xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/version.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/log2.h>
31 
32 #include "brcmnand.h"
33 
34 /*
35  * This flag controls if WP stays on between erase/write commands to mitigate
36  * flash corruption due to power glitches. Values:
37  * 0: NAND_WP is not used or not available
38  * 1: NAND_WP is set by default, cleared for erase/write operations
39  * 2: NAND_WP is always cleared
40  */
41 static int wp_on = 1;
42 module_param(wp_on, int, 0444);
43 
44 /***********************************************************************
45  * Definitions
46  ***********************************************************************/
47 
48 #define DRV_NAME			"brcmnand"
49 
50 #define CMD_NULL			0x00
51 #define CMD_PAGE_READ			0x01
52 #define CMD_SPARE_AREA_READ		0x02
53 #define CMD_STATUS_READ			0x03
54 #define CMD_PROGRAM_PAGE		0x04
55 #define CMD_PROGRAM_SPARE_AREA		0x05
56 #define CMD_COPY_BACK			0x06
57 #define CMD_DEVICE_ID_READ		0x07
58 #define CMD_BLOCK_ERASE			0x08
59 #define CMD_FLASH_RESET			0x09
60 #define CMD_BLOCKS_LOCK			0x0a
61 #define CMD_BLOCKS_LOCK_DOWN		0x0b
62 #define CMD_BLOCKS_UNLOCK		0x0c
63 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
64 #define CMD_PARAMETER_READ		0x0e
65 #define CMD_PARAMETER_CHANGE_COL	0x0f
66 #define CMD_LOW_LEVEL_OP		0x10
67 
68 struct brcm_nand_dma_desc {
69 	u32 next_desc;
70 	u32 next_desc_ext;
71 	u32 cmd_irq;
72 	u32 dram_addr;
73 	u32 dram_addr_ext;
74 	u32 tfr_len;
75 	u32 total_len;
76 	u32 flash_addr;
77 	u32 flash_addr_ext;
78 	u32 cs;
79 	u32 pad2[5];
80 	u32 status_valid;
81 } __packed;
82 
83 /* Bitfields for brcm_nand_dma_desc::status_valid */
84 #define FLASH_DMA_ECC_ERROR	(1 << 8)
85 #define FLASH_DMA_CORR_ERROR	(1 << 9)
86 
87 /* Bitfields for DMA_MODE */
88 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
89 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
90 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
91 						FLASH_DMA_MODE_MODE)
92 
93 /* 512B flash cache in the NAND controller HW */
94 #define FC_SHIFT		9U
95 #define FC_BYTES		512U
96 #define FC_WORDS		(FC_BYTES >> 2)
97 
98 #define BRCMNAND_MIN_PAGESIZE	512
99 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
100 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
101 
102 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
103 #define NAND_POLL_STATUS_TIMEOUT_MS	100
104 
105 #define EDU_CMD_WRITE          0x00
106 #define EDU_CMD_READ           0x01
107 #define EDU_STATUS_ACTIVE      BIT(0)
108 #define EDU_ERR_STATUS_ERRACK  BIT(0)
109 #define EDU_DONE_MASK		GENMASK(1, 0)
110 
111 #define EDU_CONFIG_MODE_NAND   BIT(0)
112 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
113 #ifdef CONFIG_CPU_BIG_ENDIAN
114 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
115 #else
116 #define EDU_CONFIG_SWAP_CFG     0
117 #endif
118 
119 /* edu registers */
120 enum edu_reg {
121 	EDU_CONFIG = 0,
122 	EDU_DRAM_ADDR,
123 	EDU_EXT_ADDR,
124 	EDU_LENGTH,
125 	EDU_CMD,
126 	EDU_STOP,
127 	EDU_STATUS,
128 	EDU_DONE,
129 	EDU_ERR_STATUS,
130 };
131 
132 static const u16  edu_regs[] = {
133 	[EDU_CONFIG] = 0x00,
134 	[EDU_DRAM_ADDR] = 0x04,
135 	[EDU_EXT_ADDR] = 0x08,
136 	[EDU_LENGTH] = 0x0c,
137 	[EDU_CMD] = 0x10,
138 	[EDU_STOP] = 0x14,
139 	[EDU_STATUS] = 0x18,
140 	[EDU_DONE] = 0x1c,
141 	[EDU_ERR_STATUS] = 0x20,
142 };
143 
144 /* flash_dma registers */
145 enum flash_dma_reg {
146 	FLASH_DMA_REVISION = 0,
147 	FLASH_DMA_FIRST_DESC,
148 	FLASH_DMA_FIRST_DESC_EXT,
149 	FLASH_DMA_CTRL,
150 	FLASH_DMA_MODE,
151 	FLASH_DMA_STATUS,
152 	FLASH_DMA_INTERRUPT_DESC,
153 	FLASH_DMA_INTERRUPT_DESC_EXT,
154 	FLASH_DMA_ERROR_STATUS,
155 	FLASH_DMA_CURRENT_DESC,
156 	FLASH_DMA_CURRENT_DESC_EXT,
157 };
158 
159 /* flash_dma registers v0*/
160 static const u16 flash_dma_regs_v0[] = {
161 	[FLASH_DMA_REVISION]		= 0x00,
162 	[FLASH_DMA_FIRST_DESC]		= 0x04,
163 	[FLASH_DMA_CTRL]		= 0x08,
164 	[FLASH_DMA_MODE]		= 0x0c,
165 	[FLASH_DMA_STATUS]		= 0x10,
166 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
167 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
168 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
169 };
170 
171 /* flash_dma registers v1*/
172 static const u16 flash_dma_regs_v1[] = {
173 	[FLASH_DMA_REVISION]		= 0x00,
174 	[FLASH_DMA_FIRST_DESC]		= 0x04,
175 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
176 	[FLASH_DMA_CTRL]		= 0x0c,
177 	[FLASH_DMA_MODE]		= 0x10,
178 	[FLASH_DMA_STATUS]		= 0x14,
179 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
180 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
181 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
182 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
183 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
184 };
185 
186 /* flash_dma registers v4 */
187 static const u16 flash_dma_regs_v4[] = {
188 	[FLASH_DMA_REVISION]		= 0x00,
189 	[FLASH_DMA_FIRST_DESC]		= 0x08,
190 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
191 	[FLASH_DMA_CTRL]		= 0x10,
192 	[FLASH_DMA_MODE]		= 0x14,
193 	[FLASH_DMA_STATUS]		= 0x18,
194 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
195 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
196 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
197 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
198 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
199 };
200 
201 /* Controller feature flags */
202 enum {
203 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
204 	BRCMNAND_HAS_PREFETCH			= BIT(1),
205 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
206 	BRCMNAND_HAS_WP				= BIT(3),
207 };
208 
209 struct brcmnand_host;
210 
211 struct brcmnand_controller {
212 	struct device		*dev;
213 	struct nand_controller	controller;
214 	void __iomem		*nand_base;
215 	void __iomem		*nand_fc; /* flash cache */
216 	void __iomem		*flash_dma_base;
217 	unsigned int		irq;
218 	unsigned int		dma_irq;
219 	int			nand_version;
220 
221 	/* Some SoCs provide custom interrupt status register(s) */
222 	struct brcmnand_soc	*soc;
223 
224 	/* Some SoCs have a gateable clock for the controller */
225 	struct clk		*clk;
226 
227 	int			cmd_pending;
228 	bool			dma_pending;
229 	bool                    edu_pending;
230 	struct completion	done;
231 	struct completion	dma_done;
232 	struct completion       edu_done;
233 
234 	/* List of NAND hosts (one for each chip-select) */
235 	struct list_head host_list;
236 
237 	/* EDU info, per-transaction */
238 	const u16               *edu_offsets;
239 	void __iomem            *edu_base;
240 	int			edu_irq;
241 	int                     edu_count;
242 	u64                     edu_dram_addr;
243 	u32                     edu_ext_addr;
244 	u32                     edu_cmd;
245 	u32                     edu_config;
246 
247 	/* flash_dma reg */
248 	const u16		*flash_dma_offsets;
249 	struct brcm_nand_dma_desc *dma_desc;
250 	dma_addr_t		dma_pa;
251 
252 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
253 			 u32 len, u8 dma_cmd);
254 
255 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
256 	u8			flash_cache[FC_BYTES];
257 
258 	/* Controller revision details */
259 	const u16		*reg_offsets;
260 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
261 	const u8		*cs_offsets; /* within each chip-select */
262 	const u8		*cs0_offsets; /* within CS0, if different */
263 	unsigned int		max_block_size;
264 	const unsigned int	*block_sizes;
265 	unsigned int		max_page_size;
266 	const unsigned int	*page_sizes;
267 	unsigned int		max_oob;
268 	u32			features;
269 
270 	/* for low-power standby/resume only */
271 	u32			nand_cs_nand_select;
272 	u32			nand_cs_nand_xor;
273 	u32			corr_stat_threshold;
274 	u32			flash_dma_mode;
275 	u32                     flash_edu_mode;
276 	bool			pio_poll_mode;
277 };
278 
279 struct brcmnand_cfg {
280 	u64			device_size;
281 	unsigned int		block_size;
282 	unsigned int		page_size;
283 	unsigned int		spare_area_size;
284 	unsigned int		device_width;
285 	unsigned int		col_adr_bytes;
286 	unsigned int		blk_adr_bytes;
287 	unsigned int		ful_adr_bytes;
288 	unsigned int		sector_size_1k;
289 	unsigned int		ecc_level;
290 	/* use for low-power standby/resume only */
291 	u32			acc_control;
292 	u32			config;
293 	u32			config_ext;
294 	u32			timing_1;
295 	u32			timing_2;
296 };
297 
298 struct brcmnand_host {
299 	struct list_head	node;
300 
301 	struct nand_chip	chip;
302 	struct platform_device	*pdev;
303 	int			cs;
304 
305 	unsigned int		last_cmd;
306 	unsigned int		last_byte;
307 	u64			last_addr;
308 	struct brcmnand_cfg	hwcfg;
309 	struct brcmnand_controller *ctrl;
310 };
311 
312 enum brcmnand_reg {
313 	BRCMNAND_CMD_START = 0,
314 	BRCMNAND_CMD_EXT_ADDRESS,
315 	BRCMNAND_CMD_ADDRESS,
316 	BRCMNAND_INTFC_STATUS,
317 	BRCMNAND_CS_SELECT,
318 	BRCMNAND_CS_XOR,
319 	BRCMNAND_LL_OP,
320 	BRCMNAND_CS0_BASE,
321 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
322 	BRCMNAND_CORR_THRESHOLD,
323 	BRCMNAND_CORR_THRESHOLD_EXT,
324 	BRCMNAND_UNCORR_COUNT,
325 	BRCMNAND_CORR_COUNT,
326 	BRCMNAND_CORR_EXT_ADDR,
327 	BRCMNAND_CORR_ADDR,
328 	BRCMNAND_UNCORR_EXT_ADDR,
329 	BRCMNAND_UNCORR_ADDR,
330 	BRCMNAND_SEMAPHORE,
331 	BRCMNAND_ID,
332 	BRCMNAND_ID_EXT,
333 	BRCMNAND_LL_RDATA,
334 	BRCMNAND_OOB_READ_BASE,
335 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
336 	BRCMNAND_OOB_WRITE_BASE,
337 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
338 	BRCMNAND_FC_BASE,
339 };
340 
341 /* BRCMNAND v4.0 */
342 static const u16 brcmnand_regs_v40[] = {
343 	[BRCMNAND_CMD_START]		=  0x04,
344 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
345 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
346 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
347 	[BRCMNAND_CS_SELECT]		=  0x14,
348 	[BRCMNAND_CS_XOR]		=  0x18,
349 	[BRCMNAND_LL_OP]		= 0x178,
350 	[BRCMNAND_CS0_BASE]		=  0x40,
351 	[BRCMNAND_CS1_BASE]		=  0xd0,
352 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
353 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
354 	[BRCMNAND_UNCORR_COUNT]		=     0,
355 	[BRCMNAND_CORR_COUNT]		=     0,
356 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
357 	[BRCMNAND_CORR_ADDR]		=  0x74,
358 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
359 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
360 	[BRCMNAND_SEMAPHORE]		=  0x58,
361 	[BRCMNAND_ID]			=  0x60,
362 	[BRCMNAND_ID_EXT]		=  0x64,
363 	[BRCMNAND_LL_RDATA]		= 0x17c,
