xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision df9c299371054cb725eef730fd0f1d0fe2ed6bb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32 
33 #include "brcmnand.h"
34 
35 /*
36  * This flag controls if WP stays on between erase/write commands to mitigate
37  * flash corruption due to power glitches. Values:
38  * 0: NAND_WP is not used or not available
39  * 1: NAND_WP is set by default, cleared for erase/write operations
40  * 2: NAND_WP is always cleared
41  */
42 static int wp_on = 1;
43 module_param(wp_on, int, 0444);
44 
45 /***********************************************************************
46  * Definitions
47  ***********************************************************************/
48 
49 #define DRV_NAME			"brcmnand"
50 
51 #define CMD_NULL			0x00
52 #define CMD_PAGE_READ			0x01
53 #define CMD_SPARE_AREA_READ		0x02
54 #define CMD_STATUS_READ			0x03
55 #define CMD_PROGRAM_PAGE		0x04
56 #define CMD_PROGRAM_SPARE_AREA		0x05
57 #define CMD_COPY_BACK			0x06
58 #define CMD_DEVICE_ID_READ		0x07
59 #define CMD_BLOCK_ERASE			0x08
60 #define CMD_FLASH_RESET			0x09
61 #define CMD_BLOCKS_LOCK			0x0a
62 #define CMD_BLOCKS_LOCK_DOWN		0x0b
63 #define CMD_BLOCKS_UNLOCK		0x0c
64 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65 #define CMD_PARAMETER_READ		0x0e
66 #define CMD_PARAMETER_CHANGE_COL	0x0f
67 #define CMD_LOW_LEVEL_OP		0x10
68 #define CMD_NOT_SUPPORTED		0xff
69 
70 struct brcm_nand_dma_desc {
71 	u32 next_desc;
72 	u32 next_desc_ext;
73 	u32 cmd_irq;
74 	u32 dram_addr;
75 	u32 dram_addr_ext;
76 	u32 tfr_len;
77 	u32 total_len;
78 	u32 flash_addr;
79 	u32 flash_addr_ext;
80 	u32 cs;
81 	u32 pad2[5];
82 	u32 status_valid;
83 } __packed;
84 
85 /* Bitfields for brcm_nand_dma_desc::status_valid */
86 #define FLASH_DMA_ECC_ERROR	(1 << 8)
87 #define FLASH_DMA_CORR_ERROR	(1 << 9)
88 
89 /* Bitfields for DMA_MODE */
90 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
91 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
92 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
93 						FLASH_DMA_MODE_MODE)
94 
95 /* 512B flash cache in the NAND controller HW */
96 #define FC_SHIFT		9U
97 #define FC_BYTES		512U
98 #define FC_WORDS		(FC_BYTES >> 2)
99 
100 #define BRCMNAND_MIN_PAGESIZE	512
101 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
102 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
103 
104 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
105 #define NAND_POLL_STATUS_TIMEOUT_MS	500
106 
107 #define EDU_CMD_WRITE          0x00
108 #define EDU_CMD_READ           0x01
109 #define EDU_STATUS_ACTIVE      BIT(0)
110 #define EDU_ERR_STATUS_ERRACK  BIT(0)
111 #define EDU_DONE_MASK		GENMASK(1, 0)
112 
113 #define EDU_CONFIG_MODE_NAND   BIT(0)
114 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
115 #ifdef CONFIG_CPU_BIG_ENDIAN
116 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
117 #else
118 #define EDU_CONFIG_SWAP_CFG     0
119 #endif
120 
121 /* edu registers */
122 enum edu_reg {
123 	EDU_CONFIG = 0,
124 	EDU_DRAM_ADDR,
125 	EDU_EXT_ADDR,
126 	EDU_LENGTH,
127 	EDU_CMD,
128 	EDU_STOP,
129 	EDU_STATUS,
130 	EDU_DONE,
131 	EDU_ERR_STATUS,
132 };
133 
134 static const u16  edu_regs[] = {
135 	[EDU_CONFIG] = 0x00,
136 	[EDU_DRAM_ADDR] = 0x04,
137 	[EDU_EXT_ADDR] = 0x08,
138 	[EDU_LENGTH] = 0x0c,
139 	[EDU_CMD] = 0x10,
140 	[EDU_STOP] = 0x14,
141 	[EDU_STATUS] = 0x18,
142 	[EDU_DONE] = 0x1c,
143 	[EDU_ERR_STATUS] = 0x20,
144 };
145 
146 /* flash_dma registers */
147 enum flash_dma_reg {
148 	FLASH_DMA_REVISION = 0,
149 	FLASH_DMA_FIRST_DESC,
150 	FLASH_DMA_FIRST_DESC_EXT,
151 	FLASH_DMA_CTRL,
152 	FLASH_DMA_MODE,
153 	FLASH_DMA_STATUS,
154 	FLASH_DMA_INTERRUPT_DESC,
155 	FLASH_DMA_INTERRUPT_DESC_EXT,
156 	FLASH_DMA_ERROR_STATUS,
157 	FLASH_DMA_CURRENT_DESC,
158 	FLASH_DMA_CURRENT_DESC_EXT,
159 };
160 
161 /* flash_dma registers v0*/
162 static const u16 flash_dma_regs_v0[] = {
163 	[FLASH_DMA_REVISION]		= 0x00,
164 	[FLASH_DMA_FIRST_DESC]		= 0x04,
165 	[FLASH_DMA_CTRL]		= 0x08,
166 	[FLASH_DMA_MODE]		= 0x0c,
167 	[FLASH_DMA_STATUS]		= 0x10,
168 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
169 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
170 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
171 };
172 
173 /* flash_dma registers v1*/
174 static const u16 flash_dma_regs_v1[] = {
175 	[FLASH_DMA_REVISION]		= 0x00,
176 	[FLASH_DMA_FIRST_DESC]		= 0x04,
177 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
178 	[FLASH_DMA_CTRL]		= 0x0c,
179 	[FLASH_DMA_MODE]		= 0x10,
180 	[FLASH_DMA_STATUS]		= 0x14,
181 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
182 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
183 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
184 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
185 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
186 };
187 
188 /* flash_dma registers v4 */
189 static const u16 flash_dma_regs_v4[] = {
190 	[FLASH_DMA_REVISION]		= 0x00,
191 	[FLASH_DMA_FIRST_DESC]		= 0x08,
192 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
193 	[FLASH_DMA_CTRL]		= 0x10,
194 	[FLASH_DMA_MODE]		= 0x14,
195 	[FLASH_DMA_STATUS]		= 0x18,
196 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
197 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
198 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
199 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
200 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
201 };
202 
203 /* Native command conversion for legacy controllers (< v5.0) */
204 static const u8 native_cmd_conv[] = {
205 	[NAND_CMD_READ0]	= CMD_NOT_SUPPORTED,
206 	[NAND_CMD_READ1]	= CMD_NOT_SUPPORTED,
207 	[NAND_CMD_RNDOUT]	= CMD_PARAMETER_CHANGE_COL,
208 	[NAND_CMD_PAGEPROG]	= CMD_NOT_SUPPORTED,
209 	[NAND_CMD_READOOB]	= CMD_NOT_SUPPORTED,
210 	[NAND_CMD_ERASE1]	= CMD_BLOCK_ERASE,
211 	[NAND_CMD_STATUS]	= CMD_NOT_SUPPORTED,
212 	[NAND_CMD_SEQIN]	= CMD_NOT_SUPPORTED,
213 	[NAND_CMD_RNDIN]	= CMD_NOT_SUPPORTED,
214 	[NAND_CMD_READID]	= CMD_DEVICE_ID_READ,
215 	[NAND_CMD_ERASE2]	= CMD_NULL,
216 	[NAND_CMD_PARAM]	= CMD_PARAMETER_READ,
217 	[NAND_CMD_GET_FEATURES]	= CMD_NOT_SUPPORTED,
218 	[NAND_CMD_SET_FEATURES]	= CMD_NOT_SUPPORTED,
219 	[NAND_CMD_RESET]	= CMD_NOT_SUPPORTED,
220 	[NAND_CMD_READSTART]	= CMD_NOT_SUPPORTED,
221 	[NAND_CMD_READCACHESEQ]	= CMD_NOT_SUPPORTED,
222 	[NAND_CMD_READCACHEEND]	= CMD_NOT_SUPPORTED,
223 	[NAND_CMD_RNDOUTSTART]	= CMD_NULL,
224 	[NAND_CMD_CACHEDPROG]	= CMD_NOT_SUPPORTED,
225 };
226 
227 /* Controller feature flags */
228 enum {
229 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
230 	BRCMNAND_HAS_PREFETCH			= BIT(1),
231 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
232 	BRCMNAND_HAS_WP				= BIT(3),
233 };
234 
235 struct brcmnand_host;
236 
237 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
238 
239 struct brcmnand_controller {
240 	struct device		*dev;
241 	struct nand_controller	controller;
242 	void __iomem		*nand_base;
243 	void __iomem		*nand_fc; /* flash cache */
244 	void __iomem		*flash_dma_base;
245 	int			irq;
246 	unsigned int		dma_irq;
247 	int			nand_version;
248 
249 	/* Some SoCs provide custom interrupt status register(s) */
250 	struct brcmnand_soc	*soc;
251 
252 	/* Some SoCs have a gateable clock for the controller */
253 	struct clk		*clk;
254 
255 	int			cmd_pending;
256 	bool			dma_pending;
257 	bool                    edu_pending;
258 	struct completion	done;
259 	struct completion	dma_done;
260 	struct completion       edu_done;
261 
262 	/* List of NAND hosts (one for each chip-select) */
263 	struct list_head host_list;
264 
265 	/* Functions to be called from exec_op */
266 	int (*check_instr)(struct nand_chip *chip,
267 			   const struct nand_operation *op);
268 	int (*exec_instr)(struct nand_chip *chip,
269 			  const struct nand_operation *op);
270 
271 	/* EDU info, per-transaction */
272 	const u16               *edu_offsets;
273 	void __iomem            *edu_base;
274 	int			edu_irq;
275 	int                     edu_count;
276 	u64                     edu_dram_addr;
277 	u32                     edu_ext_addr;
278 	u32                     edu_cmd;
279 	u32                     edu_config;
280 	int			sas; /* spare area size, per flash cache */
281 	int			sector_size_1k;
282 	u8			*oob;
283 
284 	/* flash_dma reg */
285 	const u16		*flash_dma_offsets;
286 	struct brcm_nand_dma_desc *dma_desc;
287 	dma_addr_t		dma_pa;
288 
289 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
290 			 u8 *oob, u32 len, u8 dma_cmd);
291 
292 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
293 	u8			flash_cache[FC_BYTES];
294 
295 	/* Controller revision details */
296 	const u16		*reg_offsets;
297 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
298 	const u8		*cs_offsets; /* within each chip-select */
299 	const u8		*cs0_offsets; /* within CS0, if different */
300 	unsigned int		max_block_size;
301 	const unsigned int	*block_sizes;
302 	unsigned int		max_page_size;
303 	const unsigned int	*page_sizes;
304 	unsigned int		page_size_shift;
305 	unsigned int		max_oob;
306 	u32			ecc_level_shift;
307 	u32			features;
308 
309 	/* for low-power standby/resume only */
310 	u32			nand_cs_nand_select;
311 	u32			nand_cs_nand_xor;
312 	u32			corr_stat_threshold;
313 	u32			flash_dma_mode;
314 	u32                     flash_edu_mode;
315 	bool			pio_poll_mode;
316 };
317 
318 struct brcmnand_cfg {
319 	u64			device_size;
320 	unsigned int		block_size;
321 	unsigned int		page_size;
322 	unsigned int		spare_area_size;
323 	unsigned int		device_width;
324 	unsigned int		col_adr_bytes;
325 	unsigned int		blk_adr_bytes;
326 	unsigned int		ful_adr_bytes;
327 	unsigned int		sector_size_1k;
328 	unsigned int		ecc_level;
329 	/* use for low-power standby/resume only */
330 	u32			acc_control;
331 	u32			config;
332 	u32			config_ext;
333 	u32			timing_1;
334 	u32			timing_2;
335 };
336 
337 struct brcmnand_host {
338 	struct list_head	node;
339 
340 	struct nand_chip	chip;
341 	struct platform_device	*pdev;
342 	int			cs;
343 
344 	struct brcmnand_cfg	hwcfg;
345 	struct brcmnand_controller *ctrl;
346 };
347 
348 enum brcmnand_reg {
349 	BRCMNAND_CMD_START = 0,
350 	BRCMNAND_CMD_EXT_ADDRESS,
351 	BRCMNAND_CMD_ADDRESS,
352 	BRCMNAND_INTFC_STATUS,
353 	BRCMNAND_CS_SELECT,
354 	BRCMNAND_CS_XOR,
355 	BRCMNAND_LL_OP,
356 	BRCMNAND_CS0_BASE,
357 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
358 	BRCMNAND_CORR_THRESHOLD,
359 	BRCMNAND_CORR_THRESHOLD_EXT,
360 	BRCMNAND_UNCORR_COUNT,
361 	BRCMNAND_CORR_COUNT,
362 	BRCMNAND_CORR_EXT_ADDR,
363 	BRCMNAND_CORR_ADDR,
364 	BRCMNAND_UNCORR_EXT_ADDR,
365 	BRCMNAND_UNCORR_ADDR,
366 	BRCMNAND_SEMAPHORE,
367 	BRCMNAND_ID,
368 	BRCMNAND_ID_EXT,
369 	BRCMNAND_LL_RDATA,
370 	BRCMNAND_OOB_READ_BASE,
371 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
372 	BRCMNAND_OOB_WRITE_BASE,
373 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
374 	BRCMNAND_FC_BASE,
375 };
376 
377 /* BRCMNAND v2.1-v2.2 */
378 static const u16 brcmnand_regs_v21[] = {
379 	[BRCMNAND_CMD_START]		=  0x04,
380 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
381 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
382 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
383 	[BRCMNAND_CS_SELECT]		=  0x14,
384 	[BRCMNAND_CS_XOR]		=  0x18,
385 	[BRCMNAND_LL_OP]		=     0,
386 	[BRCMNAND_CS0_BASE]		=  0x40,
387 	[BRCMNAND_CS1_BASE]		=     0,
388 	[BRCMNAND_CORR_THRESHOLD]	=     0,
389 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
390 	[BRCMNAND_UNCORR_COUNT]		=     0,
391 	[BRCMNAND_CORR_COUNT]		=     0,
392 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
393 	[BRCMNAND_CORR_ADDR]		=  0x64,
394 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
395 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
396 	[BRCMNAND_SEMAPHORE]		=  0x50,
397 	[BRCMNAND_ID]			=  0x54,
398 	[BRCMNAND_ID_EXT]		=     0,
399 	[BRCMNAND_LL_RDATA]		=     0,
400 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
401 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
402 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
403 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
404 	[BRCMNAND_FC_BASE]		= 0x200,
405 };
406 
407 /* BRCMNAND v3.3-v4.0 */
408 static const u16 brcmnand_regs_v33[] = {
409 	[BRCMNAND_CMD_START]		=  0x04,
410 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
411 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
412 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
413 	[BRCMNAND_CS_SELECT]		=  0x14,
414 	[BRCMNAND_CS_XOR]		=  0x18,
415 	[BRCMNAND_LL_OP]		= 0x178,
416 	[BRCMNAND_CS0_BASE]		=  0x40,
417 	[BRCMNAND_CS1_BASE]		=  0xd0,
418 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
419 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
420 	[BRCMNAND_UNCORR_COUNT]		=     0,
421 	[BRCMNAND_CORR_COUNT]		=     0,
422 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
423 	[BRCMNAND_CORR_ADDR]		=  0x74,
424 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
425 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
426 	[BRCMNAND_SEMAPHORE]		=  0x58,
427 	[BRCMNAND_ID]			=  0x60,
