xref: /linux/drivers/mtd/nand/raw/cadence-nand-controller.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cadence NAND flash controller driver
4  *
5  * Copyright (C) 2019 Cadence
6  *
7  * Author: Piotr Sroka <piotrs@cadence.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/iopoll.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/property.h>
22 #include <linux/slab.h>
23 
24 /*
25  * HPNFC can work in 3 modes:
26  * -  PIO - can work in master or slave DMA
27  * -  CDMA - needs Master DMA for accessing command descriptors.
28  * -  Generic mode - can use only slave DMA.
29  * CDMA and PIO modes can be used to execute only base commands.
30  * Generic mode can be used to execute any command
31  * on NAND flash memory. Driver uses CDMA mode for
32  * block erasing, page reading, page programing.
33  * Generic mode is used for executing rest of commands.
34  */
35 
36 #define MAX_ADDRESS_CYC		6
37 #define MAX_ERASE_ADDRESS_CYC	3
38 #define MAX_DATA_SIZE		0xFFFC
39 #define DMA_DATA_SIZE_ALIGN	8
40 
41 /* Register definition. */
42 /*
43  * Command register 0.
44  * Writing data to this register will initiate a new transaction
45  * of the NF controller.
46  */
47 #define CMD_REG0			0x0000
48 /* Command type field mask. */
49 #define		CMD_REG0_CT		GENMASK(31, 30)
50 /* Command type CDMA. */
51 #define		CMD_REG0_CT_CDMA	0uL
52 /* Command type generic. */
53 #define		CMD_REG0_CT_GEN		3uL
54 /* Command thread number field mask. */
55 #define		CMD_REG0_TN		GENMASK(27, 24)
56 
57 /* Command register 2. */
58 #define CMD_REG2			0x0008
59 /* Command register 3. */
60 #define CMD_REG3			0x000C
61 /* Pointer register to select which thread status will be selected. */
62 #define CMD_STATUS_PTR			0x0010
63 /* Command status register for selected thread. */
64 #define CMD_STATUS			0x0014
65 
66 /* Interrupt status register. */
67 #define INTR_STATUS			0x0110
68 #define		INTR_STATUS_SDMA_ERR	BIT(22)
69 #define		INTR_STATUS_SDMA_TRIGG	BIT(21)
70 #define		INTR_STATUS_UNSUPP_CMD	BIT(19)
71 #define		INTR_STATUS_DDMA_TERR	BIT(18)
72 #define		INTR_STATUS_CDMA_TERR	BIT(17)
73 #define		INTR_STATUS_CDMA_IDL	BIT(16)
74 
75 /* Interrupt enable register. */
76 #define INTR_ENABLE				0x0114
77 #define		INTR_ENABLE_INTR_EN		BIT(31)
78 #define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
79 #define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
80 #define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
81 #define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
82 #define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
83 #define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
84 
85 /* Controller internal state. */
86 #define CTRL_STATUS				0x0118
87 #define		CTRL_STATUS_INIT_COMP		BIT(9)
88 #define		CTRL_STATUS_CTRL_BUSY		BIT(8)
89 
90 /* Command Engine threads state. */
91 #define TRD_STATUS				0x0120
92 
93 /* Command Engine interrupt thread error status. */
94 #define TRD_ERR_INT_STATUS			0x0128
95 /* Command Engine interrupt thread error enable. */
96 #define TRD_ERR_INT_STATUS_EN			0x0130
97 /* Command Engine interrupt thread complete status. */
98 #define TRD_COMP_INT_STATUS			0x0138
99 
100 /*
101  * Transfer config 0 register.
102  * Configures data transfer parameters.
103  */
104 #define TRAN_CFG_0				0x0400
105 /* Offset value from the beginning of the page. */
106 #define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
107 /* Numbers of sectors to transfer within singlNF device's page. */
108 #define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
109 
110 /*
111  * Transfer config 1 register.
112  * Configures data transfer parameters.
113  */
114 #define TRAN_CFG_1				0x0404
115 /* Size of last data sector. */
116 #define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
117 /* Size of not-last data sector. */
118 #define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
119 
120 /* ECC engine configuration register 0. */
121 #define ECC_CONFIG_0				0x0428
122 /* Correction strength. */
123 #define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
124 /* Enable erased pages detection mechanism. */
125 #define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
126 /* Enable controller ECC check bits generation and correction. */
127 #define		ECC_CONFIG_0_ECC_EN		BIT(0)
128 
129 /* ECC engine configuration register 1. */
130 #define ECC_CONFIG_1				0x042C
131 
132 /* Multiplane settings register. */
133 #define MULTIPLANE_CFG				0x0434
134 /* Cache operation settings. */
135 #define CACHE_CFG				0x0438
136 
137 /* DMA settings register. */
138 #define DMA_SETINGS				0x043C
139 /* Enable SDMA error report on access unprepared slave DMA interface. */
140 #define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
141 
142 /* Transferred data block size for the slave DMA module. */
143 #define SDMA_SIZE				0x0440
144 
145 /* Thread number associated with transferred data block
146  * for the slave DMA module.
147  */
148 #define SDMA_TRD_NUM				0x0444
149 /* Thread number mask. */
150 #define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
151 
152 #define CONTROL_DATA_CTRL			0x0494
153 /* Thread number mask. */
154 #define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
155 
156 #define CTRL_VERSION				0x800
157 #define		CTRL_VERSION_REV		GENMASK(7, 0)
158 
159 /* Available hardware features of the controller. */
160 #define CTRL_FEATURES				0x804
161 /* Support for NV-DDR2/3 work mode. */
162 #define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
163 /* Support for NV-DDR work mode. */
164 #define		CTRL_FEATURES_NVDDR		BIT(27)
165 /* Support for asynchronous work mode. */
166 #define		CTRL_FEATURES_ASYNC		BIT(26)
167 /* Support for asynchronous work mode. */
168 #define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
169 /* Slave and Master DMA data width. */
170 #define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
171 /* Availability of Control Data feature.*/
172 #define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
173 
174 /* BCH Engine identification register 0 - correction strengths. */
175 #define BCH_CFG_0				0x838
176 #define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
177 #define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
178 #define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
179 #define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
180 
181 /* BCH Engine identification register 1 - correction strengths. */
182 #define BCH_CFG_1				0x83C
183 #define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
184 #define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
185 #define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
186 #define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
187 
188 /* BCH Engine identification register 2 - sector sizes. */
189 #define BCH_CFG_2				0x840
190 #define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
191 #define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
192 
193 /* BCH Engine identification register 3. */
194 #define BCH_CFG_3				0x844
195 #define		BCH_CFG_3_METADATA_SIZE		GENMASK(23, 16)
196 
197 /* Ready/Busy# line status. */
198 #define RBN_SETINGS				0x1004
199 
200 /* Common settings. */
201 #define COMMON_SET				0x1008
202 /* 16 bit device connected to the NAND Flash interface. */
203 #define		COMMON_SET_DEVICE_16BIT		BIT(8)
204 
205 /* Skip_bytes registers. */
206 #define SKIP_BYTES_CONF				0x100C
207 #define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
208 #define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
209 
210 #define SKIP_BYTES_OFFSET			0x1010
211 #define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
212 
213 /* Timings configuration. */
214 #define ASYNC_TOGGLE_TIMINGS			0x101c
215 #define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
216 #define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
217 #define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
218 #define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
219 
220 #define	TIMINGS0				0x1024
221 #define		TIMINGS0_TADL			GENMASK(31, 24)
222 #define		TIMINGS0_TCCS			GENMASK(23, 16)
223 #define		TIMINGS0_TWHR			GENMASK(15, 8)
224 #define		TIMINGS0_TRHW			GENMASK(7, 0)
225 
226 #define	TIMINGS1				0x1028
227 #define		TIMINGS1_TRHZ			GENMASK(31, 24)
228 #define		TIMINGS1_TWB			GENMASK(23, 16)
229 #define		TIMINGS1_TVDLY			GENMASK(7, 0)
230 
231 #define	TIMINGS2				0x102c
232 #define		TIMINGS2_TFEAT			GENMASK(25, 16)
233 #define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
234 #define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
235 
236 /* Configuration of the resynchronization of slave DLL of PHY. */
237 #define DLL_PHY_CTRL				0x1034
238 #define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
239 #define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
240 #define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
241 #define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
242 #define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
243 
244 /* Register controlling DQ related timing. */
245 #define PHY_DQ_TIMING				0x2000
246 /* Register controlling DSQ related timing.  */
247 #define PHY_DQS_TIMING				0x2004
248 #define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
249 #define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
250 #define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
251 
252 /* Register controlling the gate and loopback control related timing. */
253 #define PHY_GATE_LPBK_CTRL			0x2008
254 #define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
255 
256 /* Register holds the control for the master DLL logic. */
257 #define PHY_DLL_MASTER_CTRL			0x200C
258 #define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
259 
260 /* Register holds the control for the slave DLL logic. */
261 #define PHY_DLL_SLAVE_CTRL			0x2010
262 
263 /* This register handles the global control settings for the PHY. */
264 #define PHY_CTRL				0x2080
265 #define		PHY_CTRL_SDR_DQS		BIT(14)
266 #define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
267 
268 /*
269  * This register handles the global control settings
270  * for the termination selects for reads.
271  */
272 #define PHY_TSEL				0x2084
273 
274 /* Generic command layout. */
275 #define GCMD_LAY_CS			GENMASK_ULL(11, 8)
276 /*
277  * This bit informs the minicotroller if it has to wait for tWB
278  * after sending the last CMD/ADDR/DATA in the sequence.
279  */
280 #define GCMD_LAY_TWB			BIT_ULL(6)
281 /* Type of generic instruction. */
282 #define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
283 
284 /* Generic CMD sequence type. */
285 #define		GCMD_LAY_INSTR_CMD	0
286 /* Generic ADDR sequence type. */
287 #define		GCMD_LAY_INSTR_ADDR	1
288 /* Generic data transfer sequence type. */
289 #define		GCMD_LAY_INSTR_DATA	2
290 
291 /* Input part of generic command type of input is command. */
292 #define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
293 
294 /* Generic command address sequence - address fields. */
295 #define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
296 /* Generic command address sequence - address size. */
297 #define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
298 
299 /* Transfer direction field of generic command data sequence. */
300 #define GCMD_DIR			BIT_ULL(11)
301 /* Read transfer direction of generic command data sequence. */
302 #define		GCMD_DIR_READ		0
303 /* Write transfer direction of generic command data sequence. */
304 #define		GCMD_DIR_WRITE		1
305 
306 /* ECC enabled flag of generic command data sequence - ECC enabled. */
307 #define GCMD_ECC_EN			BIT_ULL(12)
308 /* Generic command data sequence - sector size. */
309 #define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
310 /* Generic command data sequence - sector count. */
311 #define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
312 /* Generic command data sequence - last sector size. */
313 #define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
314 
315 /* CDMA descriptor fields. */
316 /* Erase command type of CDMA descriptor. */
317 #define CDMA_CT_ERASE		0x1000
318 /* Program page command type of CDMA descriptor. */
319 #define CDMA_CT_WR		0x2100
320 /* Read page command type of CDMA descriptor. */
321 #define CDMA_CT_RD		0x2200
322 
323 /* Flash pointer memory shift. */
324 #define CDMA_CFPTR_MEM_SHIFT	24
325 /* Flash pointer memory mask. */
326 #define CDMA_CFPTR_MEM		GENMASK(26, 24)
327 
328 /*
329  * Command DMA descriptor flags. If set causes issue interrupt after
330  * the completion of descriptor processing.