364 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
365 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
366 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
367 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
368 	[BRCMNAND_FC_BASE]		= 0x200,
369 };
370 
371 /* BRCMNAND v5.0 */
372 static const u16 brcmnand_regs_v50[] = {
373 	[BRCMNAND_CMD_START]		=  0x04,
374 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
375 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
376 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
377 	[BRCMNAND_CS_SELECT]		=  0x14,
378 	[BRCMNAND_CS_XOR]		=  0x18,
379 	[BRCMNAND_LL_OP]		= 0x178,
380 	[BRCMNAND_CS0_BASE]		=  0x40,
381 	[BRCMNAND_CS1_BASE]		=  0xd0,
382 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
383 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
384 	[BRCMNAND_UNCORR_COUNT]		=     0,
385 	[BRCMNAND_CORR_COUNT]		=     0,
386 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
387 	[BRCMNAND_CORR_ADDR]		=  0x74,
388 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
389 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
390 	[BRCMNAND_SEMAPHORE]		=  0x58,
391 	[BRCMNAND_ID]			=  0x60,
392 	[BRCMNAND_ID_EXT]		=  0x64,
393 	[BRCMNAND_LL_RDATA]		= 0x17c,
394 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
395 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
396 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
397 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
398 	[BRCMNAND_FC_BASE]		= 0x200,
399 };
400 
401 /* BRCMNAND v6.0 - v7.1 */
402 static const u16 brcmnand_regs_v60[] = {
403 	[BRCMNAND_CMD_START]		=  0x04,
404 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
405 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
406 	[BRCMNAND_INTFC_STATUS]		=  0x14,
407 	[BRCMNAND_CS_SELECT]		=  0x18,
408 	[BRCMNAND_CS_XOR]		=  0x1c,
409 	[BRCMNAND_LL_OP]		=  0x20,
410 	[BRCMNAND_CS0_BASE]		=  0x50,
411 	[BRCMNAND_CS1_BASE]		=     0,
412 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
413 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
414 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
415 	[BRCMNAND_CORR_COUNT]		= 0x100,
416 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
417 	[BRCMNAND_CORR_ADDR]		= 0x110,
418 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
419 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
420 	[BRCMNAND_SEMAPHORE]		= 0x150,
421 	[BRCMNAND_ID]			= 0x194,
422 	[BRCMNAND_ID_EXT]		= 0x198,
423 	[BRCMNAND_LL_RDATA]		= 0x19c,
424 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
425 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
426 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
427 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
428 	[BRCMNAND_FC_BASE]		= 0x400,
429 };
430 
431 /* BRCMNAND v7.1 */
432 static const u16 brcmnand_regs_v71[] = {
433 	[BRCMNAND_CMD_START]		=  0x04,
434 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
435 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
436 	[BRCMNAND_INTFC_STATUS]		=  0x14,
437 	[BRCMNAND_CS_SELECT]		=  0x18,
438 	[BRCMNAND_CS_XOR]		=  0x1c,
439 	[BRCMNAND_LL_OP]		=  0x20,
440 	[BRCMNAND_CS0_BASE]		=  0x50,
441 	[BRCMNAND_CS1_BASE]		=     0,
442 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
443 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
444 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
445 	[BRCMNAND_CORR_COUNT]		= 0x100,
446 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
447 	[BRCMNAND_CORR_ADDR]		= 0x110,
448 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
449 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
450 	[BRCMNAND_SEMAPHORE]		= 0x150,
451 	[BRCMNAND_ID]			= 0x194,
452 	[BRCMNAND_ID_EXT]		= 0x198,
453 	[BRCMNAND_LL_RDATA]		= 0x19c,
454 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
455 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
456 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
457 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
458 	[BRCMNAND_FC_BASE]		= 0x400,
459 };
460 
461 /* BRCMNAND v7.2 */
462 static const u16 brcmnand_regs_v72[] = {
463 	[BRCMNAND_CMD_START]		=  0x04,
464 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
465 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
466 	[BRCMNAND_INTFC_STATUS]		=  0x14,
467 	[BRCMNAND_CS_SELECT]		=  0x18,
468 	[BRCMNAND_CS_XOR]		=  0x1c,
469 	[BRCMNAND_LL_OP]		=  0x20,
470 	[BRCMNAND_CS0_BASE]		=  0x50,
471 	[BRCMNAND_CS1_BASE]		=     0,
472 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
473 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
474 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
475 	[BRCMNAND_CORR_COUNT]		= 0x100,
476 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
477 	[BRCMNAND_CORR_ADDR]		= 0x110,
478 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
479 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
480 	[BRCMNAND_SEMAPHORE]		= 0x150,
481 	[BRCMNAND_ID]			= 0x194,
482 	[BRCMNAND_ID_EXT]		= 0x198,
483 	[BRCMNAND_LL_RDATA]		= 0x19c,
484 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
485 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
486 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
487 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
488 	[BRCMNAND_FC_BASE]		= 0x600,
489 };
490 
491 enum brcmnand_cs_reg {
492 	BRCMNAND_CS_CFG_EXT = 0,
493 	BRCMNAND_CS_CFG,
494 	BRCMNAND_CS_ACC_CONTROL,
495 	BRCMNAND_CS_TIMING1,
496 	BRCMNAND_CS_TIMING2,
497 };
498 
499 /* Per chip-select offsets for v7.1 */
500 static const u8 brcmnand_cs_offsets_v71[] = {
501 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
502 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
503 	[BRCMNAND_CS_CFG]		= 0x08,
504 	[BRCMNAND_CS_TIMING1]		= 0x0c,
505 	[BRCMNAND_CS_TIMING2]		= 0x10,
506 };
507 
508 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
509 static const u8 brcmnand_cs_offsets[] = {
510 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
511 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
512 	[BRCMNAND_CS_CFG]		= 0x04,
513 	[BRCMNAND_CS_TIMING1]		= 0x08,
514 	[BRCMNAND_CS_TIMING2]		= 0x0c,
515 };
516 
517 /* Per chip-select offset for <= v5.0 on CS0 only */
518 static const u8 brcmnand_cs_offsets_cs0[] = {
519 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
520 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
521 	[BRCMNAND_CS_CFG]		= 0x08,
522 	[BRCMNAND_CS_TIMING1]		= 0x10,
523 	[BRCMNAND_CS_TIMING2]		= 0x14,
524 };
525 
526 /*
527  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
528  * one config register, but once the bitfields overflowed, newer controllers
529  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
530  */
531 enum {
532 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
533 	CFG_COL_ADR_BYTES_SHIFT		= 12,
534 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
535 	CFG_BUS_WIDTH_SHIFT		= 23,
536 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
537 	CFG_DEVICE_SIZE_SHIFT		= 24,
538 
539 	/* Only for pre-v7.1 (with no CFG_EXT register) */
540 	CFG_PAGE_SIZE_SHIFT		= 20,
541 	CFG_BLK_SIZE_SHIFT		= 28,
542 
543 	/* Only for v7.1+ (with CFG_EXT register) */
544 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
545 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
546 };
547 
548 /* BRCMNAND_INTFC_STATUS */
549 enum {
550 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
551 
552 	INTFC_ERASED			= BIT(27),
553 	INTFC_OOB_VALID			= BIT(28),
554 	INTFC_CACHE_VALID		= BIT(29),
555 	INTFC_FLASH_READY		= BIT(30),
556 	INTFC_CTLR_READY		= BIT(31),
557 };
558 
559 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
560 {
561 	return brcmnand_readl(ctrl->nand_base + offs);
562 }
563 
564 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
565 				 u32 val)
566 {
567 	brcmnand_writel(val, ctrl->nand_base + offs);
568 }
569 
570 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
571 {
572 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
573 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
574 	static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
575 
576 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
577 
578 	/* Only support v4.0+? */
579 	if (ctrl->nand_version < 0x0400) {
580 		dev_err(ctrl->dev, "version %#x not supported\n",
581 			ctrl->nand_version);
582 		return -ENODEV;
583 	}
584 
585 	/* Register offsets */
586 	if (ctrl->nand_version >= 0x0702)
587 		ctrl->reg_offsets = brcmnand_regs_v72;
588 	else if (ctrl->nand_version == 0x0701)
589 		ctrl->reg_offsets = brcmnand_regs_v71;
590 	else if (ctrl->nand_version >= 0x0600)
591 		ctrl->reg_offsets = brcmnand_regs_v60;
592 	else if (ctrl->nand_version >= 0x0500)
593 		ctrl->reg_offsets = brcmnand_regs_v50;
594 	else if (ctrl->nand_version >= 0x0400)
595 		ctrl->reg_offsets = brcmnand_regs_v40;
596 
597 	/* Chip-select stride */
598 	if (ctrl->nand_version >= 0x0701)
599 		ctrl->reg_spacing = 0x14;
600 	else
601 		ctrl->reg_spacing = 0x10;
602 
603 	/* Per chip-select registers */
604 	if (ctrl->nand_version >= 0x0701) {
605 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
606 	} else {
607 		ctrl->cs_offsets = brcmnand_cs_offsets;
608 
609 		/* v5.0 and earlier has a different CS0 offset layout */
610 		if (ctrl->nand_version <= 0x0500)
611 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
612 	}
613 
614 	/* Page / block sizes */
615 	if (ctrl->nand_version >= 0x0701) {
616 		/* >= v7.1 use nice power-of-2 values! */
617 		ctrl->max_page_size = 16 * 1024;
618 		ctrl->max_block_size = 2 * 1024 * 1024;
619 	} else {
620 		ctrl->page_sizes = page_sizes;
621 		if (ctrl->nand_version >= 0x0600)
622 			ctrl->block_sizes = block_sizes_v6;
623 		else
624 			ctrl->block_sizes = block_sizes_v4;
625 
626 		if (ctrl->nand_version < 0x0400) {
627 			ctrl->max_page_size = 4096;
628 			ctrl->max_block_size = 512 * 1024;
629 		}
630 	}
631 
632 	/* Maximum spare area sector size (per 512B) */
633 	if (ctrl->nand_version == 0x0702)
634 		ctrl->max_oob = 128;
635 	else if (ctrl->nand_version >= 0x0600)
636 		ctrl->max_oob = 64;
637 	else if (ctrl->nand_version >= 0x0500)
638 		ctrl->max_oob = 32;
639 	else
640 		ctrl->max_oob = 16;
641 
642 	/* v6.0 and newer (except v6.1) have prefetch support */
643 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
644 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
645 
646 	/*
647 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
648 	 * now.
