1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/iopoll.h> 19 #include <linux/of.h> 20 #include <linux/platform_device.h> 21 #include <linux/property.h> 22 #include <linux/slab.h> 23 24 /* 25 * HPNFC can work in 3 modes: 26 * - PIO - can work in master or slave DMA 27 * - CDMA - needs Master DMA for accessing command descriptors. 28 * - Generic mode - can use only slave DMA. 29 * CDMA and PIO modes can be used to execute only base commands. 30 * Generic mode can be used to execute any command 31 * on NAND flash memory. Driver uses CDMA mode for 32 * block erasing, page reading, page programing. 33 * Generic mode is used for executing rest of commands. 34 */ 35 36 #define MAX_ADDRESS_CYC 6 37 #define MAX_ERASE_ADDRESS_CYC 3 38 #define MAX_DATA_SIZE 0xFFFC 39 #define DMA_DATA_SIZE_ALIGN 8 40 41 /* Register definition. */ 42 /* 43 * Command register 0. 44 * Writing data to this register will initiate a new transaction 45 * of the NF controller. 46 */ 47 #define CMD_REG0 0x0000 48 /* Command type field mask. */ 49 #define CMD_REG0_CT GENMASK(31, 30) 50 /* Command type CDMA. */ 51 #define CMD_REG0_CT_CDMA 0uL 52 /* Command type generic. */ 53 #define CMD_REG0_CT_GEN 3uL 54 /* Command thread number field mask. */ 55 #define CMD_REG0_TN GENMASK(27, 24) 56 57 /* Command register 2. */ 58 #define CMD_REG2 0x0008 59 /* Command register 3. */ 60 #define CMD_REG3 0x000C 61 /* Pointer register to select which thread status will be selected. */ 62 #define CMD_STATUS_PTR 0x0010 63 /* Command status register for selected thread. */ 64 #define CMD_STATUS 0x0014 65 66 /* Interrupt status register. */ 67 #define INTR_STATUS 0x0110 68 #define INTR_STATUS_SDMA_ERR BIT(22) 69 #define INTR_STATUS_SDMA_TRIGG BIT(21) 70 #define INTR_STATUS_UNSUPP_CMD BIT(19) 71 #define INTR_STATUS_DDMA_TERR BIT(18) 72 #define INTR_STATUS_CDMA_TERR BIT(17) 73 #define INTR_STATUS_CDMA_IDL BIT(16) 74 75 /* Interrupt enable register. */ 76 #define INTR_ENABLE 0x0114 77 #define INTR_ENABLE_INTR_EN BIT(31) 78 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 79 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 80 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 81 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 82 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 83 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 84 85 /* Controller internal state. */ 86 #define CTRL_STATUS 0x0118 87 #define CTRL_STATUS_INIT_COMP BIT(9) 88 #define CTRL_STATUS_CTRL_BUSY BIT(8) 89 90 /* Command Engine threads state. */ 91 #define TRD_STATUS 0x0120 92 93 /* Command Engine interrupt thread error status. */ 94 #define TRD_ERR_INT_STATUS 0x0128 95 /* Command Engine interrupt thread error enable. */ 96 #define TRD_ERR_INT_STATUS_EN 0x0130 97 /* Command Engine interrupt thread complete status. */ 98 #define TRD_COMP_INT_STATUS 0x0138 99 100 /* 101 * Transfer config 0 register. 102 * Configures data transfer parameters. 103 */ 104 #define TRAN_CFG_0 0x0400 105 /* Offset value from the beginning of the page. */ 106 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 107 /* Numbers of sectors to transfer within singlNF device's page. */ 108 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 109 110 /* 111 * Transfer config 1 register. 112 * Configures data transfer parameters. 113 */ 114 #define TRAN_CFG_1 0x0404 115 /* Size of last data sector. */ 116 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 117 /* Size of not-last data sector. */ 118 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 119 120 /* ECC engine configuration register 0. */ 121 #define ECC_CONFIG_0 0x0428 122 /* Correction strength. */ 123 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 124 /* Enable erased pages detection mechanism. */ 125 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 126 /* Enable controller ECC check bits generation and correction. */ 127 #define ECC_CONFIG_0_ECC_EN BIT(0) 128 129 /* ECC engine configuration register 1. */ 130 #define ECC_CONFIG_1 0x042C 131 132 /* Multiplane settings register. */ 133 #define MULTIPLANE_CFG 0x0434 134 /* Cache operation settings. */ 135 #define CACHE_CFG 0x0438 136 137 /* DMA settings register. */ 138 #define DMA_SETINGS 0x043C 139 /* Enable SDMA error report on access unprepared slave DMA interface. */ 140 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 141 142 /* Transferred data block size for the slave DMA module. */ 143 #define SDMA_SIZE 0x0440 144 145 /* Thread number associated with transferred data block 146 * for the slave DMA module. 147 */ 148 #define SDMA_TRD_NUM 0x0444 149 /* Thread number mask. */ 150 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 151 152 #define CONTROL_DATA_CTRL 0x0494 153 /* Thread number mask. */ 154 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 155 156 #define CTRL_VERSION 0x800 157 #define CTRL_VERSION_REV GENMASK(7, 0) 158 159 /* Available hardware features of the controller. */ 160 #define CTRL_FEATURES 0x804 161 /* Support for NV-DDR2/3 work mode. */ 162 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 163 /* Support for NV-DDR work mode. */ 164 #define CTRL_FEATURES_NVDDR BIT(27) 165 /* Support for asynchronous work mode. */ 166 #define CTRL_FEATURES_ASYNC BIT(26) 167 /* Support for asynchronous work mode. */ 168 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 169 /* Slave and Master DMA data width. */ 170 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 171 /* Availability of Control Data feature.*/ 172 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 173 174 /* BCH Engine identification register 0 - correction strengths. */ 175 #define BCH_CFG_0 0x838 176 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 177 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 178 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 179 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 180 181 /* BCH Engine identification register 1 - correction strengths. */ 182 #define BCH_CFG_1 0x83C 183 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 184 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 185 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 186 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 187 188 /* BCH Engine identification register 2 - sector sizes. */ 189 #define BCH_CFG_2 0x840 190 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 191 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 192 193 /* BCH Engine identification register 3. */ 194 #define BCH_CFG_3 0x844 195 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) 196 197 /* Ready/Busy# line status. */ 198 #define RBN_SETINGS 0x1004 199 200 /* Common settings. */ 201 #define COMMON_SET 0x1008 202 /* 16 bit device connected to the NAND Flash interface. */ 203 #define COMMON_SET_DEVICE_16BIT BIT(8) 204 205 /* Skip_bytes registers. */ 206 #define SKIP_BYTES_CONF 0x100C 207 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 208 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 209 210 #define SKIP_BYTES_OFFSET 0x1010 211 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 212 213 /* Timings configuration. */ 214 #define ASYNC_TOGGLE_TIMINGS 0x101c 215 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 216 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 217 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 218 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 219 220 #define TIMINGS0 0x1024 221 #define TIMINGS0_TADL GENMASK(31, 24) 222 #define TIMINGS0_TCCS GENMASK(23, 16) 223 #define TIMINGS0_TWHR GENMASK(15, 8) 224 #define TIMINGS0_TRHW GENMASK(7, 0) 225 226 #define TIMINGS1 0x1028 227 #define TIMINGS1_TRHZ GENMASK(31, 24) 228 #define TIMINGS1_TWB GENMASK(23, 16) 229 #define TIMINGS1_TVDLY GENMASK(7, 0) 230 231 #define TIMINGS2 0x102c 232 #define TIMINGS2_TFEAT GENMASK(25, 16) 233 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 234 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 235 236 /* Configuration of the resynchronization of slave DLL of PHY. */ 237 #define DLL_PHY_CTRL 0x1034 238 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 239 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 240 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 241 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 242 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 243 244 /* Register controlling DQ related timing. */ 245 #define PHY_DQ_TIMING 0x2000 246 /* Register controlling DSQ related timing. */ 247 #define PHY_DQS_TIMING 0x2004 248 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 249 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 250 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 251 252 /* Register controlling the gate and loopback control related timing. */ 253 #define PHY_GATE_LPBK_CTRL 0x2008 254 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 255 256 /* Register holds the control for the master DLL logic. */ 257 #define PHY_DLL_MASTER_CTRL 0x200C 258 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 259 260 /* Register holds the control for the slave DLL logic. */ 261 #define PHY_DLL_SLAVE_CTRL 0x2010 262 263 /* This register handles the global control settings for the PHY. */ 264 #define PHY_CTRL 0x2080 265 #define PHY_CTRL_SDR_DQS BIT(14) 266 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 267 268 /* 269 * This register handles the global control settings 270 * for the termination selects for reads. 271 */ 272 #define PHY_TSEL 0x2084 273 274 /* Generic command layout. */ 275 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 276 /* 277 * This bit informs the minicotroller if it has to wait for tWB 278 * after sending the last CMD/ADDR/DATA in the sequence. 279 */ 280 #define GCMD_LAY_TWB BIT_ULL(6) 281 /* Type of generic instruction. */ 282 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 283 284 /* Generic CMD sequence type. */ 285 #define GCMD_LAY_INSTR_CMD 0 286 /* Generic ADDR sequence type. */ 287 #define GCMD_LAY_INSTR_ADDR 1 288 /* Generic data transfer sequence type. */ 289 #define GCMD_LAY_INSTR_DATA 2 290 291 /* Input part of generic command type of input is command. */ 292 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 293 294 /* Generic command address sequence - address fields. */ 295 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 296 /* Generic command address sequence - address size. */ 297 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 298 299 /* Transfer direction field of generic command data sequence. */ 300 #define GCMD_DIR BIT_ULL(11) 301 /* Read transfer direction of generic command data sequence. */ 302 #define GCMD_DIR_READ 0 303 /* Write transfer direction of generic command data sequence. */ 304 #define GCMD_DIR_WRITE 1 305 306 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 307 #define GCMD_ECC_EN BIT_ULL(12) 308 /* Generic command data sequence - sector size. */ 309 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 310 /* Generic command data sequence - sector count. */ 311 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 312 /* Generic command data sequence - last sector size. */ 313 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 314 315 /* CDMA descriptor fields. */ 316 /* Erase command type of CDMA descriptor. */ 317 #define CDMA_CT_ERASE 0x1000 318 /* Program page command type of CDMA descriptor. */ 319 #define CDMA_CT_WR 0x2100 320 /* Read page command type of CDMA descriptor. */ 321 #define CDMA_CT_RD 0x2200 322 323 /* Flash pointer memory shift. */ 324 #define CDMA_CFPTR_MEM_SHIFT 24 325 /* Flash pointer memory mask. */ 326 #define CDMA_CFPTR_MEM GENMASK(26, 24) 327 328 /* 329 * Command DMA descriptor flags. If set causes issue interrupt after 330 * the completion of descriptor processing. 