331  */
332 #define CDMA_CF_INT		BIT(8)
333 /*
334  * Command DMA descriptor flags - the next descriptor
335  * address field is valid and descriptor processing should continue.
336  */
337 #define CDMA_CF_CONT		BIT(9)
338 /* DMA master flag of command DMA descriptor. */
339 #define CDMA_CF_DMA_MASTER	BIT(10)
340 
341 /* Operation complete status of command descriptor. */
342 #define CDMA_CS_COMP		BIT(15)
343 /* Operation complete status of command descriptor. */
344 /* Command descriptor status - operation fail. */
345 #define CDMA_CS_FAIL		BIT(14)
346 /* Command descriptor status - page erased. */
347 #define CDMA_CS_ERP		BIT(11)
348 /* Command descriptor status - timeout occurred. */
349 #define CDMA_CS_TOUT		BIT(10)
350 /*
351  * Maximum amount of correction applied to one ECC sector.
352  * It is part of command descriptor status.
353  */
354 #define CDMA_CS_MAXERR		GENMASK(9, 2)
355 /* Command descriptor status - uncorrectable ECC error. */
356 #define CDMA_CS_UNCE		BIT(1)
357 /* Command descriptor status - descriptor error. */
358 #define CDMA_CS_ERR		BIT(0)
359 
360 /* Status of operation - OK. */
361 #define STAT_OK			0
362 /* Status of operation - FAIL. */
363 #define STAT_FAIL		2
364 /* Status of operation - uncorrectable ECC error. */
365 #define STAT_ECC_UNCORR		3
366 /* Status of operation - page erased. */
367 #define STAT_ERASED		5
368 /* Status of operation - correctable ECC error. */
369 #define STAT_ECC_CORR		6
370 /* Status of operation - unsuspected state. */
371 #define STAT_UNKNOWN		7
372 /* Status of operation - operation is not completed yet. */
373 #define STAT_BUSY		0xFF
374 
375 #define BCH_MAX_NUM_CORR_CAPS		8
376 #define BCH_MAX_NUM_SECTOR_SIZES	2
377 
378 struct cadence_nand_timings {
379 	u32 async_toggle_timings;
380 	u32 timings0;
381 	u32 timings1;
382 	u32 timings2;
383 	u32 dll_phy_ctrl;
384 	u32 phy_ctrl;
385 	u32 phy_dqs_timing;
386 	u32 phy_gate_lpbk_ctrl;
387 };
388 
389 /* Command DMA descriptor. */
390 struct cadence_nand_cdma_desc {
391 	/* Next descriptor address. */
392 	u64 next_pointer;
393 
394 	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
395 	u32 flash_pointer;
396 	/*field appears in HPNFC version 13*/
397 	u16 bank;
398 	u16 rsvd0;
399 
400 	/* Operation the controller needs to perform. */
401 	u16 command_type;
402 	u16 rsvd1;
403 	/* Flags for operation of this command. */
404 	u16 command_flags;
405 	u16 rsvd2;
406 
407 	/* System/host memory address required for data DMA commands. */
408 	u64 memory_pointer;
409 
410 	/* Status of operation. */
411 	u32 status;
412 	u32 rsvd3;
413 
414 	/* Address pointer to sync buffer location. */
415 	u64 sync_flag_pointer;
416 
417 	/* Controls the buffer sync mechanism. */
418 	u32 sync_arguments;
419 	u32 rsvd4;
420 
421 	/* Control data pointer. */
422 	u64 ctrl_data_ptr;
423 };
424 
425 /* Interrupt status. */
426 struct cadence_nand_irq_status {
427 	/* Thread operation complete status. */
428 	u32 trd_status;
429 	/* Thread operation error. */
430 	u32 trd_error;
431 	/* Controller status. */
432 	u32 status;
433 };
434 
435 /* Cadence NAND flash controller capabilities get from driver data. */
436 struct cadence_nand_dt_devdata {
437 	/* Skew value of the output signals of the NAND Flash interface. */
438 	u32 if_skew;
439 	/* It informs if slave DMA interface is connected to DMA engine. */
440 	unsigned int has_dma:1;
441 };
442 
443 /* Cadence NAND flash controller capabilities read from registers. */
444 struct cdns_nand_caps {
445 	/* Maximum number of banks supported by hardware. */
446 	u8 max_banks;
447 	/* Slave and Master DMA data width in bytes (4 or 8). */
448 	u8 data_dma_width;
449 	/* Control Data feature supported. */
450 	bool data_control_supp;
451 	/* Is PHY type DLL. */
452 	bool is_phy_type_dll;
453 };
454 
455 struct cdns_nand_ctrl {
456 	struct device *dev;
457 	struct nand_controller controller;
458 	struct cadence_nand_cdma_desc *cdma_desc;
459 	/* IP capability. */
460 	const struct cadence_nand_dt_devdata *caps1;
461 	struct cdns_nand_caps caps2;
462 	u8 ctrl_rev;
463 	dma_addr_t dma_cdma_desc;
464 	u8 *buf;
465 	u32 buf_size;
466 	u8 curr_corr_str_idx;
467 
468 	/* Register interface. */
469 	void __iomem *reg;
470 
471 	struct {
472 		void __iomem *virt;
473 		dma_addr_t dma;
474 	} io;
475 
476 	int irq;
477 	/* Interrupts that have happened. */
478 	struct cadence_nand_irq_status irq_status;
479 	/* Interrupts we are waiting for. */
480 	struct cadence_nand_irq_status irq_mask;
481 	struct completion complete;
482 	/* Protect irq_mask and irq_status. */
483 	spinlock_t irq_lock;
484 
485 	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
486 	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
487 	struct nand_ecc_caps ecc_caps;
488 
489 	int curr_trans_type;
490 
491 	struct dma_chan *dmac;
492 
493 	u32 nf_clk_rate;
494 	/*
495 	 * Estimated Board delay. The value includes the total
496 	 * round trip delay for the signals and is used for deciding on values
497 	 * associated with data read capture.
498 	 */
499 	u32 board_delay;
500 
501 	struct nand_chip *selected_chip;
502 
503 	unsigned long assigned_cs;
504 	struct list_head chips;
505 	u8 bch_metadata_size;
506 };
507 
508 struct cdns_nand_chip {
509 	struct cadence_nand_timings timings;
510 	struct nand_chip chip;
511 	u8 nsels;
512 	struct list_head node;
513 
514 	/*
515 	 * part of oob area of NAND flash memory page.
516 	 * This part is available for user to read or write.
517 	 */
518 	u32 avail_oob_size;
519 
520 	/* Sector size. There are few sectors per mtd->writesize */
521 	u32 sector_size;
522 	u32 sector_count;
523 
524 	/* Offset of BBM. */
525 	u8 bbm_offs;
526 	/* Number of bytes reserved for BBM. */
527 	u8 bbm_len;
528 	/* ECC strength index. */
529 	u8 corr_str_idx;
530 
531 	u8 cs[] __counted_by(nsels);
532 };
533 
534 static inline struct
535 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
536 {
537 	return container_of(chip, struct cdns_nand_chip, chip);
538 }
539 
540 static inline struct
541 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
542 {
543 	return container_of(controller, struct cdns_nand_ctrl, controller);
544 }
545 
546 static bool
547 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
548 			u32 buf_len)
549 {
550 	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
551 
552 	return buf && virt_addr_valid(buf) &&
553 		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
554 		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
555 }
556 
557 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
558 				       u32 reg_offset, u32 timeout_us,
559 				       u32 mask, bool is_clear)
560 {
561 	u32 val;
562 	int ret;
563 
564 	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
565 					 val, !(val & mask) == is_clear,
566 					 10, timeout_us);
567 
568 	if (ret < 0) {
569 		dev_err(cdns_ctrl->dev,
570 			"Timeout while waiting for reg %x with mask %x is clear %d\n",
571 			reg_offset, mask, is_clear);
572 	}
573 
574 	return ret;
575 }
576 
577 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
578 				       bool enable)
579 {
580 	u32 reg;
581 
582 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
583 					1000000,
584 					CTRL_STATUS_CTRL_BUSY, true))
585 		return -ETIMEDOUT;
586 
587 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
588 
589 	if (enable)
590 		reg |= ECC_CONFIG_0_ECC_EN;
591 	else
592 		reg &= ~ECC_CONFIG_0_ECC_EN;
593 
594 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
595 
596 	return 0;
597 }
598 
599 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
600 					  u8 corr_str_idx)
601 {
602 	u32 reg;
603 
604 	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
605 		return;
606 
607 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
608 	reg &= ~ECC_CONFIG_0_CORR_STR;
609 	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
610 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
611 
612 	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
613 }
614 
615 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
616 					     u8 strength)
617 {
618 	int i, corr_str_idx = -1;
619 
620 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
621 		if (cdns_ctrl->ecc_strengths[i] == strength) {
622 			corr_str_idx = i;
623 			break;
624 		}
625 	}
626 
627 	return corr_str_idx;
628 }
629 
630 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
631 					    u16 marker_value)
632 {
633 	u32 reg;
634 
635 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
636 					1000000,
637 					CTRL_STATUS_CTRL_BUSY, true))
638 		return -ETIMEDOUT;
639 
640 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
641 	reg &= ~SKIP_BYTES_MARKER_VALUE;
642 	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
643 			  marker_value);
644 
645 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
646 
647 	return 0;
648 }
649 
650 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
651 					    u8 num_of_bytes,
652 					    u32 offset_value,
653 					    int enable)
654 {
655 	u32 reg, skip_bytes_offset;
656 
657 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
658 					1000000,
659 					CTRL_STATUS_CTRL_BUSY, true))
660 		return -ETIMEDOUT;
661 
662 	if (!enable) {
663 		num_of_bytes = 0;
664 		offset_value = 0;
665 	}
666 
667 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
668 	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
669 	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
670 			  num_of_bytes);
671 	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
672 				       offset_value);
673 
674 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
675 	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
676 
677 	return 0;
678 }
679 
680 /* Functions enables/disables hardware detection of erased data */
681 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
682 					     bool enable,
683 					     u8 bitflips_threshold)
684 {
685 	u32 reg;
686 
687 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
688 
689 	if (enable)
690 		reg |= ECC_CONFIG_0_ERASE_DET_EN;
691 	else
692 		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
693 
694 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
695 	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
696 }
697 
698 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
699 					   bool bit_bus16)
700 {
701 	u32 reg;
702 
703 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
704 					1000000,
705 					CTRL_STATUS_CTRL_BUSY, true))
706 		return -ETIMEDOUT;
707 
708 	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
709 
710 	if (!bit_bus16)
711 		reg &= ~COMMON_SET_DEVICE_16BIT;
712 	else
713 		reg |= COMMON_SET_DEVICE_16BIT;
714 	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
715 
716 	return 0;
717 }
718 
719 static void
720 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
721 			     struct cadence_nand_irq_status *irq_status)
722 {
723 	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
724 	writel_relaxed(irq_status->trd_status,
725 		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
726 	writel_relaxed(irq_status->trd_error,
727 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
728 }
729 
730 static void
731 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
732 			     struct cadence_nand_irq_status *irq_status)
733 {
734 	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
735 	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
736 					       + TRD_COMP_INT_STATUS);
737 	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
738 					      + TRD_ERR_INT_STATUS);
739 }
740 
741 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
742 			struct cadence_nand_irq_status *irq_status)
743 {
744 	cadence_nand_read_int_status(cdns_ctrl, irq_status);
745 
746 	return irq_status->status || irq_status->trd_status ||
747 		irq_status->trd_error;
748 }
749 
750 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
751 {
752 	unsigned long flags;
753 
754 	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
755 	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
756 	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
757 	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
758 }
759 
760 /*
761  * This is the interrupt service routine. It handles all interrupts
762  * sent to this device.
