xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32 
33 #include "brcmnand.h"
34 
35 /*
36  * This flag controls if WP stays on between erase/write commands to mitigate
37  * flash corruption due to power glitches. Values:
38  * 0: NAND_WP is not used or not available
39  * 1: NAND_WP is set by default, cleared for erase/write operations
40  * 2: NAND_WP is always cleared
41  */
42 static int wp_on = 1;
43 module_param(wp_on, int, 0444);
44 
45 /***********************************************************************
46  * Definitions
47  ***********************************************************************/
48 
49 #define DRV_NAME			"brcmnand"
50 
51 #define CMD_NULL			0x00
52 #define CMD_PAGE_READ			0x01
53 #define CMD_SPARE_AREA_READ		0x02
54 #define CMD_STATUS_READ			0x03
55 #define CMD_PROGRAM_PAGE		0x04
56 #define CMD_PROGRAM_SPARE_AREA		0x05
57 #define CMD_COPY_BACK			0x06
58 #define CMD_DEVICE_ID_READ		0x07
59 #define CMD_BLOCK_ERASE			0x08
60 #define CMD_FLASH_RESET			0x09
61 #define CMD_BLOCKS_LOCK			0x0a
62 #define CMD_BLOCKS_LOCK_DOWN		0x0b
63 #define CMD_BLOCKS_UNLOCK		0x0c
64 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65 #define CMD_PARAMETER_READ		0x0e
66 #define CMD_PARAMETER_CHANGE_COL	0x0f
67 #define CMD_LOW_LEVEL_OP		0x10
68 
69 struct brcm_nand_dma_desc {
70 	u32 next_desc;
71 	u32 next_desc_ext;
72 	u32 cmd_irq;
73 	u32 dram_addr;
74 	u32 dram_addr_ext;
75 	u32 tfr_len;
76 	u32 total_len;
77 	u32 flash_addr;
78 	u32 flash_addr_ext;
79 	u32 cs;
80 	u32 pad2[5];
81 	u32 status_valid;
82 } __packed;
83 
84 /* Bitfields for brcm_nand_dma_desc::status_valid */
85 #define FLASH_DMA_ECC_ERROR	(1 << 8)
86 #define FLASH_DMA_CORR_ERROR	(1 << 9)
87 
88 /* Bitfields for DMA_MODE */
89 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
90 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
91 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
92 						FLASH_DMA_MODE_MODE)
93 
94 /* 512B flash cache in the NAND controller HW */
95 #define FC_SHIFT		9U
96 #define FC_BYTES		512U
97 #define FC_WORDS		(FC_BYTES >> 2)
98 
99 #define BRCMNAND_MIN_PAGESIZE	512
100 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
101 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
102 
103 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
104 #define NAND_POLL_STATUS_TIMEOUT_MS	100
105 
106 #define EDU_CMD_WRITE          0x00
107 #define EDU_CMD_READ           0x01
108 #define EDU_STATUS_ACTIVE      BIT(0)
109 #define EDU_ERR_STATUS_ERRACK  BIT(0)
110 #define EDU_DONE_MASK		GENMASK(1, 0)
111 
112 #define EDU_CONFIG_MODE_NAND   BIT(0)
113 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
116 #else
117 #define EDU_CONFIG_SWAP_CFG     0
118 #endif
119 
120 /* edu registers */
121 enum edu_reg {
122 	EDU_CONFIG = 0,
123 	EDU_DRAM_ADDR,
124 	EDU_EXT_ADDR,
125 	EDU_LENGTH,
126 	EDU_CMD,
127 	EDU_STOP,
128 	EDU_STATUS,
129 	EDU_DONE,
130 	EDU_ERR_STATUS,
131 };
132 
133 static const u16  edu_regs[] = {
134 	[EDU_CONFIG] = 0x00,
135 	[EDU_DRAM_ADDR] = 0x04,
136 	[EDU_EXT_ADDR] = 0x08,
137 	[EDU_LENGTH] = 0x0c,
138 	[EDU_CMD] = 0x10,
139 	[EDU_STOP] = 0x14,
140 	[EDU_STATUS] = 0x18,
141 	[EDU_DONE] = 0x1c,
142 	[EDU_ERR_STATUS] = 0x20,
143 };
144 
145 /* flash_dma registers */
146 enum flash_dma_reg {
147 	FLASH_DMA_REVISION = 0,
148 	FLASH_DMA_FIRST_DESC,
149 	FLASH_DMA_FIRST_DESC_EXT,
150 	FLASH_DMA_CTRL,
151 	FLASH_DMA_MODE,
152 	FLASH_DMA_STATUS,
153 	FLASH_DMA_INTERRUPT_DESC,
154 	FLASH_DMA_INTERRUPT_DESC_EXT,
155 	FLASH_DMA_ERROR_STATUS,
156 	FLASH_DMA_CURRENT_DESC,
157 	FLASH_DMA_CURRENT_DESC_EXT,
158 };
159 
160 /* flash_dma registers v0*/
161 static const u16 flash_dma_regs_v0[] = {
162 	[FLASH_DMA_REVISION]		= 0x00,
163 	[FLASH_DMA_FIRST_DESC]		= 0x04,
164 	[FLASH_DMA_CTRL]		= 0x08,
165 	[FLASH_DMA_MODE]		= 0x0c,
166 	[FLASH_DMA_STATUS]		= 0x10,
167 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
168 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
169 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
170 };
171 
172 /* flash_dma registers v1*/
173 static const u16 flash_dma_regs_v1[] = {
174 	[FLASH_DMA_REVISION]		= 0x00,
175 	[FLASH_DMA_FIRST_DESC]		= 0x04,
176 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
177 	[FLASH_DMA_CTRL]		= 0x0c,
178 	[FLASH_DMA_MODE]		= 0x10,
179 	[FLASH_DMA_STATUS]		= 0x14,
180 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
181 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
182 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
183 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
184 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
185 };
186 
187 /* flash_dma registers v4 */
188 static const u16 flash_dma_regs_v4[] = {
189 	[FLASH_DMA_REVISION]		= 0x00,
190 	[FLASH_DMA_FIRST_DESC]		= 0x08,
191 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
192 	[FLASH_DMA_CTRL]		= 0x10,
193 	[FLASH_DMA_MODE]		= 0x14,
194 	[FLASH_DMA_STATUS]		= 0x18,
195 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
196 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
197 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
198 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
199 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
200 };
201 
202 /* Controller feature flags */
203 enum {
204 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
205 	BRCMNAND_HAS_PREFETCH			= BIT(1),
206 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
207 	BRCMNAND_HAS_WP				= BIT(3),
208 };
209 
210 struct brcmnand_host;
211 
212 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213 
214 struct brcmnand_controller {
215 	struct device		*dev;
216 	struct nand_controller	controller;
217 	void __iomem		*nand_base;
218 	void __iomem		*nand_fc; /* flash cache */
219 	void __iomem		*flash_dma_base;
220 	int			irq;
221 	unsigned int		dma_irq;
222 	int			nand_version;
223 
224 	/* Some SoCs provide custom interrupt status register(s) */
225 	struct brcmnand_soc	*soc;
226 
227 	/* Some SoCs have a gateable clock for the controller */
228 	struct clk		*clk;
229 
230 	int			cmd_pending;
231 	bool			dma_pending;
232 	bool                    edu_pending;
233 	struct completion	done;
234 	struct completion	dma_done;
235 	struct completion       edu_done;
236 
237 	/* List of NAND hosts (one for each chip-select) */
238 	struct list_head host_list;
239 
240 	/* EDU info, per-transaction */
241 	const u16               *edu_offsets;
242 	void __iomem            *edu_base;
243 	int			edu_irq;
244 	int                     edu_count;
245 	u64                     edu_dram_addr;
246 	u32                     edu_ext_addr;
247 	u32                     edu_cmd;
248 	u32                     edu_config;
249 	int			sas; /* spare area size, per flash cache */
250 	int			sector_size_1k;
251 	u8			*oob;
252 
253 	/* flash_dma reg */
254 	const u16		*flash_dma_offsets;
255 	struct brcm_nand_dma_desc *dma_desc;
256 	dma_addr_t		dma_pa;
257 
258 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259 			 u8 *oob, u32 len, u8 dma_cmd);
260 
261 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
262 	u8			flash_cache[FC_BYTES];
263 
264 	/* Controller revision details */
265 	const u16		*reg_offsets;
266 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
267 	const u8		*cs_offsets; /* within each chip-select */
268 	const u8		*cs0_offsets; /* within CS0, if different */
269 	unsigned int		max_block_size;
270 	const unsigned int	*block_sizes;
271 	unsigned int		max_page_size;
272 	const unsigned int	*page_sizes;
273 	unsigned int		page_size_shift;
274 	unsigned int		max_oob;
275 	u32			ecc_level_shift;
276 	u32			features;
277 
278 	/* for low-power standby/resume only */
279 	u32			nand_cs_nand_select;
280 	u32			nand_cs_nand_xor;
281 	u32			corr_stat_threshold;
282 	u32			flash_dma_mode;
283 	u32                     flash_edu_mode;
284 	bool			pio_poll_mode;
285 };
286 
287 struct brcmnand_cfg {
288 	u64			device_size;
289 	unsigned int		block_size;
290 	unsigned int		page_size;
291 	unsigned int		spare_area_size;
292 	unsigned int		device_width;
293 	unsigned int		col_adr_bytes;
294 	unsigned int		blk_adr_bytes;
295 	unsigned int		ful_adr_bytes;
296 	unsigned int		sector_size_1k;
297 	unsigned int		ecc_level;
298 	/* use for low-power standby/resume only */
299 	u32			acc_control;
300 	u32			config;
301 	u32			config_ext;
302 	u32			timing_1;
303 	u32			timing_2;
304 };
305 
306 struct brcmnand_host {
307 	struct list_head	node;
308 
309 	struct nand_chip	chip;
310 	struct platform_device	*pdev;
311 	int			cs;
312 
313 	unsigned int		last_cmd;
314 	unsigned int		last_byte;
315 	u64			last_addr;
316 	struct brcmnand_cfg	hwcfg;
317 	struct brcmnand_controller *ctrl;
318 };
319 
320 enum brcmnand_reg {
321 	BRCMNAND_CMD_START = 0,
322 	BRCMNAND_CMD_EXT_ADDRESS,
323 	BRCMNAND_CMD_ADDRESS,
324 	BRCMNAND_INTFC_STATUS,
325 	BRCMNAND_CS_SELECT,
326 	BRCMNAND_CS_XOR,
327 	BRCMNAND_LL_OP,
328 	BRCMNAND_CS0_BASE,
329 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
330 	BRCMNAND_CORR_THRESHOLD,
331 	BRCMNAND_CORR_THRESHOLD_EXT,
332 	BRCMNAND_UNCORR_COUNT,
333 	BRCMNAND_CORR_COUNT,
334 	BRCMNAND_CORR_EXT_ADDR,
335 	BRCMNAND_CORR_ADDR,
336 	BRCMNAND_UNCORR_EXT_ADDR,
337 	BRCMNAND_UNCORR_ADDR,
338 	BRCMNAND_SEMAPHORE,
339 	BRCMNAND_ID,
340 	BRCMNAND_ID_EXT,
341 	BRCMNAND_LL_RDATA,
342 	BRCMNAND_OOB_READ_BASE,
343 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
344 	BRCMNAND_OOB_WRITE_BASE,
345 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
346 	BRCMNAND_FC_BASE,
347 };
348 
349 /* BRCMNAND v2.1-v2.2 */
350 static const u16 brcmnand_regs_v21[] = {
351 	[BRCMNAND_CMD_START]		=  0x04,
352 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
353 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
354 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
355 	[BRCMNAND_CS_SELECT]		=  0x14,
356 	[BRCMNAND_CS_XOR]		=  0x18,
357 	[BRCMNAND_LL_OP]		=     0,
358 	[BRCMNAND_CS0_BASE]		=  0x40,
359 	[BRCMNAND_CS1_BASE]		=     0,
360 	[BRCMNAND_CORR_THRESHOLD]	=     0,
361 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
362 	[BRCMNAND_UNCORR_COUNT]		=     0,
363 	[BRCMNAND_CORR_COUNT]		=     0,
364 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
365 	[BRCMNAND_CORR_ADDR]		=  0x64,
366 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
367 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
368 	[BRCMNAND_SEMAPHORE]		=  0x50,
369 	[BRCMNAND_ID]			=  0x54,
370 	[BRCMNAND_ID_EXT]		=     0,
371 	[BRCMNAND_LL_RDATA]		=     0,
372 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
373 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
374 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
375 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
376 	[BRCMNAND_FC_BASE]		= 0x200,
377 };
378 
379 /* BRCMNAND v3.3-v4.0 */
380 static const u16 brcmnand_regs_v33[] = {
381 	[BRCMNAND_CMD_START]		=  0x04,
382 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
383 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
384 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
385 	[BRCMNAND_CS_SELECT]		=  0x14,
386 	[BRCMNAND_CS_XOR]		=  0x18,
387 	[BRCMNAND_LL_OP]		= 0x178,
388 	[BRCMNAND_CS0_BASE]		=  0x40,
389 	[BRCMNAND_CS1_BASE]		=  0xd0,
390 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
391 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
392 	[BRCMNAND_UNCORR_COUNT]		=     0,
393 	[BRCMNAND_CORR_COUNT]		=     0,
394 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
395 	[BRCMNAND_CORR_ADDR]		=  0x74,
396 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
397 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
398 	[BRCMNAND_SEMAPHORE]		=  0x58,
399 	[BRCMNAND_ID]			=  0x60,
400 	[BRCMNAND_ID_EXT]		=  0x64,
401 	[BRCMNAND_LL_RDATA]		= 0x17c,
402 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
403 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
404 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
405 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
406 	[BRCMNAND_FC_BASE]		= 0x200,
407 };
408 
409 /* BRCMNAND v5.0 */
410 static const u16 brcmnand_regs_v50[] = {
411 	[BRCMNAND_CMD_START]		=  0x04,
412 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
413 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
414 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
415 	[BRCMNAND_CS_SELECT]		=  0x14,
416 	[BRCMNAND_CS_XOR]		=  0x18,
