob, tmp_buf + pos, len);
1795 			oob += len;
1796 			if (len < ecc_bytes) {
1797 				len = ecc_bytes - len;
1798 				memcpy(oob, tmp_buf + writesize + oob_skip,
1799 				       len);
1800 				oob += len;
1801 			}
1802 		}
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1809 				     int page)
1810 {
1811 	return cadence_nand_read_page_raw(chip, NULL, true, page);
1812 }
1813 
1814 static void cadence_nand_slave_dma_transfer_finished(void *data)
1815 {
1816 	struct completion *finished = data;
1817 
1818 	complete(finished);
1819 }
1820 
1821 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1822 					   void *buf,
1823 					   dma_addr_t dev_dma, size_t len,
1824 					   enum dma_data_direction dir)
1825 {
1826 	DECLARE_COMPLETION_ONSTACK(finished);
1827 	struct dma_chan *chan;
1828 	struct dma_device *dma_dev;
1829 	dma_addr_t src_dma, dst_dma, buf_dma;
1830 	struct dma_async_tx_descriptor *tx;
1831 	dma_cookie_t cookie;
1832 
1833 	chan = cdns_ctrl->dmac;
1834 	dma_dev = chan->device;
1835 
1836 	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1837 	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1838 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1839 		goto err;
1840 	}
1841 
1842 	if (dir == DMA_FROM_DEVICE) {
1843 		src_dma = cdns_ctrl->io.dma;
1844 		dst_dma = buf_dma;
1845 	} else {
1846 		src_dma = buf_dma;
1847 		dst_dma = cdns_ctrl->io.dma;
1848 	}
1849 
1850 	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1851 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1852 	if (!tx) {
1853 		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1854 		goto err_unmap;
1855 	}
1856 
1857 	tx->callback = cadence_nand_slave_dma_transfer_finished;
1858 	tx->callback_param = &finished;
1859 
1860 	cookie = dmaengine_submit(tx);
1861 	if (dma_submit_error(cookie)) {
1862 		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1863 		goto err_unmap;
1864 	}
1865 
1866 	dma_async_issue_pending(cdns_ctrl->dmac);
1867 	wait_for_completion(&finished);
1868 
1869 	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1870 
1871 	return 0;
1872 
1873 err_unmap:
1874 	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1875 
1876 err:
1877 	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1878 
1879 	return -EIO;
1880 }
1881 
1882 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1883 				 u8 *buf, int len)
1884 {
1885 	u8 thread_nr = 0;
1886 	u32 sdma_size;
1887 	int status;
1888 
1889 	/* Wait until slave DMA interface is ready to data transfer. */
1890 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1891 	if (status)
1892 		return status;
1893 
1894 	if (!cdns_ctrl->caps1->has_dma) {
1895 		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1896 
1897 		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1898 
1899 		/* read alingment data */
1900 		if (data_dma_width == 4)
1901 			ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1902 #ifdef CONFIG_64BIT
1903 		else
1904 			readsq(cdns_ctrl->io.virt, buf, len_in_words);
1905 #endif
1906 
1907 		if (sdma_size > len) {
1908 			int read_bytes = (data_dma_width == 4) ?
1909 				len_in_words << 2 : len_in_words << 3;
1910 
1911 			/* read rest data from slave DMA interface if any */
1912 			if (data_dma_width == 4)
1913 				ioread32_rep(cdns_ctrl->io.virt,
1914 					     cdns_ctrl->buf,
1915 					     sdma_size / 4 - len_in_words);
1916 #ifdef CONFIG_64BIT
1917 			else
1918 				readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1919 				       sdma_size / 8 - len_in_words);
1920 #endif
1921 
1922 			/* copy rest of data */
1923 			memcpy(buf + read_bytes, cdns_ctrl->buf,
1924 			       len - read_bytes);
1925 		}
1926 		return 0;
1927 	}
1928 
1929 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1930 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1931 							 cdns_ctrl->io.dma,
1932 							 len, DMA_FROM_DEVICE);
1933 		if (status == 0)
1934 			return 0;
1935 
1936 		dev_warn(cdns_ctrl->dev,
1937 			 "Slave DMA transfer failed. Try again using bounce buffer.");
1938 	}
1939 
1940 	/* If DMA transfer is not possible or failed then use bounce buffer. */
1941 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1942 						 cdns_ctrl->io.dma,
1943 						 sdma_size, DMA_FROM_DEVICE);
1944 
1945 	if (status) {
1946 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1947 		return status;
1948 	}
1949 
1950 	memcpy(buf, cdns_ctrl->buf, len);
1951 
1952 	return 0;
1953 }
1954 
1955 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1956 				  const u8 *buf, int len)
1957 {
1958 	u8 thread_nr = 0;
1959 	u32 sdma_size;
1960 	int status;
1961 
1962 	/* Wait until slave DMA interface is ready to data transfer. */
1963 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1964 	if (status)
1965 		return status;
1966 
1967 	if (!cdns_ctrl->caps1->has_dma) {
1968 		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1969 
1970 		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1971 
1972 		if (data_dma_width == 4)
1973 			iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1974 #ifdef CONFIG_64BIT
1975 		else
1976 			writesq(cdns_ctrl->io.virt, buf, len_in_words);
1977 #endif
1978 
1979 		if (sdma_size > len) {
1980 			int written_bytes = (data_dma_width == 4) ?