763  */
764 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
765 {
766 	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
767 	struct cadence_nand_irq_status irq_status;
768 	irqreturn_t result = IRQ_NONE;
769 
770 	spin_lock(&cdns_ctrl->irq_lock);
771 
772 	if (irq_detected(cdns_ctrl, &irq_status)) {
773 		/* Handle interrupt. */
774 		/* First acknowledge it. */
775 		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
776 		/* Status in the device context for someone to read. */
777 		cdns_ctrl->irq_status.status |= irq_status.status;
778 		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
779 		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
780 		/* Notify anyone who cares that it happened. */
781 		complete(&cdns_ctrl->complete);
782 		/* Tell the OS that we've handled this. */
783 		result = IRQ_HANDLED;
784 	}
785 	spin_unlock(&cdns_ctrl->irq_lock);
786 
787 	return result;
788 }
789 
790 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
791 				      struct cadence_nand_irq_status *irq_mask)
792 {
793 	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
794 		       cdns_ctrl->reg + INTR_ENABLE);
795 
796 	writel_relaxed(irq_mask->trd_error,
797 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
798 }
799 
800 static void
801 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
802 			  struct cadence_nand_irq_status *irq_mask,
803 			  struct cadence_nand_irq_status *irq_status)
804 {
805 	unsigned long timeout = msecs_to_jiffies(10000);
806 	unsigned long time_left;
807 
808 	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
809 						timeout);
810 
811 	*irq_status = cdns_ctrl->irq_status;
812 	if (time_left == 0) {
813 		/* Timeout error. */
814 		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
815 		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
816 			irq_status->status, irq_mask->status);
817 		dev_err(cdns_ctrl->dev,
818 			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
819 			irq_status->trd_status, irq_mask->trd_status);
820 		dev_err(cdns_ctrl->dev,
821 			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
822 			irq_status->trd_error, irq_mask->trd_error);
823 	}
824 }
825 
826 /* Execute generic command on NAND controller. */
827 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
828 					 u8 chip_nr,
829 					 u64 mini_ctrl_cmd)
830 {
831 	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
832 
833 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
834 	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
835 	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
836 
837 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
838 					1000000,
839 					CTRL_STATUS_CTRL_BUSY, true))
840 		return -ETIMEDOUT;
841 
842 	cadence_nand_reset_irq(cdns_ctrl);
843 
844 	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
845 	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
846 
847 	/* Select generic command. */
848 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
849 	/* Thread number. */
850 	reg |= FIELD_PREP(CMD_REG0_TN, 0);
851 
852 	/* Issue command. */
853 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
854 
855 	return 0;
856 }
857 
858 /* Wait for data on slave DMA interface. */
859 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
860 				     u8 *out_sdma_trd,
861 				     u32 *out_sdma_size)
862 {
863 	struct cadence_nand_irq_status irq_mask, irq_status;
864 
865 	irq_mask.trd_status = 0;
866 	irq_mask.trd_error = 0;
867 	irq_mask.status = INTR_STATUS_SDMA_TRIGG
868 		| INTR_STATUS_SDMA_ERR
869 		| INTR_STATUS_UNSUPP_CMD;
870 
871 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
872 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
873 	if (irq_status.status == 0) {
874 		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
875 		return -ETIMEDOUT;
876 	}
877 
878 	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
879 		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
880 		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
881 		*out_sdma_trd =
882 			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
883 	} else {
884 		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
885 			irq_status.status);
886 		return -EIO;
887 	}
888 
889 	return 0;
890 }
891 
892 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
893 {
894 	u32  reg;
895 
896 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
897 
898 	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
899 
900 	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
901 		cdns_ctrl->caps2.data_dma_width = 8;
902 	else
903 		cdns_ctrl->caps2.data_dma_width = 4;
904 
905 	if (reg & CTRL_FEATURES_CONTROL_DATA)
906 		cdns_ctrl->caps2.data_control_supp = true;
907 
908 	if (reg & (CTRL_FEATURES_NVDDR_2_3
909 		   | CTRL_FEATURES_NVDDR))
910 		cdns_ctrl->caps2.is_phy_type_dll = true;
911 }
912 
913 /* Prepare CDMA descriptor. */
914 static void
915 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
916 			       char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
917 				   dma_addr_t ctrl_data_ptr, u16 ctype)
918 {
919 	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
920 
921 	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
922 
923 	/* Set fields for one descriptor. */
924 	cdma_desc->flash_pointer = flash_ptr;
925 	if (cdns_ctrl->ctrl_rev >= 13)
926 		cdma_desc->bank = nf_mem;
927 	else
928 		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
929 
930 	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
931 	cdma_desc->command_flags  |= CDMA_CF_INT;
932 
933 	cdma_desc->memory_pointer = mem_ptr;
934 	cdma_desc->status = 0;
935 	cdma_desc->sync_flag_pointer = 0;
936 	cdma_desc->sync_arguments = 0;
937 
938 	cdma_desc->command_type = ctype;
939 	cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
940 }
941 
942 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
943 					u32 desc_status)
944 {
945 	if (desc_status & CDMA_CS_ERP)
946 		return STAT_ERASED;
947 
948 	if (desc_status & CDMA_CS_UNCE)
949 		return STAT_ECC_UNCORR;
950 
951 	if (desc_status & CDMA_CS_ERR) {
952 		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
953 		return STAT_FAIL;
954 	}
955 
956 	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
957 		return STAT_ECC_CORR;
958 
959 	return STAT_FAIL;
960 }
961 
962 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
963 {
964 	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
965 	u8 status = STAT_BUSY;
966 
967 	if (desc_ptr->status & CDMA_CS_FAIL) {
968 		status = cadence_nand_check_desc_error(cdns_ctrl,
969 						       desc_ptr->status);
970 		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
971 	} else if (desc_ptr->status & CDMA_CS_COMP) {
972 		/* Descriptor finished with no errors. */
973 		if (desc_ptr->command_flags & CDMA_CF_CONT) {
974 			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
975 			status = STAT_UNKNOWN;
976 		} else {
977 			/* Last descriptor.  */
978 			status = STAT_OK;
979 		}
980 	}
981 
982 	return status;
983 }
984 
985 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
986 				  u8 thread)
987 {
988 	u32 reg;
989 	int status;
990 
991 	/* Wait for thread ready. */
992 	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
993 					     1000000,
994 					     BIT(thread), true);
995 	if (status)
996 		return status;
997 
998 	cadence_nand_reset_irq(cdns_ctrl);
999 	reinit_completion(&cdns_ctrl->complete);
1000 
1001 	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1002 		       cdns_ctrl->reg + CMD_REG2);
1003 	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1004 
1005 	/* Select CDMA mode. */
1006 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1007 	/* Thread number. */
1008 	reg |= FIELD_PREP(CMD_REG0_TN, thread);
1009 	/* Issue command. */
1010 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1011 
1012 	return 0;
1013 }
1014 
1015 /* Send SDMA command and wait for finish. */
1016 static u32
1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1018 				u8 thread)
1019 {
1020 	struct cadence_nand_irq_status irq_mask, irq_status = {0};
1021 	int status;
1022 
1023 	irq_mask.trd_status = BIT(thread);
1024 	irq_mask.trd_error = BIT(thread);
1025 	irq_mask.status = INTR_STATUS_CDMA_TERR;
1026 
1027 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1028 
1029 	status = cadence_nand_cdma_send(cdns_ctrl, thread);
1030 	if (status)
1031 		return status;
1032 
1033 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1034 
1035 	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1036 	    irq_status.trd_error == 0) {
1037 		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1038 		return -ETIMEDOUT;
1039 	}
1040 	if (irq_status.status & irq_mask.status) {
1041 		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1042 		return -EIO;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * ECC size depends on configured ECC strength and on maximum supported
1050  * ECC step size.
1051  */
1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1053 {
1054 	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1055 
1056 	return ALIGN(nbytes, 2);
1057 }
1058 
1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1060 	static int \
1061 	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1062 						    int strength)\
1063 	{\
1064 		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1065 	}
1066 
1067 CADENCE_NAND_CALC_ECC_BYTES(256)
1068 CADENCE_NAND_CALC_ECC_BYTES(512)
1069 CADENCE_NAND_CALC_ECC_BYTES(1024)
1070 CADENCE_NAND_CALC_ECC_BYTES(2048)
1071 CADENCE_NAND_CALC_ECC_BYTES(4096)
1072 
1073 /* Function reads BCH capabilities. */
1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1075 {
1076 	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1077 	int max_step_size = 0, nstrengths, i;
1078 	u32 reg;
1079 
1080 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1081 	cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1082 	if (cdns_ctrl->bch_metadata_size < 4) {
1083 		dev_err(cdns_ctrl->dev,
1084 			"Driver needs at least 4 bytes of BCH meta data\n");
1085 		return -EIO;
1086 	}
1087 
1088 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1089 	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1090 	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1091 	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1092 	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1093 
1094 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1095 	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1096 	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1097 	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1098 	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1099 
1100 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1101 	cdns_ctrl->ecc_stepinfos[0].stepsize =
1102 		FIELD_GET(BCH_CFG_2_SECT_0, reg);
1103 
1104 	cdns_ctrl->ecc_stepinfos[1].stepsize =
1105 		FIELD_GET(BCH_CFG_2_SECT_1, reg);
1106 
1107 	nstrengths = 0;
1108 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1109 		if (cdns_ctrl->ecc_strengths[i] != 0)
1110 			nstrengths++;
1111 	}
1112 
1113 	ecc_caps->nstepinfos = 0;
1114 	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1115 		/* ECC strengths are common for all step infos. */
1116 		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1117 		cdns_ctrl->ecc_stepinfos[i].strengths =
1118 			cdns_ctrl->ecc_strengths;
1119 
1120 		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1121 			ecc_caps->nstepinfos++;
1122 
1123 		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1124 			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1125 	}
1126 	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1127 
1128 	switch (max_step_size) {
1129 	case 256:
1130 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1131 		break;
1132 	case 512:
1133 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1134 		break;
1135 	case 1024:
1136 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1137 		break;
1138 	case 2048:
1139 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1140 		break;
1141 	case 4096:
1142 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1143 		break;
1144 	default:
1145 		dev_err(cdns_ctrl->dev,
1146 			"Unsupported sector size(ecc step size) %d\n",
1147 			max_step_size);
1148 		return -EIO;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 /* Hardware initialization. */
1155 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1156 {
1157 	int status;
1158 	u32 reg;
1159 
1160 	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1161 					     1000000,
1162 					     CTRL_STATUS_INIT_COMP, false);
1163 	if (status)
1164 		return status;
1165 
1166 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1167 	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1168 
1169 	dev_info(cdns_ctrl->dev,
1170 		 "%s: cadence nand controller version reg %x\n",
1171 		 __func__, reg);
1172 
1173 	/* Disable cache and multiplane. */
1174 	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1175 	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1176 
1177 	/* Clear all interrupts. */
1178 	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1179 
1180 	cadence_nand_get_caps(cdns_ctrl);
1181 	if (cadence_nand_read_bch_caps(cdns_ctrl))
1182 		return -EIO;
1183 
1184 #ifndef CONFIG_64BIT
1185 	if (cdns_ctrl->caps2.data_dma_width == 8) {
1186 		dev_err(cdns_ctrl->dev,
1187 			"cannot access 64-bit dma on !64-bit architectures");
1188 		return -EIO;
1189 	}
1190 #endif
1191 
1192 	/*
1193 	 * Set IO width access to 8.
