1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2010-2015 Broadcom Corporation 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/delay.h> 10 #include <linux/device.h> 11 #include <linux/platform_device.h> 12 #include <linux/platform_data/brcmnand.h> 13 #include <linux/err.h> 14 #include <linux/completion.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/ioport.h> 19 #include <linux/bug.h> 20 #include <linux/kernel.h> 21 #include <linux/bitops.h> 22 #include <linux/mm.h> 23 #include <linux/mtd/mtd.h> 24 #include <linux/mtd/rawnand.h> 25 #include <linux/mtd/partitions.h> 26 #include <linux/of.h> 27 #include <linux/of_platform.h> 28 #include <linux/slab.h> 29 #include <linux/static_key.h> 30 #include <linux/list.h> 31 #include <linux/log2.h> 32 #include <linux/string_choices.h> 33 34 #include "brcmnand.h" 35 36 /* 37 * This flag controls if WP stays on between erase/write commands to mitigate 38 * flash corruption due to power glitches. Values: 39 * 0: NAND_WP is not used or not available 40 * 1: NAND_WP is set by default, cleared for erase/write operations 41 * 2: NAND_WP is always cleared 42 */ 43 static int wp_on = 1; 44 module_param(wp_on, int, 0444); 45 46 /*********************************************************************** 47 * Definitions 48 ***********************************************************************/ 49 50 #define DRV_NAME "brcmnand" 51 52 #define CMD_NULL 0x00 53 #define CMD_PAGE_READ 0x01 54 #define CMD_SPARE_AREA_READ 0x02 55 #define CMD_STATUS_READ 0x03 56 #define CMD_PROGRAM_PAGE 0x04 57 #define CMD_PROGRAM_SPARE_AREA 0x05 58 #define CMD_COPY_BACK 0x06 59 #define CMD_DEVICE_ID_READ 0x07 60 #define CMD_BLOCK_ERASE 0x08 61 #define CMD_FLASH_RESET 0x09 62 #define CMD_BLOCKS_LOCK 0x0a 63 #define CMD_BLOCKS_LOCK_DOWN 0x0b 64 #define CMD_BLOCKS_UNLOCK 0x0c 65 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d 66 #define CMD_PARAMETER_READ 0x0e 67 #define CMD_PARAMETER_CHANGE_COL 0x0f 68 #define CMD_LOW_LEVEL_OP 0x10 69 #define CMD_NOT_SUPPORTED 0xff 70 71 struct brcm_nand_dma_desc { 72 u32 next_desc; 73 u32 next_desc_ext; 74 u32 cmd_irq; 75 u32 dram_addr; 76 u32 dram_addr_ext; 77 u32 tfr_len; 78 u32 total_len; 79 u32 flash_addr; 80 u32 flash_addr_ext; 81 u32 cs; 82 u32 pad2[5]; 83 u32 status_valid; 84 } __packed; 85 86 /* Bitfields for brcm_nand_dma_desc::status_valid */ 87 #define FLASH_DMA_ECC_ERROR (1 << 8) 88 #define FLASH_DMA_CORR_ERROR (1 << 9) 89 90 /* Bitfields for DMA_MODE */ 91 #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */ 92 #define FLASH_DMA_MODE_MODE BIT(0) /* link list */ 93 #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \ 94 FLASH_DMA_MODE_MODE) 95 96 /* 512B flash cache in the NAND controller HW */ 97 #define FC_SHIFT 9U 98 #define FC_BYTES 512U 99 #define FC_WORDS (FC_BYTES >> 2) 100 101 #define BRCMNAND_MIN_PAGESIZE 512 102 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) 103 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) 104 105 #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) 106 #define NAND_POLL_STATUS_TIMEOUT_MS 500 107 108 #define EDU_CMD_WRITE 0x00 109 #define EDU_CMD_READ 0x01 110 #define EDU_STATUS_ACTIVE BIT(0) 111 #define EDU_ERR_STATUS_ERRACK BIT(0) 112 #define EDU_DONE_MASK GENMASK(1, 0) 113 114 #define EDU_CONFIG_MODE_NAND BIT(0) 115 #define EDU_CONFIG_SWAP_BYTE BIT(1) 116 #ifdef CONFIG_CPU_BIG_ENDIAN 117 #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE 118 #else 119 #define EDU_CONFIG_SWAP_CFG 0 120 #endif 121 122 /* edu registers */ 123 enum edu_reg { 124 EDU_CONFIG = 0, 125 EDU_DRAM_ADDR, 126 EDU_EXT_ADDR, 127 EDU_LENGTH, 128 EDU_CMD, 129 EDU_STOP, 130 EDU_STATUS, 131 EDU_DONE, 132 EDU_ERR_STATUS, 133 }; 134 135 static const u16 edu_regs[] = { 136 [EDU_CONFIG] = 0x00, 137 [EDU_DRAM_ADDR] = 0x04, 138 [EDU_EXT_ADDR] = 0x08, 139 [EDU_LENGTH] = 0x0c, 140 [EDU_CMD] = 0x10, 141 [EDU_STOP] = 0x14, 142 [EDU_STATUS] = 0x18, 143 [EDU_DONE] = 0x1c, 144 [EDU_ERR_STATUS] = 0x20, 145 }; 146 147 /* flash_dma registers */ 148 enum flash_dma_reg { 149 FLASH_DMA_REVISION = 0, 150 FLASH_DMA_FIRST_DESC, 151 FLASH_DMA_FIRST_DESC_EXT, 152 FLASH_DMA_CTRL, 153 FLASH_DMA_MODE, 154 FLASH_DMA_STATUS, 155 FLASH_DMA_INTERRUPT_DESC, 156 FLASH_DMA_INTERRUPT_DESC_EXT, 157 FLASH_DMA_ERROR_STATUS, 158 FLASH_DMA_CURRENT_DESC, 159 FLASH_DMA_CURRENT_DESC_EXT, 160 }; 161 162 /* flash_dma registers v0*/ 163 static const u16 flash_dma_regs_v0[] = { 164 [FLASH_DMA_REVISION] = 0x00, 165 [FLASH_DMA_FIRST_DESC] = 0x04, 166 [FLASH_DMA_CTRL] = 0x08, 167 [FLASH_DMA_MODE] = 0x0c, 168 [FLASH_DMA_STATUS] = 0x10, 169 [FLASH_DMA_INTERRUPT_DESC] = 0x14, 170 [FLASH_DMA_ERROR_STATUS] = 0x18, 171 [FLASH_DMA_CURRENT_DESC] = 0x1c, 172 }; 173 174 /* flash_dma registers v1*/ 175 static const u16 flash_dma_regs_v1[] = { 176 [FLASH_DMA_REVISION] = 0x00, 177 [FLASH_DMA_FIRST_DESC] = 0x04, 178 [FLASH_DMA_FIRST_DESC_EXT] = 0x08, 179 [FLASH_DMA_CTRL] = 0x0c, 180 [FLASH_DMA_MODE] = 0x10, 181 [FLASH_DMA_STATUS] = 0x14, 182 [FLASH_DMA_INTERRUPT_DESC] = 0x18, 183 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c, 184 [FLASH_DMA_ERROR_STATUS] = 0x20, 185 [FLASH_DMA_CURRENT_DESC] = 0x24, 186 [FLASH_DMA_CURRENT_DESC_EXT] = 0x28, 187 }; 188 189 /* flash_dma registers v4 */ 190 static const u16 flash_dma_regs_v4[] = { 191 [FLASH_DMA_REVISION] = 0x00, 192 [FLASH_DMA_FIRST_DESC] = 0x08, 193 [FLASH_DMA_FIRST_DESC_EXT] = 0x0c, 194 [FLASH_DMA_CTRL] = 0x10, 195 [FLASH_DMA_MODE] = 0x14, 196 [FLASH_DMA_STATUS] = 0x18, 197 [FLASH_DMA_INTERRUPT_DESC] = 0x20, 198 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24, 199 [FLASH_DMA_ERROR_STATUS] = 0x28, 200 [FLASH_DMA_CURRENT_DESC] = 0x30, 201 [FLASH_DMA_CURRENT_DESC_EXT] = 0x34, 202 }; 203 204 /* Native command conversion for legacy controllers (< v5.0) */ 205 static const u8 native_cmd_conv[] = { 206 [NAND_CMD_READ0] = CMD_NOT_SUPPORTED, 207 [NAND_CMD_READ1] = CMD_NOT_SUPPORTED, 208 [NAND_CMD_RNDOUT] = CMD_PARAMETER_CHANGE_COL, 209 [NAND_CMD_PAGEPROG] = CMD_NOT_SUPPORTED, 210 [NAND_CMD_READOOB] = CMD_NOT_SUPPORTED, 211 [NAND_CMD_ERASE1] = CMD_BLOCK_ERASE, 212 [NAND_CMD_STATUS] = CMD_NOT_SUPPORTED, 213 [NAND_CMD_SEQIN] = CMD_NOT_SUPPORTED, 214 [NAND_CMD_RNDIN] = CMD_NOT_SUPPORTED, 215 [NAND_CMD_READID] = CMD_DEVICE_ID_READ, 216 [NAND_CMD_ERASE2] = CMD_NULL, 217 [NAND_CMD_PARAM] = CMD_PARAMETER_READ, 218 [NAND_CMD_GET_FEATURES] = CMD_NOT_SUPPORTED, 219 [NAND_CMD_SET_FEATURES] = CMD_NOT_SUPPORTED, 220 [NAND_CMD_RESET] = CMD_NOT_SUPPORTED, 221 [NAND_CMD_READSTART] = CMD_NOT_SUPPORTED, 222 [NAND_CMD_READCACHESEQ] = CMD_NOT_SUPPORTED, 223 [NAND_CMD_READCACHEEND] = CMD_NOT_SUPPORTED, 224 [NAND_CMD_RNDOUTSTART] = CMD_NULL, 225 [NAND_CMD_CACHEDPROG] = CMD_NOT_SUPPORTED, 226 }; 227 228 /* Controller feature flags */ 229 enum { 230 BRCMNAND_HAS_1K_SECTORS = BIT(0), 231 BRCMNAND_HAS_PREFETCH = BIT(1), 232 BRCMNAND_HAS_CACHE_MODE = BIT(2), 233 BRCMNAND_HAS_WP = BIT(3), 234 }; 235 236 struct brcmnand_host; 237 238 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key); 239 240 struct brcmnand_controller { 241 struct device *dev; 242 struct nand_controller controller; 243 void __iomem *nand_base; 244 void __iomem *nand_fc; /* flash cache */ 245 void __iomem *flash_dma_base; 246 int irq; 247 unsigned int dma_irq; 248 int nand_version; 249 250 /* Some SoCs provide custom interrupt status register(s) */ 251 struct brcmnand_soc *soc; 252 253 /* Some SoCs have a gateable clock for the controller */ 254 struct clk *clk; 255 256 int cmd_pending; 257 bool dma_pending; 258 bool edu_pending; 259 struct completion done; 260 struct completion dma_done; 261 struct completion edu_done; 262 263 /* List of NAND hosts (one for each chip-select) */ 264 struct list_head host_list; 265 266 /* Functions to be called from exec_op */ 267 int (*check_instr)(struct nand_chip *chip, 268 const struct nand_operation *op); 269 int (*exec_instr)(struct nand_chip *chip, 270 const struct nand_operation *op); 271 272 /* EDU info, per-transaction */ 273 const u16 *edu_offsets; 274 void __iomem *edu_base; 275 int edu_irq; 276 int edu_count; 277 u64 edu_dram_addr; 278 u32 edu_ext_addr; 279 u32 edu_cmd; 280 u32 edu_config; 281 int sas; /* spare area size, per flash cache */ 282 int sector_size_1k; 283 u8 *oob; 284 285 /* flash_dma reg */ 286 const u16 *flash_dma_offsets; 287 struct brcm_nand_dma_desc *dma_desc; 288 dma_addr_t dma_pa; 289 290 int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf, 291 u8 *oob, u32 len, u8 dma_cmd); 292 293 /* in-memory cache of the FLASH_CACHE, used only for some commands */ 294 u8 flash_cache[FC_BYTES]; 295 296 /* Controller revision details */ 297 const u16 *reg_offsets; 298 unsigned int reg_spacing; /* between CS1, CS2, ... regs */ 299 const u8 *cs_offsets; /* within each chip-select */ 300 const u8 *cs0_offsets; /* within CS0, if different */ 301 unsigned int max_block_size; 302 const unsigned int *block_sizes; 303 unsigned int max_page_size; 304 const unsigned int *page_sizes; 305 unsigned int page_size_shift; 306 unsigned int max_oob; 307 u32 ecc_level_shift; 308 u32 features; 309 310 /* for low-power standby/resume only */ 311 u32 nand_cs_nand_select; 312 u32 nand_cs_nand_xor; 313 u32 corr_stat_threshold; 314 u32 flash_dma_mode; 315 u32 flash_edu_mode; 316 bool pio_poll_mode; 317 }; 318 319 struct brcmnand_cfg { 320 u64 device_size; 321 unsigned int block_size; 322 unsigned int page_size; 323 unsigned int spare_area_size; 324 unsigned int device_width; 325 unsigned int col_adr_bytes; 326 unsigned int blk_adr_bytes; 327 unsigned int ful_adr_bytes; 328 unsigned int sector_size_1k; 329 unsigned int ecc_level; 330 /* use for low-power standby/resume only */ 331 u32 acc_control; 332 u32 config; 333 u32 config_ext; 334 u32 timing_1; 335 u32 timing_2; 336 }; 337 338 struct brcmnand_host { 339 struct list_head node; 340 341 struct nand_chip chip; 342 struct platform_device *pdev; 343 int cs; 344 345 struct brcmnand_cfg hwcfg; 346 struct brcmnand_controller *ctrl; 347 }; 348 349 enum brcmnand_reg { 350 BRCMNAND_CMD_START = 0, 351 BRCMNAND_CMD_EXT_ADDRESS, 352 BRCMNAND_CMD_ADDRESS, 353 BRCMNAND_INTFC_STATUS, 354 BRCMNAND_CS_SELECT, 355 BRCMNAND_CS_XOR, 356 BRCMNAND_LL_OP, 357 BRCMNAND_CS0_BASE, 358 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ 359 BRCMNAND_CORR_THRESHOLD, 360 BRCMNAND_CORR_THRESHOLD_EXT, 361 BRCMNAND_UNCORR_COUNT, 362 BRCMNAND_CORR_COUNT, 363 BRCMNAND_READ_ERROR_COUNT, 364 BRCMNAND_CORR_EXT_ADDR, 365 BRCMNAND_CORR_ADDR, 366 BRCMNAND_UNCORR_EXT_ADDR, 367 BRCMNAND_UNCORR_ADDR, 368 BRCMNAND_SEMAPHORE, 369 BRCMNAND_ID, 370 BRCMNAND_ID_EXT, 371 BRCMNAND_LL_RDATA, 372 BRCMNAND_OOB_READ_BASE, 373 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ 374 BRCMNAND_OOB_WRITE_BASE, 375 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ 376 BRCMNAND_FC_BASE, 377 }; 378 379 /* BRCMNAND v2.1-v2.2 */ 380 static const u16 brcmnand_regs_v21[] = { 381 [BRCMNAND_CMD_START] = 0x04, 382 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 383 [BRCMNAND_CMD_ADDRESS] = 0x0c, 384 [BRCMNAND_INTFC_STATUS] = 0x5c, 385 [BRCMNAND_CS_SELECT] = 0x14, 386 [BRCMNAND_CS_XOR] = 0x18, 387 [BRCMNAND_LL_OP] = 0, 388 [BRCMNAND_CS0_BASE] = 0x40, 389 [BRCMNAND_CS1_BASE] = 0, 390 [BRCMNAND_CORR_THRESHOLD] = 0, 391 [BRCMNAND_CORR_THRESHOLD_EXT] = 0, 392 [BRCMNAND_UNCORR_COUNT] = 0, 393 [BRCMNAND_CORR_COUNT] = 0, 394 [BRCMNAND_READ_ERROR_COUNT] = 0, 395 [BRCMNAND_CORR_EXT_ADDR] = 0x60, 396 [BRCMNAND_CORR_ADDR] = 0x64, 397 [BRCMNAND_UNCORR_EXT_ADDR] = 0x68, 398 [BRCMNAND_UNCORR_ADDR] = 0x6c, 399 [BRCMNAND_SEMAPHORE] = 0x50, 400 [BRCMNAND_ID] = 0x54, 401 [BRCMNAND_ID_EXT] = 0, 402 [BRCMNAND_LL_RDATA] = 0, 403 [BRCMNAND_OOB_READ_BASE] = 0x20, 404 [BRCMNAND_OOB_READ_10_BASE] = 0, 405 [BRCMNAND_OOB_WRITE_BASE] = 0x30, 406 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 407 [BRCMNAND_FC_BASE] = 0x200, 408 }; 409 410 /* BRCMNAND v3.3-v4.0 */ 411 static const u16 brcmnand_regs_v33[] = { 412 [BRCMNAND_CMD_START] = 0x04, 413 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 414 [BRCMNAND_CMD_ADDRESS] = 0x0c, 415 [BRCMNAND_INTFC_STATUS] = 0x6c, 416 [BRCMNAND_CS_SELECT] = 