1981 				len_in_words << 2 : len_in_words << 3;
1982 
1983 			/* copy rest of data */
1984 			memcpy(cdns_ctrl->buf, buf + written_bytes,
1985 			       len - written_bytes);
1986 
1987 			/* write all expected by nand controller data */
1988 			if (data_dma_width == 4)
1989 				iowrite32_rep(cdns_ctrl->io.virt,
1990 					      cdns_ctrl->buf,
1991 					      sdma_size / 4 - len_in_words);
1992 #ifdef CONFIG_64BIT
1993 			else
1994 				writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1995 					sdma_size / 8 - len_in_words);
1996 #endif
1997 		}
1998 
1999 		return 0;
2000 	}
2001 
2002 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
2003 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
2004 							 cdns_ctrl->io.dma,
2005 							 len, DMA_TO_DEVICE);
2006 		if (status == 0)
2007 			return 0;
2008 
2009 		dev_warn(cdns_ctrl->dev,
2010 			 "Slave DMA transfer failed. Try again using bounce buffer.");
2011 	}
2012 
2013 	/* If DMA transfer is not possible or failed then use bounce buffer. */
2014 	memcpy(cdns_ctrl->buf, buf, len);
2015 
2016 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2017 						 cdns_ctrl->io.dma,
2018 						 sdma_size, DMA_TO_DEVICE);
2019 
2020 	if (status)
2021 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2022 
2023 	return status;
2024 }
2025 
2026 static int cadence_nand_force_byte_access(struct nand_chip *chip,
2027 					  bool force_8bit)
2028 {
2029 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2030 
2031 	/*
2032 	 * Callers of this function do not verify if the NAND is using a 16-bit
2033 	 * an 8-bit bus for normal operations, so we need to take care of that
2034 	 * here by leaving the configuration unchanged if the NAND does not have
2035 	 * the NAND_BUSWIDTH_16 flag set.
2036 	 */
2037 	if (!(chip->options & NAND_BUSWIDTH_16))
2038 		return 0;
2039 
2040 	return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2041 }
2042 
2043 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2044 				   const struct nand_subop *subop)
2045 {
2046 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2047 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2048 	const struct nand_op_instr *instr;
2049 	unsigned int op_id = 0;
2050 	u64 mini_ctrl_cmd = 0;
2051 	int ret;
2052 
2053 	instr = &subop->instrs[op_id];
2054 
2055 	if (instr->delay_ns > 0)
2056 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2057 
2058 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2059 				    GCMD_LAY_INSTR_CMD);
2060 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2061 				    instr->ctx.cmd.opcode);
2062 
2063 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2064 					    cdns_chip->cs[chip->cur_cs],
2065 					    mini_ctrl_cmd);
2066 	if (ret)
2067 		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2068 			instr->ctx.cmd.opcode);
2069 
2070 	return ret;
2071 }
2072 
2073 static int cadence_nand_cmd_address(struct nand_chip *chip,
2074 				    const struct nand_subop *subop)
2075 {
2076 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2077 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2078 	const struct nand_op_instr *instr;
2079 	unsigned int op_id = 0;
2080 	u64 mini_ctrl_cmd = 0;
2081 	unsigned int offset, naddrs;
2082 	u64 address = 0;
2083 	const u8 *addrs;
2084 	int ret;
2085 	int i;
2086 
2087 	instr = &subop->instrs[op_id];
2088 
2089 	if (instr->delay_ns > 0)
2090 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2091 
2092 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2093 				    GCMD_LAY_INSTR_ADDR);
2094 
2095 	offset = nand_subop_get_addr_start_off(subop, op_id);
2096 	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2097 	addrs = &instr->ctx.addr.addrs[offset];
2098 
2099 	for (i = 0; i < naddrs; i++)
2100 		address |= (u64)addrs[i] << (8 * i);
2101 
2102 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2103 				    address);
2104 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2105 				    naddrs - 1);
2106 
2107 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2108 					    cdns_chip->cs[chip->cur_cs],
2109 					    mini_ctrl_cmd);
2110 	if (ret)
2111 		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2112 
2113 	return ret;
2114 }
2115 
2116 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2117 				  const struct nand_subop *subop)
2118 {
2119 	unsigned int op_id;
2120 
2121 	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2122 		int i;
2123 		const struct nand_op_instr *instr = NULL;
2124 		unsigned int offset, naddrs;
2125 		const u8 *addrs;
2126 		u32 page = 0;
2127 
2128 		instr = &subop->instrs[1];
2129 		offset = nand_subop_get_addr_start_off(subop, 1);
2130 		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2131 		addrs = &instr->ctx.addr.addrs[offset];
2132 
2133 		for (i = 0; i < naddrs; i++)
2134 			page |= (u32)addrs[i] << (8 * i);
2135 
2136 		return cadence_nand_erase(chip, page);
2137 	}
2138 
2139 	/*
2140 	 * If it is not an erase operation then handle operation
2141 	 * by calling exec_op function.