331 */ 332 #define CDMA_CF_INT BIT(8) 333 /* 334 * Command DMA descriptor flags - the next descriptor 335 * address field is valid and descriptor processing should continue. 336 */ 337 #define CDMA_CF_CONT BIT(9) 338 /* DMA master flag of command DMA descriptor. */ 339 #define CDMA_CF_DMA_MASTER BIT(10) 340 341 /* Operation complete status of command descriptor. */ 342 #define CDMA_CS_COMP BIT(15) 343 /* Operation complete status of command descriptor. */ 344 /* Command descriptor status - operation fail. */ 345 #define CDMA_CS_FAIL BIT(14) 346 /* Command descriptor status - page erased. */ 347 #define CDMA_CS_ERP BIT(11) 348 /* Command descriptor status - timeout occurred. */ 349 #define CDMA_CS_TOUT BIT(10) 350 /* 351 * Maximum amount of correction applied to one ECC sector. 352 * It is part of command descriptor status. 353 */ 354 #define CDMA_CS_MAXERR GENMASK(9, 2) 355 /* Command descriptor status - uncorrectable ECC error. */ 356 #define CDMA_CS_UNCE BIT(1) 357 /* Command descriptor status - descriptor error. */ 358 #define CDMA_CS_ERR BIT(0) 359 360 /* Status of operation - OK. */ 361 #define STAT_OK 0 362 /* Status of operation - FAIL. */ 363 #define STAT_FAIL 2 364 /* Status of operation - uncorrectable ECC error. */ 365 #define STAT_ECC_UNCORR 3 366 /* Status of operation - page erased. */ 367 #define STAT_ERASED 5 368 /* Status of operation - correctable ECC error. */ 369 #define STAT_ECC_CORR 6 370 /* Status of operation - unsuspected state. */ 371 #define STAT_UNKNOWN 7 372 /* Status of operation - operation is not completed yet. */ 373 #define STAT_BUSY 0xFF 374 375 #define BCH_MAX_NUM_CORR_CAPS 8 376 #define BCH_MAX_NUM_SECTOR_SIZES 2 377 378 struct cadence_nand_timings { 379 u32 async_toggle_timings; 380 u32 timings0; 381 u32 timings1; 382 u32 timings2; 383 u32 dll_phy_ctrl; 384 u32 phy_ctrl; 385 u32 phy_dqs_timing; 386 u32 phy_gate_lpbk_ctrl; 387 }; 388 389 /* Command DMA descriptor. */ 390 struct cadence_nand_cdma_desc { 391 /* Next descriptor address. */ 392 u64 next_pointer; 393 394 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 395 u32 flash_pointer; 396 /*field appears in HPNFC version 13*/ 397 u16 bank; 398 u16 rsvd0; 399 400 /* Operation the controller needs to perform. */ 401 u16 command_type; 402 u16 rsvd1; 403 /* Flags for operation of this command. */ 404 u16 command_flags; 405 u16 rsvd2; 406 407 /* System/host memory address required for data DMA commands. */ 408 u64 memory_pointer; 409 410 /* Status of operation. */ 411 u32 status; 412 u32 rsvd3; 413 414 /* Address pointer to sync buffer location. */ 415 u64 sync_flag_pointer; 416 417 /* Controls the buffer sync mechanism. */ 418 u32 sync_arguments; 419 u32 rsvd4; 420 421 /* Control data pointer. */ 422 u64 ctrl_data_ptr; 423 }; 424 425 /* Interrupt status. */ 426 struct cadence_nand_irq_status { 427 /* Thread operation complete status. */ 428 u32 trd_status; 429 /* Thread operation error. */ 430 u32 trd_error; 431 /* Controller status. */ 432 u32 status; 433 }; 434 435 /* Cadence NAND flash controller capabilities get from driver data. */ 436 struct cadence_nand_dt_devdata { 437 /* Skew value of the output signals of the NAND Flash interface. */ 438 u32 if_skew; 439 /* It informs if slave DMA interface is connected to DMA engine. */ 440 unsigned int has_dma:1; 441 }; 442 443 /* Cadence NAND flash controller capabilities read from registers. */ 444 struct cdns_nand_caps { 445 /* Maximum number of banks supported by hardware. */ 446 u8 max_banks; 447 /* Slave and Master DMA data width in bytes (4 or 8). */ 448 u8 data_dma_width; 449 /* Control Data feature supported. */ 450 bool data_control_supp; 451 /* Is PHY type DLL. */ 452 bool is_phy_type_dll; 453 }; 454 455 struct cdns_nand_ctrl { 456 struct device *dev; 457 struct nand_controller controller; 458 struct cadence_nand_cdma_desc *cdma_desc; 459 /* IP capability. */ 460 const struct cadence_nand_dt_devdata *caps1; 461 struct cdns_nand_caps caps2; 462 u8 ctrl_rev; 463 dma_addr_t dma_cdma_desc; 464 u8 *buf; 465 u32 buf_size; 466 u8 curr_corr_str_idx; 467 468 /* Register interface. */ 469 void __iomem *reg; 470 471 struct { 472 void __iomem *virt; 473 dma_addr_t dma; 474 } io; 475 476 int irq; 477 /* Interrupts that have happened. */ 478 struct cadence_nand_irq_status irq_status; 479 /* Interrupts we are waiting for. */ 480 struct cadence_nand_irq_status irq_mask; 481 struct completion complete; 482 /* Protect irq_mask and irq_status. */ 483 spinlock_t irq_lock; 484 485 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 486 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 487 struct nand_ecc_caps ecc_caps; 488 489 int curr_trans_type; 490 491 struct dma_chan *dmac; 492 493 u32 nf_clk_rate; 494 /* 495 * Estimated Board delay. The value includes the total 496 * round trip delay for the signals and is used for deciding on values 497 * associated with data read capture. 498 */ 499 u32 board_delay; 500 501 struct nand_chip *selected_chip; 502 503 unsigned long assigned_cs; 504 struct list_head chips; 505 u8 bch_metadata_size; 506 }; 507 508 struct cdns_nand_chip { 509 struct cadence_nand_timings timings; 510 struct nand_chip chip; 511 u8 nsels; 512 struct list_head node; 513 514 /* 515 * part of oob area of NAND flash memory page. 516 * This part is available for user to read or write. 517 */ 518 u32 avail_oob_size; 519 520 /* Sector size. There are few sectors per mtd->writesize */ 521 u32 sector_size; 522 u32 sector_count; 523 524 /* Offset of BBM. */ 525 u8 bbm_offs; 526 /* Number of bytes reserved for BBM. */ 527 u8 bbm_len; 528 /* ECC strength index. */ 529 u8 corr_str_idx; 530 531 u8 cs[] __counted_by(nsels); 532 }; 533 534 struct ecc_info { 535 int (*calc_ecc_bytes)(int step_size, int strength); 536 int max_step_size; 537 }; 538 539 static inline struct 540 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 541 { 542 return container_of(chip, struct cdns_nand_chip, chip); 543 } 544 545 static inline struct 546 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 547 { 548 return container_of(controller, struct cdns_nand_ctrl, controller); 549 } 550 551 static bool 552 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 553 u32 buf_len) 554 { 555 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 556 557 return buf && virt_addr_valid(buf) && 558 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 559 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 560 } 561 562 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 563 u32 reg_offset, u32 timeout_us, 564 u32 mask, bool is_clear) 565 { 566 u32 val; 567 int ret; 568 569 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 570 val, !(val & mask) == is_clear, 571 10, timeout_us); 572 573 if (ret < 0) { 574 dev_err(cdns_ctrl->dev, 575 "Timeout while waiting for reg %x with mask %x is clear %d\n", 576 reg_offset, mask, is_clear); 577 } 578 579 return ret; 580 } 581 582 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 583 bool enable) 584 { 585 u32 reg; 586 587 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 588 1000000, 589 CTRL_STATUS_CTRL_BUSY, true)) 590 return -ETIMEDOUT; 591 592 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 593 594 if (enable) 595 reg |= ECC_CONFIG_0_ECC_EN; 596 else 597 reg &= ~ECC_CONFIG_0_ECC_EN; 598 599 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 600 601 return 0; 602 } 603 604 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 605 u8 corr_str_idx) 606 { 607 u32 reg; 608 609 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 610 return; 611 612 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 613 reg &= ~ECC_CONFIG_0_CORR_STR; 614 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 615 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 616 617 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 618 } 619 620 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 621 u8 strength) 622 { 623 int i, corr_str_idx = -1; 624 625 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 626 if (cdns_ctrl->ecc_strengths[i] == strength) { 627 corr_str_idx = i; 628 break; 629 } 630 } 631 632 return corr_str_idx; 633 } 634 635 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 636 u16 marker_value) 637 { 638 u32 reg; 639 640 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 641 1000000, 642 CTRL_STATUS_CTRL_BUSY, true)) 643 return -ETIMEDOUT; 644 645 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 646 reg &= ~SKIP_BYTES_MARKER_VALUE; 647 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 648 marker_value); 649 650 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 651 652 return 0; 653 } 654 655 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 656 u8 num_of_bytes, 657 u32 offset_value, 658 int enable) 659 { 660 u32 reg, skip_bytes_offset; 661 662 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 663 1000000, 664 CTRL_STATUS_CTRL_BUSY, true)) 665 return -ETIMEDOUT; 666 667 if (!enable) { 668 num_of_bytes = 0; 669 offset_value = 0; 670 } 671 672 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 673 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 674 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 675 num_of_bytes); 676 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 677 offset_value); 678 679 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 680 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 681 682 return 0; 683 } 684 685 /* Functions enables/disables hardware detection of erased data */ 686 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 687 bool enable, 688 u8 bitflips_threshold) 689 { 690 u32 reg; 691 692 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 693 694 if (enable) 695 reg |= ECC_CONFIG_0_ERASE_DET_EN; 696 else 697 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 698 699 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 700 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 701 } 702 703 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 704 bool bit_bus16) 705 { 706 u32 reg; 707 708 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 709 1000000, 710 CTRL_STATUS_CTRL_BUSY, true)) 711 return -ETIMEDOUT; 712 713 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 714 715 if (!bit_bus16) 716 reg &= ~COMMON_SET_DEVICE_16BIT; 717 else 718 reg |= COMMON_SET_DEVICE_16BIT; 719 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 720 721 return 0; 722 } 723 724 static void 725 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 726 struct cadence_nand_irq_status *irq_status) 727 { 728 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 729 writel_relaxed(irq_status->trd_status, 730 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 731 writel_relaxed(irq_status->trd_error, 732 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 733 } 734 735 static void 736 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 737 struct cadence_nand_irq_status *irq_status) 738 { 739 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 740 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 741 + TRD_COMP_INT_STATUS); 742 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 743 + TRD_ERR_INT_STATUS); 744 } 745 746 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 747 struct cadence_nand_irq_status *irq_status) 748 { 749 cadence_nand_read_int_status(cdns_ctrl, irq_status); 750 751 return irq_status->status || irq_status->trd_status || 752 irq_status->trd_error; 753 } 754 755 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 756 { 757 unsigned long flags; 758 759 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 760 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 761 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 762 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 763 } 764 765 /* 766 * This is the interrupt service routine. It handles all interrupts 767 * sent to this device. 