417 	[BRCMNAND_LL_OP]		= 0x178,
418 	[BRCMNAND_CS0_BASE]		=  0x40,
419 	[BRCMNAND_CS1_BASE]		=  0xd0,
420 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
421 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
422 	[BRCMNAND_UNCORR_COUNT]		=     0,
423 	[BRCMNAND_CORR_COUNT]		=     0,
424 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
425 	[BRCMNAND_CORR_ADDR]		=  0x74,
426 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
427 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
428 	[BRCMNAND_SEMAPHORE]		=  0x58,
429 	[BRCMNAND_ID]			=  0x60,
430 	[BRCMNAND_ID_EXT]		=  0x64,
431 	[BRCMNAND_LL_RDATA]		= 0x17c,
432 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
433 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
434 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
435 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
436 	[BRCMNAND_FC_BASE]		= 0x200,
437 };
438 
439 /* BRCMNAND v6.0 - v7.1 */
440 static const u16 brcmnand_regs_v60[] = {
441 	[BRCMNAND_CMD_START]		=  0x04,
442 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
443 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
444 	[BRCMNAND_INTFC_STATUS]		=  0x14,
445 	[BRCMNAND_CS_SELECT]		=  0x18,
446 	[BRCMNAND_CS_XOR]		=  0x1c,
447 	[BRCMNAND_LL_OP]		=  0x20,
448 	[BRCMNAND_CS0_BASE]		=  0x50,
449 	[BRCMNAND_CS1_BASE]		=     0,
450 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
451 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
452 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
453 	[BRCMNAND_CORR_COUNT]		= 0x100,
454 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
455 	[BRCMNAND_CORR_ADDR]		= 0x110,
456 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
457 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
458 	[BRCMNAND_SEMAPHORE]		= 0x150,
459 	[BRCMNAND_ID]			= 0x194,
460 	[BRCMNAND_ID_EXT]		= 0x198,
461 	[BRCMNAND_LL_RDATA]		= 0x19c,
462 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
463 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
464 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
465 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
466 	[BRCMNAND_FC_BASE]		= 0x400,
467 };
468 
469 /* BRCMNAND v7.1 */
470 static const u16 brcmnand_regs_v71[] = {
471 	[BRCMNAND_CMD_START]		=  0x04,
472 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
473 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
474 	[BRCMNAND_INTFC_STATUS]		=  0x14,
475 	[BRCMNAND_CS_SELECT]		=  0x18,
476 	[BRCMNAND_CS_XOR]		=  0x1c,
477 	[BRCMNAND_LL_OP]		=  0x20,
478 	[BRCMNAND_CS0_BASE]		=  0x50,
479 	[BRCMNAND_CS1_BASE]		=     0,
480 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
481 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
482 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
483 	[BRCMNAND_CORR_COUNT]		= 0x100,
484 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
485 	[BRCMNAND_CORR_ADDR]		= 0x110,
486 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
487 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
488 	[BRCMNAND_SEMAPHORE]		= 0x150,
489 	[BRCMNAND_ID]			= 0x194,
490 	[BRCMNAND_ID_EXT]		= 0x198,
491 	[BRCMNAND_LL_RDATA]		= 0x19c,
492 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
493 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
494 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
495 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
496 	[BRCMNAND_FC_BASE]		= 0x400,
497 };
498 
499 /* BRCMNAND v7.2 */
500 static const u16 brcmnand_regs_v72[] = {
501 	[BRCMNAND_CMD_START]		=  0x04,
502 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
503 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
504 	[BRCMNAND_INTFC_STATUS]		=  0x14,
505 	[BRCMNAND_CS_SELECT]		=  0x18,
506 	[BRCMNAND_CS_XOR]		=  0x1c,
507 	[BRCMNAND_LL_OP]		=  0x20,
508 	[BRCMNAND_CS0_BASE]		=  0x50,
509 	[BRCMNAND_CS1_BASE]		=     0,
510 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
511 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
512 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
513 	[BRCMNAND_CORR_COUNT]		= 0x100,
514 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
515 	[BRCMNAND_CORR_ADDR]		= 0x110,
516 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
517 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
518 	[BRCMNAND_SEMAPHORE]		= 0x150,
519 	[BRCMNAND_ID]			= 0x194,
520 	[BRCMNAND_ID_EXT]		= 0x198,
521 	[BRCMNAND_LL_RDATA]		= 0x19c,
522 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
523 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
524 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
525 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
526 	[BRCMNAND_FC_BASE]		= 0x600,
527 };
528 
529 enum brcmnand_cs_reg {
530 	BRCMNAND_CS_CFG_EXT = 0,
531 	BRCMNAND_CS_CFG,
532 	BRCMNAND_CS_ACC_CONTROL,
533 	BRCMNAND_CS_TIMING1,
534 	BRCMNAND_CS_TIMING2,
535 };
536 
537 /* Per chip-select offsets for v7.1 */
538 static const u8 brcmnand_cs_offsets_v71[] = {
539 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
540 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
541 	[BRCMNAND_CS_CFG]		= 0x08,
542 	[BRCMNAND_CS_TIMING1]		= 0x0c,
543 	[BRCMNAND_CS_TIMING2]		= 0x10,
544 };
545 
546 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
547 static const u8 brcmnand_cs_offsets[] = {
548 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
549 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
550 	[BRCMNAND_CS_CFG]		= 0x04,
551 	[BRCMNAND_CS_TIMING1]		= 0x08,
552 	[BRCMNAND_CS_TIMING2]		= 0x0c,
553 };
554 
555 /* Per chip-select offset for <= v5.0 on CS0 only */
556 static const u8 brcmnand_cs_offsets_cs0[] = {
557 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
558 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
559 	[BRCMNAND_CS_CFG]		= 0x08,
560 	[BRCMNAND_CS_TIMING1]		= 0x10,
561 	[BRCMNAND_CS_TIMING2]		= 0x14,
562 };
563 
564 /*
565  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
566  * one config register, but once the bitfields overflowed, newer controllers
567  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
568  */
569 enum {
570 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
571 	CFG_COL_ADR_BYTES_SHIFT		= 12,
572 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
573 	CFG_BUS_WIDTH_SHIFT		= 23,
574 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
575 	CFG_DEVICE_SIZE_SHIFT		= 24,
576 
577 	/* Only for v2.1 */
578 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
579 
580 	/* Only for pre-v7.1 (with no CFG_EXT register) */
581 	CFG_PAGE_SIZE_SHIFT		= 20,
582 	CFG_BLK_SIZE_SHIFT		= 28,
583 
584 	/* Only for v7.1+ (with CFG_EXT register) */
585 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
586 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
587 };
588 
589 /* BRCMNAND_INTFC_STATUS */
590 enum {
591 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
592 
593 	INTFC_ERASED			= BIT(27),
594 	INTFC_OOB_VALID			= BIT(28),
595 	INTFC_CACHE_VALID		= BIT(29),
596 	INTFC_FLASH_READY		= BIT(30),
597 	INTFC_CTLR_READY		= BIT(31),
598 };
599 
600 /***********************************************************************
601  * NAND ACC CONTROL bitfield
602  *
603  * Some bits have remained constant throughout hardware revision, while
604  * others have shifted around.
605  ***********************************************************************/
606 
607 /* Constant for all versions (where supported) */
608 enum {
609 	/* See BRCMNAND_HAS_CACHE_MODE */
610 	ACC_CONTROL_CACHE_MODE				= BIT(22),
611 
612 	/* See BRCMNAND_HAS_PREFETCH */
613 	ACC_CONTROL_PREFETCH				= BIT(23),
614 
615 	ACC_CONTROL_PAGE_HIT				= BIT(24),
616 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
617 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
618 	ACC_CONTROL_RD_ERASED				= BIT(27),
619 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
620 	ACC_CONTROL_WR_ECC				= BIT(30),
621 	ACC_CONTROL_RD_ECC				= BIT(31),
622 };
623 
624 #define	ACC_CONTROL_ECC_SHIFT			16
625 /* Only for v7.2 */
626 #define	ACC_CONTROL_ECC_EXT_SHIFT		13
627 
628 static u8 brcmnand_status(struct brcmnand_host *host);
629 
630 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
631 {
632 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
633 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
634 #else
635 	return false;
636 #endif
637 }
638 
639 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
640 {
641 	if (brcmnand_non_mmio_ops(ctrl))
642 		return brcmnand_soc_read(ctrl->soc, offs);
643 	return brcmnand_readl(ctrl->nand_base + offs);
644 }
645 
646 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
647 				 u32 val)
648 {
649 	if (brcmnand_non_mmio_ops(ctrl))
650 		brcmnand_soc_write(ctrl->soc, val, offs);
651 	else
652 		brcmnand_writel(val, ctrl->nand_base + offs);
653 }
654 
655 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
656 {
657 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
658 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
659 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
660 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
661 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
662 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
663 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
664 
665 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
666 
667 	/* Only support v2.1+ */
668 	if (ctrl->nand_version < 0x0201) {
669 		dev_err(ctrl->dev, "version %#x not supported\n",
670 			ctrl->nand_version);
671 		return -ENODEV;
672 	}
673 
674 	/* Register offsets */
675 	if (ctrl->nand_version >= 0x0702)
676 		ctrl->reg_offsets = brcmnand_regs_v72;
677 	else if (ctrl->nand_version == 0x0701)
678 		ctrl->reg_offsets = brcmnand_regs_v71;
679 	else if (ctrl->nand_version >= 0x0600)
680 		ctrl->reg_offsets = brcmnand_regs_v60;
681 	else if (ctrl->nand_version >= 0x0500)
682 		ctrl->reg_offsets = brcmnand_regs_v50;
683 	else if (ctrl->nand_version >= 0x0303)
684 		ctrl->reg_offsets = brcmnand_regs_v33;
685 	else if (ctrl->nand_version >= 0x0201)
686 		ctrl->reg_offsets = brcmnand_regs_v21;
687 
688 	/* Chip-select stride */
689 	if (ctrl->nand_version >= 0x0701)
690 		ctrl->reg_spacing = 0x14;
691 	else
692 		ctrl->reg_spacing = 0x10;
693 
694 	/* Per chip-select registers */
695 	if (ctrl->nand_version >= 0x0701) {
696 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
697 	} else {
698 		ctrl->cs_offsets = brcmnand_cs_offsets;
699 
700 		/* v3.3-5.0 have a different CS0 offset layout */
701 		if (ctrl->nand_version >= 0x0303 &&
702 		    ctrl->nand_version <= 0x0500)
703 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
704 	}
705 
706 	/* Page / block sizes */
707 	if (ctrl->nand_version >= 0x0701) {
708 		/* >= v7.1 use nice power-of-2 values! */
709 		ctrl->max_page_size = 16 * 1024;
710 		ctrl->max_block_size = 2 * 1024 * 1024;
711 	} else {
712 		if (ctrl->nand_version >= 0x0304)
713 			ctrl->page_sizes = page_sizes_v3_4;
714 		else if (ctrl->nand_version >= 0x0202)
715 			ctrl->page_sizes = page_sizes_v2_2;
716 		else
717 			ctrl->page_sizes = page_sizes_v2_1;
718 
719 		if (ctrl->nand_version >= 0x0202)
720 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
721 		else
722 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
723 
724 		if (ctrl->nand_version >= 0x0600)
725 			ctrl->block_sizes = block_sizes_v6;
726 		else if (ctrl->nand_version >= 0x0400)
727 			ctrl->block_sizes = block_sizes_v4;
728 		else if (ctrl->nand_version >= 0x0202)
729 			ctrl->block_sizes = block_sizes_v2_2;
730 		else
731 			ctrl->block_sizes = block_sizes_v2_1;
732 
733 		if (ctrl->nand_version < 0x0400) {
734 			if (ctrl->nand_version < 0x0202)
735 				ctrl->max_page_size = 2048;
736 			else
737 				ctrl->max_page_size = 4096;
738 			ctrl->max_block_size = 512 * 1024;
739 		}
740 	}
741 
742 	/* Maximum spare area sector size (per 512B) */
743 	if (ctrl->nand_version == 0x0702)
744 		ctrl->max_oob = 128;
745 	else if (ctrl->nand_version >= 0x0600)
746 		ctrl->max_oob = 64;
747 	else if (ctrl->nand_version >= 0x0500)
748 		ctrl->max_oob = 32;
749 	else
750 		ctrl->max_oob = 16;
751 
752 	/* v6.0 and newer (except v6.1) have prefetch support */
753 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
754 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
755 
756 	/*
757 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
758 	 * now.