2142 	 */
2143 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2144 		int ret;
2145 		const struct nand_operation nand_op = {
2146 			.cs = chip->cur_cs,
2147 			.instrs =  &subop->instrs[op_id],
2148 			.ninstrs = 1};
2149 		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2150 		if (ret)
2151 			return ret;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 static int cadence_nand_cmd_data(struct nand_chip *chip,
2158 				 const struct nand_subop *subop)
2159 {
2160 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2161 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2162 	const struct nand_op_instr *instr;
2163 	unsigned int offset, op_id = 0;
2164 	u64 mini_ctrl_cmd = 0;
2165 	int len = 0;
2166 	int ret;
2167 
2168 	instr = &subop->instrs[op_id];
2169 
2170 	if (instr->delay_ns > 0)
2171 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2172 
2173 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2174 				    GCMD_LAY_INSTR_DATA);
2175 
2176 	if (instr->type == NAND_OP_DATA_OUT_INSTR)
2177 		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2178 					    GCMD_DIR_WRITE);
2179 
2180 	len = nand_subop_get_data_len(subop, op_id);
2181 	offset = nand_subop_get_data_start_off(subop, op_id);
2182 	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2183 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2184 	if (instr->ctx.data.force_8bit) {
2185 		ret = cadence_nand_force_byte_access(chip, true);
2186 		if (ret) {
2187 			dev_err(cdns_ctrl->dev,
2188 				"cannot change byte access generic data cmd failed\n");
2189 			return ret;
2190 		}
2191 	}
2192 
2193 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2194 					    cdns_chip->cs[chip->cur_cs],
2195 					    mini_ctrl_cmd);
2196 	if (ret) {
2197 		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2198 		return ret;
2199 	}
2200 
2201 	if (instr->type == NAND_OP_DATA_IN_INSTR) {
2202 		void *buf = instr->ctx.data.buf.in + offset;
2203 
2204 		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2205 	} else {
2206 		const void *buf = instr->ctx.data.buf.out + offset;
2207 
2208 		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2209 	}
2210 
2211 	if (ret) {
2212 		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2213 		return ret;
2214 	}
2215 
2216 	if (instr->ctx.data.force_8bit) {
2217 		ret = cadence_nand_force_byte_access(chip, false);
2218 		if (ret) {
2219 			dev_err(cdns_ctrl->dev,
2220 				"cannot change byte access generic data cmd failed\n");
2221 		}
2222 	}
2223 
2224 	return ret;
2225 }
2226 
2227 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2228 				    const struct nand_subop *subop)
2229 {
2230 	int status;
2231 	unsigned int op_id = 0;
2232 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2233 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2234 	const struct nand_op_instr *instr = &subop->instrs[op_id];
2235 	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2236 
2237 	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2238 					     timeout_us,
2239 					     BIT(cdns_chip->cs[chip->cur_cs]),
2240 					     false);
2241 	return status;
2242 }
2243 
2244 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2245 	NAND_OP_PARSER_PATTERN(
2246 		cadence_nand_cmd_erase,
2247 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2248 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2249 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2250 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2251 	NAND_OP_PARSER_PATTERN(
2252 		cadence_nand_cmd_opcode,
2253 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2254 	NAND_OP_PARSER_PATTERN(
2255 		cadence_nand_cmd_address,
2256 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2257 	NAND_OP_PARSER_PATTERN(
2258 		cadence_nand_cmd_data,
2259 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2260 	NAND_OP_PARSER_PATTERN(
2261 		cadence_nand_cmd_data,
2262 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2263 	NAND_OP_PARSER_PATTERN(
2264 		cadence_nand_cmd_waitrdy,
2265 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2266 	);
2267 
2268 static int cadence_nand_exec_op(struct nand_chip *chip,
2269 				const struct nand_operation *op,
2270 				bool check_only)
2271 {
2272 	if (!check_only) {
2273 		int status = cadence_nand_select_target(chip);
2274 
2275 		if (status)
2276 			return status;
2277 	}
2278 
2279 	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2280 				      check_only);
2281 }
2282 
2283 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2284 				       struct mtd_oob_region *oobregion)
2285 {
2286 	struct nand_chip *chip = mtd_to_nand(mtd);