1194 	 * It is because during SW device discovering width access
1195 	 * is expected to be 8.
1196 	 */
1197 	status = cadence_nand_set_access_width16(cdns_ctrl, false);
1198 
1199 	return status;
1200 }
1201 
1202 #define TT_MAIN_OOB_AREAS	2
1203 #define TT_RAW_PAGE		3
1204 #define TT_BBM			4
1205 #define TT_MAIN_OOB_AREA_EXT	5
1206 
1207 /* Prepare size of data to transfer. */
1208 static void
1209 cadence_nand_prepare_data_size(struct nand_chip *chip,
1210 			       int transfer_type)
1211 {
1212 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1213 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1214 	struct mtd_info *mtd = nand_to_mtd(chip);
1215 	u32 sec_size = 0, offset = 0, sec_cnt = 1;
1216 	u32 last_sec_size = cdns_chip->sector_size;
1217 	u32 data_ctrl_size = 0;
1218 	u32 reg = 0;
1219 
1220 	if (cdns_ctrl->curr_trans_type == transfer_type)
1221 		return;
1222 
1223 	switch (transfer_type) {
1224 	case TT_MAIN_OOB_AREA_EXT:
1225 		sec_cnt = cdns_chip->sector_count;
1226 		sec_size = cdns_chip->sector_size;
1227 		data_ctrl_size = cdns_chip->avail_oob_size;
1228 		break;
1229 	case TT_MAIN_OOB_AREAS:
1230 		sec_cnt = cdns_chip->sector_count;
1231 		last_sec_size = cdns_chip->sector_size
1232 			+ cdns_chip->avail_oob_size;
1233 		sec_size = cdns_chip->sector_size;
1234 		break;
1235 	case TT_RAW_PAGE:
1236 		last_sec_size = mtd->writesize + mtd->oobsize;
1237 		break;
1238 	case TT_BBM:
1239 		offset = mtd->writesize + cdns_chip->bbm_offs;
1240 		last_sec_size = 8;
1241 		break;
1242 	}
1243 
1244 	reg = 0;
1245 	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1246 	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1247 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1248 
1249 	reg = 0;
1250 	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1251 	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1252 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1253 
1254 	if (cdns_ctrl->caps2.data_control_supp) {
1255 		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1256 		reg &= ~CONTROL_DATA_CTRL_SIZE;
1257 		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1258 		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1259 	}
1260 
1261 	cdns_ctrl->curr_trans_type = transfer_type;
1262 }
1263 
1264 static int
1265 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1266 			   int page, void *buf, void *ctrl_dat, u32 buf_size,
1267 			   u32 ctrl_dat_size, enum dma_data_direction dir,
1268 			   bool with_ecc)
1269 {
1270 	dma_addr_t dma_buf, dma_ctrl_dat = 0;
1271 	u8 thread_nr = chip_nr;
1272 	int status;
1273 	u16 ctype;
1274 
1275 	if (dir == DMA_FROM_DEVICE)
1276 		ctype = CDMA_CT_RD;
1277 	else
1278 		ctype = CDMA_CT_WR;
1279 
1280 	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1281 
1282 	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1283 	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1284 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1285 		return -EIO;
1286 	}
1287 
1288 	if (ctrl_dat && ctrl_dat_size) {
1289 		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1290 					      ctrl_dat_size, dir);
1291 		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1292 			dma_unmap_single(cdns_ctrl->dev, dma_buf,
1293 					 buf_size, dir);
1294 			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1295 			return -EIO;
1296 		}
1297 	}
1298 
1299 	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1300 				       dma_buf, dma_ctrl_dat, ctype);
1301 
1302 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1303 
1304 	dma_unmap_single(cdns_ctrl->dev, dma_buf,
1305 			 buf_size, dir);
1306 
1307 	if (ctrl_dat && ctrl_dat_size)
1308 		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1309 				 ctrl_dat_size, dir);
1310 	if (status)
1311 		return status;
1312 
1313 	return cadence_nand_cdma_finish(cdns_ctrl);
1314 }
1315 
1316 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1317 				     struct cadence_nand_timings *t)
1318 {
1319 	writel_relaxed(t->async_toggle_timings,
1320 		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1321 	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1322 	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1323 	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1324 
1325 	if (cdns_ctrl->caps2.is_phy_type_dll)
1326 		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1327 
1328 	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1329 
1330 	if (cdns_ctrl->caps2.is_phy_type_dll) {
1331 		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1332 		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1333 		writel_relaxed(t->phy_dqs_timing,
1334 			       cdns_ctrl->reg + PHY_DQS_TIMING);
1335 		writel_relaxed(t->phy_gate_lpbk_ctrl,
1336 			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1337 		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1338 			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1339 		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1340 	}
1341 }
1342 
1343 static int cadence_nand_select_target(struct nand_chip *chip)
1344 {
1345 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1346 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1347 
1348 	if (chip == cdns_ctrl->selected_chip)
1349 		return 0;
1350 
1351 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1352 					1000000,
1353 					CTRL_STATUS_CTRL_BUSY, true))
1354 		return -ETIMEDOUT;
1355 
1356 	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1357 
1358 	cadence_nand_set_ecc_strength(cdns_ctrl,
1359 				      cdns_chip->corr_str_idx);
1360 
1361 	cadence_nand_set_erase_detection(cdns_ctrl, true,
1362 					 chip->ecc.strength);
1363 
1364 	cdns_ctrl->curr_trans_type = -1;
1365 	cdns_ctrl->selected_chip = chip;
1366 
1367 	return 0;
1368 }
1369 
1370 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1371 {
1372 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1373 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1374 	int status;
1375 	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1376 
1377 	cadence_nand_cdma_desc_prepare(cdns_ctrl,
1378 				       cdns_chip->cs[chip->cur_cs],
1379 				       page, 0, 0,
1380 				       CDMA_CT_ERASE);
1381 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1382 	if (status) {
1383 		dev_err(cdns_ctrl->dev, "erase operation failed\n");
1384 		return -EIO;
1385 	}
1386 
1387 	status = cadence_nand_cdma_finish(cdns_ctrl);
1388 	if (status)
1389 		return status;
1390 
1391 	return 0;
1392 }
1393 
1394 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1395 {
1396 	int status;
1397 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1398 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1399 	struct mtd_info *mtd = nand_to_mtd(chip);
1400 
1401 	cadence_nand_prepare_data_size(chip, TT_BBM);
1402 
1403 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1404 
1405 	/*
1406 	 * Read only bad block marker from offset
1407 	 * defined by a memory manufacturer.
1408 	 */
1409 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1410 					    cdns_chip->cs[chip->cur_cs],
1411 					    page, cdns_ctrl->buf, NULL,
1412 					    mtd->oobsize,
1413 					    0, DMA_FROM_DEVICE, false);
1414 	if (status) {
1415 		dev_err(cdns_ctrl->dev, "read BBM failed\n");
1416 		return -EIO;
1417 	}
1418 
1419 	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1420 
1421 	return 0;
1422 }
1423 
1424 static int cadence_nand_write_page(struct nand_chip *chip,
1425 				   const u8 *buf, int oob_required,
1426 				   int page)
1427 {
1428 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1429 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1430 	struct mtd_info *mtd = nand_to_mtd(chip);
1431 	int status;
1432 	u16 marker_val = 0xFFFF;
1433 
1434 	status = cadence_nand_select_target(chip);
1435 	if (status)
1436 		return status;
1437 
1438 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1439 					 mtd->writesize
1440 					 + cdns_chip->bbm_offs,
1441 					 1);
1442 
1443 	if (oob_required) {
1444 		marker_val = *(u16 *)(chip->oob_poi
1445 				      + cdns_chip->bbm_offs);
1446 	} else {
1447 		/* Set oob data to 0xFF. */
1448 		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1449 		       cdns_chip->avail_oob_size);
1450 	}
1451 
1452 	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1453 
1454 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1455 
1456 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1457 	    cdns_ctrl->caps2.data_control_supp) {
1458 		u8 *oob;
1459 
1460 		if (oob_required)
1461 			oob = chip->oob_poi;
1462 		else
1463 			oob = cdns_ctrl->buf + mtd->writesize;
1464 
1465 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1466 						    cdns_chip->cs[chip->cur_cs],
1467 						    page, (void *)buf, oob,
1468 						    mtd->writesize,
1469 						    cdns_chip->avail_oob_size,
1470 						    DMA_TO_DEVICE, true);
1471 		if (status) {
1472 			dev_err(cdns_ctrl->dev, "write page failed\n");
1473 			return -EIO;
1474 		}
1475 
1476 		return 0;
1477 	}
1478 
1479 	if (oob_required) {
1480 		/* Transfer the data to the oob area. */
1481 		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1482 		       cdns_chip->avail_oob_size);
1483 	}
1484 
1485 	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1486 
1487 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1488 
1489 	return cadence_nand_cdma_transfer(cdns_ctrl,
1490 					  cdns_chip->cs[chip->cur_cs],
1491 					  page, cdns_ctrl->buf, NULL,
1492 					  mtd->writesize
1493 					  + cdns_chip->avail_oob_size,
1494 					  0, DMA_TO_DEVICE, true);
1495 }
1496 
1497 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1498 {
1499 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1500 	struct mtd_info *mtd = nand_to_mtd(chip);
1501 
1502 	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1503 
1504 	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1505 }
1506 
1507 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1508 				       const u8 *buf, int oob_required,
1509 				       int page)
1510 {
1511 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1512 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1513 	struct mtd_info *mtd = nand_to_mtd(chip);
1514 	int writesize = mtd->writesize;
1515 	int oobsize = mtd->oobsize;
1516 	int ecc_steps = chip->ecc.steps;
1517 	int ecc_size = chip->ecc.size;
1518 	int ecc_bytes = chip->ecc.bytes;
1519 	void *tmp_buf = cdns_ctrl->buf;
1520 	int oob_skip = cdns_chip->bbm_len;
1521 	size_t size = writesize + oobsize;
1522 	int i, pos, len;
1523 	int status = 0;
1524 
1525 	status = cadence_nand_select_target(chip);
1526 	if (status)
1527 		return status;
1528 
1529 	/*
1530 	 * Fill the buffer with 0xff first except the full page transfer.
1531 	 * This simplifies the logic.