0x14, 417 [BRCMNAND_CS_XOR] = 0x18, 418 [BRCMNAND_LL_OP] = 0x178, 419 [BRCMNAND_CS0_BASE] = 0x40, 420 [BRCMNAND_CS1_BASE] = 0xd0, 421 [BRCMNAND_CORR_THRESHOLD] = 0x84, 422 [BRCMNAND_CORR_THRESHOLD_EXT] = 0, 423 [BRCMNAND_UNCORR_COUNT] = 0, 424 [BRCMNAND_CORR_COUNT] = 0, 425 [BRCMNAND_READ_ERROR_COUNT] = 0x80, 426 [BRCMNAND_CORR_EXT_ADDR] = 0x70, 427 [BRCMNAND_CORR_ADDR] = 0x74, 428 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, 429 [BRCMNAND_UNCORR_ADDR] = 0x7c, 430 [BRCMNAND_SEMAPHORE] = 0x58, 431 [BRCMNAND_ID] = 0x60, 432 [BRCMNAND_ID_EXT] = 0x64, 433 [BRCMNAND_LL_RDATA] = 0x17c, 434 [BRCMNAND_OOB_READ_BASE] = 0x20, 435 [BRCMNAND_OOB_READ_10_BASE] = 0x130, 436 [BRCMNAND_OOB_WRITE_BASE] = 0x30, 437 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 438 [BRCMNAND_FC_BASE] = 0x200, 439 }; 440 441 /* BRCMNAND v5.0 */ 442 static const u16 brcmnand_regs_v50[] = { 443 [BRCMNAND_CMD_START] = 0x04, 444 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 445 [BRCMNAND_CMD_ADDRESS] = 0x0c, 446 [BRCMNAND_INTFC_STATUS] = 0x6c, 447 [BRCMNAND_CS_SELECT] = 0x14, 448 [BRCMNAND_CS_XOR] = 0x18, 449 [BRCMNAND_LL_OP] = 0x178, 450 [BRCMNAND_CS0_BASE] = 0x40, 451 [BRCMNAND_CS1_BASE] = 0xd0, 452 [BRCMNAND_CORR_THRESHOLD] = 0x84, 453 [BRCMNAND_CORR_THRESHOLD_EXT] = 0, 454 [BRCMNAND_UNCORR_COUNT] = 0, 455 [BRCMNAND_CORR_COUNT] = 0, 456 [BRCMNAND_READ_ERROR_COUNT] = 0x80, 457 [BRCMNAND_CORR_EXT_ADDR] = 0x70, 458 [BRCMNAND_CORR_ADDR] = 0x74, 459 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, 460 [BRCMNAND_UNCORR_ADDR] = 0x7c, 461 [BRCMNAND_SEMAPHORE] = 0x58, 462 [BRCMNAND_ID] = 0x60, 463 [BRCMNAND_ID_EXT] = 0x64, 464 [BRCMNAND_LL_RDATA] = 0x17c, 465 [BRCMNAND_OOB_READ_BASE] = 0x20, 466 [BRCMNAND_OOB_READ_10_BASE] = 0x130, 467 [BRCMNAND_OOB_WRITE_BASE] = 0x30, 468 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, 469 [BRCMNAND_FC_BASE] = 0x200, 470 }; 471 472 /* BRCMNAND v6.0 - v7.1 */ 473 static const u16 brcmnand_regs_v60[] = { 474 [BRCMNAND_CMD_START] = 0x04, 475 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 476 [BRCMNAND_CMD_ADDRESS] = 0x0c, 477 [BRCMNAND_INTFC_STATUS] = 0x14, 478 [BRCMNAND_CS_SELECT] = 0x18, 479 [BRCMNAND_CS_XOR] = 0x1c, 480 [BRCMNAND_LL_OP] = 0x20, 481 [BRCMNAND_CS0_BASE] = 0x50, 482 [BRCMNAND_CS1_BASE] = 0, 483 [BRCMNAND_CORR_THRESHOLD] = 0xc0, 484 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, 485 [BRCMNAND_UNCORR_COUNT] = 0xfc, 486 [BRCMNAND_CORR_COUNT] = 0x100, 487 [BRCMNAND_READ_ERROR_COUNT] = 0x104, 488 [BRCMNAND_CORR_EXT_ADDR] = 0x10c, 489 [BRCMNAND_CORR_ADDR] = 0x110, 490 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, 491 [BRCMNAND_UNCORR_ADDR] = 0x118, 492 [BRCMNAND_SEMAPHORE] = 0x150, 493 [BRCMNAND_ID] = 0x194, 494 [BRCMNAND_ID_EXT] = 0x198, 495 [BRCMNAND_LL_RDATA] = 0x19c, 496 [BRCMNAND_OOB_READ_BASE] = 0x200, 497 [BRCMNAND_OOB_READ_10_BASE] = 0, 498 [BRCMNAND_OOB_WRITE_BASE] = 0x280, 499 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 500 [BRCMNAND_FC_BASE] = 0x400, 501 }; 502 503 /* BRCMNAND v7.1 */ 504 static const u16 brcmnand_regs_v71[] = { 505 [BRCMNAND_CMD_START] = 0x04, 506 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 507 [BRCMNAND_CMD_ADDRESS] = 0x0c, 508 [BRCMNAND_INTFC_STATUS] = 0x14, 509 [BRCMNAND_CS_SELECT] = 0x18, 510 [BRCMNAND_CS_XOR] = 0x1c, 511 [BRCMNAND_LL_OP] = 0x20, 512 [BRCMNAND_CS0_BASE] = 0x50, 513 [BRCMNAND_CS1_BASE] = 0, 514 [BRCMNAND_CORR_THRESHOLD] = 0xdc, 515 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, 516 [BRCMNAND_UNCORR_COUNT] = 0xfc, 517 [BRCMNAND_CORR_COUNT] = 0x100, 518 [BRCMNAND_READ_ERROR_COUNT] = 0x104, 519 [BRCMNAND_CORR_EXT_ADDR] = 0x10c, 520 [BRCMNAND_CORR_ADDR] = 0x110, 521 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, 522 [BRCMNAND_UNCORR_ADDR] = 0x118, 523 [BRCMNAND_SEMAPHORE] = 0x150, 524 [BRCMNAND_ID] = 0x194, 525 [BRCMNAND_ID_EXT] = 0x198, 526 [BRCMNAND_LL_RDATA] = 0x19c, 527 [BRCMNAND_OOB_READ_BASE] = 0x200, 528 [BRCMNAND_OOB_READ_10_BASE] = 0, 529 [BRCMNAND_OOB_WRITE_BASE] = 0x280, 530 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 531 [BRCMNAND_FC_BASE] = 0x400, 532 }; 533 534 /* BRCMNAND v7.2 */ 535 static const u16 brcmnand_regs_v72[] = { 536 [BRCMNAND_CMD_START] = 0x04, 537 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 538 [BRCMNAND_CMD_ADDRESS] = 0x0c, 539 [BRCMNAND_INTFC_STATUS] = 0x14, 540 [BRCMNAND_CS_SELECT] = 0x18, 541 [BRCMNAND_CS_XOR] = 0x1c, 542 [BRCMNAND_LL_OP] = 0x20, 543 [BRCMNAND_CS0_BASE] = 0x50, 544 [BRCMNAND_CS1_BASE] = 0, 545 [BRCMNAND_CORR_THRESHOLD] = 0xdc, 546 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, 547 [BRCMNAND_UNCORR_COUNT] = 0xfc, 548 [BRCMNAND_CORR_COUNT] = 0x100, 549 [BRCMNAND_READ_ERROR_COUNT] = 0x104, 550 [BRCMNAND_CORR_EXT_ADDR] = 0x10c, 551 [BRCMNAND_CORR_ADDR] = 0x110, 552 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, 553 [BRCMNAND_UNCORR_ADDR] = 0x118, 554 [BRCMNAND_SEMAPHORE] = 0x150, 555 [BRCMNAND_ID] = 0x194, 556 [BRCMNAND_ID_EXT] = 0x198, 557 [BRCMNAND_LL_RDATA] = 0x19c, 558 [BRCMNAND_OOB_READ_BASE] = 0x200, 559 [BRCMNAND_OOB_READ_10_BASE] = 0, 560 [BRCMNAND_OOB_WRITE_BASE] = 0x400, 561 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 562 [BRCMNAND_FC_BASE] = 0x600, 563 }; 564 565 enum brcmnand_cs_reg { 566 BRCMNAND_CS_CFG_EXT = 0, 567 BRCMNAND_CS_CFG, 568 BRCMNAND_CS_ACC_CONTROL, 569 BRCMNAND_CS_TIMING1, 570 BRCMNAND_CS_TIMING2, 571 }; 572 573 /* Per chip-select offsets for v7.1 */ 574 static const u8 brcmnand_cs_offsets_v71[] = { 575 [BRCMNAND_CS_ACC_CONTROL] = 0x00, 576 [BRCMNAND_CS_CFG_EXT] = 0x04, 577 [BRCMNAND_CS_CFG] = 0x08, 578 [BRCMNAND_CS_TIMING1] = 0x0c, 579 [BRCMNAND_CS_TIMING2] = 0x10, 580 }; 581 582 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ 583 static const u8 brcmnand_cs_offsets[] = { 584 [BRCMNAND_CS_ACC_CONTROL] = 0x00, 585 [BRCMNAND_CS_CFG_EXT] = 0x04, 586 [BRCMNAND_CS_CFG] = 0x04, 587 [BRCMNAND_CS_TIMING1] = 0x08, 588 [BRCMNAND_CS_TIMING2] = 0x0c, 589 }; 590 591 /* Per chip-select offset for <= v5.0 on CS0 only */ 592 static const u8 brcmnand_cs_offsets_cs0[] = { 593 [BRCMNAND_CS_ACC_CONTROL] = 0x00, 594 [BRCMNAND_CS_CFG_EXT] = 0x08, 595 [BRCMNAND_CS_CFG] = 0x08, 596 [BRCMNAND_CS_TIMING1] = 0x10, 597 [BRCMNAND_CS_TIMING2] = 0x14, 598 }; 599 600 /* 601 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had 602 * one config register, but once the bitfields overflowed, newer controllers 603 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around. 