649 	 */
650 	if (ctrl->nand_version >= 0x0700)
651 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
652 
653 	if (ctrl->nand_version >= 0x0500)
654 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
655 
656 	if (ctrl->nand_version >= 0x0700)
657 		ctrl->features |= BRCMNAND_HAS_WP;
658 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
659 		ctrl->features |= BRCMNAND_HAS_WP;
660 
661 	return 0;
662 }
663 
664 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
665 {
666 	/* flash_dma register offsets */
667 	if (ctrl->nand_version >= 0x0703)
668 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
669 	else if (ctrl->nand_version == 0x0602)
670 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
671 	else
672 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
673 }
674 
675 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
676 		enum brcmnand_reg reg)
677 {
678 	u16 offs = ctrl->reg_offsets[reg];
679 
680 	if (offs)
681 		return nand_readreg(ctrl, offs);
682 	else
683 		return 0;
684 }
685 
686 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
687 				      enum brcmnand_reg reg, u32 val)
688 {
689 	u16 offs = ctrl->reg_offsets[reg];
690 
691 	if (offs)
692 		nand_writereg(ctrl, offs, val);
693 }
694 
695 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
696 				    enum brcmnand_reg reg, u32 mask, unsigned
697 				    int shift, u32 val)
698 {
699 	u32 tmp = brcmnand_read_reg(ctrl, reg);
700 
701 	tmp &= ~mask;
702 	tmp |= val << shift;
703 	brcmnand_write_reg(ctrl, reg, tmp);
704 }
705 
706 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
707 {
708 	return __raw_readl(ctrl->nand_fc + word * 4);
709 }
710 
711 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
712 				     int word, u32 val)
713 {
714 	__raw_writel(val, ctrl->nand_fc + word * 4);
715 }
716 
717 static inline void edu_writel(struct brcmnand_controller *ctrl,
718 			      enum edu_reg reg, u32 val)
719 {
720 	u16 offs = ctrl->edu_offsets[reg];
721 
722 	brcmnand_writel(val, ctrl->edu_base + offs);
723 }
724 
725 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
726 			    enum edu_reg reg)
727 {
728 	u16 offs = ctrl->edu_offsets[reg];
729 
730 	return brcmnand_readl(ctrl->edu_base + offs);
731 }
732 
733 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
734 {
735 
736 	/* Clear error addresses */
737 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
738 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
739 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
740 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
741 }
742 
743 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
744 {
745 	u64 err_addr;
746 
747 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
748 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
749 					     BRCMNAND_UNCORR_EXT_ADDR)
750 					     & 0xffff) << 32);
751 
752 	return err_addr;
753 }
754 
755 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
756 {
757 	u64 err_addr;
758 
759 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
760 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
761 					     BRCMNAND_CORR_EXT_ADDR)
762 					     & 0xffff) << 32);
763 
764 	return err_addr;
765 }
766 
767 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
768 {
769 	struct nand_chip *chip =  mtd_to_nand(mtd);
770 	struct brcmnand_host *host = nand_get_controller_data(chip);
771 	struct brcmnand_controller *ctrl = host->ctrl;
772 
773 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
774 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
775 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
776 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
777 			   lower_32_bits(addr));
778 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
779 }
780 
781 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
782 				     enum brcmnand_cs_reg reg)
783 {
784 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
785 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
786 	u8 cs_offs;
787 
788 	if (cs == 0 && ctrl->cs0_offsets)
789 		cs_offs = ctrl->cs0_offsets[reg];
790 	else
791 		cs_offs = ctrl->cs_offsets[reg];
792 
793 	if (cs && offs_cs1)
794 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
795 
796 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
797 }
798 
799 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
800 {
801 	if (ctrl->nand_version < 0x0600)
802 		return 1;
803 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
804 }
805 
806 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
807 {
808 	struct brcmnand_controller *ctrl = host->ctrl;
809 	unsigned int shift = 0, bits;
810 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
811 	int cs = host->cs;
812 
813 	if (ctrl->nand_version == 0x0702)
814 		bits = 7;
815 	else if (ctrl->nand_version >= 0x0600)
816 		bits = 6;
817 	else if (ctrl->nand_version >= 0x0500)
818 		bits = 5;
819 	else
820 		bits = 4;
821 
822 	if (ctrl->nand_version >= 0x0702) {
823 		if (cs >= 4)
824 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
825 		shift = (cs % 4) * bits;
826 	} else if (ctrl->nand_version >= 0x0600) {
827 		if (cs >= 5)
828 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
829 		shift = (cs % 5) * bits;
830 	}
831 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
832 }
833 
834 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
835 {
836 	if (ctrl->nand_version < 0x0602)
837 		return 24;
838 	return 0;
839 }
840 
841 /***********************************************************************
842  * NAND ACC CONTROL bitfield
843  *
844  * Some bits have remained constant throughout hardware revision, while
845  * others have shifted around.
846  ***********************************************************************/
847 
848 /* Constant for all versions (where supported) */
849 enum {
850 	/* See BRCMNAND_HAS_CACHE_MODE */
851 	ACC_CONTROL_CACHE_MODE				= BIT(22),
852 
853 	/* See BRCMNAND_HAS_PREFETCH */
854 	ACC_CONTROL_PREFETCH				= BIT(23),
855 
856 	ACC_CONTROL_PAGE_HIT				= BIT(24),
857 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
858 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
859 	ACC_CONTROL_RD_ERASED				= BIT(27),
860 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
861 	ACC_CONTROL_WR_ECC				= BIT(30),
862 	ACC_CONTROL_RD_ECC				= BIT(31),
863 };
864 
865 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
866 {
867 	if (ctrl->nand_version == 0x0702)
868 		return GENMASK(7, 0);
869 	else if (ctrl->nand_version >= 0x0600)
870 		return GENMASK(6, 0);
871 	else
872 		return GENMASK(5, 0);
873 }
874 
875 #define NAND_ACC_CONTROL_ECC_SHIFT	16
876 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT	13
877 
878 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
879 {
880 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
881 
882 	mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
883 
884 	/* v7.2 includes additional ECC levels */
885 	if (ctrl->nand_version >= 0x0702)
886 		mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
887 
888 	return mask;
889 }
890 
891 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
892 {
893 	struct brcmnand_controller *ctrl = host->ctrl;
894 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
895 	u32 acc_control = nand_readreg(ctrl, offs);
896 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
897 
898 	if (en) {
899 		acc_control |= ecc_flags; /* enable RD/WR ECC */
900 		acc_control |= host->hwcfg.ecc_level
901 			       << NAND_ACC_CONTROL_ECC_SHIFT;
902 	} else {
903 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
904 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
905 	}
906 
907 	nand_writereg(ctrl, offs, acc_control);
908 }
909 
910 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
911 {
912 	if (ctrl->nand_version >= 0x0702)
913 		return 9;
914 	else if (ctrl->nand_version >= 0x0600)
915 		return 7;
916 	else if (ctrl->nand_version >= 0x0500)
917 		return 6;
918 	else
919 		return -1;
920 }
921 
922 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
923 {
924 	struct brcmnand_controller *ctrl = host->ctrl;
925 	int shift = brcmnand_sector_1k_shift(ctrl);
926 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
927 						  BRCMNAND_CS_ACC_CONTROL);
928 
929 	if (shift < 0)
930 		return 0;
931 
932 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
933 }
934 
935 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
936 {
937 	struct brcmnand_controller *ctrl = host->ctrl;
938 	int shift = brcmnand_sector_1k_shift(ctrl);
939 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
940 						  BRCMNAND_CS_ACC_CONTROL);
941 	u32 tmp;
942 
943 	if (shift < 0)
944 		return;
945 
946 	tmp = nand_readreg(ctrl, acc_control_offs);
947 	tmp &= ~(1 << shift);
948 	tmp |= (!!val) << shift;
949 	nand_writereg(ctrl, acc_control_offs, tmp);
950 }
951 
952 /***********************************************************************
953  * CS_NAND_SELECT
954  ***********************************************************************/
955 
956 enum {
957 	CS_SELECT_NAND_WP			= BIT(29),
958 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
959 };
960 
961 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
962 				    u32 mask, u32 expected_val,
963 				    unsigned long timeout_ms)
964 {
965 	unsigned long limit;
966 	u32 val;
967 
968 	if (!timeout_ms)
969 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
970 
971 	limit = jiffies + msecs_to_jiffies(timeout_ms);
972 	do {
973 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
974 		if ((val & mask) == expected_val)
975 			return 0;
976 
977 		cpu_relax();
978 	} while (time_after(limit, jiffies));
979 
980 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
981 		 expected_val, val & mask);
982 
983 	return -ETIMEDOUT;
984 }
985 
986 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
987 {
988 	u32 val = en ? CS_SELECT_NAND_WP : 0;
989 
990 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
991 }
992 
993 /***********************************************************************
994  * Flash DMA
995  ***********************************************************************/
996 
997 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
998 {
999 	return ctrl->flash_dma_base;
1000 }
1001 
1002 static inline bool has_edu(struct brcmnand_controller *ctrl)
1003 {
1004 	return ctrl->edu_base;
1005 }
1006 
1007 static inline bool use_dma(struct brcmnand_controller *ctrl)
1008 {
1009 	return has_flash_dma(ctrl) || has_edu(ctrl);
1010 }
1011 
1012 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1013 {
1014 	if (ctrl->pio_poll_mode)
1015 		return;
1016 
1017 	if (has_flash_dma(ctrl)) {
1018 		ctrl->flash_dma_base = NULL;
1019 		disable_irq(ctrl->dma_irq);
1020 	}
1021 
1022 	disable_irq(ctrl->irq);
1023 	ctrl->pio_poll_mode = true;
1024 }
1025 
1026 static inline bool flash_dma_buf_ok(const void *buf)
1027 {
1028 	return buf && !is_vmalloc_addr(buf) &&
1029 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1030 }
1031 
1032 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1033 				    enum flash_dma_reg dma_reg, u32 val)
1034 {
1035 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1036 
1037 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1038 }
1039 
1040 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1041 				  enum flash_dma_reg dma_reg)
1042 {
1043 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1044 
1045 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1046 }
1047 
1048 /* Low-level operation types: command, address, write, or read */
1049 enum brcmnand_llop_type {
1050 	LL_OP_CMD,
1051 	LL_OP_ADDR,
1052 	LL_OP_WR,
1053 	LL_OP_RD,
1054 };
1055 
1056 /***********************************************************************
1057  * Internal support functions
1058  ***********************************************************************/
1059 
1060 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1061 				  struct brcmnand_cfg *cfg)
1062 {
1063 	if (ctrl->nand_version <= 0x0701)
1064 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1065 			cfg->ecc_level == 15;
1066 	else
1067 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1068 			cfg->ecc_level == 15) ||
1069 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1070 }
1071 
1072 /*
1073  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1074  * the layout/configuration.
1075  * Returns -ERRCODE on failure.
1076  */
1077 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1078 					  struct mtd_oob_region *oobregion)
1079 {
1080 	struct nand_chip *chip = mtd_to_nand(mtd);
1081 	struct brcmnand_host *host = nand_get_controller_data(chip);
1082 	struct brcmnand_cfg *cfg = &host->hwcfg;
1083 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1084 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1085 
1086 	if (section >= sectors)
1087 		return -ERANGE;
1088 
1089 	oobregion->offset = (section * sas) + 6;
1090 	oobregion->length = 3;
1091 
1092 	return 0;
1093 }
1094 
1095 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1096 					   struct mtd_oob_region *oobregion)
1097 {
1098 	struct nand_chip *chip = mtd_to_nand(mtd);
1099 	struct brcmnand_host *host = nand_get_controller_data(chip);
1100 	struct brcmnand_cfg *cfg = &host->hwcfg;
1101 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1102 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1103 
1104 	if (section >= sectors * 2)
1105 		return -ERANGE;
1106 
1107 	oobregion->offset = (section / 2) * sas;
1108 
1109 	if (section & 1) {
1110 		oobregion->offset += 9;
1111 		oobregion->length = 7;
1112 	} else {
1113 		oobregion->length = 6;
1114 
1115 		/* First sector of each page may have BBI */
1116 		if (!section) {
1117 			/*
1118 			 * Small-page NAND use byte 6 for BBI while large-page
1119 			 * NAND use byte 0.