2287 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2288 
2289 	if (section)
2290 		return -ERANGE;
2291 
2292 	oobregion->offset = cdns_chip->bbm_len;
2293 	oobregion->length = cdns_chip->avail_oob_size
2294 		- cdns_chip->bbm_len;
2295 
2296 	return 0;
2297 }
2298 
2299 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2300 				      struct mtd_oob_region *oobregion)
2301 {
2302 	struct nand_chip *chip = mtd_to_nand(mtd);
2303 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2304 
2305 	if (section)
2306 		return -ERANGE;
2307 
2308 	oobregion->offset = cdns_chip->avail_oob_size;
2309 	oobregion->length = chip->ecc.total;
2310 
2311 	return 0;
2312 }
2313 
2314 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2315 	.free = cadence_nand_ooblayout_free,
2316 	.ecc = cadence_nand_ooblayout_ecc,
2317 };
2318 
2319 static int calc_cycl(u32 timing, u32 clock)
2320 {
2321 	if (timing == 0 || clock == 0)
2322 		return 0;
2323 
2324 	if ((timing % clock) > 0)
2325 		return timing / clock;
2326 	else
2327 		return timing / clock - 1;
2328 }
2329 
2330 /* Calculate max data valid window. */
2331 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2332 				u32 board_delay_skew_min, u32 ext_mode)
2333 {
2334 	if (ext_mode == 0)
2335 		clk_period /= 2;
2336 
2337 	return (trp_cnt + 1) * clk_period + trhoh_min +
2338 		board_delay_skew_min;
2339 }
2340 
2341 /* Calculate data valid window. */
2342 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2343 			    u32 trea_max, u32 ext_mode)
2344 {
2345 	if (ext_mode == 0)
2346 		clk_period /= 2;
2347 
2348 	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2349 }
2350 
2351 static int
2352 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2353 			     const struct nand_interface_config *conf)
2354 {
2355 	const struct nand_sdr_timings *sdr;
2356 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2357 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2358 	struct cadence_nand_timings *t = &cdns_chip->timings;
2359 	u32 reg;
2360 	u32 board_delay = cdns_ctrl->board_delay;
2361 	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2362 					    cdns_ctrl->nf_clk_rate);
2363 	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2364 	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2365 	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2366 	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2367 	u32 if_skew = cdns_ctrl->caps1->if_skew;
2368 	u32 board_delay_skew_min = board_delay - if_skew;
2369 	u32 board_delay_skew_max = board_delay + if_skew;
2370 	u32 dqs_sampl_res, phony_dqs_mod;
2371 	u32 tdvw, tdvw_min, tdvw_max;
2372 	u32 ext_rd_mode, ext_wr_mode;
2373 	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2374 	u32 sampling_point;
2375 
2376 	sdr = nand_get_sdr_timings(conf);
2377 	if (IS_ERR(sdr))
2378 		return PTR_ERR(sdr);
2379 
2380 	memset(t, 0, sizeof(*t));
2381 	/* Sampling point calculation. */
2382 
2383 	if (cdns_ctrl->caps2.is_phy_type_dll)
2384 		phony_dqs_mod = 2;
2385 	else
2386 		phony_dqs_mod = 1;
2387 
2388 	dqs_sampl_res = clk_period / phony_dqs_mod;
2389 
2390 	tdvw_min = sdr->tREA_max + board_delay_skew_max;
2391 	/*
2392 	 * The idea of those calculation is to get the optimum value
2393 	 * for tRP and tRH timings. If it is NOT possible to sample data
2394 	 * with optimal tRP/tRH settings, the parameters will be extended.
2395 	 * If clk_period is 50ns (the lowest value) this condition is met
2396 	 * for SDR timing modes 1, 2, 3, 4 and 5.
2397 	 * If clk_period is 20ns the condition is met only for SDR timing
2398 	 * mode 5.
2399 	 */
2400 	if (sdr->tRC_min <= clk_period &&
2401 	    sdr->tRP_min <= (clk_period / 2) &&
2402 	    sdr->tREH_min <= (clk_period / 2)) {
2403 		/* Performance mode. */
2404 		ext_rd_mode = 0;
2405 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2406 				 sdr->tREA_max, ext_rd_mode);
2407 		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2408 					 board_delay_skew_min,
2409 					 ext_rd_mode);
2410 		/*
2411 		 * Check if data valid window and sampling point can be found
2412 		 * and is not on the edge (ie. we have hold margin).
2413 		 * If not extend the tRP timings.
2414 		 */
2415 		if (tdvw > 0) {
2416 			if (tdvw_max <= tdvw_min ||
2417 			    (tdvw_max % dqs_sampl_res) == 0) {
2418 				/*
2419 				 * No valid sampling point so the RE pulse need
2420 				 * to be widen widening by half clock cycle.
2421 				 */
2422 				ext_rd_mode = 1;
2423 			}
2424 		} else {
2425 			/*
2426 			 * There is no valid window
2427 			 * to be able to sample data the tRP need to be widen.
2428 			 * Very safe calculations are performed here.