759 	 */
760 	if (ctrl->nand_version >= 0x0700)
761 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
762 
763 	if (ctrl->nand_version >= 0x0500)
764 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
765 
766 	if (ctrl->nand_version >= 0x0700)
767 		ctrl->features |= BRCMNAND_HAS_WP;
768 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
769 		ctrl->features |= BRCMNAND_HAS_WP;
770 
771 	/* v7.2 has different ecc level shift in the acc register */
772 	if (ctrl->nand_version == 0x0702)
773 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
774 	else
775 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
776 
777 	return 0;
778 }
779 
780 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
781 {
782 	/* flash_dma register offsets */
783 	if (ctrl->nand_version >= 0x0703)
784 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
785 	else if (ctrl->nand_version == 0x0602)
786 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
787 	else
788 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
789 }
790 
791 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
792 		enum brcmnand_reg reg)
793 {
794 	u16 offs = ctrl->reg_offsets[reg];
795 
796 	if (offs)
797 		return nand_readreg(ctrl, offs);
798 	else
799 		return 0;
800 }
801 
802 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
803 				      enum brcmnand_reg reg, u32 val)
804 {
805 	u16 offs = ctrl->reg_offsets[reg];
806 
807 	if (offs)
808 		nand_writereg(ctrl, offs, val);
809 }
810 
811 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
812 				    enum brcmnand_reg reg, u32 mask, unsigned
813 				    int shift, u32 val)
814 {
815 	u32 tmp = brcmnand_read_reg(ctrl, reg);
816 
817 	tmp &= ~mask;
818 	tmp |= val << shift;
819 	brcmnand_write_reg(ctrl, reg, tmp);
820 }
821 
822 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
823 {
824 	if (brcmnand_non_mmio_ops(ctrl))
825 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
826 	return __raw_readl(ctrl->nand_fc + word * 4);
827 }
828 
829 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
830 				     int word, u32 val)
831 {
832 	if (brcmnand_non_mmio_ops(ctrl))
833 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
834 	else
835 		__raw_writel(val, ctrl->nand_fc + word * 4);
836 }
837 
838 static inline void edu_writel(struct brcmnand_controller *ctrl,
839 			      enum edu_reg reg, u32 val)
840 {
841 	u16 offs = ctrl->edu_offsets[reg];
842 
843 	brcmnand_writel(val, ctrl->edu_base + offs);
844 }
845 
846 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
847 			    enum edu_reg reg)
848 {
849 	u16 offs = ctrl->edu_offsets[reg];
850 
851 	return brcmnand_readl(ctrl->edu_base + offs);
852 }
853 
854 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
855 {
856 
857 	/* Clear error addresses */
858 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
859 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
860 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
861 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
862 }
863 
864 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
865 {
866 	u64 err_addr;
867 
868 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
869 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
870 					     BRCMNAND_UNCORR_EXT_ADDR)
871 					     & 0xffff) << 32);
872 
873 	return err_addr;
874 }
875 
876 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
877 {
878 	u64 err_addr;
879 
880 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
881 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
882 					     BRCMNAND_CORR_EXT_ADDR)
883 					     & 0xffff) << 32);
884 
885 	return err_addr;
886 }
887 
888 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
889 {
890 	struct nand_chip *chip =  mtd_to_nand(mtd);
891 	struct brcmnand_host *host = nand_get_controller_data(chip);
892 	struct brcmnand_controller *ctrl = host->ctrl;
893 
894 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
895 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
896 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
897 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
898 			   lower_32_bits(addr));
899 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
900 }
901 
902 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
903 				     enum brcmnand_cs_reg reg)
904 {
905 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
906 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
907 	u8 cs_offs;
908 
909 	if (cs == 0 && ctrl->cs0_offsets)
910 		cs_offs = ctrl->cs0_offsets[reg];
911 	else
912 		cs_offs = ctrl->cs_offsets[reg];
913 
914 	if (cs && offs_cs1)
915 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
916 
917 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
918 }
919 
920 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
921 {
922 	if (ctrl->nand_version < 0x0600)
923 		return 1;
924 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
925 }
926 
927 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
928 {
929 	struct brcmnand_controller *ctrl = host->ctrl;
930 	unsigned int shift = 0, bits;
931 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
932 	int cs = host->cs;
933 
934 	if (!ctrl->reg_offsets[reg])
935 		return;
936 
937 	if (ctrl->nand_version == 0x0702)
938 		bits = 7;
939 	else if (ctrl->nand_version >= 0x0600)
940 		bits = 6;
941 	else if (ctrl->nand_version >= 0x0500)
942 		bits = 5;
943 	else
944 		bits = 4;
945 
946 	if (ctrl->nand_version >= 0x0702) {
947 		if (cs >= 4)
948 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
949 		shift = (cs % 4) * bits;
950 	} else if (ctrl->nand_version >= 0x0600) {
951 		if (cs >= 5)
952 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
953 		shift = (cs % 5) * bits;
954 	}
955 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
956 }
957 
958 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
959 {
960 	/* Kludge for the BCMA-based NAND controller which does not actually
961 	 * shift the command
962 	 */
963 	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
964 		return 0;
965 
966 	if (ctrl->nand_version < 0x0602)
967 		return 24;
968 	return 0;
969 }
970 
971 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
972 {
973 	if (ctrl->nand_version == 0x0702)
974 		return GENMASK(7, 0);
975 	else if (ctrl->nand_version >= 0x0600)
976 		return GENMASK(6, 0);
977 	else if (ctrl->nand_version >= 0x0303)
978 		return GENMASK(5, 0);
979 	else
980 		return GENMASK(4, 0);
981 }
982 
983 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
984 {
985 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
986 
987 	mask <<= ACC_CONTROL_ECC_SHIFT;
988 
989 	/* v7.2 includes additional ECC levels */
990 	if (ctrl->nand_version == 0x0702)
991 		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
992 
993 	return mask;
994 }
995 
996 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
997 {
998 	struct brcmnand_controller *ctrl = host->ctrl;
999 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1000 	u32 acc_control = nand_readreg(ctrl, offs);
1001 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1002 
1003 	if (en) {
1004 		acc_control |= ecc_flags; /* enable RD/WR ECC */
1005 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1006 		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1007 	} else {
1008 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1009 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1010 	}
1011 
1012 	nand_writereg(ctrl, offs, acc_control);
1013 }
1014 
1015 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1016 {
1017 	if (ctrl->nand_version >= 0x0702)
1018 		return 9;
1019 	else if (ctrl->nand_version >= 0x0600)
1020 		return 7;
1021 	else if (ctrl->nand_version >= 0x0500)
1022 		return 6;
1023 	else
1024 		return -1;
1025 }
1026 
1027 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1028 {
1029 	struct brcmnand_controller *ctrl = host->ctrl;
1030 	int shift = brcmnand_sector_1k_shift(ctrl);
1031 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1032 						  BRCMNAND_CS_ACC_CONTROL);
1033 	u32 tmp;
1034 
1035 	if (shift < 0)
1036 		return;
1037 
1038 	tmp = nand_readreg(ctrl, acc_control_offs);
1039 	tmp &= ~(1 << shift);
1040 	tmp |= (!!val) << shift;
1041 	nand_writereg(ctrl, acc_control_offs, tmp);
1042 }
1043 
1044 /***********************************************************************
1045  * CS_NAND_SELECT
1046  ***********************************************************************/
1047 
1048 enum {
1049 	CS_SELECT_NAND_WP			= BIT(29),
1050 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1051 };
1052 
1053 static int bcmnand_ctrl_poll_status(struct brcmnand_host *host,
1054 				    u32 mask, u32 expected_val,
1055 				    unsigned long timeout_ms)
1056 {
1057 	struct brcmnand_controller *ctrl = host->ctrl;
1058 	unsigned long limit;
1059 	u32 val;
1060 
1061 	if (!timeout_ms)
1062 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1063 
1064 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1065 	do {
1066 		if (mask & INTFC_FLASH_STATUS)
1067 			brcmnand_status(host);
1068 
1069 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1070 		if ((val & mask) == expected_val)
1071 			return 0;
1072 
1073 		cpu_relax();
1074 	} while (time_after(limit, jiffies));
1075 
1076 	/*
1077 	 * do a final check after time out in case the CPU was busy and the driver
1078 	 * did not get enough time to perform the polling to avoid false alarms
1079 	 */
1080 	if (mask & INTFC_FLASH_STATUS)
1081 		brcmnand_status(host);
1082 
1083 	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1084 	if ((val & mask) == expected_val)
1085 		return 0;
1086 
1087 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1088 		 expected_val, val & mask);
1089 
1090 	return -ETIMEDOUT;
1091 }
1092 
1093 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1094 {
1095 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1096 
1097 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1098 }
1099 
1100 /***********************************************************************
1101  * Flash DMA
1102  ***********************************************************************/
1103 
1104 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1105 {
1106 	return ctrl->flash_dma_base;
1107 }
1108 
1109 static inline bool has_edu(struct brcmnand_controller *ctrl)
1110 {
1111 	return ctrl->edu_base;
1112 }
1113 
1114 static inline bool use_dma(struct brcmnand_controller *ctrl)
1115 {
1116 	return has_flash_dma(ctrl) || has_edu(ctrl);
1117 }
1118 
1119 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1120 {
1121 	if (ctrl->pio_poll_mode)
1122 		return;
1123 
1124 	if (has_flash_dma(ctrl)) {
1125 		ctrl->flash_dma_base = NULL;
1126 		disable_irq(ctrl->dma_irq);
1127 	}
1128 
1129 	disable_irq(ctrl->irq);
1130 	ctrl->pio_poll_mode = true;
1131 }
1132 
1133 static inline bool flash_dma_buf_ok(const void *buf)
1134 {
1135 	return buf && !is_vmalloc_addr(buf) &&
1136 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1137 }
1138 
1139 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1140 				    enum flash_dma_reg dma_reg, u32 val)
1141 {
1142 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1143 
1144 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1145 }
1146 
1147 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1148 				  enum flash_dma_reg dma_reg)
1149 {
1150 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1151 
1152 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1153 }
1154 
1155 /* Low-level operation types: command, address, write, or read */
1156 enum brcmnand_llop_type {
1157 	LL_OP_CMD,
1158 	LL_OP_ADDR,
1159 	LL_OP_WR,
1160 	LL_OP_RD,
1161 };
1162 
1163 /***********************************************************************
1164  * Internal support functions
1165  ***********************************************************************/
1166 
1167 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1168 				  struct brcmnand_cfg *cfg)
1169 {
1170 	if (ctrl->nand_version <= 0x0701)
1171 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1172 			cfg->ecc_level == 15;
1173 	else
1174 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1175 			cfg->ecc_level == 15) ||
1176 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1177 }
1178 
1179 /*
1180  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1181  * the layout/configuration.
1182  * Returns -ERRCODE on failure.