604 */ 605 enum { 606 CFG_BLK_ADR_BYTES_SHIFT = 8, 607 CFG_COL_ADR_BYTES_SHIFT = 12, 608 CFG_FUL_ADR_BYTES_SHIFT = 16, 609 CFG_BUS_WIDTH_SHIFT = 23, 610 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT), 611 CFG_DEVICE_SIZE_SHIFT = 24, 612 613 /* Only for v2.1 */ 614 CFG_PAGE_SIZE_SHIFT_v2_1 = 30, 615 616 /* Only for pre-v7.1 (with no CFG_EXT register) */ 617 CFG_PAGE_SIZE_SHIFT = 20, 618 CFG_BLK_SIZE_SHIFT = 28, 619 620 /* Only for v7.1+ (with CFG_EXT register) */ 621 CFG_EXT_PAGE_SIZE_SHIFT = 0, 622 CFG_EXT_BLK_SIZE_SHIFT = 4, 623 }; 624 625 /* BRCMNAND_INTFC_STATUS */ 626 enum { 627 INTFC_FLASH_STATUS = GENMASK(7, 0), 628 629 INTFC_ERASED = BIT(27), 630 INTFC_OOB_VALID = BIT(28), 631 INTFC_CACHE_VALID = BIT(29), 632 INTFC_FLASH_READY = BIT(30), 633 INTFC_CTLR_READY = BIT(31), 634 }; 635 636 /*********************************************************************** 637 * NAND ACC CONTROL bitfield 638 * 639 * Some bits have remained constant throughout hardware revision, while 640 * others have shifted around. 641 ***********************************************************************/ 642 643 /* Constant for all versions (where supported) */ 644 enum { 645 /* See BRCMNAND_HAS_CACHE_MODE */ 646 ACC_CONTROL_CACHE_MODE = BIT(22), 647 648 /* See BRCMNAND_HAS_PREFETCH */ 649 ACC_CONTROL_PREFETCH = BIT(23), 650 651 ACC_CONTROL_PAGE_HIT = BIT(24), 652 ACC_CONTROL_WR_PREEMPT = BIT(25), 653 ACC_CONTROL_PARTIAL_PAGE = BIT(26), 654 ACC_CONTROL_RD_ERASED = BIT(27), 655 ACC_CONTROL_FAST_PGM_RDIN = BIT(28), 656 ACC_CONTROL_WR_ECC = BIT(30), 657 ACC_CONTROL_RD_ECC = BIT(31), 658 }; 659 660 #define ACC_CONTROL_ECC_SHIFT 16 661 /* Only for v7.2 */ 662 #define ACC_CONTROL_ECC_EXT_SHIFT 13 663 664 static int brcmnand_status(struct brcmnand_host *host); 665 666 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl) 667 { 668 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA) 669 return static_branch_unlikely(&brcmnand_soc_has_ops_key); 670 #else 671 return false; 672 #endif 673 } 674 675 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) 676 { 677 if (brcmnand_non_mmio_ops(ctrl)) 678 return brcmnand_soc_read(ctrl->soc, offs); 679 return brcmnand_readl(ctrl->nand_base + offs); 680 } 681 682 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, 683 u32 val) 684 { 685 if (brcmnand_non_mmio_ops(ctrl)) 686 brcmnand_soc_write(ctrl->soc, val, offs); 687 else 688 brcmnand_writel(val, ctrl->nand_base + offs); 689 } 690 691 static int brcmnand_revision_init(struct brcmnand_controller *ctrl) 692 { 693 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; 694 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; 695 static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 }; 696 static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 }; 697 static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 }; 698 static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 }; 699 static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 }; 700 701 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; 702 703 /* Only support v2.1+ */ 704 if (ctrl->nand_version < 0x0201) { 705 dev_err(ctrl->dev, "version %#x not supported\n", 706 ctrl->nand_version); 707 return -ENODEV; 708 } 709 710 /* Register offsets */ 711 if (ctrl->nand_version >= 0x0702) 712 ctrl->reg_offsets = brcmnand_regs_v72; 713 else if (ctrl->nand_version == 0x0701) 714 ctrl->reg_offsets = brcmnand_regs_v71; 715 else if (ctrl->nand_version >= 0x0600) 716 ctrl->reg_offsets = brcmnand_regs_v60; 717 else if (ctrl->nand_version >= 0x0500) 718 ctrl->reg_offsets = brcmnand_regs_v50; 719 else if (ctrl->nand_version >= 0x0303) 720 ctrl->reg_offsets = brcmnand_regs_v33; 721 else if (ctrl->nand_version >= 0x0201) 722 ctrl->reg_offsets = brcmnand_regs_v21; 723 724 /* Chip-select stride */ 725 if (ctrl->nand_version >= 0x0701) 726 ctrl->reg_spacing = 0x14; 727 else 728 ctrl->reg_spacing = 0x10; 729 730 /* Per chip-select registers */ 731 if (ctrl->nand_version >= 0x0701) { 732 ctrl->cs_offsets = brcmnand_cs_offsets_v71; 733 } else { 734 ctrl->cs_offsets = brcmnand_cs_offsets; 735 736 /* v3.3-5.0 have a different CS0 offset layout */ 737 if (ctrl->nand_version >= 0x0303 && 738 ctrl->nand_version <= 0x0500) 739 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; 740 } 741 742 /* Page / block sizes */ 743 if (ctrl->nand_version >= 0x0701) { 744 /* >= v7.1 use nice power-of-2 values! */ 745 ctrl->max_page_size = 16 * 1024; 746 ctrl->max_block_size = 2 * 1024 * 1024; 747 } else { 748 if (ctrl->nand_version >= 0x0304) 749 ctrl->page_sizes = page_sizes_v3_4; 750 else if (ctrl->nand_version >= 0x0202) 751 ctrl->page_sizes = page_sizes_v2_2; 752 else 753 ctrl->page_sizes = page_sizes_v2_1; 754 755 if (ctrl->nand_version >= 0x0202) 756 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT; 757 else 758 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1; 759 760 if (ctrl->nand_version >= 0x0600) 761 ctrl->block_sizes = block_sizes_v6; 762 else if (ctrl->nand_version >= 0x0400) 763 ctrl->block_sizes = block_sizes_v4; 764 else if (ctrl->nand_version >= 0x0202) 765 ctrl->block_sizes = block_sizes_v2_2; 766 else 767 ctrl->block_sizes = block_sizes_v2_1; 768 769 if (ctrl->nand_version < 0x0400) { 770 if (ctrl->nand_version < 0x0202) 771 ctrl->max_page_size = 2048; 772 else 773 ctrl->max_page_size = 4096; 774 ctrl->max_block_size = 512 * 1024; 775 } 776 } 777 778 /* Maximum spare area sector size (per 512B) */ 779 if (ctrl->nand_version == 0x0702) 780 ctrl->max_oob = 128; 781 else if (ctrl->nand_version >= 0x0600) 782 ctrl->max_oob = 64; 783 else if (ctrl->nand_version >= 0x0500) 784 ctrl->max_oob = 32; 785 