2429 			 */
2430 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2431 				   + dqs_sampl_res) / clk_period;
2432 			ext_rd_mode = 1;
2433 		}
2434 
2435 	} else {
2436 		/* Extended read mode. */
2437 		u32 trh;
2438 
2439 		ext_rd_mode = 1;
2440 		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2441 		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2442 		if (sdr->tREH_min >= trh)
2443 			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2444 		else
2445 			trh_cnt = calc_cycl(trh, clk_period);
2446 
2447 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2448 				 sdr->tREA_max, ext_rd_mode);
2449 		/*
2450 		 * Check if data valid window and sampling point can be found
2451 		 * or if it is at the edge check if previous is valid
2452 		 * - if not extend the tRP timings.
2453 		 */
2454 		if (tdvw > 0) {
2455 			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2456 						 sdr->tRHOH_min,
2457 						 board_delay_skew_min,
2458 						 ext_rd_mode);
2459 
2460 			if ((((tdvw_max / dqs_sampl_res)
2461 			      * dqs_sampl_res) <= tdvw_min) ||
2462 			    (((tdvw_max % dqs_sampl_res) == 0) &&
2463 			     (((tdvw_max / dqs_sampl_res - 1)
2464 			       * dqs_sampl_res) <= tdvw_min))) {
2465 				/*
2466 				 * Data valid window width is lower than
2467 				 * sampling resolution and do not hit any
2468 				 * sampling point to be sure the sampling point
2469 				 * will be found the RE low pulse width will be
2470 				 *  extended by one clock cycle.
2471 				 */
2472 				trp_cnt = trp_cnt + 1;
2473 			}
2474 		} else {
2475 			/*
2476 			 * There is no valid window to be able to sample data.
2477 			 * The tRP need to be widen.
2478 			 * Very safe calculations are performed here.
2479 			 */
2480 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2481 				   + dqs_sampl_res) / clk_period;
2482 		}
2483 	}
2484 
2485 	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2486 				 sdr->tRHOH_min,
2487 				 board_delay_skew_min, ext_rd_mode);
2488 
2489 	if (sdr->tWC_min <= clk_period &&
2490 	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2491 	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2492 		ext_wr_mode = 0;
2493 	} else {
2494 		u32 twh;
2495 
2496 		ext_wr_mode = 1;
2497 		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2498 		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2499 			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2500 					    clk_period);
2501 
2502 		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2503 		if (sdr->tWH_min >= twh)
2504 			twh = sdr->tWH_min;
2505 
2506 		twh_cnt = calc_cycl(twh + if_skew, clk_period);
2507 	}
2508 
2509 	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2510 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2511 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2512 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2513 	t->async_toggle_timings = reg;
2514 	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2515 
2516 	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2517 	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2518 	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2519 	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2520 	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2521 
2522 	/*
2523 	 * If timing exceeds delay field in timing register
2524 	 * then use maximum value.
2525 	 */
2526 	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2527 		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2528 	else
2529 		reg |= TIMINGS0_TCCS;
2530 
2531 	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2532 	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2533 	t->timings0 = reg;
2534 	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2535 
2536 	/* The following is related to single signal so skew is not needed. */
2537 	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2538 	trhz_cnt = trhz_cnt + 1;
2539 	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2540 	/*
2541 	 * Because of the two stage syncflop the value must be increased by 3
2542 	 * first value is related with sync, second value is related
2543 	 * with output if delay.
2544 	 */
2545 	twb_cnt = twb_cnt + 3 + 5;
2546 	/*
2547 	 * The following is related to the we edge of the random data input
2548 	 * sequence so skew is not needed.
2549 	 */
2550 	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2551 	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2552 	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2553 	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2554 	t->timings1 = reg;
2555 	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2556 
2557 	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2558 	if (tfeat_cnt < twb_cnt)
2559 		tfeat_cnt = twb_cnt;
2560 
2561 	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2562 	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2563 
2564 	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2565 	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2566 	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2567 	t->timings2 = reg;
2568 	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2569 
2570 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2571 		reg = DLL_PHY_CTRL_DLL_RST_N;
2572 		if (ext_wr_mode)
2573 			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2574 		if (ext_rd_mode)
2575 			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2576 
2577 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2578 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2579 		t->dll_phy_ctrl = reg;
2580 		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2581 	}
2582 
2583 	/* Sampling point calculation. */
2584 	if ((tdvw_max % dqs_sampl_res) > 0)
2585 		sampling_point = tdvw_max / dqs_sampl_res;
2586 	else
2587 		sampling_point = (tdvw_max / dqs_sampl_res - 1);
2588 
2589 	if (sampling_point * dqs_sampl_res > tdvw_min) {
2590 		dll_phy_dqs_timing =
2591 			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2592 		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2593 		phony_dqs_timing = sampling_point / phony_dqs_mod;
2594 
2595 		if ((sampling_point % 2) > 0) {
2596 			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2597 			if ((tdvw_max % dqs_sampl_res) == 0)
2598 				/*
2599 				 * Calculation for sampling point at the edge
2600 				 * of data and being odd number.