1183  */
1184 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1185 					  struct mtd_oob_region *oobregion)
1186 {
1187 	struct nand_chip *chip = mtd_to_nand(mtd);
1188 	struct brcmnand_host *host = nand_get_controller_data(chip);
1189 	struct brcmnand_cfg *cfg = &host->hwcfg;
1190 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1191 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1192 
1193 	if (section >= sectors)
1194 		return -ERANGE;
1195 
1196 	oobregion->offset = (section * sas) + 6;
1197 	oobregion->length = 3;
1198 
1199 	return 0;
1200 }
1201 
1202 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1203 					   struct mtd_oob_region *oobregion)
1204 {
1205 	struct nand_chip *chip = mtd_to_nand(mtd);
1206 	struct brcmnand_host *host = nand_get_controller_data(chip);
1207 	struct brcmnand_cfg *cfg = &host->hwcfg;
1208 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1209 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1210 	u32 next;
1211 
1212 	if (section > sectors)
1213 		return -ERANGE;
1214 
1215 	next = (section * sas);
1216 	if (section < sectors)
1217 		next += 6;
1218 
1219 	if (section) {
1220 		oobregion->offset = ((section - 1) * sas) + 9;
1221 	} else {
1222 		if (cfg->page_size > 512) {
1223 			/* Large page NAND uses first 2 bytes for BBI */
1224 			oobregion->offset = 2;
1225 		} else {
1226 			/* Small page NAND uses last byte before ECC for BBI */
1227 			oobregion->offset = 0;
1228 			next--;
1229 		}
1230 	}
1231 
1232 	oobregion->length = next - oobregion->offset;
1233 
1234 	return 0;
1235 }
1236 
1237 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1238 	.ecc = brcmnand_hamming_ooblayout_ecc,
1239 	.free = brcmnand_hamming_ooblayout_free,
1240 };
1241 
1242 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1243 				      struct mtd_oob_region *oobregion)
1244 {
1245 	struct nand_chip *chip = mtd_to_nand(mtd);
1246 	struct brcmnand_host *host = nand_get_controller_data(chip);
1247 	struct brcmnand_cfg *cfg = &host->hwcfg;
1248 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1249 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1250 
1251 	if (section >= sectors)
1252 		return -ERANGE;
1253 
1254 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1255 	oobregion->length = chip->ecc.bytes;
1256 
1257 	return 0;
1258 }
1259 
1260 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1261 					  struct mtd_oob_region *oobregion)
1262 {
1263 	struct nand_chip *chip = mtd_to_nand(mtd);
1264 	struct brcmnand_host *host = nand_get_controller_data(chip);
1265 	struct brcmnand_cfg *cfg = &host->hwcfg;
1266 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1267 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1268 
1269 	if (section >= sectors)
1270 		return -ERANGE;
1271 
1272 	if (sas <= chip->ecc.bytes)
1273 		return 0;
1274 
1275 	oobregion->offset = section * sas;
1276 	oobregion->length = sas - chip->ecc.bytes;
1277 
1278 	if (!section) {
1279 		oobregion->offset++;
1280 		oobregion->length--;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1287 					  struct mtd_oob_region *oobregion)
1288 {
1289 	struct nand_chip *chip = mtd_to_nand(mtd);
1290 	struct brcmnand_host *host = nand_get_controller_data(chip);
1291 	struct brcmnand_cfg *cfg = &host->hwcfg;
1292 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1293 
1294 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1295 	    (section && sas - chip->ecc.bytes == 6))
1296 		return -ERANGE;
1297 
1298 	if (!section) {
1299 		oobregion->offset = 0;
1300 		oobregion->length = 5;
1301 	} else {
1302 		oobregion->offset = 6;
1303 		oobregion->length = sas - chip->ecc.bytes - 6;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1310 	.ecc = brcmnand_bch_ooblayout_ecc,
1311 	.free = brcmnand_bch_ooblayout_free_lp,
1312 };
1313 
1314 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1315 	.ecc = brcmnand_bch_ooblayout_ecc,
1316 	.free = brcmnand_bch_ooblayout_free_sp,
1317 };
1318 
1319 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1320 {
1321 	struct brcmnand_cfg *p = &host->hwcfg;
1322 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1323 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1324 	unsigned int ecc_level = p->ecc_level;
1325 	int sas = p->spare_area_size << p->sector_size_1k;
1326 	int sectors = p->page_size / (512 << p->sector_size_1k);
1327 
1328 	if (p->sector_size_1k)
1329 		ecc_level <<= 1;
1330 
1331 	if (is_hamming_ecc(host->ctrl, p)) {
1332 		ecc->bytes = 3 * sectors;
1333 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1334 		return 0;
1335 	}
1336 
1337 	/*
1338 	 * CONTROLLER_VERSION:
1339 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1340 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1341 	 * But we will just be conservative.
1342 	 */
1343 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1344 	if (p->page_size == 512)
1345 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1346 	else
1347 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1348 
1349 	if (ecc->bytes >= sas) {
1350 		dev_err(&host->pdev->dev,
1351 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1352 			ecc->bytes, sas);
1353 		return -EINVAL;
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1360 {
1361 	struct nand_chip *chip = mtd_to_nand(mtd);
1362 	struct brcmnand_host *host = nand_get_controller_data(chip);
1363 	struct brcmnand_controller *ctrl = host->ctrl;
1364 
1365 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1366 		static int old_wp = -1;
1367 		int ret;
1368 
1369 		if (old_wp != wp) {
1370 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1371 			old_wp = wp;
1372 		}
1373 
1374 		/*
1375 		 * make sure ctrl/flash ready before and after
1376 		 * changing state of #WP pin
1377 		 */
1378 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY |
1379 					       NAND_STATUS_READY,
1380 					       NAND_CTRL_RDY |
1381 					       NAND_STATUS_READY, 0);
1382 		if (ret)
1383 			return;
1384 
1385 		brcmnand_set_wp(ctrl, wp);
1386 		/* force controller operation to update internal copy of NAND chip status */
1387 		brcmnand_status(host);
1388 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1389 		ret = bcmnand_ctrl_poll_status(host,
1390 					       NAND_CTRL_RDY |
1391 					       NAND_STATUS_READY |
1392 					       NAND_STATUS_WP,
1393 					       NAND_CTRL_RDY |
1394 					       NAND_STATUS_READY |
1395 					       (wp ? 0 : NAND_STATUS_WP), 0);
1396 
1397 		if (ret)
1398 			dev_err_ratelimited(&host->pdev->dev,
1399 					    "nand #WP expected %s\n",
1400 					    wp ? "on" : "off");
1401 	}
1402 }
1403 
1404 /* Helper functions for reading and writing OOB registers */
1405 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1406 {
1407 	u16 offset0, offset10, reg_offs;
1408 
1409 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1410 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1411 
1412 	if (offs >= ctrl->max_oob)
1413 		return 0x77;
1414 
1415 	if (offs >= 16 && offset10)
1416 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1417 	else
1418 		reg_offs = offset0 + (offs & ~0x03);
1419 
1420 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1421 }
1422 
1423 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1424 				 u32 data)
1425 {
1426 	u16 offset0, offset10, reg_offs;
1427 
1428 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1429 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1430 
1431 	if (offs >= ctrl->max_oob)
1432 		return;
1433 
1434 	if (offs >= 16 && offset10)
1435 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1436 	else
1437 		reg_offs = offset0 + (offs & ~0x03);
1438 
1439 	nand_writereg(ctrl, reg_offs, data);
1440 }
1441 
1442 /*
1443  * read_oob_from_regs - read data from OOB registers
1444  * @ctrl: NAND controller
1445  * @i: sub-page sector index
1446  * @oob: buffer to read to
1447  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1448  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1449  */
1450 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1451 			      int sas, int sector_1k)
1452 {
1453 	int tbytes = sas << sector_1k;
1454 	int j;
1455 
1456 	/* Adjust OOB values for 1K sector size */
1457 	if (sector_1k && (i & 0x01))
1458 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1459 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1460 
1461 	for (j = 0; j < tbytes; j++)
1462 		oob[j] = oob_reg_read(ctrl, j);
1463 	return tbytes;
1464 }
1465 
1466 /*
1467  * write_oob_to_regs - write data to OOB registers
1468  * @i: sub-page sector index
1469  * @oob: buffer to write from
1470  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1471  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1472  */
1473 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1474 			     const u8 *oob, int sas, int sector_1k)
1475 {
1476 	int tbytes = sas << sector_1k;
1477 	int j, k = 0;
1478 	u32 last = 0xffffffff;
1479 	u8 *plast = (u8 *)&last;
1480 
1481 	/* Adjust OOB values for 1K sector size */
1482 	if (sector_1k && (i & 0x01))
1483 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1484 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1485 
1486 	/*
1487 	 * tbytes may not be multiple of words. Make sure we don't read out of
1488 	 * the boundary and stop at last word.
1489 	 */
1490 	for (j = 0; (j + 3) < tbytes; j += 4)
1491 		oob_reg_write(ctrl, j,
1492 				(oob[j + 0] << 24) |
1493 				(oob[j + 1] << 16) |
1494 				(oob[j + 2] <<  8) |
1495 				(oob[j + 3] <<  0));
1496 
1497 	/* handle the remaing bytes */
1498 	while (j < tbytes)
1499 		plast[k++] = oob[j++];
1500 
1501 	if (tbytes & 0x3)
1502 		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1503 
1504 	return tbytes;
1505 }
1506 
1507 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1508 {
1509 	/* initialize edu */
1510 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1511 	edu_readl(ctrl, EDU_ERR_STATUS);
1512 	edu_writel(ctrl, EDU_DONE, 0);
1513 	edu_writel(ctrl, EDU_DONE, 0);
1514 	edu_writel(ctrl, EDU_DONE, 0);
1515 	edu_writel(ctrl, EDU_DONE, 0);
1516 	edu_readl(ctrl, EDU_DONE);
1517 }
1518 
1519 /* edu irq */
1520 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1521 {
1522 	struct brcmnand_controller *ctrl = data;
1523 
1524 	if (ctrl->edu_count) {
1525 		ctrl->edu_count--;
1526 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1527 			udelay(1);
1528 		edu_writel(ctrl, EDU_DONE, 0);
1529 		edu_readl(ctrl, EDU_DONE);
1530 	}
1531 
1532 	if (ctrl->edu_count) {
1533 		ctrl->edu_dram_addr += FC_BYTES;
1534 		ctrl->edu_ext_addr += FC_BYTES;
1535 
1536 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1537 		edu_readl(ctrl, EDU_DRAM_ADDR);
1538 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1539 		edu_readl(ctrl, EDU_EXT_ADDR);
1540 
1541 		if (ctrl->oob) {
1542 			if (ctrl->edu_cmd == EDU_CMD_READ) {
1543 				ctrl->oob += read_oob_from_regs(ctrl,
1544 							ctrl->edu_count + 1,
1545 							ctrl->oob, ctrl->sas,
1546 							ctrl->sector_size_1k);
1547 			} else {
1548 				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1549 						   ctrl->edu_ext_addr);
1550 				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1551 				ctrl->oob += write_oob_to_regs(ctrl,
1552 							       ctrl->edu_count,
1553 							       ctrl->oob, ctrl->sas,
1554 							       ctrl->sector_size_1k);
1555 			}
1556 		}
1557 
1558 		mb(); /* flush previous writes */
1559 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1560 		edu_readl(ctrl, EDU_CMD);
1561 
1562 		return IRQ_HANDLED;
1563 	}
1564 
1565 	complete(&ctrl->edu_done);
1566 
1567 	return IRQ_HANDLED;
1568 }
1569 
1570 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1571 {
1572 	struct brcmnand_controller *ctrl = data;
1573 
1574 	/* Discard all NAND_CTLRDY interrupts during DMA */
1575 	if (ctrl->dma_pending)
1576 		return IRQ_HANDLED;
1577 
1578 	/* check if you need to piggy back on the ctrlrdy irq */
1579 	if (ctrl->edu_pending) {
1580 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1581 	/* Discard interrupts while using dedicated edu irq */
1582 			return IRQ_HANDLED;
1583 
1584 	/* no registered edu irq, call handler */
1585 		return brcmnand_edu_irq(irq, data);
1586 	}
1587 
1588 	complete(&ctrl->done);
1589 	return IRQ_HANDLED;
1590 }
1591 
1592 /* Handle SoC-specific interrupt hardware */
1593 static irqreturn_t brcmnand_irq(int irq, void *data)
1594 {
1595 	struct brcmnand_controller *ctrl = data;
1596 
1597 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1598 		return brcmnand_ctlrdy_irq(irq, data);
1599 
1600 	return IRQ_NONE;
1601 }
1602 
1603 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1604 {
1605 	struct brcmnand_controller *ctrl = data;
1606 
1607 	complete(&ctrl->dma_done);
1608 
1609 	return IRQ_HANDLED;
1610 }
1611 
1612 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1613 {
1614 	struct brcmnand_controller *ctrl = host->ctrl;
1615 	int ret;
1616 	u64 cmd_addr;
1617 
1618 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1619 
1620 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1621 
1622 	/*
1623 	 * If we came here through _panic_write and there is a pending
1624 	 * command, try to wait for it. If it times out, rather than
1625 	 * hitting BUG_ON, just return so we don't crash while crashing.