1120 			 */
1121 			if (cfg->page_size > 512)
1122 				oobregion->offset++;
1123 			oobregion->length--;
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1131 	.ecc = brcmnand_hamming_ooblayout_ecc,
1132 	.free = brcmnand_hamming_ooblayout_free,
1133 };
1134 
1135 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1136 				      struct mtd_oob_region *oobregion)
1137 {
1138 	struct nand_chip *chip = mtd_to_nand(mtd);
1139 	struct brcmnand_host *host = nand_get_controller_data(chip);
1140 	struct brcmnand_cfg *cfg = &host->hwcfg;
1141 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1142 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1143 
1144 	if (section >= sectors)
1145 		return -ERANGE;
1146 
1147 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1148 	oobregion->length = chip->ecc.bytes;
1149 
1150 	return 0;
1151 }
1152 
1153 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1154 					  struct mtd_oob_region *oobregion)
1155 {
1156 	struct nand_chip *chip = mtd_to_nand(mtd);
1157 	struct brcmnand_host *host = nand_get_controller_data(chip);
1158 	struct brcmnand_cfg *cfg = &host->hwcfg;
1159 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1160 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1161 
1162 	if (section >= sectors)
1163 		return -ERANGE;
1164 
1165 	if (sas <= chip->ecc.bytes)
1166 		return 0;
1167 
1168 	oobregion->offset = section * sas;
1169 	oobregion->length = sas - chip->ecc.bytes;
1170 
1171 	if (!section) {
1172 		oobregion->offset++;
1173 		oobregion->length--;
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1180 					  struct mtd_oob_region *oobregion)
1181 {
1182 	struct nand_chip *chip = mtd_to_nand(mtd);
1183 	struct brcmnand_host *host = nand_get_controller_data(chip);
1184 	struct brcmnand_cfg *cfg = &host->hwcfg;
1185 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1186 
1187 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1188 	    (section && sas - chip->ecc.bytes == 6))
1189 		return -ERANGE;
1190 
1191 	if (!section) {
1192 		oobregion->offset = 0;
1193 		oobregion->length = 5;
1194 	} else {
1195 		oobregion->offset = 6;
1196 		oobregion->length = sas - chip->ecc.bytes - 6;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1203 	.ecc = brcmnand_bch_ooblayout_ecc,
1204 	.free = brcmnand_bch_ooblayout_free_lp,
1205 };
1206 
1207 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1208 	.ecc = brcmnand_bch_ooblayout_ecc,
1209 	.free = brcmnand_bch_ooblayout_free_sp,
1210 };
1211 
1212 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1213 {
1214 	struct brcmnand_cfg *p = &host->hwcfg;
1215 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1216 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1217 	unsigned int ecc_level = p->ecc_level;
1218 	int sas = p->spare_area_size << p->sector_size_1k;
1219 	int sectors = p->page_size / (512 << p->sector_size_1k);
1220 
1221 	if (p->sector_size_1k)
1222 		ecc_level <<= 1;
1223 
1224 	if (is_hamming_ecc(host->ctrl, p)) {
1225 		ecc->bytes = 3 * sectors;
1226 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1227 		return 0;
1228 	}
1229 
1230 	/*
1231 	 * CONTROLLER_VERSION:
1232 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1233 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1234 	 * But we will just be conservative.
1235 	 */
1236 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1237 	if (p->page_size == 512)
1238 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1239 	else
1240 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1241 
1242 	if (ecc->bytes >= sas) {
1243 		dev_err(&host->pdev->dev,
1244 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1245 			ecc->bytes, sas);
1246 		return -EINVAL;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1253 {
1254 	struct nand_chip *chip = mtd_to_nand(mtd);
1255 	struct brcmnand_host *host = nand_get_controller_data(chip);
1256 	struct brcmnand_controller *ctrl = host->ctrl;
1257 
1258 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1259 		static int old_wp = -1;
1260 		int ret;
1261 
1262 		if (old_wp != wp) {
1263 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1264 			old_wp = wp;
1265 		}
1266 
1267 		/*
1268 		 * make sure ctrl/flash ready before and after
1269 		 * changing state of #WP pin
1270 		 */
1271 		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1272 					       NAND_STATUS_READY,
1273 					       NAND_CTRL_RDY |
1274 					       NAND_STATUS_READY, 0);
1275 		if (ret)
1276 			return;
1277 
1278 		brcmnand_set_wp(ctrl, wp);
1279 		nand_status_op(chip, NULL);
1280 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1281 		ret = bcmnand_ctrl_poll_status(ctrl,
1282 					       NAND_CTRL_RDY |
1283 					       NAND_STATUS_READY |
1284 					       NAND_STATUS_WP,
1285 					       NAND_CTRL_RDY |
1286 					       NAND_STATUS_READY |
1287 					       (wp ? 0 : NAND_STATUS_WP), 0);
1288 
1289 		if (ret)
1290 			dev_err_ratelimited(&host->pdev->dev,
1291 					    "nand #WP expected %s\n",
1292 					    wp ? "on" : "off");
1293 	}
1294 }
1295 
1296 /* Helper functions for reading and writing OOB registers */
1297 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1298 {
1299 	u16 offset0, offset10, reg_offs;
1300 
1301 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1302 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1303 
1304 	if (offs >= ctrl->max_oob)
1305 		return 0x77;
1306 
1307 	if (offs >= 16 && offset10)
1308 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1309 	else
1310 		reg_offs = offset0 + (offs & ~0x03);
1311 
1312 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1313 }
1314 
1315 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1316 				 u32 data)
1317 {
1318 	u16 offset0, offset10, reg_offs;
1319 
1320 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1321 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1322 
1323 	if (offs >= ctrl->max_oob)
1324 		return;
1325 
1326 	if (offs >= 16 && offset10)
1327 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1328 	else
1329 		reg_offs = offset0 + (offs & ~0x03);
1330 
1331 	nand_writereg(ctrl, reg_offs, data);
1332 }
1333 
1334 /*
1335  * read_oob_from_regs - read data from OOB registers
1336  * @ctrl: NAND controller
1337  * @i: sub-page sector index
1338  * @oob: buffer to read to
1339  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1340  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1341  */
1342 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1343 			      int sas, int sector_1k)
1344 {
1345 	int tbytes = sas << sector_1k;
1346 	int j;
1347 
1348 	/* Adjust OOB values for 1K sector size */
1349 	if (sector_1k && (i & 0x01))
1350 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1351 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1352 
1353 	for (j = 0; j < tbytes; j++)
1354 		oob[j] = oob_reg_read(ctrl, j);
1355 	return tbytes;
1356 }
1357 
1358 /*
1359  * write_oob_to_regs - write data to OOB registers
1360  * @i: sub-page sector index
1361  * @oob: buffer to write from
1362  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1363  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1364  */
1365 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1366 			     const u8 *oob, int sas, int sector_1k)
1367 {
1368 	int tbytes = sas << sector_1k;
1369 	int j;
1370 
1371 	/* Adjust OOB values for 1K sector size */
1372 	if (sector_1k && (i & 0x01))
1373 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1374 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1375 
1376 	for (j = 0; j < tbytes; j += 4)
1377 		oob_reg_write(ctrl, j,
1378 				(oob[j + 0] << 24) |
1379 				(oob[j + 1] << 16) |
1380 				(oob[j + 2] <<  8) |
1381 				(oob[j + 3] <<  0));
1382 	return tbytes;
1383 }
1384 
1385 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1386 {
1387 	/* initialize edu */
1388 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1389 	edu_readl(ctrl, EDU_ERR_STATUS);
1390 	edu_writel(ctrl, EDU_DONE, 0);
1391 	edu_writel(ctrl, EDU_DONE, 0);
1392 	edu_writel(ctrl, EDU_DONE, 0);
1393 	edu_writel(ctrl, EDU_DONE, 0);
1394 	edu_readl(ctrl, EDU_DONE);
1395 }
1396 
1397 /* edu irq */
1398 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1399 {
1400 	struct brcmnand_controller *ctrl = data;
1401 
1402 	if (ctrl->edu_count) {
1403 		ctrl->edu_count--;
1404 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1405 			udelay(1);
1406 		edu_writel(ctrl, EDU_DONE, 0);
1407 		edu_readl(ctrl, EDU_DONE);
1408 	}
1409 
1410 	if (ctrl->edu_count) {
1411 		ctrl->edu_dram_addr += FC_BYTES;
1412 		ctrl->edu_ext_addr += FC_BYTES;
1413 
1414 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1415 		edu_readl(ctrl, EDU_DRAM_ADDR);
1416 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1417 		edu_readl(ctrl, EDU_EXT_ADDR);
1418 
1419 		mb(); /* flush previous writes */
1420 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1421 		edu_readl(ctrl, EDU_CMD);
1422 
1423 		return IRQ_HANDLED;
1424 	}
1425 
1426 	complete(&ctrl->edu_done);
1427 
1428 	return IRQ_HANDLED;
1429 }
1430 
1431 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1432 {
1433 	struct brcmnand_controller *ctrl = data;
1434 
1435 	/* Discard all NAND_CTLRDY interrupts during DMA */
1436 	if (ctrl->dma_pending)
1437 		return IRQ_HANDLED;
1438 
1439 	/* check if you need to piggy back on the ctrlrdy irq */
1440 	if (ctrl->edu_pending) {
1441 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1442 	/* Discard interrupts while using dedicated edu irq */
1443 			return IRQ_HANDLED;
1444 
1445 	/* no registered edu irq, call handler */
1446 		return brcmnand_edu_irq(irq, data);
1447 	}
1448 
1449 	complete(&ctrl->done);
1450 	return IRQ_HANDLED;
1451 }
1452 
1453 /* Handle SoC-specific interrupt hardware */
1454 static irqreturn_t brcmnand_irq(int irq, void *data)
1455 {
1456 	struct brcmnand_controller *ctrl = data;
1457 
1458 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1459 		return brcmnand_ctlrdy_irq(irq, data);
1460 
1461 	return IRQ_NONE;
1462 }
1463 
1464 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1465 {
1466 	struct brcmnand_controller *ctrl = data;
1467 
1468 	complete(&ctrl->dma_done);
1469 
1470 	return IRQ_HANDLED;
1471 }
1472 
1473 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1474 {
1475 	struct brcmnand_controller *ctrl = host->ctrl;
1476 	int ret;
1477 	u64 cmd_addr;
1478 
1479 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1480 
1481 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1482 
1483 	BUG_ON(ctrl->cmd_pending != 0);
1484 	ctrl->cmd_pending = cmd;
1485 
1486 	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1487 	WARN_ON(ret);
1488 
1489 	mb(); /* flush previous writes */
1490 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1491 			   cmd << brcmnand_cmd_shift(ctrl));
1492 }
1493 
1494 /***********************************************************************
1495  * NAND MTD API: read/program/erase
1496  ***********************************************************************/
1497 
1498 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1499 			      unsigned int ctrl)
1500 {
1501 	/* intentionally left blank */