768 */ 769 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 770 { 771 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 772 struct cadence_nand_irq_status irq_status; 773 irqreturn_t result = IRQ_NONE; 774 775 spin_lock(&cdns_ctrl->irq_lock); 776 777 if (irq_detected(cdns_ctrl, &irq_status)) { 778 /* Handle interrupt. */ 779 /* First acknowledge it. */ 780 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 781 /* Status in the device context for someone to read. */ 782 cdns_ctrl->irq_status.status |= irq_status.status; 783 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 784 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 785 /* Notify anyone who cares that it happened. */ 786 complete(&cdns_ctrl->complete); 787 /* Tell the OS that we've handled this. */ 788 result = IRQ_HANDLED; 789 } 790 spin_unlock(&cdns_ctrl->irq_lock); 791 792 return result; 793 } 794 795 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 796 struct cadence_nand_irq_status *irq_mask) 797 { 798 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 799 cdns_ctrl->reg + INTR_ENABLE); 800 801 writel_relaxed(irq_mask->trd_error, 802 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 803 } 804 805 static void 806 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 807 struct cadence_nand_irq_status *irq_mask, 808 struct cadence_nand_irq_status *irq_status) 809 { 810 unsigned long timeout = msecs_to_jiffies(10000); 811 unsigned long time_left; 812 813 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 814 timeout); 815 816 *irq_status = cdns_ctrl->irq_status; 817 if (time_left == 0) { 818 /* Timeout error. */ 819 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 820 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 821 irq_status->status, irq_mask->status); 822 dev_err(cdns_ctrl->dev, 823 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 824 irq_status->trd_status, irq_mask->trd_status); 825 dev_err(cdns_ctrl->dev, 826 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 827 irq_status->trd_error, irq_mask->trd_error); 828 } 829 } 830 831 /* Execute generic command on NAND controller. */ 832 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 833 u8 chip_nr, 834 u64 mini_ctrl_cmd) 835 { 836 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 837 838 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 839 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 840 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 841 842 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 843 1000000, 844 CTRL_STATUS_CTRL_BUSY, true)) 845 return -ETIMEDOUT; 846 847 cadence_nand_reset_irq(cdns_ctrl); 848 849 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 850 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 851 852 /* Select generic command. */ 853 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 854 /* Thread number. */ 855 reg |= FIELD_PREP(CMD_REG0_TN, 0); 856 857 /* Issue command. */ 858 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 859 860 return 0; 861 } 862 863 /* Wait for data on slave DMA interface. */ 864 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 865 u8 *out_sdma_trd, 866 u32 *out_sdma_size) 867 { 868 struct cadence_nand_irq_status irq_mask, irq_status; 869 870 irq_mask.trd_status = 0; 871 irq_mask.trd_error = 0; 872 irq_mask.status = INTR_STATUS_SDMA_TRIGG 873 | INTR_STATUS_SDMA_ERR 874 | INTR_STATUS_UNSUPP_CMD; 875 876 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 877 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 878 if (irq_status.status == 0) { 879 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 880 return -ETIMEDOUT; 881 } 882 883 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 884 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 885 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 886 *out_sdma_trd = 887 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 888 } else { 889 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 890 irq_status.status); 891 return -EIO; 892 } 893 894 return 0; 895 } 896 897 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 898 { 899 u32 reg; 900 901 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 902 903 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 904 905 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 906 cdns_ctrl->caps2.data_dma_width = 8; 907 else 908 cdns_ctrl->caps2.data_dma_width = 4; 909 910 if (reg & CTRL_FEATURES_CONTROL_DATA) 911 cdns_ctrl->caps2.data_control_supp = true; 912 913 if (reg & (CTRL_FEATURES_NVDDR_2_3 914 | CTRL_FEATURES_NVDDR)) 915 cdns_ctrl->caps2.is_phy_type_dll = true; 916 } 917 918 /* Prepare CDMA descriptor. */ 919 static void 920 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 921 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, 922 dma_addr_t ctrl_data_ptr, u16 ctype) 923 { 924 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 925 926 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 927 928 /* Set fields for one descriptor. */ 929 cdma_desc->flash_pointer = flash_ptr; 930 if (cdns_ctrl->ctrl_rev >= 13) 931 cdma_desc->bank = nf_mem; 932 else 933 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 934 935 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 936 cdma_desc->command_flags |= CDMA_CF_INT; 937 938 cdma_desc->memory_pointer = mem_ptr; 939 cdma_desc->status = 0; 940 cdma_desc->sync_flag_pointer = 0; 941 cdma_desc->sync_arguments = 0; 942 943 cdma_desc->command_type = ctype; 944 cdma_desc->ctrl_data_ptr = ctrl_data_ptr; 945 } 946 947 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 948 u32 desc_status) 949 { 950 if (desc_status & CDMA_CS_ERP) 951 return STAT_ERASED; 952 953 if (desc_status & CDMA_CS_UNCE) 954 return STAT_ECC_UNCORR; 955 956 if (desc_status & CDMA_CS_ERR) { 957 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 958 return STAT_FAIL; 959 } 960 961 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 962 return STAT_ECC_CORR; 963 964 return STAT_FAIL; 965 } 966 967 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 968 { 969 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 970 u8 status = STAT_BUSY; 971 972 if (desc_ptr->status & CDMA_CS_FAIL) { 973 status = cadence_nand_check_desc_error(cdns_ctrl, 974 desc_ptr->status); 975 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 976 } else if (desc_ptr->status & CDMA_CS_COMP) { 977 /* Descriptor finished with no errors. */ 978 if (desc_ptr->command_flags & CDMA_CF_CONT) { 979 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 980 status = STAT_UNKNOWN; 981 } else { 982 /* Last descriptor. */ 983 status = STAT_OK; 984 } 985 } 986 987 return status; 988 } 989 990 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 991 u8 thread) 992 { 993 u32 reg; 994 int status; 995 996 /* Wait for thread ready. */ 997 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 998 1000000, 999 BIT(thread), true); 1000 if (status) 1001 return status; 1002 1003 cadence_nand_reset_irq(cdns_ctrl); 1004 reinit_completion(&cdns_ctrl->complete); 1005 1006 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1007 cdns_ctrl->reg + CMD_REG2); 1008 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1009 1010 /* Select CDMA mode. */ 1011 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1012 /* Thread number. */ 1013 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1014 /* Issue command. */ 1015 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1016 1017 return 0; 1018 } 1019 1020 /* Send SDMA command and wait for finish. */ 1021 static u32 1022 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1023 u8 thread) 1024 { 1025 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1026 int status; 1027 1028 irq_mask.trd_status = BIT(thread); 1029 irq_mask.trd_error = BIT(thread); 1030 irq_mask.status = INTR_STATUS_CDMA_TERR; 1031 1032 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1033 1034 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1035 if (status) 1036 return status; 1037 1038 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1039 1040 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1041 irq_status.trd_error == 0) { 1042 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1043 return -ETIMEDOUT; 1044 } 1045 if (irq_status.status & irq_mask.status) { 1046 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1047 return -EIO; 1048 } 1049 1050 return 0; 1051 } 1052 1053 /* 1054 * ECC size depends on configured ECC strength and on maximum supported 1055 * ECC step size. 1056 */ 1057 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1058 { 1059 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1060 1061 return ALIGN(nbytes, 2); 1062 } 1063 1064 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1065 static int \ 1066 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1067 int strength)\ 1068 {\ 1069 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1070 } 1071 1072 CADENCE_NAND_CALC_ECC_BYTES(256) 1073 CADENCE_NAND_CALC_ECC_BYTES(512) 1074 CADENCE_NAND_CALC_ECC_BYTES(1024) 1075 CADENCE_NAND_CALC_ECC_BYTES(2048) 1076 CADENCE_NAND_CALC_ECC_BYTES(4096) 1077 1078 /* Function reads BCH capabilities. */ 1079 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1080 { 1081 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1082 int max_step_size = 0, nstrengths, i; 1083 u32 reg; 1084 1085 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); 1086 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); 1087 if (cdns_ctrl->bch_metadata_size < 4) { 1088 dev_err(cdns_ctrl->dev, 1089 "Driver needs at least 4 bytes of BCH meta data\n"); 1090 return -EIO; 1091 } 1092 1093 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1094 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1095 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1096 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1097 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1098 1099 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1100 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1101 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1102 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1103 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1104 1105 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1106 cdns_ctrl->ecc_stepinfos[0].stepsize = 1107 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1108 1109 cdns_ctrl->ecc_stepinfos[1].stepsize = 1110 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1111 1112 nstrengths = 0; 1113 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1114 if (cdns_ctrl->ecc_strengths[i] != 0) 1115 nstrengths++; 1116 } 1117 1118 ecc_caps->nstepinfos = 0; 1119 