1626 	 */
1627 	if (oops_in_progress) {
1628 		if (ctrl->cmd_pending &&
1629 			bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1630 			return;
1631 	} else
1632 		BUG_ON(ctrl->cmd_pending != 0);
1633 	ctrl->cmd_pending = cmd;
1634 
1635 	ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1636 	WARN_ON(ret);
1637 
1638 	mb(); /* flush previous writes */
1639 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1640 			   cmd << brcmnand_cmd_shift(ctrl));
1641 }
1642 
1643 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1644 {
1645 	struct brcmnand_host *host = nand_get_controller_data(chip);
1646 	struct brcmnand_controller *ctrl = host->ctrl;
1647 	struct mtd_info *mtd = nand_to_mtd(chip);
1648 	bool err = false;
1649 	int sts;
1650 
1651 	if (mtd->oops_panic_write || ctrl->irq < 0) {
1652 		/* switch to interrupt polling and PIO mode */
1653 		disable_ctrl_irqs(ctrl);
1654 		sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY,
1655 					       NAND_CTRL_RDY, 0);
1656 		err = sts < 0;
1657 	} else {
1658 		unsigned long timeo = msecs_to_jiffies(
1659 						NAND_POLL_STATUS_TIMEOUT_MS);
1660 		/* wait for completion interrupt */
1661 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1662 		err = !sts;
1663 	}
1664 
1665 	return err;
1666 }
1667 
1668 static int brcmnand_waitfunc(struct nand_chip *chip)
1669 {
1670 	struct brcmnand_host *host = nand_get_controller_data(chip);
1671 	struct brcmnand_controller *ctrl = host->ctrl;
1672 	bool err = false;
1673 
1674 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1675 	if (ctrl->cmd_pending)
1676 		err = brcmstb_nand_wait_for_completion(chip);
1677 
1678 	ctrl->cmd_pending = 0;
1679 	if (err) {
1680 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1681 					>> brcmnand_cmd_shift(ctrl);
1682 
1683 		dev_err_ratelimited(ctrl->dev,
1684 			"timeout waiting for command %#02x\n", cmd);
1685 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1686 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1687 		return -ETIMEDOUT;
1688 	}
1689 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1690 				 INTFC_FLASH_STATUS;
1691 }
1692 
1693 static u8 brcmnand_status(struct brcmnand_host *host)
1694 {
1695 	struct nand_chip *chip = &host->chip;
1696 	struct mtd_info *mtd = nand_to_mtd(chip);
1697 
1698 	brcmnand_set_cmd_addr(mtd, 0);
1699 	brcmnand_send_cmd(host, CMD_STATUS_READ);
1700 
1701 	return brcmnand_waitfunc(chip);
1702 }
1703 
1704 static u8 brcmnand_reset(struct brcmnand_host *host)
1705 {
1706 	struct nand_chip *chip = &host->chip;
1707 
1708 	brcmnand_send_cmd(host, CMD_FLASH_RESET);
1709 
1710 	return brcmnand_waitfunc(chip);
1711 }
1712 
1713 enum {
1714 	LLOP_RE				= BIT(16),
1715 	LLOP_WE				= BIT(17),
1716 	LLOP_ALE			= BIT(18),
1717 	LLOP_CLE			= BIT(19),
1718 	LLOP_RETURN_IDLE		= BIT(31),
1719 
1720 	LLOP_DATA_MASK			= GENMASK(15, 0),
1721 };
1722 
1723 static int brcmnand_low_level_op(struct brcmnand_host *host,
1724 				 enum brcmnand_llop_type type, u32 data,
1725 				 bool last_op)
1726 {
1727 	struct nand_chip *chip = &host->chip;
1728 	struct brcmnand_controller *ctrl = host->ctrl;
1729 	u32 tmp;
1730 
1731 	tmp = data & LLOP_DATA_MASK;
1732 	switch (type) {
1733 	case LL_OP_CMD:
1734 		tmp |= LLOP_WE | LLOP_CLE;
1735 		break;
1736 	case LL_OP_ADDR:
1737 		/* WE | ALE */
1738 		tmp |= LLOP_WE | LLOP_ALE;
1739 		break;
1740 	case LL_OP_WR:
1741 		/* WE */
1742 		tmp |= LLOP_WE;
1743 		break;
1744 	case LL_OP_RD:
1745 		/* RE */
1746 		tmp |= LLOP_RE;
1747 		break;
1748 	}
1749 	if (last_op)
1750 		/* RETURN_IDLE */
1751 		tmp |= LLOP_RETURN_IDLE;
1752 
1753 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1754 
1755 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1756 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1757 
1758 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1759 	return brcmnand_waitfunc(chip);
1760 }
1761 
1762 /*
1763  *  Kick EDU engine
1764  */
1765 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1766 			      u8 *oob, u32 len, u8 cmd)
1767 {
1768 	struct brcmnand_controller *ctrl = host->ctrl;
1769 	struct brcmnand_cfg *cfg = &host->hwcfg;
1770 	unsigned long timeo = msecs_to_jiffies(200);
1771 	int ret = 0;
1772 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1773 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1774 	unsigned int trans = len >> FC_SHIFT;
1775 	dma_addr_t pa;
1776 
1777 	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1778 					      "read" : "write"), buf, oob);
1779 
1780 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1781 	if (dma_mapping_error(ctrl->dev, pa)) {
1782 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1783 		return -ENOMEM;
1784 	}
1785 
1786 	ctrl->edu_pending = true;
1787 	ctrl->edu_dram_addr = pa;
1788 	ctrl->edu_ext_addr = addr;
1789 	ctrl->edu_cmd = edu_cmd;
1790 	ctrl->edu_count = trans;
1791 	ctrl->sas = cfg->spare_area_size;
1792 	ctrl->oob = oob;
1793 
1794 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1795 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1796 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1797 	edu_readl(ctrl, EDU_EXT_ADDR);
1798 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1799 	edu_readl(ctrl, EDU_LENGTH);
1800 
1801 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1802 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1803 				   ctrl->edu_ext_addr);
1804 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1805 		ctrl->oob += write_oob_to_regs(ctrl,
1806 					       1,
1807 					       ctrl->oob, ctrl->sas,
1808 					       ctrl->sector_size_1k);
1809 	}
1810 
1811 	/* Start edu engine */
1812 	mb(); /* flush previous writes */
1813 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1814 	edu_readl(ctrl, EDU_CMD);
1815 
1816 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1817 		dev_err(ctrl->dev,
1818 			"timeout waiting for EDU; status %#x, error status %#x\n",
1819 			edu_readl(ctrl, EDU_STATUS),
1820 			edu_readl(ctrl, EDU_ERR_STATUS));
1821 	}
1822 
1823 	dma_unmap_single(ctrl->dev, pa, len, dir);
1824 
1825 	/* read last subpage oob */
1826 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1827 		ctrl->oob += read_oob_from_regs(ctrl,
1828 						1,
1829 						ctrl->oob, ctrl->sas,
1830 						ctrl->sector_size_1k);
1831 	}
1832 
1833 	/* for program page check NAND status */
1834 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1835 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1836 	    edu_cmd == EDU_CMD_WRITE) {
1837 		dev_info(ctrl->dev, "program failed at %llx\n",
1838 			 (unsigned long long)addr);
1839 		ret = -EIO;
1840 	}
1841 
1842 	/* Make sure the EDU status is clean */
1843 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1844 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1845 			 edu_readl(ctrl, EDU_STATUS));
1846 
1847 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1848 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1849 			 (unsigned long long)addr);
1850 		ret = -EIO;
1851 	}
1852 
1853 	ctrl->edu_pending = false;
1854 	brcmnand_edu_init(ctrl);
1855 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1856 	edu_readl(ctrl, EDU_STOP);
1857 
1858 	if (!ret && edu_cmd == EDU_CMD_READ) {
1859 		u64 err_addr = 0;
1860 
1861 		/*
1862 		 * check for ECC errors here, subpage ECC errors are
1863 		 * retained in ECC error address register
1864 		 */
1865 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1866 		if (!err_addr) {
1867 			err_addr = brcmnand_get_correcc_addr(ctrl);
1868 			if (err_addr)
1869 				ret = -EUCLEAN;
1870 		} else
1871 			ret = -EBADMSG;
1872 	}
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1879  * following ahead of time:
1880  *  - Is this descriptor the beginning or end of a linked list?
1881  *  - What is the (DMA) address of the next descriptor in the linked list?
1882  */
1883 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1884 				  struct brcm_nand_dma_desc *desc, u64 addr,
1885 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1886 				  bool begin, bool end,
1887 				  dma_addr_t next_desc)
1888 {
1889 	memset(desc, 0, sizeof(*desc));
1890 	/* Descriptors are written in native byte order (wordwise) */
1891 	desc->next_desc = lower_32_bits(next_desc);
1892 	desc->next_desc_ext = upper_32_bits(next_desc);
1893 	desc->cmd_irq = (dma_cmd << 24) |
1894 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1895 		(!!begin) | ((!!end) << 1); /* head, tail */
1896 #ifdef CONFIG_CPU_BIG_ENDIAN
1897 	desc->cmd_irq |= 0x01 << 12;
1898 #endif
1899 	desc->dram_addr = lower_32_bits(buf);
1900 	desc->dram_addr_ext = upper_32_bits(buf);
1901 	desc->tfr_len = len;
1902 	desc->total_len = len;
1903 	desc->flash_addr = lower_32_bits(addr);
1904 	desc->flash_addr_ext = upper_32_bits(addr);
1905 	desc->cs = host->cs;
1906 	desc->status_valid = 0x01;
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Kick the FLASH_DMA engine, with a given DMA descriptor
1912  */
1913 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1914 {
1915 	struct brcmnand_controller *ctrl = host->ctrl;
1916 	unsigned long timeo = msecs_to_jiffies(100);
1917 
1918 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1919 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1920 	if (ctrl->nand_version > 0x0602) {
1921 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1922 				 upper_32_bits(desc));
1923 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1924 	}
1925 
1926 	/* Start FLASH_DMA engine */
1927 	ctrl->dma_pending = true;
1928 	mb(); /* flush previous writes */
1929 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1930 
1931 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1932 		dev_err(ctrl->dev,
1933 				"timeout waiting for DMA; status %#x, error status %#x\n",
1934 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1935 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1936 	}
1937 	ctrl->dma_pending = false;
1938 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1939 }
1940 
1941 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1942 			      u8 *oob, u32 len, u8 dma_cmd)
1943 {
1944 	struct brcmnand_controller *ctrl = host->ctrl;
1945 	dma_addr_t buf_pa;
1946 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1947 
1948 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1949 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
1950 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1951 		return -ENOMEM;
1952 	}
1953 
1954 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1955 				   dma_cmd, true, true, 0);
1956 
1957 	brcmnand_dma_run(host, ctrl->dma_pa);
1958 
1959 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1960 
1961 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1962 		return -EBADMSG;
1963 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1964 		return -EUCLEAN;
1965 
1966 	return 0;
1967 }
1968 
1969 /*
1970  * Assumes proper CS is already set
1971  */
1972 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1973 				u64 addr, unsigned int trans, u32 *buf,
1974 				u8 *oob, u64 *err_addr)
1975 {
1976 	struct brcmnand_host *host = nand_get_controller_data(chip);
1977 	struct brcmnand_controller *ctrl = host->ctrl;
1978 	int i, j, ret = 0;
1979 
1980 	brcmnand_clear_ecc_addr(ctrl);
1981 
1982 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1983 		brcmnand_set_cmd_addr(mtd, addr);
1984 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1985 		brcmnand_send_cmd(host, CMD_PAGE_READ);
1986 		brcmnand_waitfunc(chip);
1987 
1988 		if (likely(buf)) {
1989 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1990 
1991 			for (j = 0; j < FC_WORDS; j++, buf++)
1992 				*buf = brcmnand_read_fc(ctrl, j);
1993 
1994 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1995 		}
1996 
1997 		if (oob)
1998 			oob += read_oob_from_regs(ctrl, i, oob,
1999 					mtd->oobsize / trans,
2000 					host->hwcfg.sector_size_1k);
2001 
2002 		if (ret != -EBADMSG) {
2003 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2004 
2005 			if (*err_addr)
2006 				ret = -EBADMSG;
2007 		}
2008 
2009 		if (!ret) {
2010 			*err_addr = brcmnand_get_correcc_addr(ctrl);
2011 
2012 			if (*err_addr)
2013 				ret = -EUCLEAN;
2014 		}
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2022  * error
2023  *
2024  * Because the HW ECC signals an ECC error if an erase paged has even a single
2025  * bitflip, we must check each ECC error to see if it is actually an erased
2026  * page with bitflips, not a truly corrupted page.
2027  *
2028  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2029  * buf will contain raw data.
2030  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2031  * bitflips-per-ECC-sector to the caller.