1502 }
1503 
1504 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1505 {
1506 	struct brcmnand_host *host = nand_get_controller_data(chip);
1507 	struct brcmnand_controller *ctrl = host->ctrl;
1508 	struct mtd_info *mtd = nand_to_mtd(chip);
1509 	bool err = false;
1510 	int sts;
1511 
1512 	if (mtd->oops_panic_write) {
1513 		/* switch to interrupt polling and PIO mode */
1514 		disable_ctrl_irqs(ctrl);
1515 		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1516 					       NAND_CTRL_RDY, 0);
1517 		err = (sts < 0) ? true : false;
1518 	} else {
1519 		unsigned long timeo = msecs_to_jiffies(
1520 						NAND_POLL_STATUS_TIMEOUT_MS);
1521 		/* wait for completion interrupt */
1522 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1523 		err = (sts <= 0) ? true : false;
1524 	}
1525 
1526 	return err;
1527 }
1528 
1529 static int brcmnand_waitfunc(struct nand_chip *chip)
1530 {
1531 	struct brcmnand_host *host = nand_get_controller_data(chip);
1532 	struct brcmnand_controller *ctrl = host->ctrl;
1533 	bool err = false;
1534 
1535 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1536 	if (ctrl->cmd_pending)
1537 		err = brcmstb_nand_wait_for_completion(chip);
1538 
1539 	if (err) {
1540 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1541 					>> brcmnand_cmd_shift(ctrl);
1542 
1543 		dev_err_ratelimited(ctrl->dev,
1544 			"timeout waiting for command %#02x\n", cmd);
1545 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1546 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1547 	}
1548 	ctrl->cmd_pending = 0;
1549 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1550 				 INTFC_FLASH_STATUS;
1551 }
1552 
1553 enum {
1554 	LLOP_RE				= BIT(16),
1555 	LLOP_WE				= BIT(17),
1556 	LLOP_ALE			= BIT(18),
1557 	LLOP_CLE			= BIT(19),
1558 	LLOP_RETURN_IDLE		= BIT(31),
1559 
1560 	LLOP_DATA_MASK			= GENMASK(15, 0),
1561 };
1562 
1563 static int brcmnand_low_level_op(struct brcmnand_host *host,
1564 				 enum brcmnand_llop_type type, u32 data,
1565 				 bool last_op)
1566 {
1567 	struct nand_chip *chip = &host->chip;
1568 	struct brcmnand_controller *ctrl = host->ctrl;
1569 	u32 tmp;
1570 
1571 	tmp = data & LLOP_DATA_MASK;
1572 	switch (type) {
1573 	case LL_OP_CMD:
1574 		tmp |= LLOP_WE | LLOP_CLE;
1575 		break;
1576 	case LL_OP_ADDR:
1577 		/* WE | ALE */
1578 		tmp |= LLOP_WE | LLOP_ALE;
1579 		break;
1580 	case LL_OP_WR:
1581 		/* WE */
1582 		tmp |= LLOP_WE;
1583 		break;
1584 	case LL_OP_RD:
1585 		/* RE */
1586 		tmp |= LLOP_RE;
1587 		break;
1588 	}
1589 	if (last_op)
1590 		/* RETURN_IDLE */
1591 		tmp |= LLOP_RETURN_IDLE;
1592 
1593 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1594 
1595 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1596 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1597 
1598 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1599 	return brcmnand_waitfunc(chip);
1600 }
1601 
1602 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1603 			     int column, int page_addr)
1604 {
1605 	struct mtd_info *mtd = nand_to_mtd(chip);
1606 	struct brcmnand_host *host = nand_get_controller_data(chip);
1607 	struct brcmnand_controller *ctrl = host->ctrl;
1608 	u64 addr = (u64)page_addr << chip->page_shift;
1609 	int native_cmd = 0;
1610 
1611 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1612 			command == NAND_CMD_RNDOUT)
1613 		addr = (u64)column;
1614 	/* Avoid propagating a negative, don't-care address */
1615 	else if (page_addr < 0)
1616 		addr = 0;
1617 
1618 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1619 		(unsigned long long)addr);
1620 
1621 	host->last_cmd = command;
1622 	host->last_byte = 0;
1623 	host->last_addr = addr;
1624 
1625 	switch (command) {
1626 	case NAND_CMD_RESET:
1627 		native_cmd = CMD_FLASH_RESET;
1628 		break;
1629 	case NAND_CMD_STATUS:
1630 		native_cmd = CMD_STATUS_READ;
1631 		break;
1632 	case NAND_CMD_READID:
1633 		native_cmd = CMD_DEVICE_ID_READ;
1634 		break;
1635 	case NAND_CMD_READOOB:
1636 		native_cmd = CMD_SPARE_AREA_READ;
1637 		break;
1638 	case NAND_CMD_ERASE1:
1639 		native_cmd = CMD_BLOCK_ERASE;
1640 		brcmnand_wp(mtd, 0);
1641 		break;
1642 	case NAND_CMD_PARAM:
1643 		native_cmd = CMD_PARAMETER_READ;
1644 		break;
1645 	case NAND_CMD_SET_FEATURES:
1646 	case NAND_CMD_GET_FEATURES:
1647 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1648 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1649 		break;
1650 	case NAND_CMD_RNDOUT:
1651 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1652 		addr &= ~((u64)(FC_BYTES - 1));
1653 		/*
1654 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1655 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1656 		 */
1657 		if (brcmnand_get_sector_size_1k(host)) {
1658 			host->hwcfg.sector_size_1k =
1659 				brcmnand_get_sector_size_1k(host);
1660 			brcmnand_set_sector_size_1k(host, 0);
1661 		}
1662 		break;
1663 	}
1664 
1665 	if (!native_cmd)
1666 		return;
1667 
1668 	brcmnand_set_cmd_addr(mtd, addr);
1669 	brcmnand_send_cmd(host, native_cmd);
1670 	brcmnand_waitfunc(chip);
1671 
1672 	if (native_cmd == CMD_PARAMETER_READ ||
1673 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1674 		/* Copy flash cache word-wise */
1675 		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1676 		int i;
1677 
1678 		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1679 
1680 		/*
1681 		 * Must cache the FLASH_CACHE now, since changes in
1682 		 * SECTOR_SIZE_1K may invalidate it
1683 		 */
1684 		for (i = 0; i < FC_WORDS; i++)
1685 			/*
1686 			 * Flash cache is big endian for parameter pages, at
1687 			 * least on STB SoCs
1688 			 */
1689 			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1690 
1691 		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1692 
1693 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1694 		if (host->hwcfg.sector_size_1k)
1695 			brcmnand_set_sector_size_1k(host,
1696 						    host->hwcfg.sector_size_1k);
1697 	}
1698 
1699 	/* Re-enable protection is necessary only after erase */
1700 	if (command == NAND_CMD_ERASE1)
1701 		brcmnand_wp(mtd, 1);
1702 }
1703 
1704 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1705 {
1706 	struct brcmnand_host *host = nand_get_controller_data(chip);
1707 	struct brcmnand_controller *ctrl = host->ctrl;
1708 	uint8_t ret = 0;
1709 	int addr, offs;
1710 
1711 	switch (host->last_cmd) {
1712 	case NAND_CMD_READID:
1713 		if (host->last_byte < 4)
1714 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1715 				(24 - (host->last_byte << 3));
1716 		else if (host->last_byte < 8)
1717 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1718 				(56 - (host->last_byte << 3));
1719 		break;
1720 
1721 	case NAND_CMD_READOOB:
1722 		ret = oob_reg_read(ctrl, host->last_byte);
1723 		break;
1724 
1725 	case NAND_CMD_STATUS:
1726 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1727 					INTFC_FLASH_STATUS;
1728 		if (wp_on) /* hide WP status */
1729 			ret |= NAND_STATUS_WP;
1730 		break;
1731 
1732 	case NAND_CMD_PARAM:
1733 	case NAND_CMD_RNDOUT:
1734 		addr = host->last_addr + host->last_byte;
1735 		offs = addr & (FC_BYTES - 1);
1736 
1737 		/* At FC_BYTES boundary, switch to next column */
1738 		if (host->last_byte > 0 && offs == 0)
1739 			nand_change_read_column_op(chip, addr, NULL, 0, false);
1740 
1741 		ret = ctrl->flash_cache[offs];
1742 		break;
1743 	case NAND_CMD_GET_FEATURES:
1744 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1745 			ret = 0;
1746 		} else {
1747 			bool last = host->last_byte ==
1748 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1749 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1750 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1751 		}
1752 	}
1753 
1754 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1755 	host->last_byte++;
1756 
1757 	return ret;
1758 }
1759 
1760 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1761 {
1762 	int i;
1763 
1764 	for (i = 0; i < len; i++, buf++)
1765 		*buf = brcmnand_read_byte(chip);
1766 }
1767 
1768 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1769 			       int len)
1770 {
1771 	int i;
1772 	struct brcmnand_host *host = nand_get_controller_data(chip);
1773 
1774 	switch (host->last_cmd) {
1775 	case NAND_CMD_SET_FEATURES:
1776 		for (i = 0; i < len; i++)
1777 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1778 						  (i + 1) == len);
1779 		break;
1780 	default:
1781 		BUG();
1782 		break;
1783 	}
1784 }
1785 
1786 /**
1787  *  Kick EDU engine
1788  */
1789 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1790 			      u32 len, u8 cmd)
1791 {
1792 	struct brcmnand_controller *ctrl = host->ctrl;
1793 	unsigned long timeo = msecs_to_jiffies(200);
1794 	int ret = 0;
1795 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1796 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1797 	unsigned int trans = len >> FC_SHIFT;
1798 	dma_addr_t pa;
1799 
1800 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1801 	if (dma_mapping_error(ctrl->dev, pa)) {
1802 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1803 		return -ENOMEM;
1804 	}
1805 
1806 	ctrl->edu_pending = true;
1807 	ctrl->edu_dram_addr = pa;
1808 	ctrl->edu_ext_addr = addr;
1809 	ctrl->edu_cmd = edu_cmd;
1810 	ctrl->edu_count = trans;
1811 
1812 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1813 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1814 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1815 	edu_readl(ctrl, EDU_EXT_ADDR);
1816 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1817 	edu_readl(ctrl, EDU_LENGTH);
1818 
1819 	/* Start edu engine */
1820 	mb(); /* flush previous writes */
1821 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1822 	edu_readl(ctrl, EDU_CMD);
1823 
1824 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1825 		dev_err(ctrl->dev,
1826 			"timeout waiting for EDU; status %#x, error status %#x\n",
1827 			edu_readl(ctrl, EDU_STATUS),
1828 			edu_readl(ctrl, EDU_ERR_STATUS));
1829 	}
1830 
1831 	dma_unmap_single(ctrl->dev, pa, len, dir);
1832 
1833 	/* for program page check NAND status */
1834 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1835 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1836 	    edu_cmd == EDU_CMD_WRITE) {
1837 		dev_info(ctrl->dev, "program failed at %llx\n",
1838 			 (unsigned long long)addr);
1839 		ret = -EIO;
1840 	}
1841 
1842 	/* Make sure the EDU status is clean */
1843 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1844 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1845 			 edu_readl(ctrl, EDU_STATUS));
1846 
1847 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1848 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1849 			 (unsigned long long)addr);
1850 		ret = -EIO;
1851 	}
1852 
1853 	ctrl->edu_pending = false;
1854 	brcmnand_edu_init(ctrl);
1855 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1856 	edu_readl(ctrl, EDU_STOP);
1857 
1858 	return ret;
1859 }
1860 
1861 /**
1862  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1863  * following ahead of time:
1864  *  - Is this descriptor the beginning or end of a linked list?
1865  *  - What is the (DMA) address of the next descriptor in the linked list?