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1120 /* ECC strengths are common for all step infos. */ 1121 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1122 cdns_ctrl->ecc_stepinfos[i].strengths = 1123 cdns_ctrl->ecc_strengths; 1124 1125 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1126 ecc_caps->nstepinfos++; 1127 1128 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1129 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1130 } 1131 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1132 1133 switch (max_step_size) { 1134 case 256: 1135 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1136 break; 1137 case 512: 1138 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1139 break; 1140 case 1024: 1141 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1142 break; 1143 case 2048: 1144 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1145 break; 1146 case 4096: 1147 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1148 break; 1149 default: 1150 dev_err(cdns_ctrl->dev, 1151 "Unsupported sector size(ecc step size) %d\n", 1152 max_step_size); 1153 return -EIO; 1154 } 1155 1156 return 0; 1157 } 1158 1159 /* Hardware initialization. */ 1160 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1161 { 1162 int status; 1163 u32 reg; 1164 1165 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1166 1000000, 1167 CTRL_STATUS_INIT_COMP, false); 1168 if (status) 1169 return status; 1170 1171 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1172 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1173 1174 dev_info(cdns_ctrl->dev, 1175 "%s: cadence nand controller version reg %x\n", 1176 __func__, reg); 1177 1178 /* Disable cache and multiplane. */ 1179 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1180 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1181 1182 /* Clear all interrupts. */ 1183 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1184 1185 cadence_nand_get_caps(cdns_ctrl); 1186 if (cadence_nand_read_bch_caps(cdns_ctrl)) 1187 return -EIO; 1188 1189 #ifndef CONFIG_64BIT 1190 if (cdns_ctrl->caps2.data_dma_width == 8) { 1191 dev_err(cdns_ctrl->dev, 1192 "cannot access 64-bit dma on !64-bit architectures"); 1193 return -EIO; 1194 } 1195 #endif 1196 1197 /* 1198 * Set IO width access to 8. 1199 * It is because during SW device discovering width access 1200 * is expected to be 8. 1201 */ 1202 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1203 1204 return status; 1205 } 1206 1207 #define TT_MAIN_OOB_AREAS 2 1208 #define TT_RAW_PAGE 3 1209 #define TT_BBM 4 1210 #define TT_MAIN_OOB_AREA_EXT 5 1211 1212 /* Prepare size of data to transfer. */ 1213 static void 1214 cadence_nand_prepare_data_size(struct nand_chip *chip, 1215 int transfer_type) 1216 { 1217 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1218 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1219 struct mtd_info *mtd = nand_to_mtd(chip); 1220 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1221 u32 last_sec_size = cdns_chip->sector_size; 1222 u32 data_ctrl_size = 0; 1223 u32 reg = 0; 1224 1225 if (cdns_ctrl->curr_trans_type == transfer_type) 1226 return; 1227 1228 switch (transfer_type) { 1229 case TT_MAIN_OOB_AREA_EXT: 1230 sec_cnt = cdns_chip->sector_count; 1231 sec_size = cdns_chip->sector_size; 1232 data_ctrl_size = cdns_chip->avail_oob_size; 1233 break; 1234 case TT_MAIN_OOB_AREAS: 1235 sec_cnt = cdns_chip->sector_count; 1236 last_sec_size = cdns_chip->sector_size 1237 + cdns_chip->avail_oob_size; 1238 sec_size = cdns_chip->sector_size; 1239 break; 1240 case TT_RAW_PAGE: 1241 last_sec_size = mtd->writesize + mtd->oobsize; 1242 break; 1243 case TT_BBM: 1244 offset = mtd->writesize + cdns_chip->bbm_offs; 1245 last_sec_size = 8; 1246 break; 1247 } 1248 1249 reg = 0; 1250 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1251 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1252 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1253 1254 reg = 0; 1255 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1256 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1257 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1258 1259 if (cdns_ctrl->caps2.data_control_supp) { 1260 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1261 reg &= ~CONTROL_DATA_CTRL_SIZE; 1262 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1263 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1264 } 1265 1266 cdns_ctrl->curr_trans_type = transfer_type; 1267 } 1268 1269 static int 1270 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1271 int page, void *buf, void *ctrl_dat, u32 buf_size, 1272 u32 ctrl_dat_size, enum dma_data_direction dir, 1273 bool with_ecc) 1274 { 1275 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1276 u8 thread_nr = chip_nr; 1277 int status; 1278 u16 ctype; 1279 1280 if (dir == DMA_FROM_DEVICE) 1281 ctype = CDMA_CT_RD; 1282 else 1283 ctype = CDMA_CT_WR; 1284 1285 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1286 1287 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1288 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1289 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1290 return -EIO; 1291 } 1292 1293 if (ctrl_dat && ctrl_dat_size) { 1294 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1295 ctrl_dat_size, dir); 1296 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1297 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1298 buf_size, dir); 1299 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1300 return -EIO; 1301 } 1302 } 1303 1304 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1305 dma_buf, dma_ctrl_dat, ctype); 1306 1307 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1308 1309 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1310 buf_size, dir); 1311 1312 if (ctrl_dat && ctrl_dat_size) 1313 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1314 ctrl_dat_size, dir); 1315 if (status) 1316 return status; 1317 1318 return cadence_nand_cdma_finish(cdns_ctrl); 1319 } 1320 1321 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1322 struct cadence_nand_timings *t) 1323 { 1324 writel_relaxed(t->async_toggle_timings, 1325 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1326 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1327 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1328 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1329 1330 if (cdns_ctrl->caps2.is_phy_type_dll) 1331 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1332 1333 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1334 1335 if (cdns_ctrl->caps2.is_phy_type_dll) { 1336 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1337 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1338 writel_relaxed(t->phy_dqs_timing, 1339 cdns_ctrl->reg + PHY_DQS_TIMING); 1340 writel_relaxed(t->phy_gate_lpbk_ctrl, 1341 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1342 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1343 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1344 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1345 } 1346 } 1347 1348 static int cadence_nand_select_target(struct nand_chip *chip) 1349 { 1350 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1351 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1352 1353 if (chip == cdns_ctrl->selected_chip) 1354 return 0; 1355 1356 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1357 1000000, 1358 CTRL_STATUS_CTRL_BUSY, true)) 1359 return -ETIMEDOUT; 1360 1361 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1362 1363 cadence_nand_set_ecc_strength(cdns_ctrl, 1364 cdns_chip->corr_str_idx); 1365 1366 cadence_nand_set_erase_detection(cdns_ctrl, true, 1367 chip->ecc.strength); 1368 1369 cdns_ctrl->curr_trans_type = -1; 1370 cdns_ctrl->selected_chip = chip; 1371 1372 return 0; 1373 } 1374 1375 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1376 { 1377 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1378 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1379 int status; 1380 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1381 1382 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1383 cdns_chip->cs[chip->cur_cs], 1384 page, 0, 0, 1385 CDMA_CT_ERASE); 1386 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1387 if (status) { 1388 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1389 return -EIO; 1390 } 1391 1392 status = cadence_nand_cdma_finish(cdns_ctrl); 1393 if (status) 1394 return status; 1395 1396 return 0; 1397 } 1398 1399 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1400 { 1401 int status; 1402 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1403 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1404 struct mtd_info *mtd = nand_to_mtd(chip); 1405 1406 cadence_nand_prepare_data_size(chip, TT_BBM); 1407 1408 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1409 1410 /* 1411 * Read only bad block marker from offset 1412 * defined by a memory manufacturer. 1413 */ 1414 status = cadence_nand_cdma_transfer(cdns_ctrl, 1415 cdns_chip->cs[chip->cur_cs], 1416 page, cdns_ctrl->buf, NULL, 1417 mtd->oobsize, 1418 0, DMA_FROM_DEVICE, false); 1419 if (status) { 1420 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1421 return -EIO; 1422 } 1423 1424 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1425 1426 return 0; 1427 } 1428 1429 static int cadence_nand_write_page(struct nand_chip *chip, 1430 const u8 *buf, int oob_required, 1431 int page) 1432 { 1433 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1434 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1435 struct mtd_info *mtd = nand_to_mtd(chip); 1436 int status; 1437 u16 marker_val = 0xFFFF; 1438 1439 status = cadence_nand_select_target(chip); 1440 if (status) 1441 return status; 1442 1443 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1444 mtd->writesize 1445 + cdns_chip->bbm_offs, 1446 1); 1447 1448 if (oob_required) { 1449 marker_val = *(u16 *)(chip->oob_poi 1450 + cdns_chip->bbm_offs); 1451 } else { 1452 /* Set oob data to 0xFF. */ 1453 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1454 cdns_chip->avail_oob_size); 1455 } 1456 1457 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1458 1459 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1460 1461 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1462 cdns_ctrl->caps2.data_control_supp) { 1463 u8 *oob; 1464 1465 if (oob_required) 1466 oob = chip->oob_poi; 1467 else 1468 oob = cdns_ctrl->buf + mtd->writesize; 1469 1470 status = cadence_nand_cdma_transfer(cdns_ctrl, 1471 cdns_chip->cs[chip->cur_cs], 1472 page, (void *)buf, oob, 1473 mtd->writesize, 1474 cdns_chip->avail_oob_size, 1475 DMA_TO_DEVICE, true); 1476 if (status) { 1477 dev_err(cdns_ctrl->dev, "write page failed\n"); 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 if (oob_required) { 1485 /* Transfer the data to the oob area. */ 1486 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1487 cdns_chip->avail_oob_size); 1488 } 1489 1490 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1491 1492 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1493 1494 return cadence_nand_cdma_transfer(cdns_ctrl, 1495 cdns_chip->cs[chip->cur_cs], 1496 page, cdns_ctrl->buf, NULL, 1497 mtd->writesize 1498 + cdns_chip->avail_oob_size, 1499 0, DMA_TO_DEVICE, true); 1500 } 1501 1502 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1503 { 1504 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1505 struct mtd_info *mtd = nand_to_mtd(chip); 1506 1507 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1508 1509 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1510 } 1511 1512 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1513 const u8 *buf, int oob_required, 1514 int page) 1515 { 1516 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1517 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1518 struct mtd_info *mtd = nand_to_mtd(chip); 1519 int writesize = mtd->writesize; 1520 int oobsize = mtd->oobsize; 1521 int ecc_steps = chip->ecc.steps; 1522 int ecc_size = chip->ecc.size; 1523 int ecc_bytes = chip->ecc.bytes; 1524 void *tmp_buf = cdns_ctrl->buf; 1525 int oob_skip = cdns_chip->bbm_len; 1526 size_t size = writesize + oobsize; 1527 int i, pos, len; 1528 int status = 0; 1529 1530 status = cadence_nand_select_target(chip); 1531 if (status) 1532 return status; 1533 1534 /* 1535 * Fill the buffer with 0xff first except the full page transfer. 