2032  *
2033  */
2034 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2035 		  struct nand_chip *chip, void *buf, u64 addr)
2036 {
2037 	struct mtd_oob_region ecc;
2038 	int i;
2039 	int bitflips = 0;
2040 	int page = addr >> chip->page_shift;
2041 	int ret;
2042 	void *ecc_bytes;
2043 	void *ecc_chunk;
2044 
2045 	if (!buf)
2046 		buf = nand_get_data_buf(chip);
2047 
2048 	/* read without ecc for verification */
2049 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2050 	if (ret)
2051 		return ret;
2052 
2053 	for (i = 0; i < chip->ecc.steps; i++) {
2054 		ecc_chunk = buf + chip->ecc.size * i;
2055 
2056 		mtd_ooblayout_ecc(mtd, i, &ecc);
2057 		ecc_bytes = chip->oob_poi + ecc.offset;
2058 
2059 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2060 						  ecc_bytes, ecc.length,
2061 						  NULL, 0,
2062 						  chip->ecc.strength);
2063 		if (ret < 0)
2064 			return ret;
2065 
2066 		bitflips = max(bitflips, ret);
2067 	}
2068 
2069 	return bitflips;
2070 }
2071 
2072 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2073 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2074 {
2075 	struct brcmnand_host *host = nand_get_controller_data(chip);
2076 	struct brcmnand_controller *ctrl = host->ctrl;
2077 	u64 err_addr = 0;
2078 	int err;
2079 	bool retry = true;
2080 	bool edu_err = false;
2081 
2082 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2083 
2084 try_dmaread:
2085 	brcmnand_clear_ecc_addr(ctrl);
2086 
2087 	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2088 	    flash_dma_buf_ok(buf)) {
2089 		err = ctrl->dma_trans(host, addr, buf, oob,
2090 				      trans * FC_BYTES,
2091 				      CMD_PAGE_READ);
2092 
2093 		if (err) {
2094 			if (mtd_is_bitflip_or_eccerr(err))
2095 				err_addr = addr;
2096 			else
2097 				return -EIO;
2098 		}
2099 
2100 		if (has_edu(ctrl) && err_addr)
2101 			edu_err = true;
2102 
2103 	} else {
2104 		if (oob)
2105 			memset(oob, 0x99, mtd->oobsize);
2106 
2107 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2108 					       oob, &err_addr);
2109 	}
2110 
2111 	if (mtd_is_eccerr(err)) {
2112 		/*
2113 		 * On controller version and 7.0, 7.1 , DMA read after a
2114 		 * prior PIO read that reported uncorrectable error,
2115 		 * the DMA engine captures this error following DMA read
2116 		 * cleared only on subsequent DMA read, so just retry once
2117 		 * to clear a possible false error reported for current DMA
2118 		 * read
2119 		 */
2120 		if ((ctrl->nand_version == 0x0700) ||
2121 		    (ctrl->nand_version == 0x0701)) {
2122 			if (retry) {
2123 				retry = false;
2124 				goto try_dmaread;
2125 			}
2126 		}
2127 
2128 		/*
2129 		 * Controller version 7.2 has hw encoder to detect erased page
2130 		 * bitflips, apply sw verification for older controllers only
2131 		 */
2132 		if (ctrl->nand_version < 0x0702) {
2133 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2134 							      addr);
2135 			/* erased page bitflips corrected */
2136 			if (err >= 0)
2137 				return err;
2138 		}
2139 
2140 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2141 			(unsigned long long)err_addr);
2142 		mtd->ecc_stats.failed++;
2143 		/* NAND layer expects zero on ECC errors */
2144 		return 0;
2145 	}
2146 
2147 	if (mtd_is_bitflip(err)) {
2148 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2149 
2150 		/* in case of EDU correctable error we read again using PIO */
2151 		if (edu_err)
2152 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2153 						   oob, &err_addr);
2154 
2155 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2156 			(unsigned long long)err_addr);
2157 		mtd->ecc_stats.corrected += corrected;
2158 		/* Always exceed the software-imposed threshold */
2159 		return max(mtd->bitflip_threshold, corrected);
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2166 			      int oob_required, int page)
2167 {
2168 	struct mtd_info *mtd = nand_to_mtd(chip);
2169 	struct brcmnand_host *host = nand_get_controller_data(chip);
2170 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2171 	u64 addr = (u64)page << chip->page_shift;
2172 
2173 	host->last_addr = addr;
2174 
2175 	return brcmnand_read(mtd, chip, host->last_addr,
2176 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2177 }
2178 
2179 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2180 				  int oob_required, int page)
2181 {
2182 	struct brcmnand_host *host = nand_get_controller_data(chip);
2183 	struct mtd_info *mtd = nand_to_mtd(chip);
2184 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2185 	int ret;
2186 	u64 addr = (u64)page << chip->page_shift;
2187 
2188 	host->last_addr = addr;
2189 
2190 	brcmnand_set_ecc_enabled(host, 0);
2191 	ret = brcmnand_read(mtd, chip, host->last_addr,
2192 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2193 	brcmnand_set_ecc_enabled(host, 1);
2194 	return ret;
2195 }
2196 
2197 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2198 {
2199 	struct mtd_info *mtd = nand_to_mtd(chip);
2200 
2201 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2202 			mtd->writesize >> FC_SHIFT,
2203 			NULL, (u8 *)chip->oob_poi);
2204 }
2205 
2206 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2207 {
2208 	struct mtd_info *mtd = nand_to_mtd(chip);
2209 	struct brcmnand_host *host = nand_get_controller_data(chip);
2210 
2211 	brcmnand_set_ecc_enabled(host, 0);
2212 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2213 		mtd->writesize >> FC_SHIFT,
2214 		NULL, (u8 *)chip->oob_poi);
2215 	brcmnand_set_ecc_enabled(host, 1);
2216 	return 0;
2217 }
2218 
2219 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2220 			  u64 addr, const u32 *buf, u8 *oob)
2221 {
2222 	struct brcmnand_host *host = nand_get_controller_data(chip);
2223 	struct brcmnand_controller *ctrl = host->ctrl;
2224 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2225 	int status, ret = 0;
2226 
2227 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2228 
2229 	if (unlikely((unsigned long)buf & 0x03)) {
2230 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2231 		buf = (u32 *)((unsigned long)buf & ~0x03);
2232 	}
2233 
2234 	brcmnand_wp(mtd, 0);
2235 
2236 	for (i = 0; i < ctrl->max_oob; i += 4)
2237 		oob_reg_write(ctrl, i, 0xffffffff);
2238 
2239 	if (mtd->oops_panic_write)
2240 		/* switch to interrupt polling and PIO mode */
2241 		disable_ctrl_irqs(ctrl);
2242 
2243 	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2244 		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2245 				    CMD_PROGRAM_PAGE))
2246 
2247 			ret = -EIO;
2248 
2249 		goto out;
2250 	}
2251 
2252 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2253 		/* full address MUST be set before populating FC */
2254 		brcmnand_set_cmd_addr(mtd, addr);
2255 
2256 		if (buf) {
2257 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2258 
2259 			for (j = 0; j < FC_WORDS; j++, buf++)
2260 				brcmnand_write_fc(ctrl, j, *buf);
2261 
2262 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2263 		} else if (oob) {
2264 			for (j = 0; j < FC_WORDS; j++)
2265 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2266 		}
2267 
2268 		if (oob) {
2269 			oob += write_oob_to_regs(ctrl, i, oob,
2270 					mtd->oobsize / trans,
2271 					host->hwcfg.sector_size_1k);
2272 		}
2273 
2274 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2275 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2276 		status = brcmnand_waitfunc(chip);
2277 
2278 		if (status & NAND_STATUS_FAIL) {
2279 			dev_info(ctrl->dev, "program failed at %llx\n",
2280 				(unsigned long long)addr);
2281 			ret = -EIO;
2282 			goto out;
2283 		}
2284 	}
2285 out:
2286 	brcmnand_wp(mtd, 1);
2287 	return ret;
2288 }
2289 
2290 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2291 			       int oob_required, int page)
2292 {
2293 	struct mtd_info *mtd = nand_to_mtd(chip);
2294 	struct brcmnand_host *host = nand_get_controller_data(chip);
2295 	void *oob = oob_required ? chip->oob_poi : NULL;
2296 	u64 addr = (u64)page << chip->page_shift;
2297 
2298 	host->last_addr = addr;
2299 
2300 	return brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2301 }
2302 
2303 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2304 				   int oob_required, int page)
2305 {
2306 	struct mtd_info *mtd = nand_to_mtd(chip);
2307 	struct brcmnand_host *host = nand_get_controller_data(chip);
2308 	void *oob = oob_required ? chip->oob_poi : NULL;
2309 	u64 addr = (u64)page << chip->page_shift;
2310 	int ret = 0;
2311 
2312 	host->last_addr = addr;
2313 	brcmnand_set_ecc_enabled(host, 0);
2314 	ret = brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2315 	brcmnand_set_ecc_enabled(host, 1);
2316 
2317 	return ret;
2318 }
2319 
2320 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2321 {
2322 	return brcmnand_write(nand_to_mtd(chip), chip,
2323 			      (u64)page << chip->page_shift, NULL,
2324 			      chip->oob_poi);
2325 }
2326 
2327 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2328 {
2329 	struct mtd_info *mtd = nand_to_mtd(chip);
2330 	struct brcmnand_host *host = nand_get_controller_data(chip);
2331 	int ret;
2332 
2333 	brcmnand_set_ecc_enabled(host, 0);
2334 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2335 				 (u8 *)chip->oob_poi);
2336 	brcmnand_set_ecc_enabled(host, 1);
2337 
2338 	return ret;
2339 }
2340 
2341 static int brcmnand_exec_instr(struct brcmnand_host *host, int i,
2342 				const struct nand_operation *op)
2343 {
2344 	const struct nand_op_instr *instr = &op->instrs[i];
2345 	struct brcmnand_controller *ctrl = host->ctrl;
2346 	const u8 *out;
2347 	bool last_op;
2348 	int ret = 0;
2349 	u8 *in;
2350 
2351 	/*
2352 	 * The controller needs to be aware of the last command in the operation
2353 	 * (WAITRDY excepted).