1532 	 */
1533 	if (!buf || !oob_required)
1534 		memset(tmp_buf, 0xff, size);
1535 
1536 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1537 
1538 	/* Arrange the buffer for syndrome payload/ecc layout. */
1539 	if (buf) {
1540 		for (i = 0; i < ecc_steps; i++) {
1541 			pos = i * (ecc_size + ecc_bytes);
1542 			len = ecc_size;
1543 
1544 			if (pos >= writesize)
1545 				pos += oob_skip;
1546 			else if (pos + len > writesize)
1547 				len = writesize - pos;
1548 
1549 			memcpy(tmp_buf + pos, buf, len);
1550 			buf += len;
1551 			if (len < ecc_size) {
1552 				len = ecc_size - len;
1553 				memcpy(tmp_buf + writesize + oob_skip, buf,
1554 				       len);
1555 				buf += len;
1556 			}
1557 		}
1558 	}
1559 
1560 	if (oob_required) {
1561 		const u8 *oob = chip->oob_poi;
1562 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1563 			(cdns_chip->sector_size + chip->ecc.bytes)
1564 			+ cdns_chip->sector_size + oob_skip;
1565 
1566 		/* BBM at the beginning of the OOB area. */
1567 		memcpy(tmp_buf + writesize, oob, oob_skip);
1568 
1569 		/* OOB free. */
1570 		memcpy(tmp_buf + oob_data_offset, oob,
1571 		       cdns_chip->avail_oob_size);
1572 		oob += cdns_chip->avail_oob_size;
1573 
1574 		/* OOB ECC. */
1575 		for (i = 0; i < ecc_steps; i++) {
1576 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1577 			if (i == (ecc_steps - 1))
1578 				pos += cdns_chip->avail_oob_size;
1579 
1580 			len = ecc_bytes;
1581 
1582 			if (pos >= writesize)
1583 				pos += oob_skip;
1584 			else if (pos + len > writesize)
1585 				len = writesize - pos;
1586 
1587 			memcpy(tmp_buf + pos, oob, len);
1588 			oob += len;
1589 			if (len < ecc_bytes) {
1590 				len = ecc_bytes - len;
1591 				memcpy(tmp_buf + writesize + oob_skip, oob,
1592 				       len);
1593 				oob += len;
1594 			}
1595 		}
1596 	}
1597 
1598 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1599 
1600 	return cadence_nand_cdma_transfer(cdns_ctrl,
1601 					  cdns_chip->cs[chip->cur_cs],
1602 					  page, cdns_ctrl->buf, NULL,
1603 					  mtd->writesize +
1604 					  mtd->oobsize,
1605 					  0, DMA_TO_DEVICE, false);
1606 }
1607 
1608 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1609 				      int page)
1610 {
1611 	return cadence_nand_write_page_raw(chip, NULL, true, page);
1612 }
1613 
1614 static int cadence_nand_read_page(struct nand_chip *chip,
1615 				  u8 *buf, int oob_required, int page)
1616 {
1617 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1618 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1619 	struct mtd_info *mtd = nand_to_mtd(chip);
1620 	int status = 0;
1621 	int ecc_err_count = 0;
1622 
1623 	status = cadence_nand_select_target(chip);
1624 	if (status)
1625 		return status;
1626 
1627 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1628 					 mtd->writesize
1629 					 + cdns_chip->bbm_offs, 1);
1630 
1631 	/*
1632 	 * If data buffer can be accessed by DMA and data_control feature
1633 	 * is supported then transfer data and oob directly.
1634 	 */
1635 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1636 	    cdns_ctrl->caps2.data_control_supp) {
1637 		u8 *oob;
1638 
1639 		if (oob_required)
1640 			oob = chip->oob_poi;
1641 		else
1642 			oob = cdns_ctrl->buf + mtd->writesize;
1643 
1644 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1645 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1646 						    cdns_chip->cs[chip->cur_cs],
1647 						    page, buf, oob,
1648 						    mtd->writesize,
1649 						    cdns_chip->avail_oob_size,
1650 						    DMA_FROM_DEVICE, true);
1651 	/* Otherwise use bounce buffer. */
1652 	} else {
1653 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1654 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1655 						    cdns_chip->cs[chip->cur_cs],
1656 						    page, cdns_ctrl->buf,
1657 						    NULL, mtd->writesize
1658 						    + cdns_chip->avail_oob_size,
1659 						    0, DMA_FROM_DEVICE, true);
1660 
1661 		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1662 		if (oob_required)
1663 			memcpy(chip->oob_poi,
1664 			       cdns_ctrl->buf + mtd->writesize,
1665 			       mtd->oobsize);
1666 	}
1667 
1668 	switch (status) {
1669 	case STAT_ECC_UNCORR:
1670 		mtd->ecc_stats.failed++;
1671 		ecc_err_count++;
1672 		break;
1673 	case STAT_ECC_CORR:
1674 		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1675 					  cdns_ctrl->cdma_desc->status);
1676 		mtd->ecc_stats.corrected += ecc_err_count;
1677 		break;
1678 	case STAT_ERASED:
1679 	case STAT_OK:
1680 		break;
1681 	default:
1682 		dev_err(cdns_ctrl->dev, "read page failed\n");
1683 		return -EIO;
1684 	}
1685 
1686 	if (oob_required)
1687 		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1688 			return -EIO;
1689 
1690 	return ecc_err_count;
1691 }
1692 
1693 /* Reads OOB data from the device. */
1694 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1695 {
1696 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1697 
1698 	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1699 }
1700 
1701 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1702 				      u8 *buf, int oob_required, int page)
1703 {
1704 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1705 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1706 	struct mtd_info *mtd = nand_to_mtd(chip);
1707 	int oob_skip = cdns_chip->bbm_len;
1708 	int writesize = mtd->writesize;
1709 	int ecc_steps = chip->ecc.steps;
1710 	int ecc_size = chip->ecc.size;
1711 	int ecc_bytes = chip->ecc.bytes;
1712 	void *tmp_buf = cdns_ctrl->buf;
1713 	int i, pos, len;
1714 	int status = 0;
1715 
1716 	status = cadence_nand_select_target(chip);
1717 	if (status)
1718 		return status;
1719 
1720 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1721 
1722 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1723 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1724 					    cdns_chip->cs[chip->cur_cs],
1725 					    page, cdns_ctrl->buf, NULL,
1726 					    mtd->writesize
1727 					    + mtd->oobsize,
1728 					    0, DMA_FROM_DEVICE, false);
1729 
1730 	switch (status) {
1731 	case STAT_ERASED:
1732 	case STAT_OK:
1733 		break;
1734 	default:
1735 		dev_err(cdns_ctrl->dev, "read raw page failed\n");
1736 		return -EIO;
1737 	}
1738 
1739 	/* Arrange the buffer for syndrome payload/ecc layout. */
1740 	if (buf) {
1741 		for (i = 0; i < ecc_steps; i++) {
1742 			pos = i * (ecc_size + ecc_bytes);
1743 			len = ecc_size;
1744 
1745 			if (pos >= writesize)
1746 				pos += oob_skip;
1747 			else if (pos + len > writesize)
1748 				len = writesize - pos;
1749 
1750 			memcpy(buf, tmp_buf + pos, len);
1751 			buf += len;
1752 			if (len < ecc_size) {
1753 				len = ecc_size - len;
1754 				memcpy(buf, tmp_buf + writesize + oob_skip,
1755 				       len);
1756 				buf += len;
1757 			}
1758 		}
1759 	}
1760 
1761 	if (oob_required) {
1762 		u8 *oob = chip->oob_poi;
1763 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1764 			(cdns_chip->sector_size + chip->ecc.bytes)
1765 			+ cdns_chip->sector_size + oob_skip;
1766 
1767 		/* OOB free. */
1768 		memcpy(oob, tmp_buf + oob_data_offset,
1769 		       cdns_chip->avail_oob_size);
1770 
1771 		/* BBM at the beginning of the OOB area. */
1772 		memcpy(oob, tmp_buf + writesize, oob_skip);
1773 
1774 		oob += cdns_chip->avail_oob_size;
1775 
1776 		/* OOB ECC */
1777 		for (i = 0; i < ecc_steps; i++) {
1778 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1779 			len = ecc_bytes;
1780 
1781 			if (i == (ecc_steps - 1))
1782 				pos += cdns_chip->avail_oob_size;
1783 
1784 			if (pos >= writesize)
1785 				pos += oob_skip;
1786 			else if (pos + len > writesize)
1787 				len = writesize - pos;
1788 
1789 			memcpy(oob, tmp_buf + pos, len);
1790 			oob += len;
1791 			if (len < ecc_bytes) {
1792 				len = ecc_bytes - len;
1793 				memcpy(oob, tmp_buf + writesize + oob_skip,
1794 				       len);
1795 				oob += len;
1796 			}
1797 		}
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1804 				     int page)
1805 {
1806 	return cadence_nand_read_page_raw(chip, NULL, true, page);
1807 }
1808 
1809 static void cadence_nand_slave_dma_transfer_finished(void *data)
1810 {
1811 	struct completion *finished = data;
1812 
1813 	complete(finished);
1814 }
1815 
1816 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1817 					   void *buf,
1818 					   dma_addr_t dev_dma, size_t len,
1819 					   enum dma_data_direction dir)
1820 {
1821 	DECLARE_COMPLETION_ONSTACK(finished);
1822 	struct dma_chan *chan;
1823 	struct dma_device *dma_dev;
1824 	dma_addr_t src_dma, dst_dma, buf_dma;
1825 	struct dma_async_tx_descriptor *tx;
1826 	dma_cookie_t cookie;
1827 
1828 	chan = cdns_ctrl->dmac;
1829 	dma_dev = chan->device;
1830 
1831 	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1832 	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1833 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1834 		goto err;
1835 	}
1836 
1837 	if (dir == DMA_FROM_DEVICE) {
1838 		src_dma = cdns_ctrl->io.dma;
1839 		dst_dma = buf_dma;
1840 	} else {
1841 		src_dma = buf_dma;
1842 		dst_dma = cdns_ctrl->io.dma;
1843 	}
1844 
1845 	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1846 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1847 	if (!tx) {
1848 		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1849 		goto err_unmap;
1850 	}
1851 
1852 	tx->callback = cadence_nand_slave_dma_transfer_finished;
1853 	tx->callback_param = &finished;
1854 
1855 	cookie = dmaengine_submit(tx);
1856 	if (dma_submit_error(cookie)) {
1857 		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1858 		goto err_unmap;
1859 	}
1860 
1861 	dma_async_issue_pending(cdns_ctrl->dmac);
1862 	wait_for_completion(&finished);
1863 
1864 	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1865 
1866 	return 0;
1867 
1868 err_unmap:
1869 	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1870 
1871 err:
1872 	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1873 
1874 	return -EIO;
1875 }
1876 
1877 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1878 				 u8 *buf, int len)
1879 {
1880 	u8 thread_nr = 0;
1881 	u32 sdma_size;
1882 	int status;
1883 
1884 	/* Wait until slave DMA interface is ready to data transfer. */
1885 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1886 	if (status)
1887 		return status;
1888 
1889 	if (!cdns_ctrl->caps1->has_dma) {
1890 		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1891 
1892 		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1893 
1894 		/* read alingment data */
1895 		if (data_dma_width == 4)
1896 			ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1897 #ifdef CONFIG_64BIT
1898 		else
1899 			readsq(cdns_ctrl->io.virt, buf, len_in_words);
1900 #endif
1901 
1902 		if (sdma_size > len) {
1903 			int read_bytes = (data_dma_width == 4) ?