1536 * This simplifies the logic. 1537 */ 1538 if (!buf || !oob_required) 1539 memset(tmp_buf, 0xff, size); 1540 1541 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1542 1543 /* Arrange the buffer for syndrome payload/ecc layout. */ 1544 if (buf) { 1545 for (i = 0; i < ecc_steps; i++) { 1546 pos = i * (ecc_size + ecc_bytes); 1547 len = ecc_size; 1548 1549 if (pos >= writesize) 1550 pos += oob_skip; 1551 else if (pos + len > writesize) 1552 len = writesize - pos; 1553 1554 memcpy(tmp_buf + pos, buf, len); 1555 buf += len; 1556 if (len < ecc_size) { 1557 len = ecc_size - len; 1558 memcpy(tmp_buf + writesize + oob_skip, buf, 1559 len); 1560 buf += len; 1561 } 1562 } 1563 } 1564 1565 if (oob_required) { 1566 const u8 *oob = chip->oob_poi; 1567 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1568 (cdns_chip->sector_size + chip->ecc.bytes) 1569 + cdns_chip->sector_size + oob_skip; 1570 1571 /* BBM at the beginning of the OOB area. */ 1572 memcpy(tmp_buf + writesize, oob, oob_skip); 1573 1574 /* OOB free. */ 1575 memcpy(tmp_buf + oob_data_offset, oob, 1576 cdns_chip->avail_oob_size); 1577 oob += cdns_chip->avail_oob_size; 1578 1579 /* OOB ECC. */ 1580 for (i = 0; i < ecc_steps; i++) { 1581 pos = ecc_size + i * (ecc_size + ecc_bytes); 1582 if (i == (ecc_steps - 1)) 1583 pos += cdns_chip->avail_oob_size; 1584 1585 len = ecc_bytes; 1586 1587 if (pos >= writesize) 1588 pos += oob_skip; 1589 else if (pos + len > writesize) 1590 len = writesize - pos; 1591 1592 memcpy(tmp_buf + pos, oob, len); 1593 oob += len; 1594 if (len < ecc_bytes) { 1595 len = ecc_bytes - len; 1596 memcpy(tmp_buf + writesize + oob_skip, oob, 1597 len); 1598 oob += len; 1599 } 1600 } 1601 } 1602 1603 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1604 1605 return cadence_nand_cdma_transfer(cdns_ctrl, 1606 cdns_chip->cs[chip->cur_cs], 1607 page, cdns_ctrl->buf, NULL, 1608 mtd->writesize + 1609 mtd->oobsize, 1610 0, DMA_TO_DEVICE, false); 1611 } 1612 1613 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1614 int page) 1615 { 1616 return cadence_nand_write_page_raw(chip, NULL, true, page); 1617 } 1618 1619 static int cadence_nand_read_page(struct nand_chip *chip, 1620 u8 *buf, int oob_required, int page) 1621 { 1622 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1623 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1624 struct mtd_info *mtd = nand_to_mtd(chip); 1625 int status = 0; 1626 int ecc_err_count = 0; 1627 1628 status = cadence_nand_select_target(chip); 1629 if (status) 1630 return status; 1631 1632 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1633 mtd->writesize 1634 + cdns_chip->bbm_offs, 1); 1635 1636 /* 1637 * If data buffer can be accessed by DMA and data_control feature 1638 * is supported then transfer data and oob directly. 1639 */ 1640 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1641 cdns_ctrl->caps2.data_control_supp) { 1642 u8 *oob; 1643 1644 if (oob_required) 1645 oob = chip->oob_poi; 1646 else 1647 oob = cdns_ctrl->buf + mtd->writesize; 1648 1649 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1650 status = cadence_nand_cdma_transfer(cdns_ctrl, 1651 cdns_chip->cs[chip->cur_cs], 1652 page, buf, oob, 1653 mtd->writesize, 1654 cdns_chip->avail_oob_size, 1655 DMA_FROM_DEVICE, true); 1656 /* Otherwise use bounce buffer. */ 1657 } else { 1658 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1659 status = cadence_nand_cdma_transfer(cdns_ctrl, 1660 cdns_chip->cs[chip->cur_cs], 1661 page, cdns_ctrl->buf, 1662 NULL, mtd->writesize 1663 + cdns_chip->avail_oob_size, 1664 0, DMA_FROM_DEVICE, true); 1665 1666 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1667 if (oob_required) 1668 memcpy(chip->oob_poi, 1669 cdns_ctrl->buf + mtd->writesize, 1670 mtd->oobsize); 1671 } 1672 1673 switch (status) { 1674 case STAT_ECC_UNCORR: 1675 mtd->ecc_stats.failed++; 1676 ecc_err_count++; 1677 break; 1678 case STAT_ECC_CORR: 1679 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1680 cdns_ctrl->cdma_desc->status); 1681 mtd->ecc_stats.corrected += ecc_err_count; 1682 break; 1683 case STAT_ERASED: 1684 case STAT_OK: 1685 break; 1686 default: 1687 dev_err(cdns_ctrl->dev, "read page failed\n"); 1688 return -EIO; 1689 } 1690 1691 if (oob_required) 1692 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1693 return -EIO; 1694 1695 return ecc_err_count; 1696 } 1697 1698 /* Reads OOB data from the device. */ 1699 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1700 { 1701 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1702 1703 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1704 } 1705 1706 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1707 u8 *buf, int oob_required, int page) 1708 { 1709 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1710 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1711 struct mtd_info *mtd = nand_to_mtd(chip); 1712 int oob_skip = cdns_chip->bbm_len; 1713 int writesize = mtd->writesize; 1714 int ecc_steps = chip->ecc.steps; 1715 int ecc_size = chip->ecc.size; 1716 int ecc_bytes = chip->ecc.bytes; 1717 void *tmp_buf = cdns_ctrl->buf; 1718 int i, pos, len; 1719 int status = 0; 1720 1721 status = cadence_nand_select_target(chip); 1722 if (status) 1723 return status; 1724 1725 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1726 1727 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1728 status = cadence_nand_cdma_transfer(cdns_ctrl, 1729 cdns_chip->cs[chip->cur_cs], 1730 page, cdns_ctrl->buf, NULL, 1731 mtd->writesize 1732 + mtd->oobsize, 1733 0, DMA_FROM_DEVICE, false); 1734 1735 switch (status) { 1736 case STAT_ERASED: 1737 case STAT_OK: 1738 break; 1739 default: 1740 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1741 return -EIO; 1742 } 1743 1744 /* Arrange the buffer for syndrome payload/ecc layout. */ 1745 if (buf) { 1746 for (i = 0; i < ecc_steps; i++) { 1747 pos = i * (ecc_size + ecc_bytes); 1748 len = ecc_size; 1749 1750 if (pos >= writesize) 1751 pos += oob_skip; 1752 else if (pos + len > writesize) 1753 len = writesize - pos; 1754 1755 memcpy(buf, tmp_buf + pos, len); 1756 buf += len; 1757 if (len < ecc_size) { 1758 len = ecc_size - len; 1759 memcpy(buf, tmp_buf + writesize + oob_skip, 1760 len); 1761 buf += len; 1762 } 1763 } 1764 } 1765 1766 if (oob_required) { 1767 u8 *oob = chip->oob_poi; 1768 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1769 (cdns_chip->sector_size + chip->ecc.bytes) 1770 + cdns_chip->sector_size + oob_skip; 1771 1772 /* OOB free. */ 1773 memcpy(oob, tmp_buf + oob_data_offset, 1774 cdns_chip->avail_oob_size); 1775 1776 /* BBM at the beginning of the OOB area. */ 1777 memcpy(oob, tmp_buf + writesize, oob_skip); 1778 1779 oob += cdns_chip->avail_oob_size; 1780 1781 /* OOB ECC */ 1782 for (i = 0; i < ecc_steps; i++) { 1783 pos = ecc_size + i * (ecc_size + ecc_bytes); 1784 len = ecc_bytes; 1785 1786 if (i == (ecc_steps - 1)) 1787 pos += cdns_chip->avail_oob_size; 1788 1789 if (pos >= writesize) 1790 pos += oob_skip; 1791 else if (pos + len > writesize) 1792 len = writesize - pos; 1793 1794 memcpy(oob, tmp_buf + pos, len); 1795 oob += len; 1796 if (len < ecc_bytes) { 1797 len = ecc_bytes - len; 1798 memcpy(oob, tmp_buf + writesize + oob_skip, 1799 len); 1800 oob += len; 1801 } 1802 } 1803 } 1804 1805 return 0; 1806 } 1807 1808 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1809 int page) 1810 { 1811 return cadence_nand_read_page_raw(chip, NULL, true, page); 1812 } 1813 1814 static void cadence_nand_slave_dma_transfer_finished(void *data) 1815 { 1816 struct completion *finished = data; 1817 1818 complete(finished); 1819 } 1820 1821 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1822 void *buf, 1823 dma_addr_t dev_dma, size_t len, 1824 enum dma_data_direction dir) 1825 { 1826 DECLARE_COMPLETION_ONSTACK(finished); 1827 struct dma_chan *chan; 1828 struct dma_device *dma_dev; 1829 dma_addr_t src_dma, dst_dma, buf_dma; 1830 struct dma_async_tx_descriptor *tx; 1831 dma_cookie_t cookie; 1832 1833 chan = cdns_ctrl->dmac; 1834 dma_dev = chan->device; 1835 1836 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1837 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1838 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1839 goto err; 1840 } 1841 1842 if (dir == DMA_FROM_DEVICE) { 1843 src_dma = cdns_ctrl->io.dma; 1844 dst_dma = buf_dma; 1845 } else { 1846 src_dma = buf_dma; 1847 dst_dma = cdns_ctrl->io.dma; 1848 } 1849 1850 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1851 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1852 if (!tx) { 1853 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1854 goto err_unmap; 1855 } 1856 1857 tx->callback = cadence_nand_slave_dma_transfer_finished; 1858 tx->callback_param = &finished; 1859 1860 cookie = dmaengine_submit(tx); 1861 if (dma_submit_error(cookie)) { 1862 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1863 goto err_unmap; 1864 } 1865 1866 dma_async_issue_pending(cdns_ctrl->dmac); 1867 wait_for_completion(&finished); 1868 1869 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1870 1871 return 0; 1872 1873 err_unmap: 1874 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1875 1876 err: 1877 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1878 1879 return -EIO; 1880 } 1881 1882 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1883 u8 *buf, int len) 1884 { 1885 u8 thread_nr = 0; 1886 u32 sdma_size; 1887 int status; 1888 1889 /* Wait until slave DMA interface is ready to data transfer. */ 1890 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1891 if (status) 1892 return status; 1893 1894 if (!cdns_ctrl->caps1->has_dma) { 1895 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 1896 1897 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; 1898 1899 /* read alingment data */ 1900 if (data_dma_width == 4) 1901 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1902 #ifdef CONFIG_64BIT 1903 else 1904 readsq(cdns_ctrl->io.virt, buf, len_in_words); 1905 #endif 1906 1907 if (sdma_size > len) { 1908 int read_bytes = (data_dma_width == 4) ? 