1866  */
1867 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1868 				  struct brcm_nand_dma_desc *desc, u64 addr,
1869 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1870 				  bool begin, bool end,
1871 				  dma_addr_t next_desc)
1872 {
1873 	memset(desc, 0, sizeof(*desc));
1874 	/* Descriptors are written in native byte order (wordwise) */
1875 	desc->next_desc = lower_32_bits(next_desc);
1876 	desc->next_desc_ext = upper_32_bits(next_desc);
1877 	desc->cmd_irq = (dma_cmd << 24) |
1878 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1879 		(!!begin) | ((!!end) << 1); /* head, tail */
1880 #ifdef CONFIG_CPU_BIG_ENDIAN
1881 	desc->cmd_irq |= 0x01 << 12;
1882 #endif
1883 	desc->dram_addr = lower_32_bits(buf);
1884 	desc->dram_addr_ext = upper_32_bits(buf);
1885 	desc->tfr_len = len;
1886 	desc->total_len = len;
1887 	desc->flash_addr = lower_32_bits(addr);
1888 	desc->flash_addr_ext = upper_32_bits(addr);
1889 	desc->cs = host->cs;
1890 	desc->status_valid = 0x01;
1891 	return 0;
1892 }
1893 
1894 /**
1895  * Kick the FLASH_DMA engine, with a given DMA descriptor
1896  */
1897 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1898 {
1899 	struct brcmnand_controller *ctrl = host->ctrl;
1900 	unsigned long timeo = msecs_to_jiffies(100);
1901 
1902 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1903 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1904 	if (ctrl->nand_version > 0x0602) {
1905 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1906 				 upper_32_bits(desc));
1907 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1908 	}
1909 
1910 	/* Start FLASH_DMA engine */
1911 	ctrl->dma_pending = true;
1912 	mb(); /* flush previous writes */
1913 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1914 
1915 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1916 		dev_err(ctrl->dev,
1917 				"timeout waiting for DMA; status %#x, error status %#x\n",
1918 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1919 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1920 	}
1921 	ctrl->dma_pending = false;
1922 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1923 }
1924 
1925 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1926 			      u32 len, u8 dma_cmd)
1927 {
1928 	struct brcmnand_controller *ctrl = host->ctrl;
1929 	dma_addr_t buf_pa;
1930 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1931 
1932 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1933 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
1934 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1935 		return -ENOMEM;
1936 	}
1937 
1938 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1939 				   dma_cmd, true, true, 0);
1940 
1941 	brcmnand_dma_run(host, ctrl->dma_pa);
1942 
1943 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1944 
1945 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1946 		return -EBADMSG;
1947 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1948 		return -EUCLEAN;
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Assumes proper CS is already set
1955  */
1956 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1957 				u64 addr, unsigned int trans, u32 *buf,
1958 				u8 *oob, u64 *err_addr)
1959 {
1960 	struct brcmnand_host *host = nand_get_controller_data(chip);
1961 	struct brcmnand_controller *ctrl = host->ctrl;
1962 	int i, j, ret = 0;
1963 
1964 	brcmnand_clear_ecc_addr(ctrl);
1965 
1966 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1967 		brcmnand_set_cmd_addr(mtd, addr);
1968 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1969 		brcmnand_send_cmd(host, CMD_PAGE_READ);
1970 		brcmnand_waitfunc(chip);
1971 
1972 		if (likely(buf)) {
1973 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1974 
1975 			for (j = 0; j < FC_WORDS; j++, buf++)
1976 				*buf = brcmnand_read_fc(ctrl, j);
1977 
1978 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1979 		}
1980 
1981 		if (oob)
1982 			oob += read_oob_from_regs(ctrl, i, oob,
1983 					mtd->oobsize / trans,
1984 					host->hwcfg.sector_size_1k);
1985 
1986 		if (!ret) {
1987 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1988 
1989 			if (*err_addr)
1990 				ret = -EBADMSG;
1991 		}
1992 
1993 		if (!ret) {
1994 			*err_addr = brcmnand_get_correcc_addr(ctrl);
1995 
1996 			if (*err_addr)
1997 				ret = -EUCLEAN;
1998 		}
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 /*
2005  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2006  * error
2007  *
2008  * Because the HW ECC signals an ECC error if an erase paged has even a single
2009  * bitflip, we must check each ECC error to see if it is actually an erased
2010  * page with bitflips, not a truly corrupted page.
2011  *
2012  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2013  * buf will contain raw data.
2014  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2015  * bitflips-per-ECC-sector to the caller.
2016  *
2017  */
2018 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2019 		  struct nand_chip *chip, void *buf, u64 addr)
2020 {
2021 	int i, sas;
2022 	void *oob = chip->oob_poi;
2023 	int bitflips = 0;
2024 	int page = addr >> chip->page_shift;
2025 	int ret;
2026 	void *ecc_chunk;
2027 
2028 	if (!buf)
2029 		buf = nand_get_data_buf(chip);
2030 
2031 	sas = mtd->oobsize / chip->ecc.steps;
2032 
2033 	/* read without ecc for verification */
2034 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2035 	if (ret)
2036 		return ret;
2037 
2038 	for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
2039 		ecc_chunk = buf + chip->ecc.size * i;
2040 		ret = nand_check_erased_ecc_chunk(ecc_chunk,
2041 						  chip->ecc.size,
2042 						  oob, sas, NULL, 0,
2043 						  chip->ecc.strength);
2044 		if (ret < 0)
2045 			return ret;
2046 
2047 		bitflips = max(bitflips, ret);
2048 	}
2049 
2050 	return bitflips;
2051 }
2052 
2053 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2054 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2055 {
2056 	struct brcmnand_host *host = nand_get_controller_data(chip);
2057 	struct brcmnand_controller *ctrl = host->ctrl;
2058 	u64 err_addr = 0;
2059 	int err;
2060 	bool retry = true;
2061 
2062 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2063 
2064 try_dmaread:
2065 	brcmnand_clear_ecc_addr(ctrl);
2066 
2067 	if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
2068 		err = ctrl->dma_trans(host, addr, buf,
2069 				      trans * FC_BYTES,
2070 				      CMD_PAGE_READ);
2071 
2072 		if (err) {
2073 			if (mtd_is_bitflip_or_eccerr(err))
2074 				err_addr = addr;
2075 			else
2076 				return -EIO;
2077 		}
2078 	} else {
2079 		if (oob)
2080 			memset(oob, 0x99, mtd->oobsize);
2081 
2082 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2083 					       oob, &err_addr);
2084 	}
2085 
2086 	if (mtd_is_eccerr(err)) {
2087 		/*
2088 		 * On controller version and 7.0, 7.1 , DMA read after a
2089 		 * prior PIO read that reported uncorrectable error,
2090 		 * the DMA engine captures this error following DMA read
2091 		 * cleared only on subsequent DMA read, so just retry once
2092 		 * to clear a possible false error reported for current DMA
2093 		 * read
2094 		 */
2095 		if ((ctrl->nand_version == 0x0700) ||
2096 		    (ctrl->nand_version == 0x0701)) {
2097 			if (retry) {
2098 				retry = false;
2099 				goto try_dmaread;
2100 			}
2101 		}
2102 
2103 		/*
2104 		 * Controller version 7.2 has hw encoder to detect erased page
2105 		 * bitflips, apply sw verification for older controllers only
2106 		 */
2107 		if (ctrl->nand_version < 0x0702) {
2108 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2109 							      addr);
2110 			/* erased page bitflips corrected */
2111 			if (err >= 0)
2112 				return err;
2113 		}
2114 
2115 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2116 			(unsigned long long)err_addr);
2117 		mtd->ecc_stats.failed++;
2118 		/* NAND layer expects zero on ECC errors */
2119 		return 0;
2120 	}
2121 
2122 	if (mtd_is_bitflip(err)) {
2123 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2124 
2125 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2126 			(unsigned long long)err_addr);
2127 		mtd->ecc_stats.corrected += corrected;
2128 		/* Always exceed the software-imposed threshold */
2129 		return max(mtd->bitflip_threshold, corrected);
2130 	}
2131 
2132 	return 0;
2133 }
2134 
2135 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2136 			      int oob_required, int page)
2137 {
2138 	struct mtd_info *mtd = nand_to_mtd(chip);
2139 	struct brcmnand_host *host = nand_get_controller_data(chip);
2140 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2141 
2142 	nand_read_page_op(chip, page, 0, NULL, 0);
2143 
2144 	return brcmnand_read(mtd, chip, host->last_addr,
2145 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2146 }
2147 
2148 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2149 				  int oob_required, int page)
2150 {
2151 	struct brcmnand_host *host = nand_get_controller_data(chip);
2152 	struct mtd_info *mtd = nand_to_mtd(chip);
2153 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2154 	int ret;
2155 
2156 	nand_read_page_op(chip, page, 0, NULL, 0);
2157 
2158 	brcmnand_set_ecc_enabled(host, 0);
2159 	ret = brcmnand_read(mtd, chip, host->last_addr,
2160 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2161 	brcmnand_set_ecc_enabled(host, 1);
2162 	return ret;
2163 }
2164 
2165 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2166 {
2167 	struct mtd_info *mtd = nand_to_mtd(chip);
2168 
2169 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2170 			mtd->writesize >> FC_SHIFT,
2171 			NULL, (u8 *)chip->oob_poi);
2172 }
2173 
2174 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2175 {
2176 	struct mtd_info *mtd = nand_to_mtd(chip);
2177 	struct brcmnand_host *host = nand_get_controller_data(chip);
2178 
2179 	brcmnand_set_ecc_enabled(host, 0);
2180 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2181 		mtd->writesize >> FC_SHIFT,
2182 		NULL, (u8 *)chip->oob_poi);
2183 	brcmnand_set_ecc_enabled(host, 1);
2184 	return 0;
2185 }
2186 
2187 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2188 			  u64 addr, const u32 *buf, u8 *oob)
2189 {
2190 	struct brcmnand_host *host = nand_get_controller_data(chip);
2191 	struct brcmnand_controller *ctrl = host->ctrl;
2192 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2193 	int status, ret = 0;
2194 
2195 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2196 
2197 	if (unlikely((unsigned long)buf & 0x03)) {
2198 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2199 		buf = (u32 *)((unsigned long)buf & ~0x03);
2200 	}
2201 
2202 	brcmnand_wp(mtd, 0);
2203 
2204 	for (i = 0; i < ctrl->max_oob; i += 4)
2205 		oob_reg_write(ctrl, i, 0xffffffff);
2206 
2207 	if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
2208 		if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
2209 				    CMD_PROGRAM_PAGE))
2210 
2211 			ret = -EIO;
2212 
2213 		goto out;
2214 	}
2215 
2216 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2217 		/* full address MUST be set before populating FC */
2218 		brcmnand_set_cmd_addr(mtd, addr);
2219 
2220 		if (buf) {
2221 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2222 
2223 			for (j = 0; j < FC_WORDS; j++, buf++)
2224 				brcmnand_write_fc(ctrl, j, *buf);
2225 
2226 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2227 		} else if (oob) {
2228 			for (j = 0; j < FC_WORDS; j++)
2229 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2230 		}
2231 
2232 		if (oob) {
2233 			oob += write_oob_to_regs(ctrl, i, oob,
2234 					mtd->oobsize / trans,
2235 					host->hwcfg.sector_size_1k);
2236 		}
2237 
2238 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2239 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2240 		status = brcmnand_waitfunc(chip);
2241 
2242 		if (status & NAND_STATUS_FAIL) {
2243 			dev_info(ctrl->dev, "program failed at %llx\n",
2244 				(unsigned long long)addr);
2245 			ret = -EIO;
2246 			goto out;
2247 		}
2248 	}
2249 out:
2250 	brcmnand_wp(mtd, 1);
2251 	return ret;
2252 }
2253 
2254 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2255 			       int oob_required, int page)
2256 {
2257 	struct mtd_info *mtd = nand_to_mtd(chip);
2258 	struct brcmnand_host *host = nand_get_controller_data(chip);
2259 	void *oob = oob_required ? chip->oob_poi : NULL;
2260 
2261 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2262 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2263 
2264 	return nand_prog_page_end_op(chip);
2265 }
2266 
2267 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2268 				   int oob_required, int page)
2269 {
2270 	struct mtd_info *mtd = nand_to_mtd(chip);
2271 	struct brcmnand_host *host = nand_get_controller_data(chip);
2272 	void *oob = oob_required ? chip->oob_poi : NULL;
2273 
2274 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2275 	brcmnand_set_ecc_enabled(host, 0);
2276 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2277 	brcmnand_set_ecc_enabled(host, 1);
2278 
2279 	return nand_prog_page_end_op(chip);
2280 }
2281 
2282 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2283 {
2284 	return brcmnand_write(nand_to_mtd(chip), chip,
2285 			      (u64)page << chip->page_shift, NULL,
2286 			      chip->oob_poi);
2287 }
2288 
2289 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2290 {
2291 	struct mtd_info *mtd = nand_to_mtd(chip);
2292 	struct brcmnand_host *host = nand_get_controller_data(chip);
2293 	int ret;
2294 
2295 	brcmnand_set_ecc_enabled(host, 0);
2296 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2297 				 (u8 *)chip->oob_poi);
2298 	brcmnand_set_ecc_enabled(host, 1);
2299 
2300 	return ret;
2301 }
2302 
2303 /***********************************************************************
2304  * Per-CS setup (1 NAND device)
2305  ***********************************************************************/
2306 
2307 static int brcmnand_set_cfg(struct brcmnand_host *host,
2308 			    struct brcmnand_cfg *cfg)
2309 {
2310 	struct brcmnand_controller *ctrl = host->ctrl;
2311 	struct nand_chip *chip = &host->chip;
2312 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2313 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2314 			BRCMNAND_CS_CFG_EXT);
2315 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2316 			BRCMNAND_CS_ACC_CONTROL);
2317 	u8 block_size = 0, page_size = 0, device_size = 0;
2318 	u32 tmp;
2319 
2320 	if (ctrl->block_sizes) {
2321 		int i, found;
2322 
2323 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2324 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2325 				block_size = i;
2326 				found = 1;
2327 			}
2328 		if (!found) {
2329 			dev_warn(ctrl->dev, "invalid block size %u\n",
2330 					cfg->block_size);
2331 			return -EINVAL;
2332 		}
2333 	} else {
2334 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2335 	}
2336 
2337 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2338 				cfg->block_size > ctrl->max_block_size)) {
2339 		dev_warn(ctrl->dev, "invalid block size %u\n",
2340 				cfg->block_size);
2341 		block_size = 0;
2342 	}
2343 
2344 	if (ctrl->page_sizes) {
2345 		int i, found;
2346 
2347 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2348 			if (ctrl->page_sizes[i] == cfg->page_size) {
2349 				page_size = i;
2350 				found = 1;
2351 			}
2352 		if (!found) {
2353 			dev_warn(ctrl->dev, "invalid page size %u\n",
2354 					cfg->page_size);
2355 			return -EINVAL;
2356 		}
2357 	} else {
2358 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2359 	}
2360 
2361 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2362 				cfg->page_size > ctrl->max_page_size)) {
2363 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2364 		return -EINVAL;
2365 	}
2366 
2367 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2368 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2369 			(unsigned long long)cfg->device_size);
2370 		return -EINVAL;
2371 	}
2372 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2373 
2374 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2375 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2376 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2377 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2378 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2379 	if (cfg_offs == cfg_ext_offs) {
2380 		tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2381 		       (block_size << CFG_BLK_SIZE_SHIFT);
2382 		nand_writereg(ctrl, cfg_offs, tmp);
2383 	} else {
2384 		nand_writereg(ctrl, cfg_offs, tmp);
2385 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2386 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2387 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2388 	}
2389 
2390 	tmp = nand_readreg(ctrl, acc_control_offs);
2391 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2392 	tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2393 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2394 	tmp |= cfg->spare_area_size;
2395 	nand_writereg(ctrl, acc_control_offs, tmp);
2396 
2397 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2398 
2399 	/* threshold = ceil(BCH-level * 0.75) */
2400 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2401 
2402 	return 0;
2403 }
2404 
2405 static void brcmnand_print_cfg(struct brcmnand_host *host,
2406 			       char *buf, struct brcmnand_cfg *cfg)
2407 {
2408 	buf += sprintf(buf,
2409 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2410 		(unsigned long long)cfg->device_size >> 20,
2411 		cfg->block_size >> 10,
2412 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2413 		cfg->page_size >= 1024 ? "KiB" : "B",
2414 		cfg->spare_area_size, cfg->device_width);
2415 
2416 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2417 	if (is_hamming_ecc(host->ctrl, cfg))
2418 		sprintf(buf, ", Hamming ECC");
2419 	else if (cfg->sector_size_1k)
2420 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2421 	else
2422 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2423 }
2424 
2425 /*
2426  * Minimum number of bytes to address a page. Calculated as:
2427  *     roundup(log2(size / page-size) / 8)
2428  *
2429  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2430  *     OK because many other things will break if 'size' is irregular...