else 786 ctrl->max_oob = 16; 787 788 /* v6.0 and newer (except v6.1) have prefetch support */ 789 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) 790 ctrl->features |= BRCMNAND_HAS_PREFETCH; 791 792 /* 793 * v6.x has cache mode, but it's implemented differently. Ignore it for 794 * now. 795 */ 796 if (ctrl->nand_version >= 0x0700) 797 ctrl->features |= BRCMNAND_HAS_CACHE_MODE; 798 799 if (ctrl->nand_version >= 0x0500) 800 ctrl->features |= BRCMNAND_HAS_1K_SECTORS; 801 802 if (ctrl->nand_version >= 0x0700) 803 ctrl->features |= BRCMNAND_HAS_WP; 804 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) 805 ctrl->features |= BRCMNAND_HAS_WP; 806 807 /* v7.2 has different ecc level shift in the acc register */ 808 if (ctrl->nand_version == 0x0702) 809 ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT; 810 else 811 ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT; 812 813 return 0; 814 } 815 816 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl) 817 { 818 /* flash_dma register offsets */ 819 if (ctrl->nand_version >= 0x0703) 820 ctrl->flash_dma_offsets = flash_dma_regs_v4; 821 else if (ctrl->nand_version == 0x0602) 822 ctrl->flash_dma_offsets = flash_dma_regs_v0; 823 else 824 ctrl->flash_dma_offsets = flash_dma_regs_v1; 825 } 826 827 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, 828 enum brcmnand_reg reg) 829 { 830 u16 offs = ctrl->reg_offsets[reg]; 831 832 if (offs) 833 return nand_readreg(ctrl, offs); 834 else 835 return 0; 836 } 837 838 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, 839 enum brcmnand_reg reg, u32 val) 840 { 841 u16 offs = ctrl->reg_offsets[reg]; 842 843 if (offs) 844 nand_writereg(ctrl, offs, val); 845 } 846 847 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, 848 enum brcmnand_reg reg, u32 mask, unsigned 849 int shift, u32 val) 850 { 851 u32 tmp = brcmnand_read_reg(ctrl, reg); 852 853 tmp &= ~mask; 854 tmp |= val << shift; 855 brcmnand_write_reg(ctrl, reg, tmp); 856 } 857 858 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) 859 { 860 if (brcmnand_non_mmio_ops(ctrl)) 861 return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR); 862 return __raw_readl(ctrl->nand_fc + word * 4); 863 } 864 865 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, 866 int word, u32 val) 867 { 868 if (brcmnand_non_mmio_ops(ctrl)) 869 brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR); 870 else 871 __raw_writel(val, ctrl->nand_fc + word * 4); 872 } 873 874 static inline void edu_writel(struct brcmnand_controller *ctrl, 875 enum edu_reg reg, u32 val) 876 { 877 u16 offs = ctrl->edu_offsets[reg]; 878 879 brcmnand_writel(val, ctrl->edu_base + offs); 880 } 881 882 static inline u32 edu_readl(struct brcmnand_controller *ctrl, 883 enum edu_reg reg) 884 { 885 u16 offs = ctrl->edu_offsets[reg]; 886 887 return brcmnand_readl(ctrl->edu_base + offs); 888 } 889 890 static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl, 891 void __iomem *flash_cache, u32 *buffer, int fc_words) 892 { 893 struct brcmnand_soc *soc = ctrl->soc; 894 int i; 895 896 if (soc && soc->read_data_bus) { 897 soc->read_data_bus(soc, flash_cache, buffer, fc_words); 898 } else { 899 for (i = 0; i < fc_words; i++) 900 buffer[i] = brcmnand_read_fc(ctrl, i); 901 } 902 } 903 904 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl) 905 { 906 907 /* Clear error addresses */ 908 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); 909 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); 910 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0); 911 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0); 912 } 913 914 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl) 915 { 916 u64 err_addr; 917 918 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR); 919 err_addr |= ((u64)(brcmnand_read_reg(ctrl, 920 BRCMNAND_UNCORR_EXT_ADDR) 921 & 0xffff) << 32); 922 923 return err_addr; 924 } 925 926 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl) 927 { 928 u64 err_addr; 929 930 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR); 931 err_addr |= ((u64)(brcmnand_read_reg(ctrl, 932 BRCMNAND_CORR_EXT_ADDR) 933 & 0xffff) << 32); 934 935 return err_addr; 936 } 937 938 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr) 939 { 940 struct nand_chip *chip = mtd_to_nand(mtd); 941 struct brcmnand_host *host = nand_get_controller_data(chip); 942 struct brcmnand_controller *ctrl = host->ctrl; 943 944 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, 945 (host->cs << 16) | ((addr >> 32) & 0xffff)); 946 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); 947 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, 948 lower_32_bits(addr)); 949 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); 950 } 951 952 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, 953 enum brcmnand_cs_reg reg) 954 { 955 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; 956 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; 957 u8 cs_offs; 958 959 if (cs == 0 && ctrl->cs0_offsets) 960 cs_offs = ctrl->cs0_offsets[reg]; 961 else 962 cs_offs = ctrl->cs_offsets[reg]; 963 964 if (cs && offs_cs1) 965 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; 966 967 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; 968 } 969 970 static inline u32 brcmnand_corr_total(struct brcmnand_controller *ctrl) 971 { 972 if (ctrl->nand_version < 0x400) 973 return 0; 974 return brcmnand_read_reg(ctrl, BRCMNAND_READ_ERROR_COUNT); 975 } 976 977 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) 978 { 979 struct brcmnand_controller *ctrl = host->ctrl; 980 unsigned int shift = 0, bits; 981 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; 982 int cs = host->cs; 983 984 if (!ctrl->reg_offsets[reg]) 985 return; 986 987 if (ctrl->nand_version == 0x0702) 988 bits = 7; 989 else if (ctrl->nand_version >= 0x0600) 990 bits = 6; 991 else if (ctrl->nand_version >= 0x0500) 992 bits = 5; 993 else 994 bits = 4; 995 996 if (ctrl->nand_version >= 0x0702) { 997 if (cs >= 4) 998 reg = BRCMNAND_CORR_THRESHOLD_EXT; 999 shift = (cs % 4) * bits; 1000 } else if (ctrl->nand_version >= 0x0600) { 1001 if (cs >= 5) 1002 reg = BRCMNAND_CORR_THRESHOLD_EXT; 1003 shift = (cs % 5) * bits; 1004 } 1005 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); 1006 } 1007 1008 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) 1009 { 1010 /* Kludge for the BCMA-based NAND controller which does not actually 1011 * shift the command 1012 */ 1013 if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl)) 1014 return 0; 1015 1016 if (ctrl->nand_version < 0x0602) 1017 return 24; 1018 return 0; 1019 } 1020 1021 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) 1022 { 1023 if (ctrl->nand_version == 0x0702) 1024 return GENMASK(7, 0); 1025 else if (ctrl->nand_version >= 0x0600) 1026 return GENMASK(6, 0); 1027 else if (ctrl->nand_version >= 0x0303) 1028 return GENMASK(5, 0); 1029 else 1030 return GENMASK(4, 0); 1031 } 1032 1033 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) 1034 { 1035 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; 1036 1037 mask <<= ACC_CONTROL_ECC_SHIFT; 1038 1039 /* v7.2 includes additional ECC levels */ 1040 if (ctrl->nand_version == 0x0702) 1041 mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT; 1042 1043 return mask; 1044 } 1045 1046 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) 1047 { 1048 struct brcmnand_controller *ctrl = host->ctrl; 1049 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); 1050 u32 acc_control = nand_readreg(ctrl, offs); 1051 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; 1052 1053 if (en) { 1054 acc_control |= ecc_flags; /* enable RD/WR ECC */ 1055 acc_control &= ~brcmnand_ecc_level_mask(ctrl); 1056 acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift; 1057 } else { 1058 acc_control &= ~ecc_flags; /* disable RD/WR ECC */ 1059 acc_control &= ~brcmnand_ecc_level_mask(ctrl); 1060 } 1061 1062 nand_writereg(ctrl, offs, acc_control); 1063 } 1064 1065 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) 1066 { 1067 if (ctrl->nand_version >= 0x0702) 1068 return 9; 1069 else if (ctrl->nand_version >= 0x0600) 1070 return 7; 1071 else if (ctrl->nand_version >= 0x0500) 1072 return 6; 1073 else 1074 return -1; 1075 } 1076 1077 static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host) 1078 { 1079 struct brcmnand_controller *ctrl = host->ctrl; 1080 int sector_size_bit = brcmnand_sector_1k_shift(ctrl); 1081 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 1082 BRCMNAND_CS_ACC_CONTROL); 1083 u32 acc_control; 1084 1085 if (sector_size_bit < 0) 1086 return false; 1087 1088 acc_control = nand_readreg(ctrl, acc_control_offs); 1089 1090 return ((acc_control & BIT(sector_size_bit)) != 0); 1091 } 1092 1093 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) 1094 { 1095 struct brcmnand_controller *ctrl = host->ctrl; 1096 int shift = brcmnand_sector_1k_shift(ctrl); 1097 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 1098 BRCMNAND_CS_ACC_CONTROL); 1099 u32 tmp; 1100 1101 if (shift < 0) 1102 return; 1103 1104 tmp = nand_readreg(ctrl, acc_control_offs); 1105 tmp &= ~(1 << shift); 1106 tmp |= (!!val) << shift; 1107 nand_writereg(ctrl, acc_control_offs, tmp); 1108 } 1109 1110 static int brcmnand_get_spare_size(struct brcmnand_host *host) 1111 { 1112 struct brcmnand_controller *ctrl = host->ctrl; 1113 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 1114 BRCMNAND_CS_ACC_CONTROL); 1115 u32 acc = nand_readreg(ctrl, acc_control_offs); 1116 1117 return (acc & brcmnand_spare_area_mask(ctrl)); 1118 } 1119 1120 static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip) 1121 { 1122 struct brcmnand_controller *ctrl = host->ctrl; 1123 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 1124 BRCMNAND_CS_ACC_CONTROL); 1125 bool sector_size_1k = brcmnand_get_sector_size_1k(host); 1126 int spare_area_size, ecc_level; 1127 u32 acc; 1128 1129 spare_area_size = brcmnand_get_spare_size(host); 1130 acc = nand_readreg(ctrl, acc_control_offs); 1131 ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift; 1132 if (sector_size_1k) 1133 chip->ecc.strength = ecc_level * 2; 1134 else if (spare_area_size == 16 && ecc_level == 15) 1135 chip->ecc.strength = 1; /* hamming */ 1136 else 1137 chip->ecc.strength = ecc_level; 1138 1139 if (chip->ecc.size == 0) { 1140 if (sector_size_1k) 1141 chip->ecc.size = 1024; 1142 else 1143 chip->ecc.size = 512; 1144 } 1145 } 1146 1147 /*********************************************************************** 1148 * CS_NAND_SELECT 1149 ***********************************************************************/ 1150 1151 enum { 1152 CS_SELECT_NAND_WP = BIT(29), 1153 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), 1154 }; 1155 1156 static int bcmnand_ctrl_poll_status(struct brcmnand_host *host, 1157 u32 mask, u32 expected_val, 1158 unsigned long timeout_ms) 1159 { 1160 struct brcmnand_controller *ctrl = host->ctrl; 1161 unsigned long limit; 1162 u32 val; 1163 1164 if (!timeout_ms) 1165 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; 1166 1167 limit = jiffies + msecs_to_jiffies(timeout_ms); 1168 do { 1169 if (mask & INTFC_FLASH_STATUS) 1170 brcmnand_status(host); 1171 1172 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); 1173 if ((val & mask) == expected_val) 1174 return 0; 1175 1176 cpu_relax(); 1177 } while (time_after(limit, jiffies)); 1178 1179 /* 1180 * do a final check after time out in case the CPU was busy and the driver 1181 * did not get enough time to perform the polling to avoid false alarms 1182 */ 1183 if (mask & INTFC_FLASH_STATUS) 1184 brcmnand_status(host); 1185 1186 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); 1187 if ((val & mask) == expected_val) 1188 return 0; 1189 1190 dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n", 1191 expected_val, val & mask); 1192 1193 return -ETIMEDOUT; 1194 } 1195 1196 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) 1197 { 1198 u32 val = en ? CS_SELECT_NAND_WP : 0; 1199 1200 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); 1201 } 1202 1203 /*********************************************************************** 1204 * Flash DMA 1205 ***********************************************************************/ 1206 1207 static inline bool has_flash_dma(struct brcmnand_controller *ctrl) 1208 { 1209 return ctrl->flash_dma_base; 1210 } 1211 1212 static inline bool has_edu(struct brcmnand_controller *ctrl) 1213 { 1214 return ctrl->edu_base; 1215 } 1216 1217 static inline bool use_dma(struct brcmnand_controller *ctrl) 1218 { 1219 return has_flash_dma(ctrl) || has_edu(ctrl); 1220 } 1221 1222 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl) 1223 { 1224 if (ctrl->pio_poll_mode) 1225 return; 1226 1227 if (has_flash_dma(ctrl)) { 1228 ctrl->flash_dma_base = NULL; 1229 disable_irq(ctrl->dma_irq); 1230 } 1231 1232 disable_irq(ctrl->irq); 1233 ctrl->pio_poll_mode = true; 1234 } 1235 1236 static inline bool flash_dma_buf_ok(const void *buf) 1237 { 1238 return buf && !is_vmalloc_addr(buf) && 1239 likely(IS_ALIGNED((uintptr_t)buf, 4)); 1240 } 1241 1242 static inline void flash_dma_writel(struct brcmnand_controller *ctrl, 1243 enum flash_dma_reg dma_reg, u32 val) 1244 { 1245 u16 offs = ctrl->flash_dma_offsets[dma_reg]; 1246 1247 brcmnand_writel(val, ctrl->flash_dma_base + offs); 1248 } 1249 1250 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, 1251 enum flash_dma_reg dma_reg) 1252 { 1253 u16 offs = ctrl->flash_dma_offsets[dma_reg]; 1254 1255 return brcmnand_readl(ctrl->flash_dma_base + offs); 1256 } 1257 1258 /* Low-level operation types: command, address, write, or read */ 1259 enum brcmnand_llop_type { 1260 LL_OP_CMD, 1261 LL_OP_ADDR, 1262 LL_OP_WR, 1263 LL_OP_RD, 1264 }; 1265 1266 /*********************************************************************** 1267 * Internal support functions 1268 ***********************************************************************/ 1269 1270 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, 1271 struct brcmnand_cfg *cfg) 1272 { 1273 if (ctrl->nand_version <= 0x0701) 1274 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && 1275 cfg->ecc_level == 15; 1276 else 1277 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && 1278 cfg->ecc_level == 15) || 1279 (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); 1280 } 1281 1282 /* 1283 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given 1284 * the layout/configuration. 1285 * Returns -ERRCODE on failure. 1286 */ 1287 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section, 1288 struct mtd_oob_region *oobregion) 1289 { 1290 struct nand_chip *chip = mtd_to_nand(mtd); 1291 struct brcmnand_host *host = nand_get_controller_data(chip); 1292 struct brcmnand_cfg *cfg = &host->hwcfg; 1293 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1294 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1295 1296 if (section >= sectors) 1297 return -ERANGE; 1298 1299 oobregion->offset = (section * sas) + 6; 1300 oobregion->length = 3; 1301 1302 return 0; 1303 } 1304 1305 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section, 1306 struct mtd_oob_region *oobregion) 1307 { 1308 struct nand_chip *chip = mtd_to_nand(mtd); 1309 struct brcmnand_host *host = nand_get_controller_data(chip); 1310 struct brcmnand_cfg *cfg = &host->hwcfg; 1311 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1312 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1313 u32 next; 1314 1315 if (section > sectors) 1316 return -ERANGE; 1317 1318 next = (section * sas); 1319 if (section < sectors) 1320 next += 6; 1321 1322 if (section) { 1323 oobregion->offset = ((section - 1) * sas) + 9; 1324 } else { 1325 if (cfg->page_size > 512) { 1326 /* Large page NAND uses first 2 bytes for BBI */ 1327 oobregion->offset = 2; 1328 } else { 1329 /* Small page NAND uses last byte before ECC for BBI */ 1330 oobregion->offset = 0; 1331 next--; 1332 } 1333 } 1334 1335 oobregion->length = next - oobregion->offset; 1336 1337 return 0; 1338 } 1339 1340 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = { 1341 .ecc = brcmnand_hamming_ooblayout_ecc, 1342 .free = brcmnand_hamming_ooblayout_free, 1343 }; 1344 1345 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section, 1346 struct mtd_oob_region *oobregion) 1347 { 1348 struct nand_chip *chip = mtd_to_nand(mtd); 1349 struct brcmnand_host *host = nand_get_controller_data(chip); 1350 struct brcmnand_cfg *cfg = &host->hwcfg; 1351 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1352 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1353 1354 if (section >= sectors) 1355 return -ERANGE; 1356 1357 oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes; 1358 oobregion->length = chip->ecc.bytes; 1359 1360 return 0; 1361 } 1362 1363 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section, 1364 struct mtd_oob_region *oobregion) 1365 { 1366 struct nand_chip *chip = mtd_to_nand(mtd); 1367 struct brcmnand_host *host = nand_get_controller_data(chip); 1368 struct brcmnand_cfg *cfg = &host->hwcfg; 1369 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1370 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1371 1372 if (section >= sectors) 1373 return -ERANGE; 1374 1375 if (sas <= chip->ecc.bytes) 1376 return 0; 1377 1378 oobregion->offset = section * sas; 1379 oobregion->length = sas - chip->ecc.bytes; 1380 1381 if (!section) { 1382 oobregion->offset++; 1383 oobregion->length--; 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section, 1390 struct mtd_oob_region *oobregion) 1391 { 1392 struct nand_chip *chip = mtd_to_nand(mtd); 1393 struct brcmnand_host *host = nand_get_controller_data(chip); 1394 struct brcmnand_cfg *cfg = &host->hwcfg; 1395 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1396 1397 if (section > 1 || sas - chip->ecc.bytes < 6 || 1398 (section && sas - chip->ecc.bytes == 6)) 1399 return -ERANGE; 1400 1401 if (!section) { 1402 oobregion->offset = 0; 1403 oobregion->length = 5; 1404 } else { 1405 oobregion->offset = 6; 1406 oobregion->length = sas - chip->ecc.bytes - 6; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = { 1413 .ecc = brcmnand_bch_ooblayout_ecc, 