428 	[BRCMNAND_ID_EXT]		=  0x64,
429 	[BRCMNAND_LL_RDATA]		= 0x17c,
430 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
431 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
432 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
433 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
434 	[BRCMNAND_FC_BASE]		= 0x200,
435 };
436 
437 /* BRCMNAND v5.0 */
438 static const u16 brcmnand_regs_v50[] = {
439 	[BRCMNAND_CMD_START]		=  0x04,
440 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
441 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
442 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
443 	[BRCMNAND_CS_SELECT]		=  0x14,
444 	[BRCMNAND_CS_XOR]		=  0x18,
445 	[BRCMNAND_LL_OP]		= 0x178,
446 	[BRCMNAND_CS0_BASE]		=  0x40,
447 	[BRCMNAND_CS1_BASE]		=  0xd0,
448 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
449 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
450 	[BRCMNAND_UNCORR_COUNT]		=     0,
451 	[BRCMNAND_CORR_COUNT]		=     0,
452 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
453 	[BRCMNAND_CORR_ADDR]		=  0x74,
454 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
455 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
456 	[BRCMNAND_SEMAPHORE]		=  0x58,
457 	[BRCMNAND_ID]			=  0x60,
458 	[BRCMNAND_ID_EXT]		=  0x64,
459 	[BRCMNAND_LL_RDATA]		= 0x17c,
460 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
461 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
462 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
463 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
464 	[BRCMNAND_FC_BASE]		= 0x200,
465 };
466 
467 /* BRCMNAND v6.0 - v7.1 */
468 static const u16 brcmnand_regs_v60[] = {
469 	[BRCMNAND_CMD_START]		=  0x04,
470 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
471 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
472 	[BRCMNAND_INTFC_STATUS]		=  0x14,
473 	[BRCMNAND_CS_SELECT]		=  0x18,
474 	[BRCMNAND_CS_XOR]		=  0x1c,
475 	[BRCMNAND_LL_OP]		=  0x20,
476 	[BRCMNAND_CS0_BASE]		=  0x50,
477 	[BRCMNAND_CS1_BASE]		=     0,
478 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
479 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
480 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
481 	[BRCMNAND_CORR_COUNT]		= 0x100,
482 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
483 	[BRCMNAND_CORR_ADDR]		= 0x110,
484 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
485 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
486 	[BRCMNAND_SEMAPHORE]		= 0x150,
487 	[BRCMNAND_ID]			= 0x194,
488 	[BRCMNAND_ID_EXT]		= 0x198,
489 	[BRCMNAND_LL_RDATA]		= 0x19c,
490 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
491 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
492 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
493 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
494 	[BRCMNAND_FC_BASE]		= 0x400,
495 };
496 
497 /* BRCMNAND v7.1 */
498 static const u16 brcmnand_regs_v71[] = {
499 	[BRCMNAND_CMD_START]		=  0x04,
500 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
501 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
502 	[BRCMNAND_INTFC_STATUS]		=  0x14,
503 	[BRCMNAND_CS_SELECT]		=  0x18,
504 	[BRCMNAND_CS_XOR]		=  0x1c,
505 	[BRCMNAND_LL_OP]		=  0x20,
506 	[BRCMNAND_CS0_BASE]		=  0x50,
507 	[BRCMNAND_CS1_BASE]		=     0,
508 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
509 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
510 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
511 	[BRCMNAND_CORR_COUNT]		= 0x100,
512 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
513 	[BRCMNAND_CORR_ADDR]		= 0x110,
514 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
515 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
516 	[BRCMNAND_SEMAPHORE]		= 0x150,
517 	[BRCMNAND_ID]			= 0x194,
518 	[BRCMNAND_ID_EXT]		= 0x198,
519 	[BRCMNAND_LL_RDATA]		= 0x19c,
520 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
521 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
522 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
523 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
524 	[BRCMNAND_FC_BASE]		= 0x400,
525 };
526 
527 /* BRCMNAND v7.2 */
528 static const u16 brcmnand_regs_v72[] = {
529 	[BRCMNAND_CMD_START]		=  0x04,
530 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
531 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
532 	[BRCMNAND_INTFC_STATUS]		=  0x14,
533 	[BRCMNAND_CS_SELECT]		=  0x18,
534 	[BRCMNAND_CS_XOR]		=  0x1c,
535 	[BRCMNAND_LL_OP]		=  0x20,
536 	[BRCMNAND_CS0_BASE]		=  0x50,
537 	[BRCMNAND_CS1_BASE]		=     0,
538 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
539 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
540 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
541 	[BRCMNAND_CORR_COUNT]		= 0x100,
542 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
543 	[BRCMNAND_CORR_ADDR]		= 0x110,
544 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
545 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
546 	[BRCMNAND_SEMAPHORE]		= 0x150,
547 	[BRCMNAND_ID]			= 0x194,
548 	[BRCMNAND_ID_EXT]		= 0x198,
549 	[BRCMNAND_LL_RDATA]		= 0x19c,
550 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
551 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
552 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
553 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
554 	[BRCMNAND_FC_BASE]		= 0x600,
555 };
556 
557 enum brcmnand_cs_reg {
558 	BRCMNAND_CS_CFG_EXT = 0,
559 	BRCMNAND_CS_CFG,
560 	BRCMNAND_CS_ACC_CONTROL,
561 	BRCMNAND_CS_TIMING1,
562 	BRCMNAND_CS_TIMING2,
563 };
564 
565 /* Per chip-select offsets for v7.1 */
566 static const u8 brcmnand_cs_offsets_v71[] = {
567 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
568 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
569 	[BRCMNAND_CS_CFG]		= 0x08,
570 	[BRCMNAND_CS_TIMING1]		= 0x0c,
571 	[BRCMNAND_CS_TIMING2]		= 0x10,
572 };
573 
574 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
575 static const u8 brcmnand_cs_offsets[] = {
576 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
577 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
578 	[BRCMNAND_CS_CFG]		= 0x04,
579 	[BRCMNAND_CS_TIMING1]		= 0x08,
580 	[BRCMNAND_CS_TIMING2]		= 0x0c,
581 };
582 
583 /* Per chip-select offset for <= v5.0 on CS0 only */
584 static const u8 brcmnand_cs_offsets_cs0[] = {
585 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
586 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
587 	[BRCMNAND_CS_CFG]		= 0x08,
588 	[BRCMNAND_CS_TIMING1]		= 0x10,
589 	[BRCMNAND_CS_TIMING2]		= 0x14,
590 };
591 
592 /*
593  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
594  * one config register, but once the bitfields overflowed, newer controllers
595  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
596  */
597 enum {
598 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
599 	CFG_COL_ADR_BYTES_SHIFT		= 12,
600 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
601 	CFG_BUS_WIDTH_SHIFT		= 23,
602 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
603 	CFG_DEVICE_SIZE_SHIFT		= 24,
604 
605 	/* Only for v2.1 */
606 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
607 
608 	/* Only for pre-v7.1 (with no CFG_EXT register) */
609 	CFG_PAGE_SIZE_SHIFT		= 20,
610 	CFG_BLK_SIZE_SHIFT		= 28,
611 
612 	/* Only for v7.1+ (with CFG_EXT register) */
613 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
614 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
615 };
616 
617 /* BRCMNAND_INTFC_STATUS */
618 enum {
619 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
620 
621 	INTFC_ERASED			= BIT(27),
622 	INTFC_OOB_VALID			= BIT(28),
623 	INTFC_CACHE_VALID		= BIT(29),
624 	INTFC_FLASH_READY		= BIT(30),
625 	INTFC_CTLR_READY		= BIT(31),
626 };
627 
628 /***********************************************************************
629  * NAND ACC CONTROL bitfield
630  *
631  * Some bits have remained constant throughout hardware revision, while
632  * others have shifted around.
633  ***********************************************************************/
634 
635 /* Constant for all versions (where supported) */
636 enum {
637 	/* See BRCMNAND_HAS_CACHE_MODE */
638 	ACC_CONTROL_CACHE_MODE				= BIT(22),
639 
640 	/* See BRCMNAND_HAS_PREFETCH */
641 	ACC_CONTROL_PREFETCH				= BIT(23),
642 
643 	ACC_CONTROL_PAGE_HIT				= BIT(24),
644 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
645 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
646 	ACC_CONTROL_RD_ERASED				= BIT(27),
647 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
648 	ACC_CONTROL_WR_ECC				= BIT(30),
649 	ACC_CONTROL_RD_ECC				= BIT(31),
650 };
651 
652 #define	ACC_CONTROL_ECC_SHIFT			16
653 /* Only for v7.2 */
654 #define	ACC_CONTROL_ECC_EXT_SHIFT		13
655 
656 static int brcmnand_status(struct brcmnand_host *host);
657 
658 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
659 {
660 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
661 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
662 #else
663 	return false;
664 #endif
665 }
666 
667 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
668 {
669 	if (brcmnand_non_mmio_ops(ctrl))
670 		return brcmnand_soc_read(ctrl->soc, offs);
671 	return brcmnand_readl(ctrl->nand_base + offs);
672 }
673 
674 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
675 				 u32 val)
676 {
677 	if (brcmnand_non_mmio_ops(ctrl))
678 		brcmnand_soc_write(ctrl->soc, val, offs);
679 	else
680 		brcmnand_writel(val, ctrl->nand_base + offs);
681 }
682 
683 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
684 {
685 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
686 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
687 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
688 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
689 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
690 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
691 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
692 
693 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
694 
695 	/* Only support v2.1+ */
696 	if (ctrl->nand_version < 0x0201) {
697 		dev_err(ctrl->dev, "version %#x not supported\n",
698 			ctrl->nand_version);
699 		return -ENODEV;
700 	}
701 
702 	/* Register offsets */
703 	if (ctrl->nand_version >= 0x0702)
704 		ctrl->reg_offsets = brcmnand_regs_v72;
705 	else if (ctrl->nand_version == 0x0701)
706 		ctrl->reg_offsets = brcmnand_regs_v71;
707 	else if (ctrl->nand_version >= 0x0600)
708 		ctrl->reg_offsets = brcmnand_regs_v60;
709 	else if (ctrl->nand_version >= 0x0500)
710 		ctrl->reg_offsets = brcmnand_regs_v50;
711 	else if (ctrl->nand_version >= 0x0303)
712 		ctrl->reg_offsets = brcmnand_regs_v33;
713 	else if (ctrl->nand_version >= 0x0201)
714 		ctrl->reg_offsets = brcmnand_regs_v21;
715 
716 	/* Chip-select stride */
717 	if (ctrl->nand_version >= 0x0701)
718 		ctrl->reg_spacing = 0x14;
719 	else
720 		ctrl->reg_spacing = 0x10;
721 
722 	/* Per chip-select registers */
723 	if (ctrl->nand_version >= 0x0701) {
724 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
725 	} else {
726 		ctrl->cs_offsets = brcmnand_cs_offsets;
727 
728 		/* v3.3-5.0 have a different CS0 offset layout */
729 		if (ctrl->nand_version >= 0x0303 &&
730 		    ctrl->nand_version <= 0x0500)
731 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
732 	}
733 
734 	/* Page / block sizes */
735 	if (ctrl->nand_version >= 0x0701) {
736 		/* >= v7.1 use nice power-of-2 values! */
737 		ctrl->max_page_size = 16 * 1024;
738 		ctrl->max_block_size = 2 * 1024 * 1024;
739 	} else {
740 		if (ctrl->nand_version >= 0x0304)
741 			ctrl->page_sizes = page_sizes_v3_4;
742 		else if (ctrl->nand_version >= 0x0202)
743 			ctrl->page_sizes = page_sizes_v2_2;
744 		else
745 			ctrl->page_sizes = page_sizes_v2_1;
746 
747 		if (ctrl->nand_version >= 0x0202)
748 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
749 		else
750 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
751 
752 		if (ctrl->nand_version >= 0x0600)
753 			ctrl->block_sizes = block_sizes_v6;
754 		else if (ctrl->nand_version >= 0x0400)
755 			ctrl->block_sizes = block_sizes_v4;
756 		else if (ctrl->nand_version >= 0x0202)
757 			ctrl->block_sizes = block_sizes_v2_2;
758 		else
759 			ctrl->block_sizes = block_sizes_v2_1;
760 
761 		if (ctrl->nand_version < 0x0400) {
762 			if (ctrl->nand_version < 0x0202)
763 				ctrl->max_page_size = 2048;
764 			else
765 				ctrl->max_page_size = 4096;
766 			ctrl->max_block_size = 512 * 1024;
767 		}
768 	}
769 
770 	/* Maximum spare area sector size (per 512B) */
771 	if (ctrl->nand_version == 0x0702)
772 		ctrl->max_oob = 128;
773 	else if (ctrl->nand_version >= 0x0600)
774 		ctrl->max_oob = 64;
775 	else if (ctrl->nand_version >= 0x0500)
776 		ctrl->max_oob = 32;
777 	else
778 		ctrl->max_oob = 16;
779 
780 	/* v6.0 and newer (except v6.1) have prefetch support */
781 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
782 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
783 
784 	/*
785 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
786 	 * now.