2431  */
2432 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2433 {
2434 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2435 }
2436 
2437 static int brcmnand_setup_dev(struct brcmnand_host *host)
2438 {
2439 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2440 	struct nand_chip *chip = &host->chip;
2441 	struct brcmnand_controller *ctrl = host->ctrl;
2442 	struct brcmnand_cfg *cfg = &host->hwcfg;
2443 	char msg[128];
2444 	u32 offs, tmp, oob_sector;
2445 	int ret;
2446 
2447 	memset(cfg, 0, sizeof(*cfg));
2448 
2449 	ret = of_property_read_u32(nand_get_flash_node(chip),
2450 				   "brcm,nand-oob-sector-size",
2451 				   &oob_sector);
2452 	if (ret) {
2453 		/* Use detected size */
2454 		cfg->spare_area_size = mtd->oobsize /
2455 					(mtd->writesize >> FC_SHIFT);
2456 	} else {
2457 		cfg->spare_area_size = oob_sector;
2458 	}
2459 	if (cfg->spare_area_size > ctrl->max_oob)
2460 		cfg->spare_area_size = ctrl->max_oob;
2461 	/*
2462 	 * Set oobsize to be consistent with controller's spare_area_size, as
2463 	 * the rest is inaccessible.
2464 	 */
2465 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2466 
2467 	cfg->device_size = mtd->size;
2468 	cfg->block_size = mtd->erasesize;
2469 	cfg->page_size = mtd->writesize;
2470 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2471 	cfg->col_adr_bytes = 2;
2472 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2473 
2474 	if (chip->ecc.mode != NAND_ECC_HW) {
2475 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2476 			chip->ecc.mode);
2477 		return -EINVAL;
2478 	}
2479 
2480 	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2481 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2482 			/* Default to Hamming for 1-bit ECC, if unspecified */
2483 			chip->ecc.algo = NAND_ECC_HAMMING;
2484 		else
2485 			/* Otherwise, BCH */
2486 			chip->ecc.algo = NAND_ECC_BCH;
2487 	}
2488 
2489 	if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2490 						   chip->ecc.size != 512)) {
2491 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2492 			chip->ecc.strength, chip->ecc.size);
2493 		return -EINVAL;
2494 	}
2495 
2496 	if (chip->ecc.mode != NAND_ECC_NONE &&
2497 	    (!chip->ecc.size || !chip->ecc.strength)) {
2498 		if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2499 			/* use detected ECC parameters */
2500 			chip->ecc.size = chip->base.eccreq.step_size;
2501 			chip->ecc.strength = chip->base.eccreq.strength;
2502 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2503 				chip->ecc.size, chip->ecc.strength);
2504 		}
2505 	}
2506 
2507 	switch (chip->ecc.size) {
2508 	case 512:
2509 		if (chip->ecc.algo == NAND_ECC_HAMMING)
2510 			cfg->ecc_level = 15;
2511 		else
2512 			cfg->ecc_level = chip->ecc.strength;
2513 		cfg->sector_size_1k = 0;
2514 		break;
2515 	case 1024:
2516 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2517 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2518 			return -EINVAL;
2519 		}
2520 		if (chip->ecc.strength & 0x1) {
2521 			dev_err(ctrl->dev,
2522 				"odd ECC not supported with 1KB sectors\n");
2523 			return -EINVAL;
2524 		}
2525 
2526 		cfg->ecc_level = chip->ecc.strength >> 1;
2527 		cfg->sector_size_1k = 1;
2528 		break;
2529 	default:
2530 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2531 			chip->ecc.size);
2532 		return -EINVAL;
2533 	}
2534 
2535 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2536 	if (mtd->writesize > 512)
2537 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2538 	else
2539 		cfg->ful_adr_bytes += 1;
2540 
2541 	ret = brcmnand_set_cfg(host, cfg);
2542 	if (ret)
2543 		return ret;
2544 
2545 	brcmnand_set_ecc_enabled(host, 1);
2546 
2547 	brcmnand_print_cfg(host, msg, cfg);
2548 	dev_info(ctrl->dev, "detected %s\n", msg);
2549 
2550 	/* Configure ACC_CONTROL */
2551 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2552 	tmp = nand_readreg(ctrl, offs);
2553 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2554 	tmp &= ~ACC_CONTROL_RD_ERASED;
2555 
2556 	/* We need to turn on Read from erased paged protected by ECC */
2557 	if (ctrl->nand_version >= 0x0702)
2558 		tmp |= ACC_CONTROL_RD_ERASED;
2559 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2560 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2561 		tmp &= ~ACC_CONTROL_PREFETCH;
2562 
2563 	nand_writereg(ctrl, offs, tmp);
2564 
2565 	return 0;
2566 }
2567 
2568 static int brcmnand_attach_chip(struct nand_chip *chip)
2569 {
2570 	struct mtd_info *mtd = nand_to_mtd(chip);
2571 	struct brcmnand_host *host = nand_get_controller_data(chip);
2572 	int ret;
2573 
2574 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2575 	/*
2576 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2577 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2578 	 * needed.
2579 	 */
2580 	chip->options |= NAND_USE_BOUNCE_BUFFER;
2581 
2582 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2583 		chip->bbt_options |= NAND_BBT_NO_OOB;
2584 
2585 	if (brcmnand_setup_dev(host))
2586 		return -ENXIO;
2587 
2588 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2589 
2590 	/* only use our internal HW threshold */
2591 	mtd->bitflip_threshold = 1;
2592 
2593 	ret = brcmstb_choose_ecc_layout(host);
2594 
2595 	return ret;
2596 }
2597 
2598 static const struct nand_controller_ops brcmnand_controller_ops = {
2599 	.attach_chip = brcmnand_attach_chip,
2600 };
2601 
2602 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2603 {
2604 	struct brcmnand_controller *ctrl = host->ctrl;
2605 	struct platform_device *pdev = host->pdev;
2606 	struct mtd_info *mtd;
2607 	struct nand_chip *chip;
2608 	int ret;
2609 	u16 cfg_offs;
2610 
2611 	ret = of_property_read_u32(dn, "reg", &host->cs);
2612 	if (ret) {
2613 		dev_err(&pdev->dev, "can't get chip-select\n");
2614 		return -ENXIO;
2615 	}
2616 
2617 	mtd = nand_to_mtd(&host->chip);
2618 	chip = &host->chip;
2619 
2620 	nand_set_flash_node(chip, dn);
2621 	nand_set_controller_data(chip, host);
2622 	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2623 				   host->cs);
2624 	if (!mtd->name)
2625 		return -ENOMEM;
2626 
2627 	mtd->owner = THIS_MODULE;
2628 	mtd->dev.parent = &pdev->dev;
2629 
2630 	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2631 	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2632 	chip->legacy.waitfunc = brcmnand_waitfunc;
2633 	chip->legacy.read_byte = brcmnand_read_byte;
2634 	chip->legacy.read_buf = brcmnand_read_buf;
2635 	chip->legacy.write_buf = brcmnand_write_buf;
2636 
2637 	chip->ecc.mode = NAND_ECC_HW;
2638 	chip->ecc.read_page = brcmnand_read_page;
2639 	chip->ecc.write_page = brcmnand_write_page;
2640 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2641 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2642 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2643 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2644 	chip->ecc.read_oob = brcmnand_read_oob;
2645 	chip->ecc.write_oob = brcmnand_write_oob;
2646 
2647 	chip->controller = &ctrl->controller;
2648 
2649 	/*
2650 	 * The bootloader might have configured 16bit mode but
2651 	 * NAND READID command only works in 8bit mode. We force
2652 	 * 8bit mode here to ensure that NAND READID commands works.