2354 	 */
2355 	last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) ||
2356 		  ((i == (op->ninstrs - 2)) && (op->instrs[i+1].type == NAND_OP_WAITRDY_INSTR));
2357 
2358 	switch (instr->type) {
2359 	case NAND_OP_CMD_INSTR:
2360 		brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op);
2361 		break;
2362 
2363 	case NAND_OP_ADDR_INSTR:
2364 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
2365 			brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i],
2366 					      last_op && (i == (instr->ctx.addr.naddrs - 1)));
2367 		break;
2368 
2369 	case NAND_OP_DATA_IN_INSTR:
2370 		in = instr->ctx.data.buf.in;
2371 		for (i = 0; i < instr->ctx.data.len; i++) {
2372 			brcmnand_low_level_op(host, LL_OP_RD, 0,
2373 					      last_op && (i == (instr->ctx.data.len - 1)));
2374 			in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA);
2375 		}
2376 		break;
2377 
2378 	case NAND_OP_DATA_OUT_INSTR:
2379 		out = instr->ctx.data.buf.out;
2380 		for (i = 0; i < instr->ctx.data.len; i++)
2381 			brcmnand_low_level_op(host, LL_OP_WR, out[i],
2382 					      last_op && (i == (instr->ctx.data.len - 1)));
2383 		break;
2384 
2385 	case NAND_OP_WAITRDY_INSTR:
2386 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2387 		break;
2388 
2389 	default:
2390 		dev_err(ctrl->dev, "unsupported instruction type: %d\n",
2391 			instr->type);
2392 		ret = -EINVAL;
2393 		break;
2394 	}
2395 
2396 	return ret;
2397 }
2398 
2399 static int brcmnand_op_is_status(const struct nand_operation *op)
2400 {
2401 	if ((op->ninstrs == 2) &&
2402 	    (op->instrs[0].type == NAND_OP_CMD_INSTR) &&
2403 	    (op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS) &&
2404 	    (op->instrs[1].type == NAND_OP_DATA_IN_INSTR))
2405 		return 1;
2406 
2407 	return 0;
2408 }
2409 
2410 static int brcmnand_op_is_reset(const struct nand_operation *op)
2411 {
2412 	if ((op->ninstrs == 2) &&
2413 	    (op->instrs[0].type == NAND_OP_CMD_INSTR) &&
2414 	    (op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET) &&
2415 	    (op->instrs[1].type == NAND_OP_WAITRDY_INSTR))
2416 		return 1;
2417 
2418 	return 0;
2419 }
2420 
2421 static int brcmnand_exec_op(struct nand_chip *chip,
2422 			    const struct nand_operation *op,
2423 			    bool check_only)
2424 {
2425 	struct brcmnand_host *host = nand_get_controller_data(chip);
2426 	struct mtd_info *mtd = nand_to_mtd(chip);
2427 	u8 *status;
2428 	unsigned int i;
2429 	int ret = 0;
2430 
2431 	if (check_only)
2432 		return 0;
2433 
2434 	if (brcmnand_op_is_status(op)) {
2435 		status = op->instrs[1].ctx.data.buf.in;
2436 		*status = brcmnand_status(host);
2437 
2438 		return 0;
2439 	}
2440 	else if (brcmnand_op_is_reset(op)) {
2441 		ret = brcmnand_reset(host);
2442 		if (ret < 0)
2443 			return ret;
2444 
2445 		brcmnand_wp(mtd, 1);
2446 
2447 		return 0;
2448 	}
2449 
2450 	if (op->deassert_wp)
2451 		brcmnand_wp(mtd, 0);
2452 
2453 	for (i = 0; i < op->ninstrs; i++) {
2454 		ret = brcmnand_exec_instr(host, i, op);
2455 		if (ret)
2456 			break;
2457 	}
2458 
2459 	if (op->deassert_wp)
2460 		brcmnand_wp(mtd, 1);
2461 
2462 	return ret;
2463 }
2464 
2465 /***********************************************************************
2466  * Per-CS setup (1 NAND device)
2467  ***********************************************************************/
2468 
2469 static int brcmnand_set_cfg(struct brcmnand_host *host,
2470 			    struct brcmnand_cfg *cfg)
2471 {
2472 	struct brcmnand_controller *ctrl = host->ctrl;
2473 	struct nand_chip *chip = &host->chip;
2474 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2475 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2476 			BRCMNAND_CS_CFG_EXT);
2477 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2478 			BRCMNAND_CS_ACC_CONTROL);
2479 	u8 block_size = 0, page_size = 0, device_size = 0;
2480 	u32 tmp;
2481 
2482 	if (ctrl->block_sizes) {
2483 		int i, found;
2484 
2485 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2486 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2487 				block_size = i;
2488 				found = 1;
2489 			}
2490 		if (!found) {
2491 			dev_warn(ctrl->dev, "invalid block size %u\n",
2492 					cfg->block_size);
2493 			return -EINVAL;
2494 		}
2495 	} else {
2496 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2497 	}
2498 
2499 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2500 				cfg->block_size > ctrl->max_block_size)) {
2501 		dev_warn(ctrl->dev, "invalid block size %u\n",
2502 				cfg->block_size);
2503 		block_size = 0;
2504 	}
2505 
2506 	if (ctrl->page_sizes) {
2507 		int i, found;
2508 
2509 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2510 			if (ctrl->page_sizes[i] == cfg->page_size) {
2511 				page_size = i;
2512 				found = 1;
2513 			}
2514 		if (!found) {
2515 			dev_warn(ctrl->dev, "invalid page size %u\n",
2516 					cfg->page_size);
2517 			return -EINVAL;
2518 		}
2519 	} else {
2520 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2521 	}
2522 
2523 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2524 				cfg->page_size > ctrl->max_page_size)) {
2525 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2526 		return -EINVAL;
2527 	}
2528 
2529 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2530 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2531 			(unsigned long long)cfg->device_size);
2532 		return -EINVAL;
2533 	}
2534 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2535 
2536 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2537 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2538 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2539 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2540 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2541 	if (cfg_offs == cfg_ext_offs) {
2542 		tmp |= (page_size << ctrl->page_size_shift) |
2543 		       (block_size << CFG_BLK_SIZE_SHIFT);
2544 		nand_writereg(ctrl, cfg_offs, tmp);
2545 	} else {
2546 		nand_writereg(ctrl, cfg_offs, tmp);
2547 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2548 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2549 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2550 	}
2551 
2552 	tmp = nand_readreg(ctrl, acc_control_offs);
2553 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2554 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2555 	if (ctrl->nand_version >= 0x0302) {
2556 		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2557 		tmp |= cfg->spare_area_size;
2558 	}
2559 	nand_writereg(ctrl, acc_control_offs, tmp);
2560 
2561 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2562 
2563 	/* threshold = ceil(BCH-level * 0.75) */
2564 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2565 
2566 	return 0;
2567 }
2568 
2569 static void brcmnand_print_cfg(struct brcmnand_host *host,
2570 			       char *buf, struct brcmnand_cfg *cfg)
2571 {
2572 	buf += sprintf(buf,
2573 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2574 		(unsigned long long)cfg->device_size >> 20,
2575 		cfg->block_size >> 10,
2576 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2577 		cfg->page_size >= 1024 ? "KiB" : "B",
2578 		cfg->spare_area_size, cfg->device_width);
2579 
2580 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2581 	if (is_hamming_ecc(host->ctrl, cfg))
2582 		sprintf(buf, ", Hamming ECC");
2583 	else if (cfg->sector_size_1k)
2584 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2585 	else
2586 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2587 }
2588 
2589 /*
2590  * Minimum number of bytes to address a page. Calculated as:
2591  *     roundup(log2(size / page-size) / 8)
2592  *
2593  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2594  *     OK because many other things will break if 'size' is irregular...
2595  */
2596 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2597 {
2598 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2599 }
2600 
2601 static int brcmnand_setup_dev(struct brcmnand_host *host)
2602 {
2603 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2604 	struct nand_chip *chip = &host->chip;
2605 	const struct nand_ecc_props *requirements =
2606 		nanddev_get_ecc_requirements(&chip->base);
2607 	struct nand_memory_organization *memorg =
2608 		nanddev_get_memorg(&chip->base);
2609 	struct brcmnand_controller *ctrl = host->ctrl;
2610 	struct brcmnand_cfg *cfg = &host->hwcfg;
2611 	char msg[128];
2612 	u32 offs, tmp, oob_sector;
2613 	int ret;
2614 
2615 	memset(cfg, 0, sizeof(*cfg));
2616 
2617 	ret = of_property_read_u32(nand_get_flash_node(chip),
2618 				   "brcm,nand-oob-sector-size",
2619 				   &oob_sector);
2620 	if (ret) {
2621 		/* Use detected size */
2622 		cfg->spare_area_size = mtd->oobsize /
2623 					(mtd->writesize >> FC_SHIFT);
2624 	} else {
2625 		cfg->spare_area_size = oob_sector;
2626 	}
2627 	if (cfg->spare_area_size > ctrl->max_oob)
2628 		cfg->spare_area_size = ctrl->max_oob;
2629 	/*
2630 	 * Set mtd and memorg oobsize to be consistent with controller's
2631 	 * spare_area_size, as the rest is inaccessible.
2632 	 */
2633 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2634 	memorg->oobsize = mtd->oobsize;
2635 
2636 	cfg->device_size = mtd->size;
2637 	cfg->block_size = mtd->erasesize;
2638 	cfg->page_size = mtd->writesize;
2639 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2640 	cfg->col_adr_bytes = 2;
2641 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2642 
2643 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2644 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2645 			chip->ecc.engine_type);
2646 		return -EINVAL;
2647 	}
2648 
2649 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2650 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2651 			/* Default to Hamming for 1-bit ECC, if unspecified */
2652 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2653 		else
2654 			/* Otherwise, BCH */
2655 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2656 	}
2657 
2658 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2659 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2660 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2661 			chip->ecc.strength, chip->ecc.size);
2662 		return -EINVAL;
2663 	}
2664 
2665 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2666 	    (!chip->ecc.size || !chip->ecc.strength)) {
2667 		if (requirements->step_size && requirements->strength) {
2668 			/* use detected ECC parameters */
2669 			chip->ecc.size = requirements->step_size;
2670 			chip->ecc.strength = requirements->strength;
2671 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2672 				chip->ecc.size, chip->ecc.strength);
2673 		}
2674 	}
2675 
2676 	switch (chip->ecc.size) {
2677 	case 512:
2678 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2679 			cfg->ecc_level = 15;
2680 		else
2681 			cfg->ecc_level = chip->ecc.strength;
2682 		cfg->sector_size_1k = 0;
2683 		break;
2684 	case 1024:
2685 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2686 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2687 			return -EINVAL;
2688 		}
2689 		if (chip->ecc.strength & 0x1) {
2690 			dev_err(ctrl->dev,
2691 				"odd ECC not supported with 1KB sectors\n");
2692 			return -EINVAL;
2693 		}
2694 
2695 		cfg->ecc_level = chip->ecc.strength >> 1;
2696 		cfg->sector_size_1k = 1;
2697 		break;
2698 	default:
2699 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2700 			chip->ecc.size);
2701 		return -EINVAL;
2702 	}
2703 
2704 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2705 	if (mtd->writesize > 512)
2706 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2707 	else
2708 		cfg->ful_adr_bytes += 1;
2709 
2710 	ret = brcmnand_set_cfg(host, cfg);
2711 	if (ret)
2712 		return ret;
2713 
2714 	brcmnand_set_ecc_enabled(host, 1);
2715 
2716 	brcmnand_print_cfg(host, msg, cfg);
2717 	dev_info(ctrl->dev, "detected %s\n", msg);
2718 
2719 	/* Configure ACC_CONTROL */
2720 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2721 	tmp = nand_readreg(ctrl, offs);
2722 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2723 	tmp &= ~ACC_CONTROL_RD_ERASED;
2724 
2725 	/* We need to turn on Read from erased paged protected by ECC */
2726 	if (ctrl->nand_version >= 0x0702)
2727 		tmp |= ACC_CONTROL_RD_ERASED;
2728 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2729 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2730 		tmp &= ~ACC_CONTROL_PREFETCH;
2731 
2732 	nand_writereg(ctrl, offs, tmp);
2733 
2734 	return 0;
2735 }
2736 
2737 static int brcmnand_attach_chip(struct nand_chip *chip)
2738 {
2739 	struct mtd_info *mtd = nand_to_mtd(chip);
2740 	struct brcmnand_host *host = nand_get_controller_data(chip);
2741 	int ret;
2742 
2743 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2744 	/*
2745 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2746 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2747 	 * needed.
2748 	 */
2749 	chip->options |= NAND_USES_DMA;
2750 
2751 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2752 		chip->bbt_options |= NAND_BBT_NO_OOB;
2753 
2754 	if (brcmnand_setup_dev(host))
2755 		return -ENXIO;
2756 
2757 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2758 
2759 	/* only use our internal HW threshold */
2760 	mtd->bitflip_threshold = 1;
2761 
2762 	ret = brcmstb_choose_ecc_layout(host);
2763 
2764 	/* If OOB is written with ECC enabled it will cause ECC errors */
2765 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2766 		chip->ecc.write_oob = brcmnand_write_oob_raw;
2767 		chip->ecc.read_oob = brcmnand_read_oob_raw;
2768 	}
2769 
2770 	return ret;
2771 }
2772 
2773 static const struct nand_controller_ops brcmnand_controller_ops = {
2774 	.attach_chip = brcmnand_attach_chip,
2775 	.exec_op = brcmnand_exec_op,
2776 };
2777 
2778 static int brcmnand_init_cs(struct brcmnand_host *host,
2779 			    const char * const *part_probe_types)
2780 {
2781 	struct brcmnand_controller *ctrl = host->ctrl;
2782 	struct device *dev = ctrl->dev;
2783 	struct mtd_info *mtd;
2784 	struct nand_chip *chip;
2785 	int ret;
2786 	u16 cfg_offs;
2787 
2788 	mtd = nand_to_mtd(&host->chip);
2789 	chip = &host->chip;
2790 
2791 	nand_set_controller_data(chip, host);
2792 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2793 				   host->cs);
2794 	if (!mtd->name)
2795 		return -ENOMEM;
2796 
2797 	mtd->owner = THIS_MODULE;
2798 	mtd->dev.parent = dev;
2799 
2800 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2801 	chip->ecc.read_page = brcmnand_read_page;
2802 	chip->ecc.write_page = brcmnand_write_page;
2803 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2804 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2805 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2806 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2807 	chip->ecc.read_oob = brcmnand_read_oob;
2808 	chip->ecc.write_oob = brcmnand_write_oob;
2809 
2810 	chip->controller = &ctrl->controller;
2811 	ctrl->controller.controller_wp = 1;
2812 
2813 	/*
2814 	 * The bootloader might have configured 16bit mode but
2815 	 * NAND READID command only works in 8bit mode. We force
2816 	 * 8bit mode here to ensure that NAND READID commands works.