787 	 */
788 	if (ctrl->nand_version >= 0x0700)
789 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
790 
791 	if (ctrl->nand_version >= 0x0500)
792 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
793 
794 	if (ctrl->nand_version >= 0x0700)
795 		ctrl->features |= BRCMNAND_HAS_WP;
796 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
797 		ctrl->features |= BRCMNAND_HAS_WP;
798 
799 	/* v7.2 has different ecc level shift in the acc register */
800 	if (ctrl->nand_version == 0x0702)
801 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
802 	else
803 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
804 
805 	return 0;
806 }
807 
808 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
809 {
810 	/* flash_dma register offsets */
811 	if (ctrl->nand_version >= 0x0703)
812 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
813 	else if (ctrl->nand_version == 0x0602)
814 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
815 	else
816 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
817 }
818 
819 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
820 		enum brcmnand_reg reg)
821 {
822 	u16 offs = ctrl->reg_offsets[reg];
823 
824 	if (offs)
825 		return nand_readreg(ctrl, offs);
826 	else
827 		return 0;
828 }
829 
830 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
831 				      enum brcmnand_reg reg, u32 val)
832 {
833 	u16 offs = ctrl->reg_offsets[reg];
834 
835 	if (offs)
836 		nand_writereg(ctrl, offs, val);
837 }
838 
839 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
840 				    enum brcmnand_reg reg, u32 mask, unsigned
841 				    int shift, u32 val)
842 {
843 	u32 tmp = brcmnand_read_reg(ctrl, reg);
844 
845 	tmp &= ~mask;
846 	tmp |= val << shift;
847 	brcmnand_write_reg(ctrl, reg, tmp);
848 }
849 
850 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
851 {
852 	if (brcmnand_non_mmio_ops(ctrl))
853 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
854 	return __raw_readl(ctrl->nand_fc + word * 4);
855 }
856 
857 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
858 				     int word, u32 val)
859 {
860 	if (brcmnand_non_mmio_ops(ctrl))
861 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
862 	else
863 		__raw_writel(val, ctrl->nand_fc + word * 4);
864 }
865 
866 static inline void edu_writel(struct brcmnand_controller *ctrl,
867 			      enum edu_reg reg, u32 val)
868 {
869 	u16 offs = ctrl->edu_offsets[reg];
870 
871 	brcmnand_writel(val, ctrl->edu_base + offs);
872 }
873 
874 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
875 			    enum edu_reg reg)
876 {
877 	u16 offs = ctrl->edu_offsets[reg];
878 
879 	return brcmnand_readl(ctrl->edu_base + offs);
880 }
881 
882 static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl,
883 					  void __iomem *flash_cache, u32 *buffer, int fc_words)
884 {
885 	struct brcmnand_soc *soc = ctrl->soc;
886 	int i;
887 
888 	if (soc && soc->read_data_bus) {
889 		soc->read_data_bus(soc, flash_cache, buffer, fc_words);
890 	} else {
891 		for (i = 0; i < fc_words; i++)
892 			buffer[i] = brcmnand_read_fc(ctrl, i);
893 	}
894 }
895 
896 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
897 {
898 
899 	/* Clear error addresses */
900 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
901 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
902 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
903 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
904 }
905 
906 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
907 {
908 	u64 err_addr;
909 
910 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
911 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
912 					     BRCMNAND_UNCORR_EXT_ADDR)
913 					     & 0xffff) << 32);
914 
915 	return err_addr;
916 }
917 
918 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
919 {
920 	u64 err_addr;
921 
922 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
923 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
924 					     BRCMNAND_CORR_EXT_ADDR)
925 					     & 0xffff) << 32);
926 
927 	return err_addr;
928 }
929 
930 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
931 {
932 	struct nand_chip *chip =  mtd_to_nand(mtd);
933 	struct brcmnand_host *host = nand_get_controller_data(chip);
934 	struct brcmnand_controller *ctrl = host->ctrl;
935 
936 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
937 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
938 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
939 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
940 			   lower_32_bits(addr));
941 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
942 }
943 
944 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
945 				     enum brcmnand_cs_reg reg)
946 {
947 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
948 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
949 	u8 cs_offs;
950 
951 	if (cs == 0 && ctrl->cs0_offsets)
952 		cs_offs = ctrl->cs0_offsets[reg];
953 	else
954 		cs_offs = ctrl->cs_offsets[reg];
955 
956 	if (cs && offs_cs1)
957 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
958 
959 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
960 }
961 
962 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
963 {
964 	if (ctrl->nand_version < 0x0600)
965 		return 1;
966 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
967 }
968 
969 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
970 {
971 	struct brcmnand_controller *ctrl = host->ctrl;
972 	unsigned int shift = 0, bits;
973 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
974 	int cs = host->cs;
975 
976 	if (!ctrl->reg_offsets[reg])
977 		return;
978 
979 	if (ctrl->nand_version == 0x0702)
980 		bits = 7;
981 	else if (ctrl->nand_version >= 0x0600)
982 		bits = 6;
983 	else if (ctrl->nand_version >= 0x0500)
984 		bits = 5;
985 	else
986 		bits = 4;
987 
988 	if (ctrl->nand_version >= 0x0702) {
989 		if (cs >= 4)
990 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
991 		shift = (cs % 4) * bits;
992 	} else if (ctrl->nand_version >= 0x0600) {
993 		if (cs >= 5)
994 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
995 		shift = (cs % 5) * bits;
996 	}
997 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
998 }
999 
1000 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
1001 {
1002 	/* Kludge for the BCMA-based NAND controller which does not actually
1003 	 * shift the command
1004 	 */
1005 	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
1006 		return 0;
1007 
1008 	if (ctrl->nand_version < 0x0602)
1009 		return 24;
1010 	return 0;
1011 }
1012 
1013 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
1014 {
1015 	if (ctrl->nand_version == 0x0702)
1016 		return GENMASK(7, 0);
1017 	else if (ctrl->nand_version >= 0x0600)
1018 		return GENMASK(6, 0);
1019 	else if (ctrl->nand_version >= 0x0303)
1020 		return GENMASK(5, 0);
1021 	else
1022 		return GENMASK(4, 0);
1023 }
1024 
1025 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
1026 {
1027 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
1028 
1029 	mask <<= ACC_CONTROL_ECC_SHIFT;
1030 
1031 	/* v7.2 includes additional ECC levels */
1032 	if (ctrl->nand_version == 0x0702)
1033 		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
1034 
1035 	return mask;
1036 }
1037 
1038 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
1039 {
1040 	struct brcmnand_controller *ctrl = host->ctrl;
1041 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1042 	u32 acc_control = nand_readreg(ctrl, offs);
1043 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1044 
1045 	if (en) {
1046 		acc_control |= ecc_flags; /* enable RD/WR ECC */
1047 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1048 		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1049 	} else {
1050 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1051 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1052 	}
1053 
1054 	nand_writereg(ctrl, offs, acc_control);
1055 }
1056 
1057 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1058 {
1059 	if (ctrl->nand_version >= 0x0702)
1060 		return 9;
1061 	else if (ctrl->nand_version >= 0x0600)
1062 		return 7;
1063 	else if (ctrl->nand_version >= 0x0500)
1064 		return 6;
1065 	else
1066 		return -1;
1067 }
1068 
1069 static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1070 {
1071 	struct brcmnand_controller *ctrl = host->ctrl;
1072 	int sector_size_bit = brcmnand_sector_1k_shift(ctrl);
1073 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1074 						  BRCMNAND_CS_ACC_CONTROL);
1075 	u32 acc_control;
1076 
1077 	if (sector_size_bit < 0)
1078 		return false;
1079 
1080 	acc_control = nand_readreg(ctrl, acc_control_offs);
1081 
1082 	return ((acc_control & BIT(sector_size_bit)) != 0);
1083 }
1084 
1085 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1086 {
1087 	struct brcmnand_controller *ctrl = host->ctrl;
1088 	int shift = brcmnand_sector_1k_shift(ctrl);
1089 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1090 						  BRCMNAND_CS_ACC_CONTROL);
1091 	u32 tmp;
1092 
1093 	if (shift < 0)
1094 		return;
1095 
1096 	tmp = nand_readreg(ctrl, acc_control_offs);
1097 	tmp &= ~(1 << shift);
1098 	tmp |= (!!val) << shift;
1099 	nand_writereg(ctrl, acc_control_offs, tmp);
1100 }
1101 
1102 static int brcmnand_get_spare_size(struct brcmnand_host *host)
1103 {
1104 	struct brcmnand_controller *ctrl = host->ctrl;
1105 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1106 						  BRCMNAND_CS_ACC_CONTROL);
1107 	u32 acc = nand_readreg(ctrl, acc_control_offs);
1108 
1109 	return (acc & brcmnand_spare_area_mask(ctrl));
1110 }
1111 
1112 static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip)
1113 {
1114 	struct brcmnand_controller *ctrl = host->ctrl;
1115 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1116 						  BRCMNAND_CS_ACC_CONTROL);
1117 	bool sector_size_1k = brcmnand_get_sector_size_1k(host);
1118 	int spare_area_size, ecc_level;
1119 	u32 acc;
1120 
1121 	spare_area_size = brcmnand_get_spare_size(host);
1122 	acc = nand_readreg(ctrl, acc_control_offs);
1123 	ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift;
1124 	if (sector_size_1k)
1125 		chip->ecc.strength = ecc_level * 2;
1126 	else if (spare_area_size == 16 && ecc_level == 15)
1127 		chip->ecc.strength = 1; /* hamming */
1128 	else
1129 		chip->ecc.strength = ecc_level;
1130 
1131 	if (chip->ecc.size == 0) {
1132 		if (sector_size_1k)
1133 			chip->ecc.size = 1024;
1134 		else
1135 			chip->ecc.size = 512;
1136 	}
1137 }
1138 
1139 /***********************************************************************
1140  * CS_NAND_SELECT
1141  ***********************************************************************/
1142 
1143 enum {
1144 	CS_SELECT_NAND_WP			= BIT(29),
1145 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1146 };
1147 
1148 static int bcmnand_ctrl_poll_status(struct brcmnand_host *host,
1149 				    u32 mask, u32 expected_val,
1150 				    unsigned long timeout_ms)
1151 {
1152 	struct brcmnand_controller *ctrl = host->ctrl;
1153 	unsigned long limit;
1154 	u32 val;
1155 
1156 	if (!timeout_ms)
1157 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1158 
1159 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1160 	do {
1161 		if (mask & INTFC_FLASH_STATUS)
1162 			brcmnand_status(host);
1163 
1164 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1165 		if ((val & mask) == expected_val)
1166 			return 0;
1167 
1168 		cpu_relax();
1169 	} while (time_after(limit, jiffies));
1170 
1171 	/*
1172 	 * do a final check after time out in case the CPU was busy and the driver
1173 	 * did not get enough time to perform the polling to avoid false alarms
1174 	 */
1175 	if (mask & INTFC_FLASH_STATUS)
1176 		brcmnand_status(host);
1177 
1178 	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1179 	if ((val & mask) == expected_val)
1180 		return 0;
1181 
1182 	dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1183 		expected_val, val & mask);
1184 
1185 	return -ETIMEDOUT;
1186 }
1187 
1188 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1189 {
1190 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1191 
1192 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1193 }
1194 
1195 /***********************************************************************
1196  * Flash DMA
1197  ***********************************************************************/
1198 
1199 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1200 {
1201 	return ctrl->flash_dma_base;
1202 }
1203 
1204 static inline bool has_edu(struct brcmnand_controller *ctrl)
1205 {
1206 	return ctrl->edu_base;
1207 }
1208 
1209 static inline bool use_dma(struct brcmnand_controller *ctrl)
1210 {
1211 	return has_flash_dma(ctrl) || has_edu(ctrl);
1212 }
1213 
1214 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1215 {
1216 	if (ctrl->pio_poll_mode)
1217 		return;
1218 
1219 	if (has_flash_dma(ctrl)) {
1220 		ctrl->flash_dma_base = NULL;
1221 		disable_irq(ctrl->dma_irq);
1222 	}
1223 
1224 	disable_irq(ctrl->irq);
1225 	ctrl->pio_poll_mode = true;
1226 }
1227 
1228 static inline bool flash_dma_buf_ok(const void *buf)
1229 {
1230 	return buf && !is_vmalloc_addr(buf) &&
1231 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1232 }
1233 
1234 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1235 				    enum flash_dma_reg dma_reg, u32 val)
1236 {
1237 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1238 
1239 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1240 }
1241 
1242 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1243 				  enum flash_dma_reg dma_reg)
1244 {
1245 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1246 
1247 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1248 }
1249 
1250 /* Low-level operation types: command, address, write, or read */
1251 enum brcmnand_llop_type {
1252 	LL_OP_CMD,
1253 	LL_OP_ADDR,
1254 	LL_OP_WR,
1255 	LL_OP_RD,
1256 };
1257 
1258 /***********************************************************************
1259  * Internal support functions
1260  ***********************************************************************/
1261 
1262 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1263 				  struct brcmnand_cfg *cfg)
1264 {
1265 	if (ctrl->nand_version <= 0x0701)
1266 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1267 			cfg->ecc_level == 15;
1268 	else
1269 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1270 			cfg->ecc_level == 15) ||
1271 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1272 }
1273 
1274 /*
1275  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1276  * the layout/configuration.
1277  * Returns -ERRCODE on failure.