2601 				 */
2602 				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2603 					/ phony_dqs_mod - 1;
2604 
2605 			if (!cdns_ctrl->caps2.is_phy_type_dll)
2606 				phony_dqs_timing--;
2607 
2608 		} else {
2609 			phony_dqs_timing--;
2610 		}
2611 		rd_del_sel = phony_dqs_timing + 3;
2612 	} else {
2613 		dev_warn(cdns_ctrl->dev,
2614 			 "ERROR : cannot find valid sampling point\n");
2615 	}
2616 
2617 	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2618 	if (cdns_ctrl->caps2.is_phy_type_dll)
2619 		reg  |= PHY_CTRL_SDR_DQS;
2620 	t->phy_ctrl = reg;
2621 	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2622 
2623 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2624 		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2625 		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2626 		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2627 			dll_phy_dqs_timing);
2628 		t->phy_dqs_timing = dll_phy_dqs_timing;
2629 
2630 		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2631 		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2632 			reg);
2633 		t->phy_gate_lpbk_ctrl = reg;
2634 
2635 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2636 			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2637 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 static int cadence_nand_attach_chip(struct nand_chip *chip)
2644 {
2645 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2646 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2647 	u32 ecc_size;
2648 	struct mtd_info *mtd = nand_to_mtd(chip);
2649 	int ret;
2650 
2651 	if (chip->options & NAND_BUSWIDTH_16) {
2652 		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2653 		if (ret)
2654 			return ret;
2655 	}
2656 
2657 	chip->bbt_options |= NAND_BBT_USE_FLASH;
2658 	chip->bbt_options |= NAND_BBT_NO_OOB;
2659 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2660 
2661 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2662 
2663 	cdns_chip->bbm_offs = chip->badblockpos;
2664 	cdns_chip->bbm_offs &= ~0x01;
2665 	/* this value should be even number */
2666 	cdns_chip->bbm_len = 2;
2667 
2668 	ret = nand_ecc_choose_conf(chip,
2669 				   &cdns_ctrl->ecc_caps,
2670 				   mtd->oobsize - cdns_chip->bbm_len);
2671 	if (ret) {
2672 		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2673 		return ret;
2674 	}
2675 
2676 	dev_dbg(cdns_ctrl->dev,
2677 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2678 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2679 
2680 	/* Error correction configuration. */
2681 	cdns_chip->sector_size = chip->ecc.size;
2682 	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2683 	ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2684 
2685 	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2686 
2687 	if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2688 		cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2689 
2690 	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2691 	    > mtd->oobsize)
2692 		cdns_chip->avail_oob_size -= 4;
2693 
2694 	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2695 	if (ret < 0)
2696 		return -EINVAL;
2697 
2698 	cdns_chip->corr_str_idx = (u8)ret;
2699 
2700 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2701 					1000000,
2702 					CTRL_STATUS_CTRL_BUSY, true))
2703 		return -ETIMEDOUT;
2704 
2705 	cadence_nand_set_ecc_strength(cdns_ctrl,
2706 				      cdns_chip->corr_str_idx);
2707 
2708 	cadence_nand_set_erase_detection(cdns_ctrl, true,
2709 					 chip->ecc.strength);
2710 
2711 	/* Override the default read operations. */
2712 	chip->ecc.read_page = cadence_nand_read_page;
2713 	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2714 	chip->ecc.write_page = cadence_nand_write_page;
2715 	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2716 	chip->ecc.read_oob = cadence_nand_read_oob;
2717 	chip->ecc.write_oob = cadence_nand_write_oob;
2718 	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2719 	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2720 
2721 	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2722 		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2723 
2724 	/* Is 32-bit DMA supported? */
2725 	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2726 	if (ret) {
2727 		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2728 		return ret;
2729 	}
2730 
2731 	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2732 
2733 	return 0;
2734 }
2735 
2736 static const struct nand_controller_ops cadence_nand_controller_ops = {
2737 	.attach_chip = cadence_nand_attach_chip,
2738 	.exec_op = cadence_nand_exec_op,
2739 	.setup_interface = cadence_nand_setup_interface,