1904 				len_in_words << 2 : len_in_words << 3;
1905 
1906 			/* read rest data from slave DMA interface if any */
1907 			if (data_dma_width == 4)
1908 				ioread32_rep(cdns_ctrl->io.virt,
1909 					     cdns_ctrl->buf,
1910 					     sdma_size / 4 - len_in_words);
1911 #ifdef CONFIG_64BIT
1912 			else
1913 				readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1914 				       sdma_size / 8 - len_in_words);
1915 #endif
1916 
1917 			/* copy rest of data */
1918 			memcpy(buf + read_bytes, cdns_ctrl->buf,
1919 			       len - read_bytes);
1920 		}
1921 		return 0;
1922 	}
1923 
1924 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1925 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1926 							 cdns_ctrl->io.dma,
1927 							 len, DMA_FROM_DEVICE);
1928 		if (status == 0)
1929 			return 0;
1930 
1931 		dev_warn(cdns_ctrl->dev,
1932 			 "Slave DMA transfer failed. Try again using bounce buffer.");
1933 	}
1934 
1935 	/* If DMA transfer is not possible or failed then use bounce buffer. */
1936 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1937 						 cdns_ctrl->io.dma,
1938 						 sdma_size, DMA_FROM_DEVICE);
1939 
1940 	if (status) {
1941 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1942 		return status;
1943 	}
1944 
1945 	memcpy(buf, cdns_ctrl->buf, len);
1946 
1947 	return 0;
1948 }
1949 
1950 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1951 				  const u8 *buf, int len)
1952 {
1953 	u8 thread_nr = 0;
1954 	u32 sdma_size;
1955 	int status;
1956 
1957 	/* Wait until slave DMA interface is ready to data transfer. */
1958 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1959 	if (status)
1960 		return status;
1961 
1962 	if (!cdns_ctrl->caps1->has_dma) {
1963 		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1964 
1965 		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1966 
1967 		if (data_dma_width == 4)
1968 			iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1969 #ifdef CONFIG_64BIT
1970 		else
1971 			writesq(cdns_ctrl->io.virt, buf, len_in_words);
1972 #endif
1973 
1974 		if (sdma_size > len) {
1975 			int written_bytes = (data_dma_width == 4) ?
1976 				len_in_words << 2 : len_in_words << 3;
1977 
1978 			/* copy rest of data */
1979 			memcpy(cdns_ctrl->buf, buf + written_bytes,
1980 			       len - written_bytes);
1981 
1982 			/* write all expected by nand controller data */
1983 			if (data_dma_width == 4)
1984 				iowrite32_rep(cdns_ctrl->io.virt,
1985 					      cdns_ctrl->buf,
1986 					      sdma_size / 4 - len_in_words);
1987 #ifdef CONFIG_64BIT
1988 			else
1989 				writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1990 					sdma_size / 8 - len_in_words);
1991 #endif
1992 		}
1993 
1994 		return 0;
1995 	}
1996 
1997 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1998 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1999 							 cdns_ctrl->io.dma,
2000 							 len, DMA_TO_DEVICE);
2001 		if (status == 0)
2002 			return 0;
2003 
2004 		dev_warn(cdns_ctrl->dev,
2005 			 "Slave DMA transfer failed. Try again using bounce buffer.");
2006 	}
2007 
2008 	/* If DMA transfer is not possible or failed then use bounce buffer. */
2009 	memcpy(cdns_ctrl->buf, buf, len);
2010 
2011 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2012 						 cdns_ctrl->io.dma,
2013 						 sdma_size, DMA_TO_DEVICE);
2014 
2015 	if (status)
2016 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2017 
2018 	return status;
2019 }
2020 
2021 static int cadence_nand_force_byte_access(struct nand_chip *chip,
2022 					  bool force_8bit)
2023 {
2024 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2025 
2026 	/*
2027 	 * Callers of this function do not verify if the NAND is using a 16-bit
2028 	 * an 8-bit bus for normal operations, so we need to take care of that
2029 	 * here by leaving the configuration unchanged if the NAND does not have
2030 	 * the NAND_BUSWIDTH_16 flag set.
2031 	 */
2032 	if (!(chip->options & NAND_BUSWIDTH_16))
2033 		return 0;
2034 
2035 	return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2036 }
2037 
2038 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2039 				   const struct nand_subop *subop)
2040 {
2041 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2042 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2043 	const struct nand_op_instr *instr;
2044 	unsigned int op_id = 0;
2045 	u64 mini_ctrl_cmd = 0;
2046 	int ret;
2047 
2048 	instr = &subop->instrs[op_id];
2049 
2050 	if (instr->delay_ns > 0)
2051 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2052 
2053 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2054 				    GCMD_LAY_INSTR_CMD);
2055 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2056 				    instr->ctx.cmd.opcode);
2057 
2058 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2059 					    cdns_chip->cs[chip->cur_cs],
2060 					    mini_ctrl_cmd);
2061 	if (ret)
2062 		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2063 			instr->ctx.cmd.opcode);
2064 
2065 	return ret;
2066 }
2067 
2068 static int cadence_nand_cmd_address(struct nand_chip *chip,
2069 				    const struct nand_subop *subop)
2070 {
2071 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2072 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2073 	const struct nand_op_instr *instr;
2074 	unsigned int op_id = 0;
2075 	u64 mini_ctrl_cmd = 0;
2076 	unsigned int offset, naddrs;
2077 	u64 address = 0;
2078 	const u8 *addrs;
2079 	int ret;
2080 	int i;
2081 
2082 	instr = &subop->instrs[op_id];
2083 
2084 	if (instr->delay_ns > 0)
2085 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2086 
2087 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2088 				    GCMD_LAY_INSTR_ADDR);
2089 
2090 	offset = nand_subop_get_addr_start_off(subop, op_id);
2091 	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2092 	addrs = &instr->ctx.addr.addrs[offset];
2093 
2094 	for (i = 0; i < naddrs; i++)
2095 		address |= (u64)addrs[i] << (8 * i);
2096 
2097 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2098 				    address);
2099 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2100 				    naddrs - 1);
2101 
2102 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2103 					    cdns_chip->cs[chip->cur_cs],
2104 					    mini_ctrl_cmd);
2105 	if (ret)
2106 		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2107 
2108 	return ret;
2109 }
2110 
2111 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2112 				  const struct nand_subop *subop)
2113 {
2114 	unsigned int op_id;
2115 
2116 	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2117 		int i;
2118 		const struct nand_op_instr *instr = NULL;
2119 		unsigned int offset, naddrs;
2120 		const u8 *addrs;
2121 		u32 page = 0;
2122 
2123 		instr = &subop->instrs[1];
2124 		offset = nand_subop_get_addr_start_off(subop, 1);
2125 		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2126 		addrs = &instr->ctx.addr.addrs[offset];
2127 
2128 		for (i = 0; i < naddrs; i++)
2129 			page |= (u32)addrs[i] << (8 * i);
2130 
2131 		return cadence_nand_erase(chip, page);
2132 	}
2133 
2134 	/*
2135 	 * If it is not an erase operation then handle operation
2136 	 * by calling exec_op function.
2137 	 */
2138 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2139 		int ret;
2140 		const struct nand_operation nand_op = {
2141 			.cs = chip->cur_cs,
2142 			.instrs =  &subop->instrs[op_id],
2143 			.ninstrs = 1};
2144 		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2145 		if (ret)
2146 			return ret;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static int cadence_nand_cmd_data(struct nand_chip *chip,
2153 				 const struct nand_subop *subop)
2154 {
2155 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2156 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2157 	const struct nand_op_instr *instr;
2158 	unsigned int offset, op_id = 0;
2159 	u64 mini_ctrl_cmd = 0;
2160 	int len = 0;
2161 	int ret;
2162 
2163 	instr = &subop->instrs[op_id];
2164 
2165 	if (instr->delay_ns > 0)
2166 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2167 
2168 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2169 				    GCMD_LAY_INSTR_DATA);
2170 
2171 	if (instr->type == NAND_OP_DATA_OUT_INSTR)
2172 		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2173 					    GCMD_DIR_WRITE);
2174 
2175 	len = nand_subop_get_data_len(subop, op_id);
2176 	offset = nand_subop_get_data_start_off(subop, op_id);
2177 	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2178 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2179 	if (instr->ctx.data.force_8bit) {
2180 		ret = cadence_nand_force_byte_access(chip, true);
2181 		if (ret) {
2182 			dev_err(cdns_ctrl->dev,
2183 				"cannot change byte access generic data cmd failed\n");
2184 			return ret;
2185 		}
2186 	}
2187 
2188 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2189 					    cdns_chip->cs[chip->cur_cs],
2190 					    mini_ctrl_cmd);
2191 	if (ret) {
2192 		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2193 		return ret;
2194 	}
2195 
2196 	if (instr->type == NAND_OP_DATA_IN_INSTR) {
2197 		void *buf = instr->ctx.data.buf.in + offset;
2198 
2199 		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2200 	} else {
2201 		const void *buf = instr->ctx.data.buf.out + offset;
2202 
2203 		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2204 	}
2205 
2206 	if (ret) {
2207 		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2208 		return ret;
2209 	}
2210 
2211 	if (instr->ctx.data.force_8bit) {
2212 		ret = cadence_nand_force_byte_access(chip, false);
2213 		if (ret) {
2214 			dev_err(cdns_ctrl->dev,
2215 				"cannot change byte access generic data cmd failed\n");
2216 		}
2217 	}
2218 
2219 	return ret;
2220 }
2221 
2222 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2223 				    const struct nand_subop *subop)
2224 {
2225 	int status;
2226 	unsigned int op_id = 0;
2227 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2228 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2229 	const struct nand_op_instr *instr = &subop->instrs[op_id];
2230 	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2231 
2232 	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2233 					     timeout_us,
2234 					     BIT(cdns_chip->cs[chip->cur_cs]),
2235 					     false);
2236 	return status;
2237 }
2238 
2239 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2240 	NAND_OP_PARSER_PATTERN(
2241 		cadence_nand_cmd_erase,
2242 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2243 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2244 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2245 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2246 	NAND_OP_PARSER_PATTERN(
2247 		cadence_nand_cmd_opcode,
2248 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2249 	NAND_OP_PARSER_PATTERN(
2250 		cadence_nand_cmd_address,
2251 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2252 	NAND_OP_PARSER_PATTERN(
2253 		cadence_nand_cmd_data,
2254 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2255 	NAND_OP_PARSER_PATTERN(
2256 		cadence_nand_cmd_data,
2257 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2258 	NAND_OP_PARSER_PATTERN(
2259 		cadence_nand_cmd_waitrdy,
2260 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2261 	);
2262 
2263 static int cadence_nand_exec_op(struct nand_chip *chip,
2264 				const struct nand_operation *op,
2265 				bool check_only)
2266 {
2267 	if (!check_only) {
2268 		int status = cadence_nand_select_target(chip);
2269 
2270 		if (status)
2271 			return status;
2272 	}
2273 
2274 	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2275 				      check_only);
2276 }
2277 
2278 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2279 				       struct mtd_oob_region *oobregion)
2280 {
2281 	struct nand_chip *chip = mtd_to_nand(mtd);
2282 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2283 
2284 	if (section)
2285 		return -ERANGE;
2286 
2287 	oobregion->offset = cdns_chip->bbm_len;
2288 	oobregion->length = cdns_chip->avail_oob_size
2289 		- cdns_chip->bbm_len;
2290 
2291 	return 0;
2292 }
2293 
2294 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2295 				      struct mtd_oob_region *oobregion)
2296 {
2297 	struct nand_chip *chip = mtd_to_nand(mtd);
2298 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2299 
2300 	if (section)
2301 		return -ERANGE;
2302 
2303 	oobregion->offset = cdns_chip->avail_oob_size;
2304 	oobregion->length = chip->ecc.total;
2305 
2306 	return 0;
2307 }
2308 
2309 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2310 	.free = cadence_nand_ooblayout_free,
2311 	.ecc = cadence_nand_ooblayout_ecc,
2312 };
2313 
2314 static int calc_cycl(u32 timing, u32 clock)
2315 {
2316 	if (timing == 0 || clock == 0)
2317 		return 0;
2318 
2319 	if ((timing % clock) > 0)
2320 		return timing / clock;
2321 	else
2322 		return timing / clock - 1;
2323 }
2324 
2325 /* Calculate max data valid window. */
2326 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2327 				u32 board_delay_skew_min, u32 ext_mode)
2328 {
2329 	if (ext_mode == 0)
2330 		clk_period /= 2;
2331 
2332 	return (trp_cnt + 1) * clk_period + trhoh_min +
2333 		board_delay_skew_min;
2334 }
2335 
2336 /* Calculate data valid window. */
2337 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2338 			    u32 trea_max, u32 ext_mode)
2339 {
2340 	if (ext_mode == 0)
2341 		clk_period /= 2;
2342 
2343 	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2344 }
2345 
2346 static int
2347 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2348 			     const struct nand_interface_config *conf)
2349 {
2350 	const struct nand_sdr_timings *sdr;
2351 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2352 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2353 	struct cadence_nand_timings *t = &cdns_chip->timings;
2354 	u32 reg;
2355 	u32 board_delay = cdns_ctrl->board_delay;
2356 	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2357 					    cdns_ctrl->nf_clk_rate);
2358 	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2359 	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2360 	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2361 	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2362 	u32 if_skew = cdns_ctrl->caps1->if_skew;
2363 	u32 board_delay_skew_min = board_delay - if_skew;
2364 	u32 board_delay_skew_max = board_delay + if_skew;
2365 	u32 dqs_sampl_res, phony_dqs_mod;
2366 	u32 tdvw, tdvw_min, tdvw_max;
2367 	u32 ext_rd_mode, ext_wr_mode;
2368 	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2369 	u32 sampling_point;
2370 
2371 	sdr = nand_get_sdr_timings(conf);
2372 	if (IS_ERR(sdr))
2373 		return PTR_ERR(sdr);
2374 
2375 	memset(t, 0, sizeof(*t));
2376 	/* Sampling point calculation. */
2377 
2378 	if (cdns_ctrl->caps2.is_phy_type_dll)
2379 		phony_dqs_mod = 2;
2380 	else
2381 		phony_dqs_mod = 1;
2382 
2383 	dqs_sampl_res = clk_period / phony_dqs_mod;
2384 
2385 	tdvw_min = sdr->tREA_max + board_delay_skew_max;
2386 	/*
2387 	 * The idea of those calculation is to get the optimum value
2388 	 * for tRP and tRH timings. If it is NOT possible to sample data
2389 	 * with optimal tRP/tRH settings, the parameters will be extended.