1278  */
1279 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1280 					  struct mtd_oob_region *oobregion)
1281 {
1282 	struct nand_chip *chip = mtd_to_nand(mtd);
1283 	struct brcmnand_host *host = nand_get_controller_data(chip);
1284 	struct brcmnand_cfg *cfg = &host->hwcfg;
1285 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1286 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1287 
1288 	if (section >= sectors)
1289 		return -ERANGE;
1290 
1291 	oobregion->offset = (section * sas) + 6;
1292 	oobregion->length = 3;
1293 
1294 	return 0;
1295 }
1296 
1297 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1298 					   struct mtd_oob_region *oobregion)
1299 {
1300 	struct nand_chip *chip = mtd_to_nand(mtd);
1301 	struct brcmnand_host *host = nand_get_controller_data(chip);
1302 	struct brcmnand_cfg *cfg = &host->hwcfg;
1303 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1304 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1305 	u32 next;
1306 
1307 	if (section > sectors)
1308 		return -ERANGE;
1309 
1310 	next = (section * sas);
1311 	if (section < sectors)
1312 		next += 6;
1313 
1314 	if (section) {
1315 		oobregion->offset = ((section - 1) * sas) + 9;
1316 	} else {
1317 		if (cfg->page_size > 512) {
1318 			/* Large page NAND uses first 2 bytes for BBI */
1319 			oobregion->offset = 2;
1320 		} else {
1321 			/* Small page NAND uses last byte before ECC for BBI */
1322 			oobregion->offset = 0;
1323 			next--;
1324 		}
1325 	}
1326 
1327 	oobregion->length = next - oobregion->offset;
1328 
1329 	return 0;
1330 }
1331 
1332 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1333 	.ecc = brcmnand_hamming_ooblayout_ecc,
1334 	.free = brcmnand_hamming_ooblayout_free,
1335 };
1336 
1337 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1338 				      struct mtd_oob_region *oobregion)
1339 {
1340 	struct nand_chip *chip = mtd_to_nand(mtd);
1341 	struct brcmnand_host *host = nand_get_controller_data(chip);
1342 	struct brcmnand_cfg *cfg = &host->hwcfg;
1343 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1344 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1345 
1346 	if (section >= sectors)
1347 		return -ERANGE;
1348 
1349 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1350 	oobregion->length = chip->ecc.bytes;
1351 
1352 	return 0;
1353 }
1354 
1355 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1356 					  struct mtd_oob_region *oobregion)
1357 {
1358 	struct nand_chip *chip = mtd_to_nand(mtd);
1359 	struct brcmnand_host *host = nand_get_controller_data(chip);
1360 	struct brcmnand_cfg *cfg = &host->hwcfg;
1361 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1362 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1363 
1364 	if (section >= sectors)
1365 		return -ERANGE;
1366 
1367 	if (sas <= chip->ecc.bytes)
1368 		return 0;
1369 
1370 	oobregion->offset = section * sas;
1371 	oobregion->length = sas - chip->ecc.bytes;
1372 
1373 	if (!section) {
1374 		oobregion->offset++;
1375 		oobregion->length--;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1382 					  struct mtd_oob_region *oobregion)
1383 {
1384 	struct nand_chip *chip = mtd_to_nand(mtd);
1385 	struct brcmnand_host *host = nand_get_controller_data(chip);
1386 	struct brcmnand_cfg *cfg = &host->hwcfg;
1387 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1388 
1389 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1390 	    (section && sas - chip->ecc.bytes == 6))
1391 		return -ERANGE;
1392 
1393 	if (!section) {
1394 		oobregion->offset = 0;
1395 		oobregion->length = 5;
1396 	} else {
1397 		oobregion->offset = 6;
1398 		oobregion->length = sas - chip->ecc.bytes - 6;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1405 	.ecc = brcmnand_bch_ooblayout_ecc,
1406 	.free = brcmnand_bch_ooblayout_free_lp,
1407 };
1408 
1409 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1410 	.ecc = brcmnand_bch_ooblayout_ecc,
1411 	.free = brcmnand_bch_ooblayout_free_sp,
1412 };
1413 
1414 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1415 {
1416 	struct brcmnand_cfg *p = &host->hwcfg;
1417 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1418 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1419 	unsigned int ecc_level = p->ecc_level;
1420 	int sas = p->spare_area_size << p->sector_size_1k;
1421 	int sectors = p->page_size / (512 << p->sector_size_1k);
1422 
1423 	if (p->sector_size_1k)
1424 		ecc_level <<= 1;
1425 
1426 	if (is_hamming_ecc(host->ctrl, p)) {
1427 		ecc->bytes = 3 * sectors;
1428 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1429 		return 0;
1430 	}
1431 
1432 	/*
1433 	 * CONTROLLER_VERSION:
1434 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1435 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1436 	 * But we will just be conservative.
1437 	 */
1438 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1439 	if (p->page_size == 512)
1440 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1441 	else
1442 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1443 
1444 	if (ecc->bytes >= sas) {
1445 		dev_err(&host->pdev->dev,
1446 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1447 			ecc->bytes, sas);
1448 		return -EINVAL;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1455 {
1456 	struct nand_chip *chip = mtd_to_nand(mtd);
1457 	struct brcmnand_host *host = nand_get_controller_data(chip);
1458 	struct brcmnand_controller *ctrl = host->ctrl;
1459 
1460 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1461 		static int old_wp = -1;
1462 		int ret;
1463 
1464 		if (old_wp != wp) {
1465 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1466 			old_wp = wp;
1467 		}
1468 
1469 		/*
1470 		 * make sure ctrl/flash ready before and after
1471 		 * changing state of #WP pin
1472 		 */
1473 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY |
1474 					       NAND_STATUS_READY,
1475 					       NAND_CTRL_RDY |
1476 					       NAND_STATUS_READY, 0);
1477 		if (ret)
1478 			return;
1479 
1480 		brcmnand_set_wp(ctrl, wp);
1481 		/* force controller operation to update internal copy of NAND chip status */
1482 		brcmnand_status(host);
1483 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1484 		ret = bcmnand_ctrl_poll_status(host,
1485 					       NAND_CTRL_RDY |
1486 					       NAND_STATUS_READY |
1487 					       NAND_STATUS_WP,
1488 					       NAND_CTRL_RDY |
1489 					       NAND_STATUS_READY |
1490 					       (wp ? 0 : NAND_STATUS_WP), 0);
1491 
1492 		if (ret)
1493 			dev_err_ratelimited(&host->pdev->dev,
1494 					    "nand #WP expected %s\n",
1495 					    wp ? "on" : "off");
1496 	}
1497 }
1498 
1499 /* Helper functions for reading and writing OOB registers */
1500 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1501 {
1502 	u16 offset0, offset10, reg_offs;
1503 
1504 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1505 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1506 
1507 	if (offs >= ctrl->max_oob)
1508 		return 0x77;
1509 
1510 	if (offs >= 16 && offset10)
1511 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1512 	else
1513 		reg_offs = offset0 + (offs & ~0x03);
1514 
1515 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1516 }
1517 
1518 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1519 				 u32 data)
1520 {
1521 	u16 offset0, offset10, reg_offs;
1522 
1523 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1524 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1525 
1526 	if (offs >= ctrl->max_oob)
1527 		return;
1528 
1529 	if (offs >= 16 && offset10)
1530 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1531 	else
1532 		reg_offs = offset0 + (offs & ~0x03);
1533 
1534 	nand_writereg(ctrl, reg_offs, data);
1535 }
1536 
1537 /*
1538  * read_oob_from_regs - read data from OOB registers
1539  * @ctrl: NAND controller
1540  * @i: sub-page sector index
1541  * @oob: buffer to read to
1542  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1543  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1544  */
1545 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1546 			      int sas, int sector_1k)
1547 {
1548 	int tbytes = sas << sector_1k;
1549 	int j;
1550 
1551 	/* Adjust OOB values for 1K sector size */
1552 	if (sector_1k && (i & 0x01))
1553 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1554 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1555 
1556 	for (j = 0; j < tbytes; j++)
1557 		oob[j] = oob_reg_read(ctrl, j);
1558 	return tbytes;
1559 }
1560 
1561 /*
1562  * write_oob_to_regs - write data to OOB registers
1563  * @i: sub-page sector index
1564  * @oob: buffer to write from
1565  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1566  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1567  */
1568 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1569 			     const u8 *oob, int sas, int sector_1k)
1570 {
1571 	int tbytes = sas << sector_1k;
1572 	int j, k = 0;
1573 	u32 last = 0xffffffff;
1574 	u8 *plast = (u8 *)&last;
1575 
1576 	/* Adjust OOB values for 1K sector size */
1577 	if (sector_1k && (i & 0x01))
1578 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1579 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1580 
1581 	/*
1582 	 * tbytes may not be multiple of words. Make sure we don't read out of
1583 	 * the boundary and stop at last word.
1584 	 */
1585 	for (j = 0; (j + 3) < tbytes; j += 4)
1586 		oob_reg_write(ctrl, j,
1587 				(oob[j + 0] << 24) |
1588 				(oob[j + 1] << 16) |
1589 				(oob[j + 2] <<  8) |
1590 				(oob[j + 3] <<  0));
1591 
1592 	/* handle the remaining bytes */
1593 	while (j < tbytes)
1594 		plast[k++] = oob[j++];
1595 
1596 	if (tbytes & 0x3)
1597 		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1598 
1599 	return tbytes;
1600 }
1601 
1602 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1603 {
1604 	/* initialize edu */
1605 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1606 	edu_readl(ctrl, EDU_ERR_STATUS);
1607 	edu_writel(ctrl, EDU_DONE, 0);
1608 	edu_writel(ctrl, EDU_DONE, 0);
1609 	edu_writel(ctrl, EDU_DONE, 0);
1610 	edu_writel(ctrl, EDU_DONE, 0);
1611 	edu_readl(ctrl, EDU_DONE);
1612 }
1613 
1614 /* edu irq */
1615 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1616 {
1617 	struct brcmnand_controller *ctrl = data;
1618 
1619 	if (ctrl->edu_count) {
1620 		ctrl->edu_count--;
1621 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1622 			udelay(1);
1623 		edu_writel(ctrl, EDU_DONE, 0);
1624 		edu_readl(ctrl, EDU_DONE);
1625 	}
1626 
1627 	if (ctrl->edu_count) {
1628 		ctrl->edu_dram_addr += FC_BYTES;
1629 		ctrl->edu_ext_addr += FC_BYTES;
1630 
1631 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1632 		edu_readl(ctrl, EDU_DRAM_ADDR);
1633 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1634 		edu_readl(ctrl, EDU_EXT_ADDR);
1635 
1636 		if (ctrl->oob) {
1637 			if (ctrl->edu_cmd == EDU_CMD_READ) {
1638 				ctrl->oob += read_oob_from_regs(ctrl,
1639 							ctrl->edu_count + 1,
1640 							ctrl->oob, ctrl->sas,
1641 							ctrl->sector_size_1k);
1642 			} else {
1643 				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1644 						   ctrl->edu_ext_addr);
1645 				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1646 				ctrl->oob += write_oob_to_regs(ctrl,
1647 							       ctrl->edu_count,
1648 							       ctrl->oob, ctrl->sas,
1649 							       ctrl->sector_size_1k);
1650 			}
1651 		}
1652 
1653 		mb(); /* flush previous writes */
1654 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1655 		edu_readl(ctrl, EDU_CMD);
1656 
1657 		return IRQ_HANDLED;
1658 	}
1659 
1660 	complete(&ctrl->edu_done);
1661 
1662 	return IRQ_HANDLED;
1663 }
1664 
1665 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1666 {
1667 	struct brcmnand_controller *ctrl = data;
1668 
1669 	/* Discard all NAND_CTLRDY interrupts during DMA */
1670 	if (ctrl->dma_pending)
1671 		return IRQ_HANDLED;
1672 
1673 	/* check if you need to piggy back on the ctrlrdy irq */
1674 	if (ctrl->edu_pending) {
1675 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1676 	/* Discard interrupts while using dedicated edu irq */
1677 			return IRQ_HANDLED;
1678 
1679 	/* no registered edu irq, call handler */
1680 		return brcmnand_edu_irq(irq, data);
1681 	}
1682 
1683 	complete(&ctrl->done);
1684 	return IRQ_HANDLED;
1685 }
1686 
1687 /* Handle SoC-specific interrupt hardware */
1688 static irqreturn_t brcmnand_irq(int irq, void *data)
1689 {
1690 	struct brcmnand_controller *ctrl = data;
1691 
1692 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1693 		return brcmnand_ctlrdy_irq(irq, data);
1694 
1695 	return IRQ_NONE;
1696 }
1697 
1698 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1699 {
1700 	struct brcmnand_controller *ctrl = data;
1701 
1702 	complete(&ctrl->dma_done);
1703 
1704 	return IRQ_HANDLED;
1705 }
1706 
1707 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1708 {
1709 	struct brcmnand_controller *ctrl = host->ctrl;
1710 	int ret;
1711 	u64 cmd_addr;
1712 
1713 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1714 
1715 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1716 
1717 	/*
1718 	 * If we came here through _panic_write and there is a pending
1719 	 * command, try to wait for it. If it times out, rather than
1720 	 * hitting BUG_ON, just return so we don't crash while crashing.