2817 	 */
2818 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2819 	nand_writereg(ctrl, cfg_offs,
2820 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2821 
2822 	ret = nand_scan(chip, 1);
2823 	if (ret)
2824 		return ret;
2825 
2826 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2827 	if (ret)
2828 		nand_cleanup(chip);
2829 
2830 	return ret;
2831 }
2832 
2833 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2834 					    int restore)
2835 {
2836 	struct brcmnand_controller *ctrl = host->ctrl;
2837 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2838 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2839 			BRCMNAND_CS_CFG_EXT);
2840 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2841 			BRCMNAND_CS_ACC_CONTROL);
2842 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2843 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2844 
2845 	if (restore) {
2846 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2847 		if (cfg_offs != cfg_ext_offs)
2848 			nand_writereg(ctrl, cfg_ext_offs,
2849 				      host->hwcfg.config_ext);
2850 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2851 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2852 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2853 	} else {
2854 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2855 		if (cfg_offs != cfg_ext_offs)
2856 			host->hwcfg.config_ext =
2857 				nand_readreg(ctrl, cfg_ext_offs);
2858 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2859 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2860 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2861 	}
2862 }
2863 
2864 static int brcmnand_suspend(struct device *dev)
2865 {
2866 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2867 	struct brcmnand_host *host;
2868 
2869 	list_for_each_entry(host, &ctrl->host_list, node)
2870 		brcmnand_save_restore_cs_config(host, 0);
2871 
2872 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2873 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2874 	ctrl->corr_stat_threshold =
2875 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2876 
2877 	if (has_flash_dma(ctrl))
2878 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2879 	else if (has_edu(ctrl))
2880 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2881 
2882 	return 0;
2883 }
2884 
2885 static int brcmnand_resume(struct device *dev)
2886 {
2887 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2888 	struct brcmnand_host *host;
2889 
2890 	if (has_flash_dma(ctrl)) {
2891 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2892 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2893 	}
2894 
2895 	if (has_edu(ctrl)) {
2896 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2897 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2898 		edu_readl(ctrl, EDU_CONFIG);
2899 		brcmnand_edu_init(ctrl);
2900 	}
2901 
2902 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2903 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2904 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2905 			ctrl->corr_stat_threshold);
2906 	if (ctrl->soc) {
2907 		/* Clear/re-enable interrupt */
2908 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2909 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2910 	}
2911 
2912 	list_for_each_entry(host, &ctrl->host_list, node) {
2913 		struct nand_chip *chip = &host->chip;
2914 
2915 		brcmnand_save_restore_cs_config(host, 1);
2916 
2917 		/* Reset the chip, required by some chips after power-up */
2918 		nand_reset_op(chip);
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 const struct dev_pm_ops brcmnand_pm_ops = {
2925 	.suspend		= brcmnand_suspend,
2926 	.resume			= brcmnand_resume,
2927 };
2928 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2929 
2930 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
2931 	{ .compatible = "brcm,brcmnand-v2.1" },
2932 	{ .compatible = "brcm,brcmnand-v2.2" },
2933 	{ .compatible = "brcm,brcmnand-v4.0" },
2934 	{ .compatible = "brcm,brcmnand-v5.0" },
2935 	{ .compatible = "brcm,brcmnand-v6.0" },
2936 	{ .compatible = "brcm,brcmnand-v6.1" },
2937 	{ .compatible = "brcm,brcmnand-v6.2" },
2938 	{ .compatible = "brcm,brcmnand-v7.0" },
2939 	{ .compatible = "brcm,brcmnand-v7.1" },
2940 	{ .compatible = "brcm,brcmnand-v7.2" },
2941 	{ .compatible = "brcm,brcmnand-v7.3" },
2942 	{},
2943 };
2944 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2945 
2946 /***********************************************************************
2947  * Platform driver setup (per controller)
2948  ***********************************************************************/
2949 static int brcmnand_edu_setup(struct platform_device *pdev)
2950 {
2951 	struct device *dev = &pdev->dev;
2952 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2953 	struct resource *res;
2954 	int ret;
2955 
2956 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2957 	if (res) {
2958 		ctrl->edu_base = devm_ioremap_resource(dev, res);
2959 		if (IS_ERR(ctrl->edu_base))
2960 			return PTR_ERR(ctrl->edu_base);
2961 
2962 		ctrl->edu_offsets = edu_regs;
2963 
2964 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2965 			   EDU_CONFIG_SWAP_CFG);
2966 		edu_readl(ctrl, EDU_CONFIG);
2967 
2968 		/* initialize edu */
2969 		brcmnand_edu_init(ctrl);
2970 
2971 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2972 		if (ctrl->edu_irq < 0) {
2973 			dev_warn(dev,
2974 				 "FLASH EDU enabled, using ctlrdy irq\n");
2975 		} else {
2976 			ret = devm_request_irq(dev, ctrl->edu_irq,
2977 					       brcmnand_edu_irq, 0,
2978 					       "brcmnand-edu", ctrl);
2979 			if (ret < 0) {
2980 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2981 					ctrl->edu_irq, ret);
2982 				return ret;
2983 			}
2984 
2985 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
2986 				 ctrl->edu_irq);
2987 		}
2988 	}
2989 
2990 	return 0;
2991 }
2992 
2993 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2994 {
2995 	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
2996 	struct device *dev = &pdev->dev;
2997 	struct device_node *dn = dev->of_node, *child;
2998 	struct brcmnand_controller *ctrl;
2999 	struct brcmnand_host *host;
3000 	struct resource *res;
3001 	int ret;
3002 
3003 	if (dn && !of_match_node(brcmnand_of_match, dn))
3004 		return -ENODEV;
3005 
3006 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3007 	if (!ctrl)
3008 		return -ENOMEM;
3009 
3010 	dev_set_drvdata(dev, ctrl);
3011 	ctrl->dev = dev;
3012 	ctrl->soc = soc;
3013 
3014 	/* Enable the static key if the soc provides I/O operations indicating
3015 	 * that a non-memory mapped IO access path must be used
3016 	 */
3017 	if (brcmnand_soc_has_ops(ctrl->soc))
3018 		static_branch_enable(&brcmnand_soc_has_ops_key);
3019 
3020 	init_completion(&ctrl->done);
3021 	init_completion(&ctrl->dma_done);
3022 	init_completion(&ctrl->edu_done);
3023 	nand_controller_init(&ctrl->controller);
3024 	ctrl->controller.ops = &brcmnand_controller_ops;
3025 	INIT_LIST_HEAD(&ctrl->host_list);
3026 
3027 	/* NAND register range */
3028 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3029 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3030 	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3031 		return PTR_ERR(ctrl->nand_base);
3032 
3033 	/* Enable clock before using NAND registers */
3034 	ctrl->clk = devm_clk_get(dev, "nand");
3035 	if (!IS_ERR(ctrl->clk)) {
3036 		ret = clk_prepare_enable(ctrl->clk);
3037 		if (ret)
3038 			return ret;
3039 	} else {
3040 		ret = PTR_ERR(ctrl->clk);
3041 		if (ret == -EPROBE_DEFER)
3042 			return ret;
3043 
3044 		ctrl->clk = NULL;
3045 	}
3046 
3047 	/* Initialize NAND revision */
3048 	ret = brcmnand_revision_init(ctrl);
3049 	if (ret)
3050 		goto err;
3051 
3052 	/*
3053 	 * Most chips have this cache at a fixed offset within 'nand' block.
3054 	 * Some must specify this region separately.
3055 	 */
3056 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3057 	if (res) {
3058 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3059 		if (IS_ERR(ctrl->nand_fc)) {
3060 			ret = PTR_ERR(ctrl->nand_fc);
3061 			goto err;
3062 		}
3063 	} else {
3064 		ctrl->nand_fc = ctrl->nand_base +
3065 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3066 	}
3067 
3068 	/* FLASH_DMA */
3069 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3070 	if (res) {
3071 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3072 		if (IS_ERR(ctrl->flash_dma_base)) {
3073 			ret = PTR_ERR(ctrl->flash_dma_base);
3074 			goto err;
3075 		}
3076 
3077 		/* initialize the dma version */
3078 		brcmnand_flash_dma_revision_init(ctrl);
3079 
3080 		ret = -EIO;
3081 		if (ctrl->nand_version >= 0x0700)
3082 			ret = dma_set_mask_and_coherent(&pdev->dev,
3083 							DMA_BIT_MASK(40));
3084 		if (ret)
3085 			ret = dma_set_mask_and_coherent(&pdev->dev,
3086 							DMA_BIT_MASK(32));
3087 		if (ret)
3088 			goto err;
3089 
3090 		/* linked-list and stop on error */
3091 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3092 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3093 
3094 		/* Allocate descriptor(s) */
3095 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3096 						     sizeof(*ctrl->dma_desc),
3097 						     &ctrl->dma_pa, GFP_KERNEL);
3098 		if (!ctrl->dma_desc) {
3099 			ret = -ENOMEM;
3100 			goto err;
3101 		}
3102 
3103 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3104 		if ((int)ctrl->dma_irq < 0) {
3105 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3106 			ret = -ENODEV;
3107 			goto err;
3108 		}
3109 
3110 		ret = devm_request_irq(dev, ctrl->dma_irq,
3111 				brcmnand_dma_irq, 0, DRV_NAME,
3112 				ctrl);
3113 		if (ret < 0) {
3114 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3115 					ctrl->dma_irq, ret);
3116 			goto err;
3117 		}
3118 
3119 		dev_info(dev, "enabling FLASH_DMA\n");
3120 		/* set flash dma transfer function to call */
3121 		ctrl->dma_trans = brcmnand_dma_trans;
3122 	} else	{
3123 		ret = brcmnand_edu_setup(pdev);
3124 		if (ret < 0)
3125 			goto err;
3126 
3127 		if (has_edu(ctrl))
3128 			/* set edu transfer function to call */
3129 			ctrl->dma_trans = brcmnand_edu_trans;
3130 	}
3131 
3132 	/* Disable automatic device ID config, direct addressing */
3133 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3134 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3135 	/* Disable XOR addressing */
3136 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3137 
3138 	if (ctrl->features & BRCMNAND_HAS_WP) {
3139 		/* Permanently disable write protection */
3140 		if (wp_on == 2)
3141 			brcmnand_set_wp(ctrl, false);
3142 	} else {
3143 		wp_on = 0;
3144 	}
3145 
3146 	/* IRQ */
3147 	ctrl->irq = platform_get_irq_optional(pdev, 0);
3148 	if (ctrl->irq > 0) {
3149 		/*
3150 		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3151 		 * interesting ways
3152 		 */
3153 		if (soc) {
3154 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3155 					       DRV_NAME, ctrl);
3156 
3157 			/* Enable interrupt */
3158 			ctrl->soc->ctlrdy_ack(ctrl->soc);
3159 			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3160 		} else {
3161 			/* Use standard interrupt infrastructure */
3162 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3163 					       DRV_NAME, ctrl);
3164 		}
3165 		if (ret < 0) {
3166 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3167 				ctrl->irq, ret);
3168 			goto err;
3169 		}
3170 	}
3171 
3172 	for_each_available_child_of_node(dn, child) {
3173 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3174 
3175 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3176 			if (!host) {
3177 				of_node_put(child);
3178 				ret = -ENOMEM;
3179 				goto err;
3180 			}
3181 			host->pdev = pdev;
3182 			host->ctrl = ctrl;
3183 
3184 			ret = of_property_read_u32(child, "reg", &host->cs);
3185 			if (ret) {
3186 				dev_err(dev, "can't get chip-select\n");
3187 				devm_kfree(dev, host);
3188 				continue;
3189 			}
3190 
3191 			nand_set_flash_node(&host->chip, child);
3192 
3193 			ret = brcmnand_init_cs(host, NULL);
3194 			if (ret) {
3195 				if (ret == -EPROBE_DEFER) {
3196 					of_node_put(child);
3197 					goto err;
3198 				}
3199 				devm_kfree(dev, host);
3200 				continue; /* Try all chip-selects */
3201 			}
3202 
3203 			list_add_tail(&host->node, &ctrl->host_list);
3204 		}
3205 	}
3206 
3207 	if (!list_empty(&ctrl->host_list))
3208 		return 0;
3209 
3210 	if (!pd) {
3211 		ret = -ENODEV;
3212 		goto err;
3213 	}
3214 
3215 	/* If we got there we must have been probing via platform data */
3216 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3217 	if (!host) {
3218 		ret = -ENOMEM;
3219 		goto err;
3220 	}
3221 	host->pdev = pdev;
3222 	host->ctrl = ctrl;
3223 	host->cs = pd->chip_select;
3224 	host->chip.ecc.size = pd->ecc_stepsize;
3225 	host->chip.ecc.strength = pd->ecc_strength;
3226 
3227 	ret = brcmnand_init_cs(host, pd->part_probe_types);
3228 	if (ret)
3229 		goto err;
3230 
3231 	list_add_tail(&host->node, &ctrl->host_list);
3232 
3233 	/* No chip-selects could initialize properly */
3234 	if (list_empty(&ctrl->host_list)) {
3235 		ret = -ENODEV;
3236 		goto err;
3237 	}
3238 
3239 	return 0;
3240 
3241 err:
3242 	clk_disable_unprepare(ctrl->clk);
3243 	return ret;
3244 
3245 }
3246 EXPORT_SYMBOL_GPL(brcmnand_probe);
3247 
3248 void brcmnand_remove(struct platform_device *pdev)
3249 {
3250 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3251 	struct brcmnand_host *host;
3252 	struct nand_chip *chip;
3253 	int ret;
3254 
3255 	list_for_each_entry(host, &ctrl->host_list, node) {
3256 		chip = &host->chip;
3257 		ret = mtd_device_unregister(nand_to_mtd(chip));
3258 		WARN_ON(ret);
3259 		nand_cleanup(chip);
3260 	}
3261 
3262 	clk_disable_unprepare(ctrl->clk);
3263 
3264 	dev_set_drvdata(&pdev->dev, NULL);
3265 }
3266 EXPORT_SYMBOL_GPL(brcmnand_remove);
3267 
3268 MODULE_LICENSE("GPL v2");
3269 MODULE_AUTHOR("Kevin Cernekee");
3270 MODULE_AUTHOR("Brian Norris");
3271 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3272 MODULE_ALIAS("platform:brcmnand");
3273