2390 	 * If clk_period is 50ns (the lowest value) this condition is met
2391 	 * for SDR timing modes 1, 2, 3, 4 and 5.
2392 	 * If clk_period is 20ns the condition is met only for SDR timing
2393 	 * mode 5.
2394 	 */
2395 	if (sdr->tRC_min <= clk_period &&
2396 	    sdr->tRP_min <= (clk_period / 2) &&
2397 	    sdr->tREH_min <= (clk_period / 2)) {
2398 		/* Performance mode. */
2399 		ext_rd_mode = 0;
2400 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2401 				 sdr->tREA_max, ext_rd_mode);
2402 		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2403 					 board_delay_skew_min,
2404 					 ext_rd_mode);
2405 		/*
2406 		 * Check if data valid window and sampling point can be found
2407 		 * and is not on the edge (ie. we have hold margin).
2408 		 * If not extend the tRP timings.
2409 		 */
2410 		if (tdvw > 0) {
2411 			if (tdvw_max <= tdvw_min ||
2412 			    (tdvw_max % dqs_sampl_res) == 0) {
2413 				/*
2414 				 * No valid sampling point so the RE pulse need
2415 				 * to be widen widening by half clock cycle.
2416 				 */
2417 				ext_rd_mode = 1;
2418 			}
2419 		} else {
2420 			/*
2421 			 * There is no valid window
2422 			 * to be able to sample data the tRP need to be widen.
2423 			 * Very safe calculations are performed here.
2424 			 */
2425 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2426 				   + dqs_sampl_res) / clk_period;
2427 			ext_rd_mode = 1;
2428 		}
2429 
2430 	} else {
2431 		/* Extended read mode. */
2432 		u32 trh;
2433 
2434 		ext_rd_mode = 1;
2435 		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2436 		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2437 		if (sdr->tREH_min >= trh)
2438 			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2439 		else
2440 			trh_cnt = calc_cycl(trh, clk_period);
2441 
2442 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2443 				 sdr->tREA_max, ext_rd_mode);
2444 		/*
2445 		 * Check if data valid window and sampling point can be found
2446 		 * or if it is at the edge check if previous is valid
2447 		 * - if not extend the tRP timings.
2448 		 */
2449 		if (tdvw > 0) {
2450 			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2451 						 sdr->tRHOH_min,
2452 						 board_delay_skew_min,
2453 						 ext_rd_mode);
2454 
2455 			if ((((tdvw_max / dqs_sampl_res)
2456 			      * dqs_sampl_res) <= tdvw_min) ||
2457 			    (((tdvw_max % dqs_sampl_res) == 0) &&
2458 			     (((tdvw_max / dqs_sampl_res - 1)
2459 			       * dqs_sampl_res) <= tdvw_min))) {
2460 				/*
2461 				 * Data valid window width is lower than
2462 				 * sampling resolution and do not hit any
2463 				 * sampling point to be sure the sampling point
2464 				 * will be found the RE low pulse width will be
2465 				 *  extended by one clock cycle.
2466 				 */
2467 				trp_cnt = trp_cnt + 1;
2468 			}
2469 		} else {
2470 			/*
2471 			 * There is no valid window to be able to sample data.
2472 			 * The tRP need to be widen.
2473 			 * Very safe calculations are performed here.
2474 			 */
2475 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2476 				   + dqs_sampl_res) / clk_period;
2477 		}
2478 	}
2479 
2480 	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2481 				 sdr->tRHOH_min,
2482 				 board_delay_skew_min, ext_rd_mode);
2483 
2484 	if (sdr->tWC_min <= clk_period &&
2485 	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2486 	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2487 		ext_wr_mode = 0;
2488 	} else {
2489 		u32 twh;
2490 
2491 		ext_wr_mode = 1;
2492 		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2493 		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2494 			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2495 					    clk_period);
2496 
2497 		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2498 		if (sdr->tWH_min >= twh)
2499 			twh = sdr->tWH_min;
2500 
2501 		twh_cnt = calc_cycl(twh + if_skew, clk_period);
2502 	}
2503 
2504 	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2505 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2506 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2507 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2508 	t->async_toggle_timings = reg;
2509 	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2510 
2511 	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2512 	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2513 	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2514 	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2515 	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2516 
2517 	/*
2518 	 * If timing exceeds delay field in timing register
2519 	 * then use maximum value.
2520 	 */
2521 	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2522 		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2523 	else
2524 		reg |= TIMINGS0_TCCS;
2525 
2526 	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2527 	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2528 	t->timings0 = reg;
2529 	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2530 
2531 	/* The following is related to single signal so skew is not needed. */
2532 	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2533 	trhz_cnt = trhz_cnt + 1;
2534 	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2535 	/*
2536 	 * Because of the two stage syncflop the value must be increased by 3
2537 	 * first value is related with sync, second value is related
2538 	 * with output if delay.
2539 	 */
2540 	twb_cnt = twb_cnt + 3 + 5;
2541 	/*
2542 	 * The following is related to the we edge of the random data input
2543 	 * sequence so skew is not needed.
2544 	 */
2545 	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2546 	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2547 	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2548 	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2549 	t->timings1 = reg;
2550 	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2551 
2552 	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2553 	if (tfeat_cnt < twb_cnt)
2554 		tfeat_cnt = twb_cnt;
2555 
2556 	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2557 	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2558 
2559 	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2560 	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2561 	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2562 	t->timings2 = reg;
2563 	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2564 
2565 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2566 		reg = DLL_PHY_CTRL_DLL_RST_N;
2567 		if (ext_wr_mode)
2568 			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2569 		if (ext_rd_mode)
2570 			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2571 
2572 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2573 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2574 		t->dll_phy_ctrl = reg;
2575 		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2576 	}
2577 
2578 	/* Sampling point calculation. */
2579 	if ((tdvw_max % dqs_sampl_res) > 0)
2580 		sampling_point = tdvw_max / dqs_sampl_res;
2581 	else
2582 		sampling_point = (tdvw_max / dqs_sampl_res - 1);
2583 
2584 	if (sampling_point * dqs_sampl_res > tdvw_min) {
2585 		dll_phy_dqs_timing =
2586 			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2587 		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2588 		phony_dqs_timing = sampling_point / phony_dqs_mod;
2589 
2590 		if ((sampling_point % 2) > 0) {
2591 			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2592 			if ((tdvw_max % dqs_sampl_res) == 0)
2593 				/*
2594 				 * Calculation for sampling point at the edge
2595 				 * of data and being odd number.