1721 	 */
1722 	if (oops_in_progress) {
1723 		if (ctrl->cmd_pending &&
1724 			bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1725 			return;
1726 	} else
1727 		BUG_ON(ctrl->cmd_pending != 0);
1728 	ctrl->cmd_pending = cmd;
1729 
1730 	ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1731 	WARN_ON(ret);
1732 
1733 	mb(); /* flush previous writes */
1734 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1735 			   cmd << brcmnand_cmd_shift(ctrl));
1736 }
1737 
1738 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1739 {
1740 	struct brcmnand_host *host = nand_get_controller_data(chip);
1741 	struct brcmnand_controller *ctrl = host->ctrl;
1742 	struct mtd_info *mtd = nand_to_mtd(chip);
1743 	bool err = false;
1744 	int sts;
1745 
1746 	if (mtd->oops_panic_write || ctrl->irq < 0) {
1747 		/* switch to interrupt polling and PIO mode */
1748 		disable_ctrl_irqs(ctrl);
1749 		sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY,
1750 					       NAND_CTRL_RDY, 0);
1751 		err = sts < 0;
1752 	} else {
1753 		unsigned long timeo = msecs_to_jiffies(
1754 						NAND_POLL_STATUS_TIMEOUT_MS);
1755 		/* wait for completion interrupt */
1756 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1757 		err = !sts;
1758 	}
1759 
1760 	return err;
1761 }
1762 
1763 static int brcmnand_waitfunc(struct nand_chip *chip)
1764 {
1765 	struct brcmnand_host *host = nand_get_controller_data(chip);
1766 	struct brcmnand_controller *ctrl = host->ctrl;
1767 	bool err = false;
1768 
1769 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1770 	if (ctrl->cmd_pending)
1771 		err = brcmstb_nand_wait_for_completion(chip);
1772 
1773 	ctrl->cmd_pending = 0;
1774 	if (err) {
1775 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1776 					>> brcmnand_cmd_shift(ctrl);
1777 
1778 		dev_err_ratelimited(ctrl->dev,
1779 			"timeout waiting for command %#02x\n", cmd);
1780 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1781 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1782 		return -ETIMEDOUT;
1783 	}
1784 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1785 				 INTFC_FLASH_STATUS;
1786 }
1787 
1788 static int brcmnand_status(struct brcmnand_host *host)
1789 {
1790 	struct nand_chip *chip = &host->chip;
1791 	struct mtd_info *mtd = nand_to_mtd(chip);
1792 
1793 	brcmnand_set_cmd_addr(mtd, 0);
1794 	brcmnand_send_cmd(host, CMD_STATUS_READ);
1795 
1796 	return brcmnand_waitfunc(chip);
1797 }
1798 
1799 static int brcmnand_reset(struct brcmnand_host *host)
1800 {
1801 	struct nand_chip *chip = &host->chip;
1802 
1803 	brcmnand_send_cmd(host, CMD_FLASH_RESET);
1804 
1805 	return brcmnand_waitfunc(chip);
1806 }
1807 
1808 enum {
1809 	LLOP_RE				= BIT(16),
1810 	LLOP_WE				= BIT(17),
1811 	LLOP_ALE			= BIT(18),
1812 	LLOP_CLE			= BIT(19),
1813 	LLOP_RETURN_IDLE		= BIT(31),
1814 
1815 	LLOP_DATA_MASK			= GENMASK(15, 0),
1816 };
1817 
1818 static int brcmnand_low_level_op(struct brcmnand_host *host,
1819 				 enum brcmnand_llop_type type, u32 data,
1820 				 bool last_op)
1821 {
1822 	struct nand_chip *chip = &host->chip;
1823 	struct brcmnand_controller *ctrl = host->ctrl;
1824 	u32 tmp;
1825 
1826 	tmp = data & LLOP_DATA_MASK;
1827 	switch (type) {
1828 	case LL_OP_CMD:
1829 		tmp |= LLOP_WE | LLOP_CLE;
1830 		break;
1831 	case LL_OP_ADDR:
1832 		/* WE | ALE */
1833 		tmp |= LLOP_WE | LLOP_ALE;
1834 		break;
1835 	case LL_OP_WR:
1836 		/* WE */
1837 		tmp |= LLOP_WE;
1838 		break;
1839 	case LL_OP_RD:
1840 		/* RE */
1841 		tmp |= LLOP_RE;
1842 		break;
1843 	}
1844 	if (last_op)
1845 		/* RETURN_IDLE */
1846 		tmp |= LLOP_RETURN_IDLE;
1847 
1848 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1849 
1850 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1851 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1852 
1853 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1854 	return brcmnand_waitfunc(chip);
1855 }
1856 
1857 /*
1858  *  Kick EDU engine
1859  */
1860 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1861 			      u8 *oob, u32 len, u8 cmd)
1862 {
1863 	struct brcmnand_controller *ctrl = host->ctrl;
1864 	struct brcmnand_cfg *cfg = &host->hwcfg;
1865 	unsigned long timeo = msecs_to_jiffies(200);
1866 	int ret = 0;
1867 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1868 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1869 	unsigned int trans = len >> FC_SHIFT;
1870 	dma_addr_t pa;
1871 
1872 	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1873 					      "read" : "write"), buf, oob);
1874 
1875 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1876 	if (dma_mapping_error(ctrl->dev, pa)) {
1877 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1878 		return -ENOMEM;
1879 	}
1880 
1881 	ctrl->edu_pending = true;
1882 	ctrl->edu_dram_addr = pa;
1883 	ctrl->edu_ext_addr = addr;
1884 	ctrl->edu_cmd = edu_cmd;
1885 	ctrl->edu_count = trans;
1886 	ctrl->sas = cfg->spare_area_size;
1887 	ctrl->oob = oob;
1888 
1889 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1890 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1891 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1892 	edu_readl(ctrl, EDU_EXT_ADDR);
1893 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1894 	edu_readl(ctrl, EDU_LENGTH);
1895 
1896 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1897 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1898 				   ctrl->edu_ext_addr);
1899 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1900 		ctrl->oob += write_oob_to_regs(ctrl,
1901 					       1,
1902 					       ctrl->oob, ctrl->sas,
1903 					       ctrl->sector_size_1k);
1904 	}
1905 
1906 	/* Start edu engine */
1907 	mb(); /* flush previous writes */
1908 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1909 	edu_readl(ctrl, EDU_CMD);
1910 
1911 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1912 		dev_err(ctrl->dev,
1913 			"timeout waiting for EDU; status %#x, error status %#x\n",
1914 			edu_readl(ctrl, EDU_STATUS),
1915 			edu_readl(ctrl, EDU_ERR_STATUS));
1916 	}
1917 
1918 	dma_unmap_single(ctrl->dev, pa, len, dir);
1919 
1920 	/* read last subpage oob */
1921 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1922 		ctrl->oob += read_oob_from_regs(ctrl,
1923 						1,
1924 						ctrl->oob, ctrl->sas,
1925 						ctrl->sector_size_1k);
1926 	}
1927 
1928 	/* for program page check NAND status */
1929 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1930 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1931 	    edu_cmd == EDU_CMD_WRITE) {
1932 		dev_info(ctrl->dev, "program failed at %llx\n",
1933 			 (unsigned long long)addr);
1934 		ret = -EIO;
1935 	}
1936 
1937 	/* Make sure the EDU status is clean */
1938 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1939 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1940 			 edu_readl(ctrl, EDU_STATUS));
1941 
1942 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1943 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1944 			 (unsigned long long)addr);
1945 		ret = -EIO;
1946 	}
1947 
1948 	ctrl->edu_pending = false;
1949 	brcmnand_edu_init(ctrl);
1950 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1951 	edu_readl(ctrl, EDU_STOP);
1952 
1953 	if (!ret && edu_cmd == EDU_CMD_READ) {
1954 		u64 err_addr = 0;
1955 
1956 		/*
1957 		 * check for ECC errors here, subpage ECC errors are
1958 		 * retained in ECC error address register
1959 		 */
1960 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1961 		if (!err_addr) {
1962 			err_addr = brcmnand_get_correcc_addr(ctrl);
1963 			if (err_addr)
1964 				ret = -EUCLEAN;
1965 		} else
1966 			ret = -EBADMSG;
1967 	}
1968 
1969 	return ret;
1970 }
1971 
1972 /*
1973  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1974  * following ahead of time:
1975  *  - Is this descriptor the beginning or end of a linked list?
1976  *  - What is the (DMA) address of the next descriptor in the linked list?
1977  */
1978 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1979 				  struct brcm_nand_dma_desc *desc, u64 addr,
1980 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1981 				  bool begin, bool end,
1982 				  dma_addr_t next_desc)
1983 {
1984 	memset(desc, 0, sizeof(*desc));
1985 	/* Descriptors are written in native byte order (wordwise) */
1986 	desc->next_desc = lower_32_bits(next_desc);
1987 	desc->next_desc_ext = upper_32_bits(next_desc);
1988 	desc->cmd_irq = (dma_cmd << 24) |
1989 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1990 		(!!begin) | ((!!end) << 1); /* head, tail */
1991 #ifdef CONFIG_CPU_BIG_ENDIAN
1992 	desc->cmd_irq |= 0x01 << 12;
1993 #endif
1994 	desc->dram_addr = lower_32_bits(buf);
1995 	desc->dram_addr_ext = upper_32_bits(buf);
1996 	desc->tfr_len = len;
1997 	desc->total_len = len;
1998 	desc->flash_addr = lower_32_bits(addr);
1999 	desc->flash_addr_ext = upper_32_bits(addr);
2000 	desc->cs = host->cs;
2001 	desc->status_valid = 0x01;
2002 	return 0;
2003 }
2004 
2005 /*
2006  * Kick the FLASH_DMA engine, with a given DMA descriptor
2007  */
2008 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2009 {
2010 	struct brcmnand_controller *ctrl = host->ctrl;
2011 	unsigned long timeo = msecs_to_jiffies(100);
2012 
2013 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2014 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2015 	if (ctrl->nand_version > 0x0602) {
2016 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2017 				 upper_32_bits(desc));
2018 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2019 	}
2020 
2021 	/* Start FLASH_DMA engine */
2022 	ctrl->dma_pending = true;
2023 	mb(); /* flush previous writes */
2024 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2025 
2026 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2027 		dev_err(ctrl->dev,
2028 				"timeout waiting for DMA; status %#x, error status %#x\n",
2029 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2030 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2031 	}
2032 	ctrl->dma_pending = false;
2033 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2034 }
2035 
2036 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2037 			      u8 *oob, u32 len, u8 dma_cmd)
2038 {
2039 	struct brcmnand_controller *ctrl = host->ctrl;
2040 	dma_addr_t buf_pa;
2041 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2042 
2043 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2044 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2045 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2046 		return -ENOMEM;
2047 	}
2048 
2049 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2050 				   dma_cmd, true, true, 0);
2051 
2052 	brcmnand_dma_run(host, ctrl->dma_pa);
2053 
2054 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2055 
2056 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2057 		return -EBADMSG;
2058 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2059 		return -EUCLEAN;
2060 
2061 	return 0;
2062 }
2063 
2064 /*
2065  * Assumes proper CS is already set
2066  */
2067 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2068 				u64 addr, unsigned int trans, u32 *buf,
2069 				u8 *oob, u64 *err_addr)
2070 {
2071 	struct brcmnand_host *host = nand_get_controller_data(chip);
2072 	struct brcmnand_controller *ctrl = host->ctrl;
2073 	int i, ret = 0;
2074 
2075 	brcmnand_clear_ecc_addr(ctrl);
2076 
2077 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2078 		brcmnand_set_cmd_addr(mtd, addr);
2079 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2080 		brcmnand_send_cmd(host, CMD_PAGE_READ);
2081 		brcmnand_waitfunc(chip);
2082 
2083 		if (likely(buf)) {
2084 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2085 
2086 			brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS);
2087 			buf += FC_WORDS;
2088 
2089 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2090 		}
2091 
2092 		if (oob)
2093 			oob += read_oob_from_regs(ctrl, i, oob,
2094 					mtd->oobsize / trans,
2095 					host->hwcfg.sector_size_1k);
2096 
2097 		if (ret != -EBADMSG) {
2098 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2099 
2100 			if (*err_addr)
2101 				ret = -EBADMSG;
2102 		}
2103 
2104 		if (!ret) {
2105 			*err_addr = brcmnand_get_correcc_addr(ctrl);
2106 
2107 			if (*err_addr)
2108 				ret = -EUCLEAN;
2109 		}
2110 	}
2111 
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2117  * error
2118  *
2119  * Because the HW ECC signals an ECC error if an erase paged has even a single
2120  * bitflip, we must check each ECC error to see if it is actually an erased
2121  * page with bitflips, not a truly corrupted page.
2122  *
2123  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2124  * buf will contain raw data.
2125  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2126  * bitflips-per-ECC-sector to the caller.