1909 len_in_words << 2 : len_in_words << 3; 1910 1911 /* read rest data from slave DMA interface if any */ 1912 if (data_dma_width == 4) 1913 ioread32_rep(cdns_ctrl->io.virt, 1914 cdns_ctrl->buf, 1915 sdma_size / 4 - len_in_words); 1916 #ifdef CONFIG_64BIT 1917 else 1918 readsq(cdns_ctrl->io.virt, cdns_ctrl->buf, 1919 sdma_size / 8 - len_in_words); 1920 #endif 1921 1922 /* copy rest of data */ 1923 memcpy(buf + read_bytes, cdns_ctrl->buf, 1924 len - read_bytes); 1925 } 1926 return 0; 1927 } 1928 1929 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1930 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1931 cdns_ctrl->io.dma, 1932 len, DMA_FROM_DEVICE); 1933 if (status == 0) 1934 return 0; 1935 1936 dev_warn(cdns_ctrl->dev, 1937 "Slave DMA transfer failed. Try again using bounce buffer."); 1938 } 1939 1940 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1941 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1942 cdns_ctrl->io.dma, 1943 sdma_size, DMA_FROM_DEVICE); 1944 1945 if (status) { 1946 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1947 return status; 1948 } 1949 1950 memcpy(buf, cdns_ctrl->buf, len); 1951 1952 return 0; 1953 } 1954 1955 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1956 const u8 *buf, int len) 1957 { 1958 u8 thread_nr = 0; 1959 u32 sdma_size; 1960 int status; 1961 1962 /* Wait until slave DMA interface is ready to data transfer. */ 1963 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1964 if (status) 1965 return status; 1966 1967 if (!cdns_ctrl->caps1->has_dma) { 1968 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 1969 1970 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; 1971 1972 if (data_dma_width == 4) 1973 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1974 #ifdef CONFIG_64BIT 1975 else 1976 writesq(cdns_ctrl->io.virt, buf, len_in_words); 1977 #endif 1978 1979 if (sdma_size > len) { 1980 int written_bytes = (data_dma_width == 4) ? 1981 len_in_words << 2 : len_in_words << 3; 1982 1983 /* copy rest of data */ 1984 memcpy(cdns_ctrl->buf, buf + written_bytes, 1985 len - written_bytes); 1986 1987 /* write all expected by nand controller data */ 1988 if (data_dma_width == 4) 1989 iowrite32_rep(cdns_ctrl->io.virt, 1990 cdns_ctrl->buf, 1991 sdma_size / 4 - len_in_words); 1992 #ifdef CONFIG_64BIT 1993 else 1994 writesq(cdns_ctrl->io.virt, cdns_ctrl->buf, 1995 sdma_size / 8 - len_in_words); 1996 #endif 1997 } 1998 1999 return 0; 2000 } 2001 2002 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 2003 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 2004 cdns_ctrl->io.dma, 2005 len, DMA_TO_DEVICE); 2006 if (status == 0) 2007 return 0; 2008 2009 dev_warn(cdns_ctrl->dev, 2010 "Slave DMA transfer failed. Try again using bounce buffer."); 2011 } 2012 2013 /* If DMA transfer is not possible or failed then use bounce buffer. */ 2014 memcpy(cdns_ctrl->buf, buf, len); 2015 2016 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 2017 cdns_ctrl->io.dma, 2018 sdma_size, DMA_TO_DEVICE); 2019 2020 if (status) 2021 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 2022 2023 return status; 2024 } 2025 2026 static int cadence_nand_force_byte_access(struct nand_chip *chip, 2027 bool force_8bit) 2028 { 2029 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2030 2031 /* 2032 * Callers of this function do not verify if the NAND is using a 16-bit 2033 * an 8-bit bus for normal operations, so we need to take care of that 2034 * here by leaving the configuration unchanged if the NAND does not have 2035 * the NAND_BUSWIDTH_16 flag set. 2036 */ 2037 if (!(chip->options & NAND_BUSWIDTH_16)) 2038 return 0; 2039 2040 return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 2041 } 2042 2043 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 2044 const struct nand_subop *subop) 2045 { 2046 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2047 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2048 const struct nand_op_instr *instr; 2049 unsigned int op_id = 0; 2050 u64 mini_ctrl_cmd = 0; 2051 int ret; 2052 2053 instr = &subop->instrs[op_id]; 2054 2055 if (instr->delay_ns > 0) 2056 mini_ctrl_cmd |= GCMD_LAY_TWB; 2057 2058 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2059 GCMD_LAY_INSTR_CMD); 2060 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2061 instr->ctx.cmd.opcode); 2062 2063 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2064 cdns_chip->cs[chip->cur_cs], 2065 mini_ctrl_cmd); 2066 if (ret) 2067 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2068 instr->ctx.cmd.opcode); 2069 2070 return ret; 2071 } 2072 2073 static int cadence_nand_cmd_address(struct nand_chip *chip, 2074 const struct nand_subop *subop) 2075 { 2076 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2077 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2078 const struct nand_op_instr *instr; 2079 unsigned int op_id = 0; 2080 u64 mini_ctrl_cmd = 0; 2081 unsigned int offset, naddrs; 2082 u64 address = 0; 2083 const u8 *addrs; 2084 int ret; 2085 int i; 2086 2087 instr = &subop->instrs[op_id]; 2088 2089 if (instr->delay_ns > 0) 2090 mini_ctrl_cmd |= GCMD_LAY_TWB; 2091 2092 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2093 GCMD_LAY_INSTR_ADDR); 2094 2095 offset = nand_subop_get_addr_start_off(subop, op_id); 2096 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2097 addrs = &instr->ctx.addr.addrs[offset]; 2098 2099 for (i = 0; i < naddrs; i++) 2100 address |= (u64)addrs[i] << (8 * i); 2101 2102 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2103 address); 2104 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2105 naddrs - 1); 2106 2107 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2108 cdns_chip->cs[chip->cur_cs], 2109 mini_ctrl_cmd); 2110 if (ret) 2111 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2112 2113 return ret; 2114 } 2115 2116 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2117 const struct nand_subop *subop) 2118 { 2119 unsigned int op_id; 2120 2121 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2122 int i; 2123 const struct nand_op_instr *instr = NULL; 2124 unsigned int offset, naddrs; 2125 const u8 *addrs; 2126 u32 page = 0; 2127 2128 instr = &subop->instrs[1]; 2129 offset = nand_subop_get_addr_start_off(subop, 1); 2130 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2131 addrs = &instr->ctx.addr.addrs[offset]; 2132 2133 for (i = 0; i < naddrs; i++) 2134 page |= (u32)addrs[i] << (8 * i); 2135 2136 return cadence_nand_erase(chip, page); 2137 } 2138 2139 /* 2140 * If it is not an erase operation then handle operation 2141 * by calling exec_op function. 2142 */ 2143 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2144 int ret; 2145 const struct nand_operation nand_op = { 2146 .cs = chip->cur_cs, 2147 .instrs = &subop->instrs[op_id], 2148 .ninstrs = 1}; 2149 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2150 if (ret) 2151 return ret; 2152 } 2153 2154 return 0; 2155 } 2156 2157 static int cadence_nand_cmd_data(struct nand_chip *chip, 2158 const struct nand_subop *subop) 2159 { 2160 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2161 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2162 const struct nand_op_instr *instr; 2163 unsigned int offset, op_id = 0; 2164 u64 mini_ctrl_cmd = 0; 2165 int len = 0; 2166 int ret; 2167 2168 instr = &subop->instrs[op_id]; 2169 2170 if (instr->delay_ns > 0) 2171 mini_ctrl_cmd |= GCMD_LAY_TWB; 2172 2173 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2174 GCMD_LAY_INSTR_DATA); 2175 2176 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2177 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2178 GCMD_DIR_WRITE); 2179 2180 len = nand_subop_get_data_len(subop, op_id); 2181 offset = nand_subop_get_data_start_off(subop, op_id); 2182 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2183 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2184 if (instr->ctx.data.force_8bit) { 2185 ret = cadence_nand_force_byte_access(chip, true); 2186 if (ret) { 2187 dev_err(cdns_ctrl->dev, 2188 "cannot change byte access generic data cmd failed\n"); 2189 return ret; 2190 } 2191 } 2192 2193 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2194 cdns_chip->cs[chip->cur_cs], 2195 mini_ctrl_cmd); 2196 if (ret) { 2197 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2198 return ret; 2199 } 2200 2201 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2202 void *buf = instr->ctx.data.buf.in + offset; 2203 2204 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2205 } else { 2206 const void *buf = instr->ctx.data.buf.out + offset; 2207 2208 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2209 } 2210 2211 if (ret) { 2212 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2213 return ret; 2214 } 2215 2216 if (instr->ctx.data.force_8bit) { 2217 ret = cadence_nand_force_byte_access(chip, false); 2218 if (ret) { 2219 dev_err(cdns_ctrl->dev, 2220 "cannot change byte access generic data cmd failed\n"); 2221 } 2222 } 2223 2224 return ret; 2225 } 2226 2227 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2228 const struct nand_subop *subop) 2229 { 2230 int status; 2231 unsigned int op_id = 0; 2232 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2233 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2234 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2235 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2236 2237 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2238 timeout_us, 2239 BIT(cdns_chip->cs[chip->cur_cs]), 2240 false); 2241 return status; 2242 } 2243 2244 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2245 NAND_OP_PARSER_PATTERN( 2246 cadence_nand_cmd_erase, 2247 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2248 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2249 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2250 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2251 NAND_OP_PARSER_PATTERN( 2252 cadence_nand_cmd_opcode, 2253 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2254 NAND_OP_PARSER_PATTERN( 2255 cadence_nand_cmd_address, 2256 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2257 NAND_OP_PARSER_PATTERN( 2258 cadence_nand_cmd_data, 2259 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2260 NAND_OP_PARSER_PATTERN( 2261 cadence_nand_cmd_data, 2262 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2263 NAND_OP_PARSER_PATTERN( 2264 cadence_nand_cmd_waitrdy, 2265 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2266 ); 2267 2268 static int cadence_nand_exec_op(struct nand_chip *chip, 2269 const struct nand_operation *op, 2270 bool check_only) 2271 { 2272 if (!check_only) { 2273 int status = cadence_nand_select_target(chip); 2274 2275 if (status) 2276 return status; 2277 } 2278 2279 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2280 check_only); 2281 } 2282 2283 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2284 struct mtd_oob_region *oobregion) 2285 { 2286 struct nand_chip *chip = mtd_to_nand(mtd); 2287 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2288 2289 if (section) 2290 return -ERANGE; 2291 2292 oobregion->offset = cdns_chip->bbm_len; 2293 oobregion->length = cdns_chip->avail_oob_size 2294 - cdns_chip->bbm_len; 2295 2296 return 0; 2297 } 2298 2299 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2300 struct mtd_oob_region *oobregion) 2301 { 2302 struct nand_chip *chip = mtd_to_nand(mtd); 2303 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2304 2305 if (section) 2306 return -ERANGE; 2307 2308 oobregion->offset = cdns_chip->avail_oob_size; 2309 oobregion->length = chip->ecc.total; 2310 2311 return 0; 2312 } 2313 2314 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2315 .free = cadence_nand_ooblayout_free, 2316 .ecc = cadence_nand_ooblayout_ecc, 2317 }; 2318 2319 static int calc_cycl(u32 timing, u32 clock) 2320 { 2321 if (timing == 0 || clock == 0) 2322 return 0; 2323 2324 