2740 };
2741 
2742 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2743 				  struct device_node *np)
2744 {
2745 	struct cdns_nand_chip *cdns_chip;
2746 	struct mtd_info *mtd;
2747 	struct nand_chip *chip;
2748 	int nsels, ret, i;
2749 	u32 cs;
2750 
2751 	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2752 	if (nsels <= 0) {
2753 		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2754 		return -EINVAL;
2755 	}
2756 
2757 	/* Allocate the nand chip structure. */
2758 	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2759 				 (nsels * sizeof(u8)),
2760 				 GFP_KERNEL);
2761 	if (!cdns_chip) {
2762 		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2763 		return -ENOMEM;
2764 	}
2765 
2766 	cdns_chip->nsels = nsels;
2767 
2768 	for (i = 0; i < nsels; i++) {
2769 		/* Retrieve CS id. */
2770 		ret = of_property_read_u32_index(np, "reg", i, &cs);
2771 		if (ret) {
2772 			dev_err(cdns_ctrl->dev,
2773 				"could not retrieve reg property: %d\n",
2774 				ret);
2775 			return ret;
2776 		}
2777 
2778 		if (cs >= cdns_ctrl->caps2.max_banks) {
2779 			dev_err(cdns_ctrl->dev,
2780 				"invalid reg value: %u (max CS = %d)\n",
2781 				cs, cdns_ctrl->caps2.max_banks);
2782 			return -EINVAL;
2783 		}
2784 
2785 		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2786 			dev_err(cdns_ctrl->dev,
2787 				"CS %d already assigned\n", cs);
2788 			return -EINVAL;
2789 		}
2790 
2791 		cdns_chip->cs[i] = cs;
2792 	}
2793 
2794 	chip = &cdns_chip->chip;
2795 	chip->controller = &cdns_ctrl->controller;
2796 	nand_set_flash_node(chip, np);
2797 
2798 	mtd = nand_to_mtd(chip);
2799 	mtd->dev.parent = cdns_ctrl->dev;
2800 
2801 	/*
2802 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2803 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2804 	 */
2805 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2806 
2807 	ret = nand_scan(chip, cdns_chip->nsels);
2808 	if (ret) {
2809 		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2810 		return ret;
2811 	}
2812 
2813 	ret = mtd_device_register(mtd, NULL, 0);
2814 	if (ret) {
2815 		dev_err(cdns_ctrl->dev,
2816 			"failed to register mtd device: %d\n", ret);
2817 		nand_cleanup(chip);
2818 		return ret;
2819 	}
2820 
2821 	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2822 
2823 	return 0;
2824 }
2825 
2826 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2827 {
2828 	struct cdns_nand_chip *entry, *temp;
2829 	struct nand_chip *chip;
2830 	int ret;
2831 
2832 	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2833 		chip = &entry->chip;
2834 		ret = mtd_device_unregister(nand_to_mtd(chip));
2835 		WARN_ON(ret);
2836 		nand_cleanup(chip);
2837 		list_del(&entry->node);
2838 	}
2839 }
2840 
2841 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2842 {
2843 	struct device_node *np = cdns_ctrl->dev->of_node;
2844 	struct device_node *nand_np;
2845 	int max_cs = cdns_ctrl->caps2.max_banks;
2846 	int nchips, ret;
2847 
2848 	nchips = of_get_child_count(np);
2849 
2850 	if (nchips > max_cs) {
2851 		dev_err(cdns_ctrl->dev,
2852 			"too many NAND chips: %d (max = %d CS)\n",
2853 			nchips, max_cs);
2854 		return -EINVAL;
2855 	}
2856 
2857 	for_each_child_of_node(np, nand_np) {
2858 		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2859 		if (ret) {
2860 			of_node_put(nand_np);
2861 			cadence_nand_chips_cleanup(cdns_ctrl);
2862 			return ret;
2863 		}
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 static void
2870 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2871 {
2872 	/* Disable interrupts. */
2873 	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2874 }
2875 
2876 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2877 {
2878 	dma_cap_mask_t mask;
2879 	int ret;
2880 
2881 	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2882 						  sizeof(*cdns_ctrl->cdma_desc),
2883 						  &cdns_ctrl->dma_cdma_desc,
2884 						  GFP_KERNEL);
2885 	if (!cdns_ctrl->dma_cdma_desc)
2886 		return -ENOMEM;
2887 
2888 	cdns_ctrl->buf_size = SZ_16K;
2889 	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2890 	if (!cdns_ctrl->buf) {
2891 		ret = -ENOMEM;
2892 		goto free_buf_desc;
2893 	}
2894 
2895 	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2896 			     IRQF_SHARED, "cadence-nand-controller",
2897 			     cdns_ctrl)) {
2898 		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2899 		ret = -ENODEV;
2900 		goto free_buf;
2901 	}
2902 
2903 	spin_lock_init(&cdns_ctrl->irq_lock);
2904 	init_completion(&cdns_ctrl->complete);
2905 
2906 	ret = cadence_nand_hw_init(cdns_ctrl);
2907 	if (ret)
2908 		goto disable_irq;
2909 
2910 	dma_cap_zero(mask);