2596 				 */
2597 				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2598 					/ phony_dqs_mod - 1;
2599 
2600 			if (!cdns_ctrl->caps2.is_phy_type_dll)
2601 				phony_dqs_timing--;
2602 
2603 		} else {
2604 			phony_dqs_timing--;
2605 		}
2606 		rd_del_sel = phony_dqs_timing + 3;
2607 	} else {
2608 		dev_warn(cdns_ctrl->dev,
2609 			 "ERROR : cannot find valid sampling point\n");
2610 	}
2611 
2612 	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2613 	if (cdns_ctrl->caps2.is_phy_type_dll)
2614 		reg  |= PHY_CTRL_SDR_DQS;
2615 	t->phy_ctrl = reg;
2616 	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2617 
2618 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2619 		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2620 		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2621 		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2622 			dll_phy_dqs_timing);
2623 		t->phy_dqs_timing = dll_phy_dqs_timing;
2624 
2625 		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2626 		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2627 			reg);
2628 		t->phy_gate_lpbk_ctrl = reg;
2629 
2630 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2631 			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2632 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 static int cadence_nand_attach_chip(struct nand_chip *chip)
2639 {
2640 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2641 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2642 	u32 ecc_size;
2643 	struct mtd_info *mtd = nand_to_mtd(chip);
2644 	int ret;
2645 
2646 	if (chip->options & NAND_BUSWIDTH_16) {
2647 		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2648 		if (ret)
2649 			return ret;
2650 	}
2651 
2652 	chip->bbt_options |= NAND_BBT_USE_FLASH;
2653 	chip->bbt_options |= NAND_BBT_NO_OOB;
2654 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2655 
2656 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2657 
2658 	cdns_chip->bbm_offs = chip->badblockpos;
2659 	cdns_chip->bbm_offs &= ~0x01;
2660 	/* this value should be even number */
2661 	cdns_chip->bbm_len = 2;
2662 
2663 	ret = nand_ecc_choose_conf(chip,
2664 				   &cdns_ctrl->ecc_caps,
2665 				   mtd->oobsize - cdns_chip->bbm_len);
2666 	if (ret) {
2667 		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2668 		return ret;
2669 	}
2670 
2671 	dev_dbg(cdns_ctrl->dev,
2672 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2673 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2674 
2675 	/* Error correction configuration. */
2676 	cdns_chip->sector_size = chip->ecc.size;
2677 	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2678 	ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2679 
2680 	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2681 
2682 	if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2683 		cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2684 
2685 	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2686 	    > mtd->oobsize)
2687 		cdns_chip->avail_oob_size -= 4;
2688 
2689 	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2690 	if (ret < 0)
2691 		return -EINVAL;
2692 
2693 	cdns_chip->corr_str_idx = (u8)ret;
2694 
2695 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2696 					1000000,
2697 					CTRL_STATUS_CTRL_BUSY, true))
2698 		return -ETIMEDOUT;
2699 
2700 	cadence_nand_set_ecc_strength(cdns_ctrl,
2701 				      cdns_chip->corr_str_idx);
2702 
2703 	cadence_nand_set_erase_detection(cdns_ctrl, true,
2704 					 chip->ecc.strength);
2705 
2706 	/* Override the default read operations. */
2707 	chip->ecc.read_page = cadence_nand_read_page;
2708 	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2709 	chip->ecc.write_page = cadence_nand_write_page;
2710 	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2711 	chip->ecc.read_oob = cadence_nand_read_oob;
2712 	chip->ecc.write_oob = cadence_nand_write_oob;
2713 	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2714 	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2715 
2716 	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2717 		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2718 
2719 	/* Is 32-bit DMA supported? */
2720 	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2721 	if (ret) {
2722 		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2723 		return ret;
2724 	}
2725 
2726 	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2727 
2728 	return 0;
2729 }
2730 
2731 static const struct nand_controller_ops cadence_nand_controller_ops = {
2732 	.attach_chip = cadence_nand_attach_chip,
2733 	.exec_op = cadence_nand_exec_op,
2734 	.setup_interface = cadence_nand_setup_interface,
2735 };
2736 
2737 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2738 				  struct device_node *np)
2739 {
2740 	struct cdns_nand_chip *cdns_chip;
2741 	struct mtd_info *mtd;
2742 	struct nand_chip *chip;
2743 	int nsels, ret, i;
2744 	u32 cs;
2745 
2746 	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2747 	if (nsels <= 0) {
2748 		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2749 		return -EINVAL;
2750 	}
2751 
2752 	/* Allocate the nand chip structure. */
2753 	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2754 				 (nsels * sizeof(u8)),
2755 				 GFP_KERNEL);
2756 	if (!cdns_chip) {
2757 		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2758 		return -ENOMEM;
2759 	}
2760 
2761 	cdns_chip->nsels = nsels;
2762 
2763 	for (i = 0; i < nsels; i++) {
2764 		/* Retrieve CS id. */
2765 		ret = of_property_read_u32_index(np, "reg", i, &cs);
2766 		if (ret) {
2767 			dev_err(cdns_ctrl->dev,
2768 				"could not retrieve reg property: %d\n",
2769 				ret);
2770 			return ret;
2771 		}
2772 
2773 		if (cs >= cdns_ctrl->caps2.max_banks) {
2774 			dev_err(cdns_ctrl->dev,
2775 				"invalid reg value: %u (max CS = %d)\n",
2776 				cs, cdns_ctrl->caps2.max_banks);
2777 			return -EINVAL;
2778 		}
2779 
2780 		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2781 			dev_err(cdns_ctrl->dev,
2782 				"CS %d already assigned\n", cs);
2783 			return -EINVAL;
2784 		}
2785 
2786 		cdns_chip->cs[i] = cs;
2787 	}
2788 
2789 	chip = &cdns_chip->chip;
2790 	chip->controller = &cdns_ctrl->controller;
2791 	nand_set_flash_node(chip, np);
2792 
2793 	mtd = nand_to_mtd(chip);
2794 	mtd->dev.parent = cdns_ctrl->dev;
2795 
2796 	/*
2797 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2798 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2799 	 */
2800 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2801 
2802 	ret = nand_scan(chip, cdns_chip->nsels);
2803 	if (ret) {
2804 		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2805 		return ret;
2806 	}
2807 
2808 	ret = mtd_device_register(mtd, NULL, 0);
2809 	if (ret) {
2810 		dev_err(cdns_ctrl->dev,
2811 			"failed to register mtd device: %d\n", ret);
2812 		nand_cleanup(chip);
2813 		return ret;
2814 	}
2815 
2816 	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2817 
2818 	return 0;
2819 }
2820 
2821 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2822 {
2823 	struct cdns_nand_chip *entry, *temp;
2824 	struct nand_chip *chip;
2825 	int ret;
2826 
2827 	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2828 		chip = &entry->chip;
2829 		ret = mtd_device_unregister(nand_to_mtd(chip));
2830 		WARN_ON(ret);
2831 		nand_cleanup(chip);
2832 		list_del(&entry->node);
2833 	}
2834 }
2835 
2836 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2837 {
2838 	struct device_node *np = cdns_ctrl->dev->of_node;
2839 	int max_cs = cdns_ctrl->caps2.max_banks;
2840 	int nchips, ret;
2841 
2842 	nchips = of_get_child_count(np);
2843 
2844 	if (nchips > max_cs) {
2845 		dev_err(cdns_ctrl->dev,
2846 			"too many NAND chips: %d (max = %d CS)\n",
2847 			nchips, max_cs);
2848 		return -EINVAL;
2849 	}
2850 
2851 	for_each_child_of_node_scoped(np, nand_np) {
2852 		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2853 		if (ret) {
2854 			cadence_nand_chips_cleanup(cdns_ctrl);
2855 			return ret;
2856 		}
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 static void
2863 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2864 {
2865 	/* Disable interrupts. */
2866 	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2867 }
2868 
2869 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2870 {
2871 	dma_cap_mask_t mask;
2872 	int ret;
2873 
2874 	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2875 						  sizeof(*cdns_ctrl->cdma_desc),
2876 						  &cdns_ctrl->dma_cdma_desc,
2877 						  GFP_KERNEL);
2878 	if (!cdns_ctrl->dma_cdma_desc)
2879 		return -ENOMEM;
2880 
2881 	cdns_ctrl->buf_size = SZ_16K;
2882 	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2883 	if (!cdns_ctrl->buf) {
2884 		ret = -ENOMEM;
2885 		goto free_buf_desc;
2886 	}
2887 
2888 	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2889 			     IRQF_SHARED, "cadence-nand-controller",
2890 			     cdns_ctrl)) {
2891 		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2892 		ret = -ENODEV;
2893 		goto free_buf;
2894 	}
2895 
2896 	spin_lock_init(&cdns_ctrl->irq_lock);
2897 	init_completion(&cdns_ctrl->complete);
2898 
2899 	ret = cadence_nand_hw_init(cdns_ctrl);
2900 	if (ret)
2901 		goto disable_irq;
2902 
2903 	dma_cap_zero(mask);
2904 	dma_cap_set(DMA_MEMCPY, mask);
2905 
2906 	if (cdns_ctrl->caps1->has_dma) {
2907 		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2908 		if (!cdns_ctrl->dmac) {
2909 			dev_err(cdns_ctrl->dev,
2910 				"Unable to get a DMA channel\n");
2911 			ret = -EBUSY;
2912 			goto disable_irq;
2913 		}
2914 	}
2915 
2916 	nand_controller_init(&cdns_ctrl->controller);
2917 	INIT_LIST_HEAD(&cdns_ctrl->chips);
2918 
2919 	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2920 	cdns_ctrl->curr_corr_str_idx = 0xFF;
2921 
2922 	ret = cadence_nand_chips_init(cdns_ctrl);
2923 	if (ret) {
2924 		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2925 			ret);
2926 		goto dma_release_chnl;
2927 	}
2928 
2929 	kfree(cdns_ctrl->buf);
2930 	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2931 	if (!cdns_ctrl->buf) {
2932 		ret = -ENOMEM;
2933 		goto dma_release_chnl;
2934 	}
2935 
2936 	return 0;
2937 
2938 dma_release_chnl:
2939 	if (cdns_ctrl->dmac)
2940 		dma_release_channel(cdns_ctrl->dmac);
2941 
2942 disable_irq:
2943 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2944 
2945 free_buf:
2946 	kfree(cdns_ctrl->buf);
2947 
2948 free_buf_desc:
2949 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2950 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2951 
2952 	return ret;
2953 }
2954 
2955 /* Driver exit point. */
2956 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2957 {
2958 	cadence_nand_chips_cleanup(cdns_ctrl);
2959 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2960 	kfree(cdns_ctrl->buf);
2961 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2962 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2963 
2964 	if (cdns_ctrl->dmac)
2965 		dma_release_channel(cdns_ctrl->dmac);
2966 }
2967 
2968 struct cadence_nand_dt {
2969 	struct cdns_nand_ctrl cdns_ctrl;
2970 	struct clk *clk;
2971 };
2972 
2973 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2974 	.if_skew = 0,
2975 	.has_dma = 1,
2976 };
2977 
2978 static const struct of_device_id cadence_nand_dt_ids[] = {
2979 	{
2980 		.compatible = "cdns,hp-nfc",
2981 		.data = &cadence_nand_default
2982 	}, {}
2983 };
2984 
2985 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2986 
2987 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2988 {
2989 	struct resource *res;
2990 	struct cadence_nand_dt *dt;
2991 	struct cdns_nand_ctrl *cdns_ctrl;
2992 	int ret;
2993 	const struct cadence_nand_dt_devdata *devdata;
2994 	u32 val;
2995 
2996 	devdata = device_get_match_data(&ofdev->dev);
2997 	if (!devdata) {
2998 		pr_err("Failed to find the right device id.\n");
2999 		return -ENOMEM;
3000 	}
3001 
3002 	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3003 	if (!dt)
3004 		return -ENOMEM;
3005 
3006 	cdns_ctrl = &dt->cdns_ctrl;
3007 	cdns_ctrl->caps1 = devdata;
3008 
3009 	cdns_ctrl->dev = &ofdev->dev;
3010 	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3011 	if (cdns_ctrl->irq < 0)
3012 		return cdns_ctrl->irq;
3013 
3014 	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3015 
3016 	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3017 	if (IS_ERR(cdns_ctrl->reg))
3018 		return PTR_ERR(cdns_ctrl->reg);
3019 
3020 	cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3021 	if (IS_ERR(cdns_ctrl->io.virt))
3022 		return PTR_ERR(cdns_ctrl->io.virt);
3023 	cdns_ctrl->io.dma = res->start;
3024 
3025 	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3026 	if (IS_ERR(dt->clk))
3027 		return PTR_ERR(dt->clk);
3028 
3029 	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3030 
3031 	ret = of_property_read_u32(ofdev->dev.of_node,
3032 				   "cdns,board-delay-ps", &val);
3033 	if (ret) {
3034 		val = 4830;
3035 		dev_info(cdns_ctrl->dev,
3036 			 "missing cdns,board-delay-ps property, %d was set\n",
3037 			 val);
3038 	}
3039 	cdns_ctrl->board_delay = val;
3040 
3041 	ret = cadence_nand_init(cdns_ctrl);
3042 	if (ret)
3043 		return ret;
3044 
3045 	platform_set_drvdata(ofdev, dt);
3046 	return 0;
3047 }
3048 
3049 static void cadence_nand_dt_remove(struct platform_device *ofdev)
3050 {
3051 	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3052 
3053 	cadence_nand_remove(&dt->cdns_ctrl);
3054 }
3055 
3056 static struct platform_driver cadence_nand_dt_driver = {
3057 	.probe		= cadence_nand_dt_probe,
3058 	.remove_new	= cadence_nand_dt_remove,
3059 	.driver		= {
3060 		.name	= "cadence-nand-controller",
3061 		.of_match_table = cadence_nand_dt_ids,
3062 	},
3063 };
3064 
3065 module_platform_driver(cadence_nand_dt_driver);
3066 
3067 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3068 MODULE_LICENSE("GPL v2");
3069 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3070 
3071