2127  *
2128  */
2129 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2130 		  struct nand_chip *chip, void *buf, u64 addr)
2131 {
2132 	struct mtd_oob_region ecc;
2133 	int i;
2134 	int bitflips = 0;
2135 	int page = addr >> chip->page_shift;
2136 	int ret;
2137 	void *ecc_bytes;
2138 	void *ecc_chunk;
2139 
2140 	if (!buf)
2141 		buf = nand_get_data_buf(chip);
2142 
2143 	/* read without ecc for verification */
2144 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2145 	if (ret)
2146 		return ret;
2147 
2148 	for (i = 0; i < chip->ecc.steps; i++) {
2149 		ecc_chunk = buf + chip->ecc.size * i;
2150 
2151 		mtd_ooblayout_ecc(mtd, i, &ecc);
2152 		ecc_bytes = chip->oob_poi + ecc.offset;
2153 
2154 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2155 						  ecc_bytes, ecc.length,
2156 						  NULL, 0,
2157 						  chip->ecc.strength);
2158 		if (ret < 0)
2159 			return ret;
2160 
2161 		bitflips = max(bitflips, ret);
2162 	}
2163 
2164 	return bitflips;
2165 }
2166 
2167 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2168 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2169 {
2170 	struct brcmnand_host *host = nand_get_controller_data(chip);
2171 	struct brcmnand_controller *ctrl = host->ctrl;
2172 	u64 err_addr = 0;
2173 	int err;
2174 	bool retry = true;
2175 	bool edu_err = false;
2176 
2177 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2178 
2179 try_dmaread:
2180 	brcmnand_clear_ecc_addr(ctrl);
2181 
2182 	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2183 	    flash_dma_buf_ok(buf)) {
2184 		err = ctrl->dma_trans(host, addr, buf, oob,
2185 				      trans * FC_BYTES,
2186 				      CMD_PAGE_READ);
2187 
2188 		if (err) {
2189 			if (mtd_is_bitflip_or_eccerr(err))
2190 				err_addr = addr;
2191 			else
2192 				return -EIO;
2193 		}
2194 
2195 		if (has_edu(ctrl) && err_addr)
2196 			edu_err = true;
2197 
2198 	} else {
2199 		if (oob)
2200 			memset(oob, 0x99, mtd->oobsize);
2201 
2202 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2203 					       oob, &err_addr);
2204 	}
2205 
2206 	if (mtd_is_eccerr(err)) {
2207 		/*
2208 		 * On controller version and 7.0, 7.1 , DMA read after a
2209 		 * prior PIO read that reported uncorrectable error,
2210 		 * the DMA engine captures this error following DMA read
2211 		 * cleared only on subsequent DMA read, so just retry once
2212 		 * to clear a possible false error reported for current DMA
2213 		 * read
2214 		 */
2215 		if ((ctrl->nand_version == 0x0700) ||
2216 		    (ctrl->nand_version == 0x0701)) {
2217 			if (retry) {
2218 				retry = false;
2219 				goto try_dmaread;
2220 			}
2221 		}
2222 
2223 		/*
2224 		 * Controller version 7.2 has hw encoder to detect erased page
2225 		 * bitflips, apply sw verification for older controllers only
2226 		 */
2227 		if (ctrl->nand_version < 0x0702) {
2228 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2229 							      addr);
2230 			/* erased page bitflips corrected */
2231 			if (err >= 0)
2232 				return err;
2233 		}
2234 
2235 		dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n",
2236 			(unsigned long long)err_addr);
2237 		mtd->ecc_stats.failed++;
2238 		/* NAND layer expects zero on ECC errors */
2239 		return 0;
2240 	}
2241 
2242 	if (mtd_is_bitflip(err)) {
2243 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2244 
2245 		/* in case of EDU correctable error we read again using PIO */
2246 		if (edu_err)
2247 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2248 						   oob, &err_addr);
2249 
2250 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2251 			(unsigned long long)err_addr);
2252 		mtd->ecc_stats.corrected += corrected;
2253 		/* Always exceed the software-imposed threshold */
2254 		return max(mtd->bitflip_threshold, corrected);
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2261 			      int oob_required, int page)
2262 {
2263 	struct mtd_info *mtd = nand_to_mtd(chip);
2264 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2265 	u64 addr = (u64)page << chip->page_shift;
2266 
2267 	return brcmnand_read(mtd, chip, addr, mtd->writesize >> FC_SHIFT,
2268 			     (u32 *)buf, oob);
2269 }
2270 
2271 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2272 				  int oob_required, int page)
2273 {
2274 	struct brcmnand_host *host = nand_get_controller_data(chip);
2275 	struct mtd_info *mtd = nand_to_mtd(chip);
2276 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2277 	int ret;
2278 	u64 addr = (u64)page << chip->page_shift;
2279 
2280 	brcmnand_set_ecc_enabled(host, 0);
2281 	ret = brcmnand_read(mtd, chip, addr, mtd->writesize >> FC_SHIFT,
2282 			    (u32 *)buf, oob);
2283 	brcmnand_set_ecc_enabled(host, 1);
2284 	return ret;
2285 }
2286 
2287 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2288 {
2289 	struct mtd_info *mtd = nand_to_mtd(chip);
2290 
2291 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2292 			mtd->writesize >> FC_SHIFT,
2293 			NULL, (u8 *)chip->oob_poi);
2294 }
2295 
2296 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2297 {
2298 	struct mtd_info *mtd = nand_to_mtd(chip);
2299 	struct brcmnand_host *host = nand_get_controller_data(chip);
2300 
2301 	brcmnand_set_ecc_enabled(host, 0);
2302 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2303 		mtd->writesize >> FC_SHIFT,
2304 		NULL, (u8 *)chip->oob_poi);
2305 	brcmnand_set_ecc_enabled(host, 1);
2306 	return 0;
2307 }
2308 
2309 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2310 			  u64 addr, const u32 *buf, u8 *oob)
2311 {
2312 	struct brcmnand_host *host = nand_get_controller_data(chip);
2313 	struct brcmnand_controller *ctrl = host->ctrl;
2314 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2315 	int status, ret = 0;
2316 
2317 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2318 
2319 	if (unlikely((unsigned long)buf & 0x03)) {
2320 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2321 		buf = (u32 *)((unsigned long)buf & ~0x03);
2322 	}
2323 
2324 	brcmnand_wp(mtd, 0);
2325 
2326 	for (i = 0; i < ctrl->max_oob; i += 4)
2327 		oob_reg_write(ctrl, i, 0xffffffff);
2328 
2329 	if (mtd->oops_panic_write)
2330 		/* switch to interrupt polling and PIO mode */
2331 		disable_ctrl_irqs(ctrl);
2332 
2333 	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2334 		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2335 				    CMD_PROGRAM_PAGE))
2336 
2337 			ret = -EIO;
2338 
2339 		goto out;
2340 	}
2341 
2342 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2343 		/* full address MUST be set before populating FC */
2344 		brcmnand_set_cmd_addr(mtd, addr);
2345 
2346 		if (buf) {
2347 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2348 
2349 			for (j = 0; j < FC_WORDS; j++, buf++)
2350 				brcmnand_write_fc(ctrl, j, *buf);
2351 
2352 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2353 		} else if (oob) {
2354 			for (j = 0; j < FC_WORDS; j++)
2355 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2356 		}
2357 
2358 		if (oob) {
2359 			oob += write_oob_to_regs(ctrl, i, oob,
2360 					mtd->oobsize / trans,
2361 					host->hwcfg.sector_size_1k);
2362 		}
2363 
2364 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2365 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2366 		status = brcmnand_waitfunc(chip);
2367 
2368 		if (status < 0) {
2369 			ret = status;
2370 			goto out;
2371 		}
2372 
2373 		if (status & NAND_STATUS_FAIL) {
2374 			dev_info(ctrl->dev, "program failed at %llx\n",
2375 				(unsigned long long)addr);
2376 			ret = -EIO;
2377 			goto out;
2378 		}
2379 	}
2380 out:
2381 	brcmnand_wp(mtd, 1);
2382 	return ret;
2383 }
2384 
2385 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2386 			       int oob_required, int page)
2387 {
2388 	struct mtd_info *mtd = nand_to_mtd(chip);
2389 	void *oob = oob_required ? chip->oob_poi : NULL;
2390 	u64 addr = (u64)page << chip->page_shift;
2391 
2392 	return brcmnand_write(mtd, chip, addr, (const u32 *)buf, oob);
2393 }
2394 
2395 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2396 				   int oob_required, int page)
2397 {
2398 	struct mtd_info *mtd = nand_to_mtd(chip);
2399 	struct brcmnand_host *host = nand_get_controller_data(chip);
2400 	void *oob = oob_required ? chip->oob_poi : NULL;
2401 	u64 addr = (u64)page << chip->page_shift;
2402 	int ret = 0;
2403 
2404 	brcmnand_set_ecc_enabled(host, 0);
2405 	ret = brcmnand_write(mtd, chip, addr, (const u32 *)buf, oob);
2406 	brcmnand_set_ecc_enabled(host, 1);
2407 
2408 	return ret;
2409 }
2410 
2411 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2412 {
2413 	return brcmnand_write(nand_to_mtd(chip), chip,
2414 			      (u64)page << chip->page_shift, NULL,
2415 			      chip->oob_poi);
2416 }
2417 
2418 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2419 {
2420 	struct mtd_info *mtd = nand_to_mtd(chip);
2421 	struct brcmnand_host *host = nand_get_controller_data(chip);
2422 	int ret;
2423 
2424 	brcmnand_set_ecc_enabled(host, 0);
2425 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2426 				 (u8 *)chip->oob_poi);
2427 	brcmnand_set_ecc_enabled(host, 1);
2428 
2429 	return ret;
2430 }
2431 
2432 static int brcmnand_exec_instr(struct brcmnand_host *host, int i,
2433 		const struct nand_operation *op)
2434 {
2435 	const struct nand_op_instr *instr = &op->instrs[i];
2436 	struct brcmnand_controller *ctrl = host->ctrl;
2437 	const u8 *out;
2438 	bool last_op;
2439 	int ret = 0;
2440 	u8 *in;
2441 
2442 	/*
2443 	 * The controller needs to be aware of the last command in the operation
2444 	 * (WAITRDY excepted).
2445 	 */
2446 	last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) ||
2447 		  ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR));
2448 
2449 	switch (instr->type) {
2450 	case NAND_OP_CMD_INSTR:
2451 		brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op);
2452 		break;
2453 
2454 	case NAND_OP_ADDR_INSTR:
2455 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
2456 			brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i],
2457 					      last_op && (i == (instr->ctx.addr.naddrs - 1)));
2458 		break;
2459 
2460 	case NAND_OP_DATA_IN_INSTR:
2461 		in = instr->ctx.data.buf.in;
2462 		for (i = 0; i < instr->ctx.data.len; i++) {
2463 			brcmnand_low_level_op(host, LL_OP_RD, 0,
2464 					      last_op && (i == (instr->ctx.data.len - 1)));
2465 			in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA);
2466 		}
2467 		break;
2468 
2469 	case NAND_OP_DATA_OUT_INSTR:
2470 		out = instr->ctx.data.buf.out;
2471 		for (i = 0; i < instr->ctx.data.len; i++)
2472 			brcmnand_low_level_op(host, LL_OP_WR, out[i],
2473 					      last_op && (i == (instr->ctx.data.len - 1)));
2474 		break;
2475 
2476 	case NAND_OP_WAITRDY_INSTR:
2477 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2478 		break;
2479 
2480 	default:
2481 		dev_err(ctrl->dev, "unsupported instruction type: %d\n",
2482 			instr->type);
2483 		ret = -EINVAL;
2484 		break;
2485 	}
2486 
2487 	return ret;
2488 }
2489 
2490 static int brcmnand_op_is_status(const struct nand_operation *op)
2491 {
2492 	if (op->ninstrs == 2 &&
2493 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2494 	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS &&
2495 	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
2496 		return 1;
2497 
2498 	return 0;
2499 }
2500 
2501 static int brcmnand_op_is_reset(const struct nand_operation *op)
2502 {
2503 	if (op->ninstrs == 2 &&
2504 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2505 	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET &&
2506 	    op->instrs[1].type == NAND_OP_WAITRDY_INSTR)
2507 		return 1;
2508 
2509 	return 0;
2510 }
2511 
2512 static int brcmnand_check_instructions(struct nand_chip *chip,
2513 				       const struct nand_operation *op)
2514 {
2515 	return 0;
2516 }
2517 
2518 static int brcmnand_exec_instructions(struct nand_chip *chip,
2519 				      const struct nand_operation *op)
2520 {
2521 	struct brcmnand_host *host = nand_get_controller_data(chip);
2522 	unsigned int i;
2523 	int ret = 0;
2524 
2525 	for (i = 0; i < op->ninstrs; i++) {
2526 		ret = brcmnand_exec_instr(host, i, op);
2527 		if (ret)
2528 			break;
2529 	}
2530 
2531 	return ret;
2532 }
2533 
2534 static int brcmnand_check_instructions_legacy(struct nand_chip *chip,
2535 					      const struct nand_operation *op)
2536 {
2537 	const struct nand_op_instr *instr;
2538 	unsigned int i;
2539 	u8 cmd;
2540 
2541 	for (i = 0; i < op->ninstrs; i++) {
2542 		instr = &op->instrs[i];
2543 
2544 		switch (instr->type) {
2545 		case NAND_OP_CMD_INSTR:
2546 			cmd = native_cmd_conv[instr->ctx.cmd.opcode];
2547 			if (cmd == CMD_NOT_SUPPORTED)
2548 				return -EOPNOTSUPP;
2549 			break;
2550 		case NAND_OP_ADDR_INSTR:
2551 		case NAND_OP_DATA_IN_INSTR:
2552 		case NAND_OP_WAITRDY_INSTR:
2553 			break;
2554 		default:
2555 			return -EOPNOTSUPP;
2556 		}
2557 	}
2558 
2559 	return 0;
2560 }
2561 
2562 static int brcmnand_exec_instructions_legacy(struct nand_chip *chip,
2563 					     const struct nand_operation *op)
2564 {
2565 	struct mtd_info *mtd = nand_to_mtd(chip);
2566 	struct brcmnand_host *host = nand_get_controller_data(chip);
2567 	struct brcmnand_controller *ctrl = host->ctrl;
2568 	const struct nand_op_instr *instr;
2569 	unsigned int i, j;
2570 	u8 cmd = CMD_NULL, last_cmd = CMD_NULL;
2571 	int ret = 0;
2572 	u64 last_addr;
2573 
2574 	for (i = 0; i < op->ninstrs; i++) {
2575 		instr = &op->instrs[i];
2576 
2577 		if (instr->type == NAND_OP_CMD_INSTR) {
2578 			cmd = native_cmd_conv[instr->ctx.cmd.opcode];
2579 			if (cmd == CMD_NOT_SUPPORTED) {
2580 				dev_err(ctrl->dev, "unsupported cmd=%d\n",
2581 					instr->ctx.cmd.opcode);
2582 				ret = -EOPNOTSUPP;
2583 				break;
2584 			}
2585 		} else if (instr->type == NAND_OP_ADDR_INSTR) {
2586 			u64 addr = 0;
2587 
2588 			if (cmd == CMD_NULL)
2589 				continue;
2590 
2591 			if (instr->ctx.addr.naddrs > 8) {
2592 				dev_err(ctrl->dev, "unsupported naddrs=%u\n",
2593 					instr->ctx.addr.naddrs);
2594 				ret = -EOPNOTSUPP;
2595 				break;
2596 			}
2597 
2598 			for (j = 0; j < instr->ctx.addr.naddrs; j++)
2599 				addr |= (instr->ctx.addr.addrs[j]) << (j << 3);
2600 
2601 			if (cmd == CMD_BLOCK_ERASE)
2602 				addr <<= chip->page_shift;
2603 			else if (cmd == CMD_PARAMETER_CHANGE_COL)
2604 				addr &= ~((u64)(FC_BYTES - 1));
2605 
2606 			brcmnand_set_cmd_addr(mtd, addr);
2607 			brcmnand_send_cmd(host, cmd);
2608 			last_addr = addr;
2609 			last_cmd = cmd;
2610 			cmd = CMD_NULL;
2611 			brcmnand_waitfunc(chip);
2612 
2613 			if (last_cmd == CMD_PARAMETER_READ ||
2614 			    last_cmd == CMD_PARAMETER_CHANGE_COL) {
2615 				/* Copy flash cache word-wise */
2616 				u32 *flash_cache = (u32 *)ctrl->flash_cache;
2617 
2618 				brcmnand_soc_data_bus_prepare(ctrl->soc, true);
2619 
2620 				/*
2621 				 * Must cache the FLASH_CACHE now, since changes in
2622 				 * SECTOR_SIZE_1K may invalidate it
2623 				 */
2624 				for (j = 0; j < FC_WORDS; j++)
2625 					/*
2626 					 * Flash cache is big endian for parameter pages, at
2627 					 * least on STB SoCs
2628 					 */
2629 					flash_cache[j] = be32_to_cpu(brcmnand_read_fc(ctrl, j));
2630 