2911 	dma_cap_set(DMA_MEMCPY, mask);
2912 
2913 	if (cdns_ctrl->caps1->has_dma) {
2914 		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2915 		if (!cdns_ctrl->dmac) {
2916 			dev_err(cdns_ctrl->dev,
2917 				"Unable to get a DMA channel\n");
2918 			ret = -EBUSY;
2919 			goto disable_irq;
2920 		}
2921 	}
2922 
2923 	nand_controller_init(&cdns_ctrl->controller);
2924 	INIT_LIST_HEAD(&cdns_ctrl->chips);
2925 
2926 	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2927 	cdns_ctrl->curr_corr_str_idx = 0xFF;
2928 
2929 	ret = cadence_nand_chips_init(cdns_ctrl);
2930 	if (ret) {
2931 		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2932 			ret);
2933 		goto dma_release_chnl;
2934 	}
2935 
2936 	kfree(cdns_ctrl->buf);
2937 	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2938 	if (!cdns_ctrl->buf) {
2939 		ret = -ENOMEM;
2940 		goto dma_release_chnl;
2941 	}
2942 
2943 	return 0;
2944 
2945 dma_release_chnl:
2946 	if (cdns_ctrl->dmac)
2947 		dma_release_channel(cdns_ctrl->dmac);
2948 
2949 disable_irq:
2950 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2951 
2952 free_buf:
2953 	kfree(cdns_ctrl->buf);
2954 
2955 free_buf_desc:
2956 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2957 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2958 
2959 	return ret;
2960 }
2961 
2962 /* Driver exit point. */
2963 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2964 {
2965 	cadence_nand_chips_cleanup(cdns_ctrl);
2966 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2967 	kfree(cdns_ctrl->buf);
2968 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2969 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2970 
2971 	if (cdns_ctrl->dmac)
2972 		dma_release_channel(cdns_ctrl->dmac);
2973 }
2974 
2975 struct cadence_nand_dt {
2976 	struct cdns_nand_ctrl cdns_ctrl;
2977 	struct clk *clk;
2978 };
2979 
2980 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2981 	.if_skew = 0,
2982 	.has_dma = 1,
2983 };
2984 
2985 static const struct of_device_id cadence_nand_dt_ids[] = {
2986 	{
2987 		.compatible = "cdns,hp-nfc",
2988 		.data = &cadence_nand_default
2989 	}, {}
2990 };
2991 
2992 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2993 
2994 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2995 {
2996 	struct resource *res;
2997 	struct cadence_nand_dt *dt;
2998 	struct cdns_nand_ctrl *cdns_ctrl;
2999 	int ret;
3000 	const struct cadence_nand_dt_devdata *devdata;
3001 	u32 val;
3002 
3003 	devdata = device_get_match_data(&ofdev->dev);
3004 	if (!devdata) {
3005 		pr_err("Failed to find the right device id.\n");
3006 		return -ENOMEM;
3007 	}
3008 
3009 	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3010 	if (!dt)
3011 		return -ENOMEM;
3012 
3013 	cdns_ctrl = &dt->cdns_ctrl;
3014 	cdns_ctrl->caps1 = devdata;
3015 
3016 	cdns_ctrl->dev = &ofdev->dev;
3017 	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3018 	if (cdns_ctrl->irq < 0)
3019 		return cdns_ctrl->irq;
3020 
3021 	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3022 
3023 	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3024 	if (IS_ERR(cdns_ctrl->reg))
3025 		return PTR_ERR(cdns_ctrl->reg);
3026 
3027 	cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3028 	if (IS_ERR(cdns_ctrl->io.virt))
3029 		return PTR_ERR(cdns_ctrl->io.virt);
3030 	cdns_ctrl->io.dma = res->start;
3031 
3032 	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3033 	if (IS_ERR(dt->clk))
3034 		return PTR_ERR(dt->clk);
3035 
3036 	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3037 
3038 	ret = of_property_read_u32(ofdev->dev.of_node,
3039 				   "cdns,board-delay-ps", &val);
3040 	if (ret) {
3041 		val = 4830;
3042 		dev_info(cdns_ctrl->dev,
3043 			 "missing cdns,board-delay-ps property, %d was set\n",
3044 			 val);
3045 	}
3046 	cdns_ctrl->board_delay = val;
3047 
3048 	ret = cadence_nand_init(cdns_ctrl);
3049 	if (ret)
3050 		return ret;
3051 
3052 	platform_set_drvdata(ofdev, dt);
3053 	return 0;
3054 }
3055 
3056 static void cadence_nand_dt_remove(struct platform_device *ofdev)
3057 {
3058 	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3059 
3060 	cadence_nand_remove(&dt->cdns_ctrl);
3061 }
3062 
3063 static struct platform_driver cadence_nand_dt_driver = {
3064 	.probe		= cadence_nand_dt_probe,
3065 	.remove_new	= cadence_nand_dt_remove,
3066 	.driver		= {
3067 		.name	= "cadence-nand-controller",
3068 		.of_match_table = cadence_nand_dt_ids,
3069 	},
3070 };
3071 
3072 module_platform_driver(cadence_nand_dt_driver);
3073 
3074 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3075 MODULE_LICENSE("GPL v2");
3076 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3077 
3078