2653 	 */
2654 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2655 	nand_writereg(ctrl, cfg_offs,
2656 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2657 
2658 	ret = nand_scan(chip, 1);
2659 	if (ret)
2660 		return ret;
2661 
2662 	ret = mtd_device_register(mtd, NULL, 0);
2663 	if (ret)
2664 		nand_cleanup(chip);
2665 
2666 	return ret;
2667 }
2668 
2669 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2670 					    int restore)
2671 {
2672 	struct brcmnand_controller *ctrl = host->ctrl;
2673 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2674 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2675 			BRCMNAND_CS_CFG_EXT);
2676 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2677 			BRCMNAND_CS_ACC_CONTROL);
2678 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2679 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2680 
2681 	if (restore) {
2682 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2683 		if (cfg_offs != cfg_ext_offs)
2684 			nand_writereg(ctrl, cfg_ext_offs,
2685 				      host->hwcfg.config_ext);
2686 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2687 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2688 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2689 	} else {
2690 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2691 		if (cfg_offs != cfg_ext_offs)
2692 			host->hwcfg.config_ext =
2693 				nand_readreg(ctrl, cfg_ext_offs);
2694 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2695 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2696 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2697 	}
2698 }
2699 
2700 static int brcmnand_suspend(struct device *dev)
2701 {
2702 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2703 	struct brcmnand_host *host;
2704 
2705 	list_for_each_entry(host, &ctrl->host_list, node)
2706 		brcmnand_save_restore_cs_config(host, 0);
2707 
2708 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2709 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2710 	ctrl->corr_stat_threshold =
2711 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2712 
2713 	if (has_flash_dma(ctrl))
2714 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2715 	else if (has_edu(ctrl))
2716 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2717 
2718 	return 0;
2719 }
2720 
2721 static int brcmnand_resume(struct device *dev)
2722 {
2723 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2724 	struct brcmnand_host *host;
2725 
2726 	if (has_flash_dma(ctrl)) {
2727 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2728 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2729 	}
2730 
2731 	if (has_edu(ctrl))
2732 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2733 	else {
2734 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2735 		edu_readl(ctrl, EDU_CONFIG);
2736 		brcmnand_edu_init(ctrl);
2737 	}
2738 
2739 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2740 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2741 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2742 			ctrl->corr_stat_threshold);
2743 	if (ctrl->soc) {
2744 		/* Clear/re-enable interrupt */
2745 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2746 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2747 	}
2748 
2749 	list_for_each_entry(host, &ctrl->host_list, node) {
2750 		struct nand_chip *chip = &host->chip;
2751 
2752 		brcmnand_save_restore_cs_config(host, 1);
2753 
2754 		/* Reset the chip, required by some chips after power-up */
2755 		nand_reset_op(chip);
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 const struct dev_pm_ops brcmnand_pm_ops = {
2762 	.suspend		= brcmnand_suspend,
2763 	.resume			= brcmnand_resume,
2764 };
2765 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2766 
2767 static const struct of_device_id brcmnand_of_match[] = {
2768 	{ .compatible = "brcm,brcmnand-v4.0" },
2769 	{ .compatible = "brcm,brcmnand-v5.0" },
2770 	{ .compatible = "brcm,brcmnand-v6.0" },
2771 	{ .compatible = "brcm,brcmnand-v6.1" },
2772 	{ .compatible = "brcm,brcmnand-v6.2" },
2773 	{ .compatible = "brcm,brcmnand-v7.0" },
2774 	{ .compatible = "brcm,brcmnand-v7.1" },
2775 	{ .compatible = "brcm,brcmnand-v7.2" },
2776 	{ .compatible = "brcm,brcmnand-v7.3" },
2777 	{},
2778 };
2779 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2780 
2781 /***********************************************************************
2782  * Platform driver setup (per controller)
2783  ***********************************************************************/
2784 static int brcmnand_edu_setup(struct platform_device *pdev)
2785 {
2786 	struct device *dev = &pdev->dev;
2787 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2788 	struct resource *res;
2789 	int ret;
2790 
2791 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2792 	if (res) {
2793 		ctrl->edu_base = devm_ioremap_resource(dev, res);
2794 		if (IS_ERR(ctrl->edu_base))
2795 			return PTR_ERR(ctrl->edu_base);
2796 
2797 		ctrl->edu_offsets = edu_regs;
2798 
2799 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2800 			   EDU_CONFIG_SWAP_CFG);
2801 		edu_readl(ctrl, EDU_CONFIG);
2802 
2803 		/* initialize edu */
2804 		brcmnand_edu_init(ctrl);
2805 
2806 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2807 		if (ctrl->edu_irq < 0) {
2808 			dev_warn(dev,
2809 				 "FLASH EDU enabled, using ctlrdy irq\n");
2810 		} else {
2811 			ret = devm_request_irq(dev, ctrl->edu_irq,
2812 					       brcmnand_edu_irq, 0,
2813 					       "brcmnand-edu", ctrl);
2814 			if (ret < 0) {
2815 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2816 					ctrl->edu_irq, ret);
2817 				return ret;
2818 			}
2819 
2820 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
2821 				 ctrl->edu_irq);
2822 		}
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2829 {
2830 	struct device *dev = &pdev->dev;
2831 	struct device_node *dn = dev->of_node, *child;
2832 	struct brcmnand_controller *ctrl;
2833 	struct resource *res;
2834 	int ret;
2835 
2836 	/* We only support device-tree instantiation */
2837 	if (!dn)
2838 		return -ENODEV;
2839 
2840 	if (!of_match_node(brcmnand_of_match, dn))
2841 		return -ENODEV;
2842 
2843 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2844 	if (!ctrl)
2845 		return -ENOMEM;
2846 
2847 	dev_set_drvdata(dev, ctrl);
2848 	ctrl->dev = dev;
2849 
2850 	init_completion(&ctrl->done);
2851 	init_completion(&ctrl->dma_done);
2852 	init_completion(&ctrl->edu_done);
2853 	nand_controller_init(&ctrl->controller);
2854 	ctrl->controller.ops = &brcmnand_controller_ops;
2855 	INIT_LIST_HEAD(&ctrl->host_list);
2856 
2857 	/* NAND register range */
2858 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2859 	ctrl->nand_base = devm_ioremap_resource(dev, res);
2860 	if (IS_ERR(ctrl->nand_base))
2861 		return PTR_ERR(ctrl->nand_base);
2862 
2863 	/* Enable clock before using NAND registers */
2864 	ctrl->clk = devm_clk_get(dev, "nand");
2865 	if (!IS_ERR(ctrl->clk)) {
2866 		ret = clk_prepare_enable(ctrl->clk);
2867 		if (ret)
2868 			return ret;
2869 	} else {
2870 		ret = PTR_ERR(ctrl->clk);
2871 		if (ret == -EPROBE_DEFER)
2872 			return ret;
2873 
2874 		ctrl->clk = NULL;
2875 	}
2876 
2877 	/* Initialize NAND revision */
2878 	ret = brcmnand_revision_init(ctrl);
2879 	if (ret)
2880 		goto err;
2881 
2882 	/*
2883 	 * Most chips have this cache at a fixed offset within 'nand' block.
2884 	 * Some must specify this region separately.
2885 	 */
2886 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2887 	if (res) {
2888 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
2889 		if (IS_ERR(ctrl->nand_fc)) {
2890 			ret = PTR_ERR(ctrl->nand_fc);
2891 			goto err;
2892 		}
2893 	} else {
2894 		ctrl->nand_fc = ctrl->nand_base +
2895 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
2896 	}
2897 
2898 	/* FLASH_DMA */
2899 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2900 	if (res) {
2901 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2902 		if (IS_ERR(ctrl->flash_dma_base)) {
2903 			ret = PTR_ERR(ctrl->flash_dma_base);
2904 			goto err;
2905 		}
2906 
2907 		/* initialize the dma version */
2908 		brcmnand_flash_dma_revision_init(ctrl);
2909 
2910 		ret = -EIO;
2911 		if (ctrl->nand_version >= 0x0700)
2912 			ret = dma_set_mask_and_coherent(&pdev->dev,
2913 							DMA_BIT_MASK(40));
2914 		if (ret)
2915 			ret = dma_set_mask_and_coherent(&pdev->dev,
2916 							DMA_BIT_MASK(32));
2917 		if (ret)
2918 			goto err;
2919 
2920 		/* linked-list and stop on error */
2921 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
2922 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2923 
2924 		/* Allocate descriptor(s) */
2925 		ctrl->dma_desc = dmam_alloc_coherent(dev,
2926 						     sizeof(*ctrl->dma_desc),
2927 						     &ctrl->dma_pa, GFP_KERNEL);
2928 		if (!ctrl->dma_desc) {
2929 			ret = -ENOMEM;
2930 			goto err;
2931 		}
2932 
2933 		ctrl->dma_irq = platform_get_irq(pdev, 1);
2934 		if ((int)ctrl->dma_irq < 0) {
2935 			dev_err(dev, "missing FLASH_DMA IRQ\n");
2936 			ret = -ENODEV;
2937 			goto err;
2938 		}
2939 
2940 		ret = devm_request_irq(dev, ctrl->dma_irq,
2941 				brcmnand_dma_irq, 0, DRV_NAME,
2942 				ctrl);
2943 		if (ret < 0) {
2944 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
2945 					ctrl->dma_irq, ret);
2946 			goto err;
2947 		}
2948 
2949 		dev_info(dev, "enabling FLASH_DMA\n");
2950 		/* set flash dma transfer function to call */
2951 		ctrl->dma_trans = brcmnand_dma_trans;
2952 	} else	{
2953 		ret = brcmnand_edu_setup(pdev);
2954 		if (ret < 0)
2955 			goto err;
2956 
2957 		/* set edu transfer function to call */
2958 		ctrl->dma_trans = brcmnand_edu_trans;
2959 	}
2960 
2961 	/* Disable automatic device ID config, direct addressing */
2962 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2963 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2964 	/* Disable XOR addressing */
2965 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2966 
2967 	if (ctrl->features & BRCMNAND_HAS_WP) {
2968 		/* Permanently disable write protection */
2969 		if (wp_on == 2)
2970 			brcmnand_set_wp(ctrl, false);
2971 	} else {
2972 		wp_on = 0;
2973 	}
2974 
2975 	/* IRQ */
2976 	ctrl->irq = platform_get_irq(pdev, 0);
2977 	if ((int)ctrl->irq < 0) {
2978 		dev_err(dev, "no IRQ defined\n");
2979 		ret = -ENODEV;
2980 		goto err;
2981 	}
2982 
2983 	/*
2984 	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2985 	 * interesting ways
2986 	 */
2987 	if (soc) {
2988 		ctrl->soc = soc;
2989 
2990 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2991 				       DRV_NAME, ctrl);
2992 
2993 		/* Enable interrupt */
2994 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2995 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2996 	} else {
2997 		/* Use standard interrupt infrastructure */
2998 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2999 				       DRV_NAME, ctrl);
3000 	}
3001 	if (ret < 0) {
3002 		dev_err(dev, "can't allocate IRQ %d: error %d\n",
3003 			ctrl->irq, ret);
3004 		goto err;
3005 	}
3006 
3007 	for_each_available_child_of_node(dn, child) {
3008 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3009 			struct brcmnand_host *host;
3010 
3011 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3012 			if (!host) {
3013 				of_node_put(child);
3014 				ret = -ENOMEM;
3015 				goto err;
3016 			}
3017 			host->pdev = pdev;
3018 			host->ctrl = ctrl;
3019 
3020 			ret = brcmnand_init_cs(host, child);
3021 			if (ret) {
3022 				devm_kfree(dev, host);
3023 				continue; /* Try all chip-selects */
3024 			}
3025 
3026 			list_add_tail(&host->node, &ctrl->host_list);
3027 		}
3028 	}
3029 
3030 	/* No chip-selects could initialize properly */
3031 	if (list_empty(&ctrl->host_list)) {
3032 		ret = -ENODEV;
3033 		goto err;
3034 	}
3035 
3036 	return 0;
3037 
3038 err:
3039 	clk_disable_unprepare(ctrl->clk);
3040 	return ret;
3041 
3042 }
3043 EXPORT_SYMBOL_GPL(brcmnand_probe);
3044 
3045 int brcmnand_remove(struct platform_device *pdev)
3046 {
3047 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3048 	struct brcmnand_host *host;
3049 
3050 	list_for_each_entry(host, &ctrl->host_list, node)
3051 		nand_release(&host->chip);
3052 
3053 	clk_disable_unprepare(ctrl->clk);
3054 
3055 	dev_set_drvdata(&pdev->dev, NULL);
3056 
3057 	return 0;
3058 }
3059 EXPORT_SYMBOL_GPL(brcmnand_remove);
3060 
3061 MODULE_LICENSE("GPL v2");
3062 MODULE_AUTHOR("Kevin Cernekee");
3063 MODULE_AUTHOR("Brian Norris");
3064 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3065 MODULE_ALIAS("platform:brcmnand");
3066