2631 				brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
2632 			}
2633 		} else if (instr->type == NAND_OP_DATA_IN_INSTR) {
2634 			u8 *in = instr->ctx.data.buf.in;
2635 
2636 			if (last_cmd == CMD_DEVICE_ID_READ) {
2637 				u32 val;
2638 
2639 				if (instr->ctx.data.len > 8) {
2640 					dev_err(ctrl->dev, "unsupported len=%u\n",
2641 						instr->ctx.data.len);
2642 					ret = -EOPNOTSUPP;
2643 					break;
2644 				}
2645 
2646 				for (j = 0; j < instr->ctx.data.len; j++) {
2647 					if (j == 0)
2648 						val = brcmnand_read_reg(ctrl, BRCMNAND_ID);
2649 					else if (j == 4)
2650 						val = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT);
2651 
2652 					in[j] = (val >> (24 - ((j % 4) << 3))) & 0xff;
2653 				}
2654 			} else if (last_cmd == CMD_PARAMETER_READ ||
2655 				   last_cmd == CMD_PARAMETER_CHANGE_COL) {
2656 				u64 addr;
2657 				u32 offs;
2658 
2659 				for (j = 0; j < instr->ctx.data.len; j++) {
2660 					addr = last_addr + j;
2661 					offs = addr & (FC_BYTES - 1);
2662 
2663 					if (j > 0 && offs == 0)
2664 						nand_change_read_column_op(chip, addr, NULL, 0,
2665 									   false);
2666 
2667 					in[j] = ctrl->flash_cache[offs];
2668 				}
2669 			}
2670 		} else if (instr->type == NAND_OP_WAITRDY_INSTR) {
2671 			ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2672 			if (ret)
2673 				break;
2674 		} else {
2675 			dev_err(ctrl->dev, "unsupported instruction type: %d\n", instr->type);
2676 			ret = -EOPNOTSUPP;
2677 			break;
2678 		}
2679 	}
2680 
2681 	return ret;
2682 }
2683 
2684 static int brcmnand_exec_op(struct nand_chip *chip,
2685 			    const struct nand_operation *op,
2686 			    bool check_only)
2687 {
2688 	struct brcmnand_host *host = nand_get_controller_data(chip);
2689 	struct brcmnand_controller *ctrl = host->ctrl;
2690 	struct mtd_info *mtd = nand_to_mtd(chip);
2691 	u8 *status;
2692 	int ret = 0;
2693 
2694 	if (check_only)
2695 		return ctrl->check_instr(chip, op);
2696 
2697 	if (brcmnand_op_is_status(op)) {
2698 		status = op->instrs[1].ctx.data.buf.in;
2699 		ret = brcmnand_status(host);
2700 		if (ret < 0)
2701 			return ret;
2702 
2703 		*status = ret & 0xFF;
2704 
2705 		return 0;
2706 	} else if (brcmnand_op_is_reset(op)) {
2707 		ret = brcmnand_reset(host);
2708 		if (ret < 0)
2709 			return ret;
2710 
2711 		brcmnand_wp(mtd, 1);
2712 
2713 		return 0;
2714 	}
2715 
2716 	if (op->deassert_wp)
2717 		brcmnand_wp(mtd, 0);
2718 
2719 	ret = ctrl->exec_instr(chip, op);
2720 
2721 	if (op->deassert_wp)
2722 		brcmnand_wp(mtd, 1);
2723 
2724 	return ret;
2725 }
2726 
2727 /***********************************************************************
2728  * Per-CS setup (1 NAND device)
2729  ***********************************************************************/
2730 
2731 static int brcmnand_set_cfg(struct brcmnand_host *host,
2732 			    struct brcmnand_cfg *cfg)
2733 {
2734 	struct brcmnand_controller *ctrl = host->ctrl;
2735 	struct nand_chip *chip = &host->chip;
2736 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2737 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2738 			BRCMNAND_CS_CFG_EXT);
2739 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2740 			BRCMNAND_CS_ACC_CONTROL);
2741 	u8 block_size = 0, page_size = 0, device_size = 0;
2742 	u32 tmp;
2743 
2744 	if (ctrl->block_sizes) {
2745 		int i, found;
2746 
2747 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2748 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2749 				block_size = i;
2750 				found = 1;
2751 			}
2752 		if (!found) {
2753 			dev_warn(ctrl->dev, "invalid block size %u\n",
2754 					cfg->block_size);
2755 			return -EINVAL;
2756 		}
2757 	} else {
2758 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2759 	}
2760 
2761 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2762 				cfg->block_size > ctrl->max_block_size)) {
2763 		dev_warn(ctrl->dev, "invalid block size %u\n",
2764 				cfg->block_size);
2765 		block_size = 0;
2766 	}
2767 
2768 	if (ctrl->page_sizes) {
2769 		int i, found;
2770 
2771 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2772 			if (ctrl->page_sizes[i] == cfg->page_size) {
2773 				page_size = i;
2774 				found = 1;
2775 			}
2776 		if (!found) {
2777 			dev_warn(ctrl->dev, "invalid page size %u\n",
2778 					cfg->page_size);
2779 			return -EINVAL;
2780 		}
2781 	} else {
2782 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2783 	}
2784 
2785 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2786 				cfg->page_size > ctrl->max_page_size)) {
2787 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2788 		return -EINVAL;
2789 	}
2790 
2791 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2792 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2793 			(unsigned long long)cfg->device_size);
2794 		return -EINVAL;
2795 	}
2796 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2797 
2798 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2799 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2800 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2801 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2802 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2803 	if (cfg_offs == cfg_ext_offs) {
2804 		tmp |= (page_size << ctrl->page_size_shift) |
2805 		       (block_size << CFG_BLK_SIZE_SHIFT);
2806 		nand_writereg(ctrl, cfg_offs, tmp);
2807 	} else {
2808 		nand_writereg(ctrl, cfg_offs, tmp);
2809 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2810 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2811 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2812 	}
2813 
2814 	tmp = nand_readreg(ctrl, acc_control_offs);
2815 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2816 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2817 	if (ctrl->nand_version >= 0x0302) {
2818 		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2819 		tmp |= cfg->spare_area_size;
2820 	}
2821 	nand_writereg(ctrl, acc_control_offs, tmp);
2822 
2823 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2824 
2825 	/* threshold = ceil(BCH-level * 0.75) */
2826 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2827 
2828 	return 0;
2829 }
2830 
2831 static void brcmnand_print_cfg(struct brcmnand_host *host,
2832 			       char *buf, struct brcmnand_cfg *cfg)
2833 {
2834 	buf += sprintf(buf,
2835 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2836 		(unsigned long long)cfg->device_size >> 20,
2837 		cfg->block_size >> 10,
2838 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2839 		cfg->page_size >= 1024 ? "KiB" : "B",
2840 		cfg->spare_area_size, cfg->device_width);
2841 
2842 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2843 	if (is_hamming_ecc(host->ctrl, cfg))
2844 		sprintf(buf, ", Hamming ECC");
2845 	else if (cfg->sector_size_1k)
2846 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2847 	else
2848 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2849 }
2850 
2851 /*
2852  * Minimum number of bytes to address a page. Calculated as:
2853  *     roundup(log2(size / page-size) / 8)
2854  *
2855  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2856  *     OK because many other things will break if 'size' is irregular...
2857  */
2858 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2859 {
2860 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2861 }
2862 
2863 static int brcmnand_setup_dev(struct brcmnand_host *host)
2864 {
2865 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2866 	struct nand_chip *chip = &host->chip;
2867 	const struct nand_ecc_props *requirements =
2868 		nanddev_get_ecc_requirements(&chip->base);
2869 	struct nand_memory_organization *memorg =
2870 		nanddev_get_memorg(&chip->base);
2871 	struct brcmnand_controller *ctrl = host->ctrl;
2872 	struct brcmnand_cfg *cfg = &host->hwcfg;
2873 	struct device_node *np = nand_get_flash_node(chip);
2874 	u32 offs, tmp, oob_sector;
2875 	bool use_strap = false;
2876 	char msg[128];
2877 	int ret;
2878 
2879 	memset(cfg, 0, sizeof(*cfg));
2880 	use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap");
2881 
2882 	/*
2883 	 * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out
2884 	 * if both exist.
2885 	 */
2886 	if (chip->ecc.strength && use_strap) {
2887 		dev_err(ctrl->dev,
2888 			"ECC strap and DT ECC configuration properties are mutually exclusive\n");
2889 		return -EINVAL;
2890 	}
2891 
2892 	if (use_strap)
2893 		brcmnand_get_ecc_settings(host, chip);
2894 
2895 	ret = of_property_read_u32(np, "brcm,nand-oob-sector-size",
2896 				   &oob_sector);
2897 	if (ret) {
2898 		if (use_strap)
2899 			cfg->spare_area_size = brcmnand_get_spare_size(host);
2900 		else
2901 			/* Use detected size */
2902 			cfg->spare_area_size = mtd->oobsize /
2903 						(mtd->writesize >> FC_SHIFT);
2904 	} else {
2905 		cfg->spare_area_size = oob_sector;
2906 	}
2907 	if (cfg->spare_area_size > ctrl->max_oob)
2908 		cfg->spare_area_size = ctrl->max_oob;
2909 	/*
2910 	 * Set mtd and memorg oobsize to be consistent with controller's
2911 	 * spare_area_size, as the rest is inaccessible.
2912 	 */
2913 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2914 	memorg->oobsize = mtd->oobsize;
2915 
2916 	cfg->device_size = mtd->size;
2917 	cfg->block_size = mtd->erasesize;
2918 	cfg->page_size = mtd->writesize;
2919 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2920 	cfg->col_adr_bytes = 2;
2921 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2922 
2923 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2924 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2925 			chip->ecc.engine_type);
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2930 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2931 			/* Default to Hamming for 1-bit ECC, if unspecified */
2932 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2933 		else
2934 			/* Otherwise, BCH */
2935 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2936 	}
2937 
2938 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2939 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2940 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2941 			chip->ecc.strength, chip->ecc.size);
2942 		return -EINVAL;
2943 	}
2944 
2945 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2946 	    (!chip->ecc.size || !chip->ecc.strength)) {
2947 		if (requirements->step_size && requirements->strength) {
2948 			/* use detected ECC parameters */
2949 			chip->ecc.size = requirements->step_size;
2950 			chip->ecc.strength = requirements->strength;
2951 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2952 				chip->ecc.size, chip->ecc.strength);
2953 		}
2954 	}
2955 
2956 	switch (chip->ecc.size) {
2957 	case 512:
2958 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2959 			cfg->ecc_level = 15;
2960 		else
2961 			cfg->ecc_level = chip->ecc.strength;
2962 		cfg->sector_size_1k = 0;
2963 		break;
2964 	case 1024:
2965 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2966 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2967 			return -EINVAL;
2968 		}
2969 		if (chip->ecc.strength & 0x1) {
2970 			dev_err(ctrl->dev,
2971 				"odd ECC not supported with 1KB sectors\n");
2972 			return -EINVAL;
2973 		}
2974 
2975 		cfg->ecc_level = chip->ecc.strength >> 1;
2976 		cfg->sector_size_1k = 1;
2977 		break;
2978 	default:
2979 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2980 			chip->ecc.size);
2981 		return -EINVAL;
2982 	}
2983 
2984 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2985 	if (mtd->writesize > 512)
2986 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2987 	else
2988 		cfg->ful_adr_bytes += 1;
2989 
2990 	ret = brcmnand_set_cfg(host, cfg);
2991 	if (ret)
2992 		return ret;
2993 
2994 	brcmnand_set_ecc_enabled(host, 1);
2995 
2996 	brcmnand_print_cfg(host, msg, cfg);
2997 	dev_info(ctrl->dev, "detected %s\n", msg);
2998 
2999 	/* Configure ACC_CONTROL */
3000 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
3001 	tmp = nand_readreg(ctrl, offs);
3002 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
3003 	tmp &= ~ACC_CONTROL_RD_ERASED;
3004 
3005 	/* We need to turn on Read from erased paged protected by ECC */
3006 	if (ctrl->nand_version >= 0x0702)
3007 		tmp |= ACC_CONTROL_RD_ERASED;
3008 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
3009 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
3010 		tmp &= ~ACC_CONTROL_PREFETCH;
3011 
3012 	nand_writereg(ctrl, offs, tmp);
3013 
3014 	return 0;
3015 }
3016 
3017 static int brcmnand_attach_chip(struct nand_chip *chip)
3018 {
3019 	struct mtd_info *mtd = nand_to_mtd(chip);
3020 	struct brcmnand_host *host = nand_get_controller_data(chip);
3021 	int ret;
3022 
3023 	chip->options |= NAND_NO_SUBPAGE_WRITE;
3024 	/*
3025 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
3026 	 * to/from, and have nand_base pass us a bounce buffer instead, as
3027 	 * needed.
3028 	 */
3029 	chip->options |= NAND_USES_DMA;
3030 
3031 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
3032 		chip->bbt_options |= NAND_BBT_NO_OOB;
3033 
3034 	if (brcmnand_setup_dev(host))
3035 		return -ENXIO;
3036 
3037 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
3038 
3039 	/* only use our internal HW threshold */
3040 	mtd->bitflip_threshold = 1;
3041 
3042 	ret = brcmstb_choose_ecc_layout(host);
3043 
3044 	/* If OOB is written with ECC enabled it will cause ECC errors */
3045 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
3046 		chip->ecc.write_oob = brcmnand_write_oob_raw;
3047 		chip->ecc.read_oob = brcmnand_read_oob_raw;
3048 	}
3049 
3050 	return ret;
3051 }
3052 
3053 static const struct nand_controller_ops brcmnand_controller_ops = {
3054 	.attach_chip = brcmnand_attach_chip,
3055 	.exec_op = brcmnand_exec_op,
3056 };
3057 
3058 static int brcmnand_init_cs(struct brcmnand_host *host,
3059 			    const char * const *part_probe_types)
3060 {
3061 	struct brcmnand_controller *ctrl = host->ctrl;
3062 	struct device *dev = ctrl->dev;
3063 	struct mtd_info *mtd;
3064 	struct nand_chip *chip;
3065 	int ret;
3066 	u16 cfg_offs;
3067 
3068 	mtd = nand_to_mtd(&host->chip);
3069 	chip = &host->chip;
3070 
3071 	nand_set_controller_data(chip, host);
3072 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
3073 				   host->cs);
3074 	if (!mtd->name)
3075 		return -ENOMEM;
3076 
3077 	mtd->owner = THIS_MODULE;
3078 	mtd->dev.parent = dev;
3079 
3080 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
3081 	chip->ecc.read_page = brcmnand_read_page;
3082 	chip->ecc.write_page = brcmnand_write_page;
3083 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
3084 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
3085 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
3086 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
3087 	chip->ecc.read_oob = brcmnand_read_oob;
3088 	chip->ecc.write_oob = brcmnand_write_oob;
3089 
3090 	chip->controller = &ctrl->controller;
3091 	ctrl->controller.controller_wp = 1;
3092 
3093 	/*
3094 	 * The bootloader might have configured 16bit mode but
3095 	 * NAND READID command only works in 8bit mode. We force
3096 	 * 8bit mode here to ensure that NAND READID commands works.