if ((timing % clock) > 0) 2325 return timing / clock; 2326 else 2327 return timing / clock - 1; 2328 } 2329 2330 /* Calculate max data valid window. */ 2331 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2332 u32 board_delay_skew_min, u32 ext_mode) 2333 { 2334 if (ext_mode == 0) 2335 clk_period /= 2; 2336 2337 return (trp_cnt + 1) * clk_period + trhoh_min + 2338 board_delay_skew_min; 2339 } 2340 2341 /* Calculate data valid window. */ 2342 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2343 u32 trea_max, u32 ext_mode) 2344 { 2345 if (ext_mode == 0) 2346 clk_period /= 2; 2347 2348 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2349 } 2350 2351 static int 2352 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, 2353 const struct nand_interface_config *conf) 2354 { 2355 const struct nand_sdr_timings *sdr; 2356 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2357 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2358 struct cadence_nand_timings *t = &cdns_chip->timings; 2359 u32 reg; 2360 u32 board_delay = cdns_ctrl->board_delay; 2361 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2362 cdns_ctrl->nf_clk_rate); 2363 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2364 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2365 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2366 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2367 u32 if_skew = cdns_ctrl->caps1->if_skew; 2368 u32 board_delay_skew_min = board_delay - if_skew; 2369 u32 board_delay_skew_max = board_delay + if_skew; 2370 u32 dqs_sampl_res, phony_dqs_mod; 2371 u32 tdvw, tdvw_min, tdvw_max; 2372 u32 ext_rd_mode, ext_wr_mode; 2373 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2374 u32 sampling_point; 2375 2376 sdr = nand_get_sdr_timings(conf); 2377 if (IS_ERR(sdr)) 2378 return PTR_ERR(sdr); 2379 2380 memset(t, 0, sizeof(*t)); 2381 /* Sampling point calculation. */ 2382 2383 if (cdns_ctrl->caps2.is_phy_type_dll) 2384 phony_dqs_mod = 2; 2385 else 2386 phony_dqs_mod = 1; 2387 2388 dqs_sampl_res = clk_period / phony_dqs_mod; 2389 2390 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2391 /* 2392 * The idea of those calculation is to get the optimum value 2393 * for tRP and tRH timings. If it is NOT possible to sample data 2394 * with optimal tRP/tRH settings, the parameters will be extended. 2395 * If clk_period is 50ns (the lowest value) this condition is met 2396 * for SDR timing modes 1, 2, 3, 4 and 5. 2397 * If clk_period is 20ns the condition is met only for SDR timing 2398 * mode 5. 2399 */ 2400 if (sdr->tRC_min <= clk_period && 2401 sdr->tRP_min <= (clk_period / 2) && 2402 sdr->tREH_min <= (clk_period / 2)) { 2403 /* Performance mode. */ 2404 ext_rd_mode = 0; 2405 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2406 sdr->tREA_max, ext_rd_mode); 2407 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2408 board_delay_skew_min, 2409 ext_rd_mode); 2410 /* 2411 * Check if data valid window and sampling point can be found 2412 * and is not on the edge (ie. we have hold margin). 2413 * If not extend the tRP timings. 2414 */ 2415 if (tdvw > 0) { 2416 if (tdvw_max <= tdvw_min || 2417 (tdvw_max % dqs_sampl_res) == 0) { 2418 /* 2419 * No valid sampling point so the RE pulse need 2420 * to be widen widening by half clock cycle. 2421 */ 2422 ext_rd_mode = 1; 2423 } 2424 } else { 2425 /* 2426 * There is no valid window 2427 * to be able to sample data the tRP need to be widen. 2428 * Very safe calculations are performed here. 2429 */ 2430 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2431 + dqs_sampl_res) / clk_period; 2432 ext_rd_mode = 1; 2433 } 2434 2435 } else { 2436 /* Extended read mode. */ 2437 u32 trh; 2438 2439 ext_rd_mode = 1; 2440 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2441 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2442 if (sdr->tREH_min >= trh) 2443 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2444 else 2445 trh_cnt = calc_cycl(trh, clk_period); 2446 2447 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2448 sdr->tREA_max, ext_rd_mode); 2449 /* 2450 * Check if data valid window and sampling point can be found 2451 * or if it is at the edge check if previous is valid 2452 * - if not extend the tRP timings. 2453 */ 2454 if (tdvw > 0) { 2455 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2456 sdr->tRHOH_min, 2457 board_delay_skew_min, 2458 ext_rd_mode); 2459 2460 if ((((tdvw_max / dqs_sampl_res) 2461 * dqs_sampl_res) <= tdvw_min) || 2462 (((tdvw_max % dqs_sampl_res) == 0) && 2463 (((tdvw_max / dqs_sampl_res - 1) 2464 * dqs_sampl_res) <= tdvw_min))) { 2465 /* 2466 * Data valid window width is lower than 2467 * sampling resolution and do not hit any 2468 * sampling point to be sure the sampling point 2469 * will be found the RE low pulse width will be 2470 * extended by one clock cycle. 2471 */ 2472 trp_cnt = trp_cnt + 1; 2473 } 2474 } else { 2475 /* 2476 * There is no valid window to be able to sample data. 2477 * The tRP need to be widen. 2478 * Very safe calculations are performed here. 2479 */ 2480 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2481 + dqs_sampl_res) / clk_period; 2482 } 2483 } 2484 2485 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2486 sdr->tRHOH_min, 2487 board_delay_skew_min, ext_rd_mode); 2488 2489 if (sdr->tWC_min <= clk_period && 2490 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2491 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2492 ext_wr_mode = 0; 2493 } else { 2494 u32 twh; 2495 2496 ext_wr_mode = 1; 2497 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2498 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2499 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2500 clk_period); 2501 2502 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2503 if (sdr->tWH_min >= twh) 2504 twh = sdr->tWH_min; 2505 2506 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2507 } 2508 2509 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2510 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2511 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2512 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2513 t->async_toggle_timings = reg; 2514 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2515 2516 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2517 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2518 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2519 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2520 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2521 2522 /* 2523 * If timing exceeds delay field in timing register 2524 * then use maximum value. 2525 */ 2526 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2527 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2528 else 2529 reg |= TIMINGS0_TCCS; 2530 2531 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2532 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2533 t->timings0 = reg; 2534 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2535 2536 /* The following is related to single signal so skew is not needed. */ 2537 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2538 trhz_cnt = trhz_cnt + 1; 2539 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2540 /* 2541 * Because of the two stage syncflop the value must be increased by 3 2542 * first value is related with sync, second value is related 2543 * with output if delay. 2544 */ 2545 twb_cnt = twb_cnt + 3 + 5; 2546 /* 2547 * The following is related to the we edge of the random data input 2548 * sequence so skew is not needed. 2549 */ 2550 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2551 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2552 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2553 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2554 t->timings1 = reg; 2555 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2556 2557 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2558 if (tfeat_cnt < twb_cnt) 2559 tfeat_cnt = twb_cnt; 2560 2561 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2562 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2563 2564 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2565 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2566 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2567 t->timings2 = reg; 2568 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2569 2570 if (cdns_ctrl->caps2.is_phy_type_dll) { 2571 reg = DLL_PHY_CTRL_DLL_RST_N; 2572 if (ext_wr_mode) 2573 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2574 if (ext_rd_mode) 2575 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2576 2577 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2578 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2579 t->dll_phy_ctrl = reg; 2580 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2581 } 2582 2583 /* Sampling point calculation. */ 2584 if ((tdvw_max % dqs_sampl_res) > 0) 2585 sampling_point = tdvw_max / dqs_sampl_res; 2586 else 2587 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2588 2589 if (sampling_point * dqs_sampl_res > tdvw_min) { 2590 dll_phy_dqs_timing = 2591 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2592 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2593 phony_dqs_timing = sampling_point / phony_dqs_mod; 2594 2595 if ((sampling_point % 2) > 0) { 2596 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2597 if ((tdvw_max % dqs_sampl_res) == 0) 2598 /* 2599 * Calculation for sampling point at the edge 2600 * of data and being odd number. 2601 */ 2602 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2603 / phony_dqs_mod - 1; 2604 2605 if (!cdns_ctrl->caps2.is_phy_type_dll) 2606 phony_dqs_timing--; 2607 2608 } else { 2609 phony_dqs_timing--; 2610 } 2611 rd_del_sel = phony_dqs_timing + 3; 2612 } else { 2613 dev_warn(cdns_ctrl->dev, 2614 "ERROR : cannot find valid sampling point\n"); 2615 } 2616 2617 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2618 if (cdns_ctrl->caps2.is_phy_type_dll) 2619 reg |= PHY_CTRL_SDR_DQS; 2620 t->phy_ctrl = reg; 2621 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2622 2623 if (cdns_ctrl->caps2.is_phy_type_dll) { 2624 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2625 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2626 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2627 dll_phy_dqs_timing); 2628 t->phy_dqs_timing = dll_phy_dqs_timing; 2629 2630 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2631 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2632 reg); 2633 t->phy_gate_lpbk_ctrl = reg; 2634 2635 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2636 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2637 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2638 } 2639 2640 return 0; 2641 } 2642 2643 static int cadence_nand_attach_chip(struct nand_chip *chip) 2644 { 2645 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2646 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2647 u32 ecc_size; 2648 struct mtd_info *mtd = nand_to_mtd(chip); 2649 int ret; 2650 2651 if (chip->options & NAND_BUSWIDTH_16) { 2652 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2653 if (ret) 2654 return ret; 2655 } 2656 2657 chip->bbt_options |= NAND_BBT_USE_FLASH; 2658 chip->bbt_options |= NAND_BBT_NO_OOB; 2659 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2660 2661 chip->options |= NAND_NO_SUBPAGE_WRITE; 2662 2663 cdns_chip->bbm_offs = chip->badblockpos; 2664 cdns_chip->bbm_offs &= ~0x01; 2665 /* this value should be even number */ 2666 cdns_chip->bbm_len = 2; 2667 2668 ret = nand_ecc_choose_conf(chip, 2669 &cdns_ctrl->ecc_caps, 2670 mtd->oobsize - cdns_chip->bbm_len); 2671 if (ret) { 2672 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2673 return ret; 2674 } 2675 2676 dev_dbg(cdns_ctrl->dev, 2677 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2678 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2679 2680 /* Error correction configuration. */ 2681 cdns_chip->sector_size = chip->ecc.size; 2682 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2683 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2684 2685 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2686 2687 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) 2688 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; 2689 2690 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2691 > mtd->oobsize) 2692 cdns_chip->avail_oob_size -= 4; 2693 2694 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2695 if (ret < 0) 2696 return -EINVAL; 2697 2698 cdns_chip->corr_str_idx = (u8)ret; 2699 2700 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2701 1000000, 2702 CTRL_STATUS_CTRL_BUSY, true)) 2703 return -ETIMEDOUT; 2704 2705 cadence_nand_set_ecc_strength(cdns_ctrl, 2706 cdns_chip->corr_str_idx); 2707 2708 cadence_nand_set_erase_detection(cdns_ctrl, true, 2709 chip->ecc.strength); 2710 2711 /* Override the default read operations. */ 2712 chip->ecc.read_page = cadence_nand_read_page; 2713 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2714 chip->ecc.write_page = cadence_nand_write_page; 2715 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2716 chip->ecc.read_oob = cadence_nand_read_oob; 2717 chip->ecc.write_oob = cadence_nand_write_oob; 2718 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2719 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2720 2721 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2722 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2723 2724 /* Is 32-bit DMA supported? */ 2725 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2726 if (ret) { 2727 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2728 return ret; 2729 } 2730 2731 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2732 2733 return 0; 2734 } 2735 2736 static const struct nand_controller_ops cadence_nand_controller_ops = { 2737 .attach_chip = cadence_nand_attach_chip, 2738 .exec_op = cadence_nand_exec_op, 2739 .setup_interface = cadence_nand_setup_interface, 2740 }; 2741 2742 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2743 struct device_node *np) 2744 { 2745 struct cdns_nand_chip *cdns_chip; 2746 struct mtd_info *mtd; 2747 struct nand_chip *chip; 2748 int nsels, ret, i; 2749 u32 cs; 2750 2751 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2752 if (nsels <= 0) { 2753 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2754 return -EINVAL; 2755 } 2756 2757 /* Allocate the nand chip structure. */ 2758 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2759 (nsels * sizeof(u8)), 2760 GFP_KERNEL); 2761 if (!cdns_chip) { 2762 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2763 return -ENOMEM; 2764 } 2765 2766 cdns_chip->nsels = nsels; 2767 2768 for (i = 0; i < nsels; i++) { 2769 /* Retrieve CS id. */ 2770 ret = of_property_read_u32_index(np, "reg", i, &cs); 2771 if (ret) { 2772 dev_err(cdns_ctrl->dev, 2773 "could not retrieve reg property: %d\n", 2774 ret); 2775 return ret; 2776 } 2777 2778 if (cs >= cdns_ctrl->caps2.max_banks) { 2779 dev_err(cdns_ctrl->dev, 2780 "invalid reg value: %u (max CS = %d)\n", 2781 cs, cdns_ctrl->caps2.max_banks); 2782 return -EINVAL; 2783 } 2784 2785 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2786 dev_err(cdns_ctrl->dev, 2787 "CS %d already assigned\n", cs); 2788 return -EINVAL; 2789 } 2790 2791 cdns_chip->cs[i] = cs; 2792 } 2793 2794 chip = &cdns_chip->chip; 2795 chip->controller = &cdns_ctrl->controller; 2796 nand_set_flash_node(chip, np); 2797 2798 mtd = nand_to_mtd(chip); 2799 mtd->dev.parent = cdns_ctrl->dev; 2800 2801 /* 2802 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2803 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2804 */ 2805 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2806 2807 ret = nand_scan(chip, cdns_chip->nsels); 2808 if (ret) { 2809 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2810 return ret; 2811 } 2812 2813 ret = mtd_device_register(mtd, NULL, 0); 2814 if (ret) { 2815 dev_err(cdns_ctrl->dev, 2816 "failed to register mtd device: %d\n", ret); 2817 nand_cleanup(chip); 2818 return ret; 2819 } 2820 2821 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2822 2823 return 0; 2824 } 2825 2826 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2827 { 2828 struct cdns_nand_chip *entry, *temp; 2829 struct nand_chip *chip; 2830 int ret; 2831 2832 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2833 chip = &entry->chip; 2834 ret = mtd_device_unregister(nand_to_mtd(chip)); 2835 WARN_ON(ret); 2836 nand_cleanup(chip); 2837 list_del(&entry->node); 2838 } 2839 } 2840 2841 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2842 { 2843 struct device_node *np = cdns_ctrl->dev->of_node; 2844 struct device_node *nand_np; 2845 int max_cs = cdns_ctrl->caps2.max_banks; 2846 int nchips, ret; 2847 2848 nchips = of_get_child_count(np); 2849 2850 if (nchips > max_cs) { 2851 dev_err(cdns_ctrl->dev, 2852 "too many NAND chips: %d (max = %d CS)\n", 2853 nchips, max_cs); 2854 return -EINVAL; 2855 } 2856 2857 for_each_child_of_node(np, nand_np) { 2858 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2859 if (ret) { 2860 of_node_put(nand_np); 2861 cadence_nand_chips_cleanup(cdns_ctrl); 2862 return ret; 2863 } 2864 } 2865 2866 return 0; 2867 } 2868 2869 static void 2870 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2871 { 2872 /* Disable interrupts. */ 2873 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2874 } 2875 2876 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2877 { 2878 dma_cap_mask_t mask; 2879 int ret; 2880 2881 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2882 sizeof(*cdns_ctrl->cdma_desc), 2883 &cdns_ctrl->dma_cdma_desc, 2884 GFP_KERNEL); 2885 if (!cdns_ctrl->dma_cdma_desc) 2886 return -ENOMEM; 2887 2888 cdns_ctrl->buf_size = SZ_16K; 2889 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2890 if (!cdns_ctrl->buf) { 2891 ret = -ENOMEM; 2892 goto free_buf_desc; 2893 } 2894 2895 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2896 IRQF_SHARED, "cadence-nand-controller", 2897 cdns_ctrl)) { 2898 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2899 ret = -ENODEV; 2900 goto free_buf; 2901 } 2902 2903 spin_lock_init(&cdns_ctrl->irq_lock); 2904 init_completion(&cdns_ctrl->complete); 2905 2906 ret = cadence_nand_hw_init(cdns_ctrl); 2907 if (ret) 2908 goto disable_irq; 2909 2910 dma_cap_zero(mask); 2911 dma_cap_set(DMA_MEMCPY, mask); 2912 2913 if (cdns_ctrl->caps1->has_dma) { 2914 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); 2915 if (!cdns_ctrl->dmac) { 2916 dev_err(cdns_ctrl->dev, 2917 "Unable to get a DMA channel\n"); 2918 ret = -EBUSY; 2919 goto disable_irq; 2920 } 2921 } 2922 2923 nand_controller_init(&cdns_ctrl->controller); 2924 INIT_LIST_HEAD(&cdns_ctrl->chips); 2925 2926 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2927 cdns_ctrl->curr_corr_str_idx = 0xFF; 2928 2929 ret = cadence_nand_chips_init(cdns_ctrl); 2930 if (ret) { 2931 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2932 ret); 2933 goto dma_release_chnl; 2934 } 2935 2936 kfree(cdns_ctrl->buf); 2937 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2938 if (!cdns_ctrl->buf) { 2939 ret = -ENOMEM; 2940 goto dma_release_chnl; 2941 } 2942 2943 return 0; 2944 2945 dma_release_chnl: 2946 if (cdns_ctrl->dmac) 2947 dma_release_channel(cdns_ctrl->dmac); 2948 2949 disable_irq: 2950 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2951 2952 free_buf: 2953 kfree(cdns_ctrl->buf); 2954 2955 free_buf_desc: 2956 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2957 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2958 2959 return ret; 2960 } 2961 2962 /* Driver exit point. */ 2963 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2964 { 2965 cadence_nand_chips_cleanup(cdns_ctrl); 2966 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2967 kfree(cdns_ctrl->buf); 2968 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2969 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2970 2971 if (cdns_ctrl->dmac) 2972 dma_release_channel(cdns_ctrl->dmac); 2973 } 2974 2975 struct cadence_nand_dt { 2976 struct cdns_nand_ctrl cdns_ctrl; 2977 struct clk *clk; 2978 }; 2979 2980 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2981 .if_skew = 0, 2982 .has_dma = 1, 2983 }; 2984 2985 static const struct of_device_id cadence_nand_dt_ids[] = { 2986 { 2987 .compatible = "cdns,hp-nfc", 2988 .data = &cadence_nand_default 2989 }, {} 2990 }; 2991 2992 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 2993 2994 static int cadence_nand_dt_probe(struct platform_device *ofdev) 2995 { 2996 struct resource *res; 2997 struct cadence_nand_dt *dt; 2998 struct cdns_nand_ctrl *cdns_ctrl; 2999 int ret; 3000 const struct cadence_nand_dt_devdata *devdata; 3001 u32 val; 3002 3003 devdata = device_get_match_data(&ofdev->dev); 3004 if (!devdata) { 3005 pr_err("Failed to find the right device id.\n"); 3006 return -ENOMEM; 3007 } 3008 3009 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 3010 if (!dt) 3011 return -ENOMEM; 3012 3013 cdns_ctrl = &dt->cdns_ctrl; 3014 cdns_ctrl->caps1 = devdata; 3015 3016 cdns_ctrl->dev = &ofdev->dev; 3017 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 3018 if (cdns_ctrl->irq < 0) 3019 return cdns_ctrl->irq; 3020 3021 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 3022 3023 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 3024 if (IS_ERR(cdns_ctrl->reg)) 3025 return PTR_ERR(cdns_ctrl->reg); 3026 3027 cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res); 3028 if (IS_ERR(cdns_ctrl->io.virt)) 3029 return PTR_ERR(cdns_ctrl->io.virt); 3030 cdns_ctrl->io.dma = res->start; 3031 3032 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 3033 if (IS_ERR(dt->clk)) 3034 return PTR_ERR(dt->clk); 3035 3036 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 3037 3038 ret = of_property_read_u32(ofdev->dev.of_node, 3039 "cdns,board-delay-ps", &val); 3040 if (ret) { 3041 val = 4830; 3042 dev_info(cdns_ctrl->dev, 3043 "missing cdns,board-delay-ps property, %d was set\n", 3044 val); 3045 } 3046 cdns_ctrl->board_delay = val; 3047 3048 ret = cadence_nand_init(cdns_ctrl); 3049 if (ret) 3050 return ret; 3051 3052 platform_set_drvdata(ofdev, dt); 3053 return 0; 3054 } 3055 3056 static void cadence_nand_dt_remove(struct platform_device *ofdev) 3057 { 3058 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3059 3060 cadence_nand_remove(&dt->cdns_ctrl); 3061 } 3062 3063 static struct platform_driver cadence_nand_dt_driver = { 3064 .probe = cadence_nand_dt_probe, 3065 .remove_new = cadence_nand_dt_remove, 3066 .driver = { 3067 .name = "cadence-nand-controller", 3068 .of_match_table = cadence_nand_dt_ids, 3069 }, 3070 }; 3071 3072 module_platform_driver(cadence_nand_dt_driver); 3073 3074 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3075 MODULE_LICENSE("GPL v2"); 3076 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3077 3078