3097 	 */
3098 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
3099 	nand_writereg(ctrl, cfg_offs,
3100 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
3101 
3102 	ret = nand_scan(chip, 1);
3103 	if (ret)
3104 		return ret;
3105 
3106 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
3107 	if (ret)
3108 		nand_cleanup(chip);
3109 
3110 	return ret;
3111 }
3112 
3113 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
3114 					    int restore)
3115 {
3116 	struct brcmnand_controller *ctrl = host->ctrl;
3117 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
3118 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
3119 			BRCMNAND_CS_CFG_EXT);
3120 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
3121 			BRCMNAND_CS_ACC_CONTROL);
3122 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
3123 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
3124 
3125 	if (restore) {
3126 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
3127 		if (cfg_offs != cfg_ext_offs)
3128 			nand_writereg(ctrl, cfg_ext_offs,
3129 				      host->hwcfg.config_ext);
3130 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
3131 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
3132 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
3133 	} else {
3134 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
3135 		if (cfg_offs != cfg_ext_offs)
3136 			host->hwcfg.config_ext =
3137 				nand_readreg(ctrl, cfg_ext_offs);
3138 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
3139 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
3140 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
3141 	}
3142 }
3143 
3144 static int brcmnand_suspend(struct device *dev)
3145 {
3146 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
3147 	struct brcmnand_host *host;
3148 
3149 	list_for_each_entry(host, &ctrl->host_list, node)
3150 		brcmnand_save_restore_cs_config(host, 0);
3151 
3152 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
3153 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
3154 	ctrl->corr_stat_threshold =
3155 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
3156 
3157 	if (has_flash_dma(ctrl))
3158 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
3159 	else if (has_edu(ctrl))
3160 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
3161 
3162 	return 0;
3163 }
3164 
3165 static int brcmnand_resume(struct device *dev)
3166 {
3167 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
3168 	struct brcmnand_host *host;
3169 
3170 	if (has_flash_dma(ctrl)) {
3171 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
3172 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3173 	}
3174 
3175 	if (has_edu(ctrl)) {
3176 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
3177 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
3178 		edu_readl(ctrl, EDU_CONFIG);
3179 		brcmnand_edu_init(ctrl);
3180 	}
3181 
3182 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
3183 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
3184 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
3185 			ctrl->corr_stat_threshold);
3186 	if (ctrl->soc) {
3187 		/* Clear/re-enable interrupt */
3188 		ctrl->soc->ctlrdy_ack(ctrl->soc);
3189 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3190 	}
3191 
3192 	list_for_each_entry(host, &ctrl->host_list, node) {
3193 		struct nand_chip *chip = &host->chip;
3194 
3195 		brcmnand_save_restore_cs_config(host, 1);
3196 
3197 		/* Reset the chip, required by some chips after power-up */
3198 		nand_reset(chip, 0);
3199 	}
3200 
3201 	return 0;
3202 }
3203 
3204 const struct dev_pm_ops brcmnand_pm_ops = {
3205 	.suspend		= brcmnand_suspend,
3206 	.resume			= brcmnand_resume,
3207 };
3208 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
3209 
3210 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
3211 	{ .compatible = "brcm,brcmnand-v2.1" },
3212 	{ .compatible = "brcm,brcmnand-v2.2" },
3213 	{ .compatible = "brcm,brcmnand-v4.0" },
3214 	{ .compatible = "brcm,brcmnand-v5.0" },
3215 	{ .compatible = "brcm,brcmnand-v6.0" },
3216 	{ .compatible = "brcm,brcmnand-v6.1" },
3217 	{ .compatible = "brcm,brcmnand-v6.2" },
3218 	{ .compatible = "brcm,brcmnand-v7.0" },
3219 	{ .compatible = "brcm,brcmnand-v7.1" },
3220 	{ .compatible = "brcm,brcmnand-v7.2" },
3221 	{ .compatible = "brcm,brcmnand-v7.3" },
3222 	{},
3223 };
3224 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
3225 
3226 /***********************************************************************
3227  * Platform driver setup (per controller)
3228  ***********************************************************************/
3229 static int brcmnand_edu_setup(struct platform_device *pdev)
3230 {
3231 	struct device *dev = &pdev->dev;
3232 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3233 	struct resource *res;
3234 	int ret;
3235 
3236 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3237 	if (res) {
3238 		ctrl->edu_base = devm_ioremap_resource(dev, res);
3239 		if (IS_ERR(ctrl->edu_base))
3240 			return PTR_ERR(ctrl->edu_base);
3241 
3242 		ctrl->edu_offsets = edu_regs;
3243 
3244 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3245 			   EDU_CONFIG_SWAP_CFG);
3246 		edu_readl(ctrl, EDU_CONFIG);
3247 
3248 		/* initialize edu */
3249 		brcmnand_edu_init(ctrl);
3250 
3251 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3252 		if (ctrl->edu_irq < 0) {
3253 			dev_warn(dev,
3254 				 "FLASH EDU enabled, using ctlrdy irq\n");
3255 		} else {
3256 			ret = devm_request_irq(dev, ctrl->edu_irq,
3257 					       brcmnand_edu_irq, 0,
3258 					       "brcmnand-edu", ctrl);
3259 			if (ret < 0) {
3260 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3261 					ctrl->edu_irq, ret);
3262 				return ret;
3263 			}
3264 
3265 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
3266 				 ctrl->edu_irq);
3267 		}
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3274 {
3275 	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3276 	struct device *dev = &pdev->dev;
3277 	struct device_node *dn = dev->of_node, *child;
3278 	struct brcmnand_controller *ctrl;
3279 	struct brcmnand_host *host;
3280 	struct resource *res;
3281 	int ret;
3282 
3283 	if (dn && !of_match_node(brcmnand_of_match, dn))
3284 		return -ENODEV;
3285 
3286 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3287 	if (!ctrl)
3288 		return -ENOMEM;
3289 
3290 	dev_set_drvdata(dev, ctrl);
3291 	ctrl->dev = dev;
3292 	ctrl->soc = soc;
3293 
3294 	/* Enable the static key if the soc provides I/O operations indicating
3295 	 * that a non-memory mapped IO access path must be used
3296 	 */
3297 	if (brcmnand_soc_has_ops(ctrl->soc))
3298 		static_branch_enable(&brcmnand_soc_has_ops_key);
3299 
3300 	init_completion(&ctrl->done);
3301 	init_completion(&ctrl->dma_done);
3302 	init_completion(&ctrl->edu_done);
3303 	nand_controller_init(&ctrl->controller);
3304 	ctrl->controller.ops = &brcmnand_controller_ops;
3305 	INIT_LIST_HEAD(&ctrl->host_list);
3306 
3307 	/* NAND register range */
3308 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3309 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3310 	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3311 		return PTR_ERR(ctrl->nand_base);
3312 
3313 	/* Enable clock before using NAND registers */
3314 	ctrl->clk = devm_clk_get(dev, "nand");
3315 	if (!IS_ERR(ctrl->clk)) {
3316 		ret = clk_prepare_enable(ctrl->clk);
3317 		if (ret)
3318 			return ret;
3319 	} else {
3320 		ret = PTR_ERR(ctrl->clk);
3321 		if (ret == -EPROBE_DEFER)
3322 			return ret;
3323 
3324 		ctrl->clk = NULL;
3325 	}
3326 
3327 	/* Initialize NAND revision */
3328 	ret = brcmnand_revision_init(ctrl);
3329 	if (ret)
3330 		goto err;
3331 
3332 	/* Only v5.0+ controllers have low level ops support */
3333 	if (ctrl->nand_version >= 0x0500) {
3334 		ctrl->check_instr = brcmnand_check_instructions;
3335 		ctrl->exec_instr = brcmnand_exec_instructions;
3336 	} else {
3337 		ctrl->check_instr = brcmnand_check_instructions_legacy;
3338 		ctrl->exec_instr = brcmnand_exec_instructions_legacy;
3339 	}
3340 
3341 	/*
3342 	 * Most chips have this cache at a fixed offset within 'nand' block.
3343 	 * Some must specify this region separately.
3344 	 */
3345 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3346 	if (res) {
3347 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3348 		if (IS_ERR(ctrl->nand_fc)) {
3349 			ret = PTR_ERR(ctrl->nand_fc);
3350 			goto err;
3351 		}
3352 	} else {
3353 		ctrl->nand_fc = ctrl->nand_base +
3354 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3355 	}
3356 
3357 	/* FLASH_DMA */
3358 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3359 	if (res) {
3360 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3361 		if (IS_ERR(ctrl->flash_dma_base)) {
3362 			ret = PTR_ERR(ctrl->flash_dma_base);
3363 			goto err;
3364 		}
3365 
3366 		/* initialize the dma version */
3367 		brcmnand_flash_dma_revision_init(ctrl);
3368 
3369 		ret = -EIO;
3370 		if (ctrl->nand_version >= 0x0700)
3371 			ret = dma_set_mask_and_coherent(&pdev->dev,
3372 							DMA_BIT_MASK(40));
3373 		if (ret)
3374 			ret = dma_set_mask_and_coherent(&pdev->dev,
3375 							DMA_BIT_MASK(32));
3376 		if (ret)
3377 			goto err;
3378 
3379 		/* linked-list and stop on error */
3380 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3381 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3382 
3383 		/* Allocate descriptor(s) */
3384 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3385 						     sizeof(*ctrl->dma_desc),
3386 						     &ctrl->dma_pa, GFP_KERNEL);
3387 		if (!ctrl->dma_desc) {
3388 			ret = -ENOMEM;
3389 			goto err;
3390 		}
3391 
3392 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3393 		if ((int)ctrl->dma_irq < 0) {
3394 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3395 			ret = -ENODEV;
3396 			goto err;
3397 		}
3398 
3399 		ret = devm_request_irq(dev, ctrl->dma_irq,
3400 				brcmnand_dma_irq, 0, DRV_NAME,
3401 				ctrl);
3402 		if (ret < 0) {
3403 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3404 					ctrl->dma_irq, ret);
3405 			goto err;
3406 		}
3407 
3408 		dev_info(dev, "enabling FLASH_DMA\n");
3409 		/* set flash dma transfer function to call */
3410 		ctrl->dma_trans = brcmnand_dma_trans;
3411 	} else	{
3412 		ret = brcmnand_edu_setup(pdev);
3413 		if (ret < 0)
3414 			goto err;
3415 
3416 		if (has_edu(ctrl))
3417 			/* set edu transfer function to call */
3418 			ctrl->dma_trans = brcmnand_edu_trans;
3419 	}
3420 
3421 	/* Disable automatic device ID config, direct addressing */
3422 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3423 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3424 	/* Disable XOR addressing */
3425 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3426 
3427 	/* Check if the board connects the WP pin */
3428 	if (of_property_read_bool(dn, "brcm,wp-not-connected"))
3429 		wp_on = 0;
3430 
3431 	if (ctrl->features & BRCMNAND_HAS_WP) {
3432 		/* Permanently disable write protection */
3433 		if (wp_on == 2)
3434 			brcmnand_set_wp(ctrl, false);
3435 	} else {
3436 		wp_on = 0;
3437 	}
3438 
3439 	/* IRQ */
3440 	ctrl->irq = platform_get_irq_optional(pdev, 0);
3441 	if (ctrl->irq > 0) {
3442 		/*
3443 		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3444 		 * interesting ways
3445 		 */
3446 		if (soc) {
3447 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3448 					       DRV_NAME, ctrl);
3449 
3450 			/* Enable interrupt */
3451 			ctrl->soc->ctlrdy_ack(ctrl->soc);
3452 			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3453 		} else {
3454 			/* Use standard interrupt infrastructure */
3455 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3456 					       DRV_NAME, ctrl);
3457 		}
3458 		if (ret < 0) {
3459 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3460 				ctrl->irq, ret);
3461 			goto err;
3462 		}
3463 	}
3464 
3465 	for_each_available_child_of_node(dn, child) {
3466 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3467 
3468 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3469 			if (!host) {
3470 				of_node_put(child);
3471 				ret = -ENOMEM;
3472 				goto err;
3473 			}
3474 			host->pdev = pdev;
3475 			host->ctrl = ctrl;
3476 
3477 			ret = of_property_read_u32(child, "reg", &host->cs);
3478 			if (ret) {
3479 				dev_err(dev, "can't get chip-select\n");
3480 				devm_kfree(dev, host);
3481 				continue;
3482 			}
3483 
3484 			nand_set_flash_node(&host->chip, child);
3485 
3486 			ret = brcmnand_init_cs(host, NULL);
3487 			if (ret) {
3488 				if (ret == -EPROBE_DEFER) {
3489 					of_node_put(child);
3490 					goto err;
3491 				}
3492 				devm_kfree(dev, host);
3493 				continue; /* Try all chip-selects */
3494 			}
3495 
3496 			list_add_tail(&host->node, &ctrl->host_list);
3497 		}
3498 	}
3499 
3500 	if (!list_empty(&ctrl->host_list))
3501 		return 0;
3502 
3503 	if (!pd) {
3504 		ret = -ENODEV;
3505 		goto err;
3506 	}
3507 
3508 	/* If we got there we must have been probing via platform data */
3509 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3510 	if (!host) {
3511 		ret = -ENOMEM;
3512 		goto err;
3513 	}
3514 	host->pdev = pdev;
3515 	host->ctrl = ctrl;
3516 	host->cs = pd->chip_select;
3517 	host->chip.ecc.size = pd->ecc_stepsize;
3518 	host->chip.ecc.strength = pd->ecc_strength;
3519 
3520 	ret = brcmnand_init_cs(host, pd->part_probe_types);
3521 	if (ret)
3522 		goto err;
3523 
3524 	list_add_tail(&host->node, &ctrl->host_list);
3525 
3526 	/* No chip-selects could initialize properly */
3527 	if (list_empty(&ctrl->host_list)) {
3528 		ret = -ENODEV;
3529 		goto err;
3530 	}
3531 
3532 	return 0;
3533 
3534 err:
3535 	clk_disable_unprepare(ctrl->clk);
3536 	return ret;
3537 
3538 }
3539 EXPORT_SYMBOL_GPL(brcmnand_probe);
3540 
3541 void brcmnand_remove(struct platform_device *pdev)
3542 {
3543 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3544 	struct brcmnand_host *host;
3545 	struct nand_chip *chip;
3546 	int ret;
3547 
3548 	list_for_each_entry(host, &ctrl->host_list, node) {
3549 		chip = &host->chip;
3550 		ret = mtd_device_unregister(nand_to_mtd(chip));
3551 		WARN_ON(ret);
3552 		nand_cleanup(chip);
3553 	}
3554 
3555 	clk_disable_unprepare(ctrl->clk);
3556 
3557 	dev_set_drvdata(&pdev->dev, NULL);
3558 }
3559 EXPORT_SYMBOL_GPL(brcmnand_remove);
3560 
3561 MODULE_LICENSE("GPL v2");
3562 MODULE_AUTHOR("Kevin Cernekee");
3563 MODULE_AUTHOR("Brian Norris");
3564 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3565 MODULE_ALIAS("platform:brcmnand");
3566