1414 .free = brcmnand_bch_ooblayout_free_lp, 1415 }; 1416 1417 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = { 1418 .ecc = brcmnand_bch_ooblayout_ecc, 1419 .free = brcmnand_bch_ooblayout_free_sp, 1420 }; 1421 1422 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) 1423 { 1424 struct brcmnand_cfg *p = &host->hwcfg; 1425 struct mtd_info *mtd = nand_to_mtd(&host->chip); 1426 struct nand_ecc_ctrl *ecc = &host->chip.ecc; 1427 unsigned int ecc_level = p->ecc_level; 1428 int sas = p->spare_area_size << p->sector_size_1k; 1429 int sectors = p->page_size / (512 << p->sector_size_1k); 1430 1431 if (p->sector_size_1k) 1432 ecc_level <<= 1; 1433 1434 if (is_hamming_ecc(host->ctrl, p)) { 1435 ecc->bytes = 3 * sectors; 1436 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); 1437 return 0; 1438 } 1439 1440 /* 1441 * CONTROLLER_VERSION: 1442 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) 1443 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) 1444 * But we will just be conservative. 1445 */ 1446 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8); 1447 if (p->page_size == 512) 1448 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops); 1449 else 1450 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops); 1451 1452 if (ecc->bytes >= sas) { 1453 dev_err(&host->pdev->dev, 1454 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", 1455 ecc->bytes, sas); 1456 return -EINVAL; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static void brcmnand_wp(struct mtd_info *mtd, int wp) 1463 { 1464 struct nand_chip *chip = mtd_to_nand(mtd); 1465 struct brcmnand_host *host = nand_get_controller_data(chip); 1466 struct brcmnand_controller *ctrl = host->ctrl; 1467 1468 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { 1469 static int old_wp = -1; 1470 int ret; 1471 1472 if (old_wp != wp) { 1473 dev_dbg(ctrl->dev, "WP %s\n", str_on_off(wp)); 1474 old_wp = wp; 1475 } 1476 1477 /* 1478 * make sure ctrl/flash ready before and after 1479 * changing state of #WP pin 1480 */ 1481 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY | 1482 NAND_STATUS_READY, 1483 NAND_CTRL_RDY | 1484 NAND_STATUS_READY, 0); 1485 if (ret) 1486 return; 1487 1488 brcmnand_set_wp(ctrl, wp); 1489 /* force controller operation to update internal copy of NAND chip status */ 1490 brcmnand_status(host); 1491 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ 1492 ret = bcmnand_ctrl_poll_status(host, 1493 NAND_CTRL_RDY | 1494 NAND_STATUS_READY | 1495 NAND_STATUS_WP, 1496 NAND_CTRL_RDY | 1497 NAND_STATUS_READY | 1498 (wp ? 0 : NAND_STATUS_WP), 0); 1499 1500 if (ret) 1501 dev_err_ratelimited(&host->pdev->dev, 1502 "nand #WP expected %s\n", 1503 str_on_off(wp)); 1504 } 1505 } 1506 1507 /* Helper functions for reading and writing OOB registers */ 1508 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) 1509 { 1510 u16 offset0, offset10, reg_offs; 1511 1512 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; 1513 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; 1514 1515 if (offs >= ctrl->max_oob) 1516 return 0x77; 1517 1518 if (offs >= 16 && offset10) 1519 reg_offs = offset10 + ((offs - 0x10) & ~0x03); 1520 else 1521 reg_offs = offset0 + (offs & ~0x03); 1522 1523 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); 1524 } 1525 1526 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, 1527 u32 data) 1528 { 1529 u16 offset0, offset10, reg_offs; 1530 1531 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; 1532 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; 1533 1534 if (offs >= ctrl->max_oob) 1535 return; 1536 1537 if (offs >= 16 && offset10) 1538 reg_offs = offset10 + ((offs - 0x10) & ~0x03); 1539 else 1540 reg_offs = offset0 + (offs & ~0x03); 1541 1542 nand_writereg(ctrl, reg_offs, data); 1543 } 1544 1545 /* 1546 * read_oob_from_regs - read data from OOB registers 1547 * @ctrl: NAND controller 1548 * @i: sub-page sector index 1549 * @oob: buffer to read to 1550 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) 1551 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal 1552 */ 1553 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, 1554 int sas, int sector_1k) 1555 { 1556 int tbytes = sas << sector_1k; 1557 int j; 1558 1559 /* Adjust OOB values for 1K sector size */ 1560 if (sector_1k && (i & 0x01)) 1561 tbytes = max(0, tbytes - (int)ctrl->max_oob); 1562 tbytes = min_t(int, tbytes, ctrl->max_oob); 1563 1564 for (j = 0; j < tbytes; j++) 1565 oob[j] = oob_reg_read(ctrl, j); 1566 return tbytes; 1567 } 1568 1569 /* 1570 * write_oob_to_regs - write data to OOB registers 1571 * @i: sub-page sector index 1572 * @oob: buffer to write from 1573 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) 1574 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal 1575 */ 1576 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, 1577 const u8 *oob, int sas, int sector_1k) 1578 { 1579 int tbytes = sas << sector_1k; 1580 int j, k = 0; 1581 u32 last = 0xffffffff; 1582 u8 *plast = (u8 *)&last; 1583 1584 /* Adjust OOB values for 1K sector size */ 1585 if (sector_1k && (i & 0x01)) 1586 tbytes = max(0, tbytes - (int)ctrl->max_oob); 1587 tbytes = min_t(int, tbytes, ctrl->max_oob); 1588 1589 /* 1590 * tbytes may not be multiple of words. Make sure we don't read out of 1591 * the boundary and stop at last word. 1592 */ 1593 for (j = 0; (j + 3) < tbytes; j += 4) 1594 oob_reg_write(ctrl, j, 1595 (oob[j + 0] << 24) | 1596 (oob[j + 1] << 16) | 1597 (oob[j + 2] << 8) | 1598 (oob[j + 3] << 0)); 1599 1600 /* handle the remaining bytes */ 1601 while (j < tbytes) 1602 plast[k++] = oob[j++]; 1603 1604 if (tbytes & 0x3) 1605 oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last)); 1606 1607 return tbytes; 1608 } 1609 1610 static void brcmnand_edu_init(struct brcmnand_controller *ctrl) 1611 { 1612 /* initialize edu */ 1613 edu_writel(ctrl, EDU_ERR_STATUS, 0); 1614 edu_readl(ctrl, EDU_ERR_STATUS); 1615 edu_writel(ctrl, EDU_DONE, 0); 1616 edu_writel(ctrl, EDU_DONE, 0); 1617 edu_writel(ctrl, EDU_DONE, 0); 1618 edu_writel(ctrl, EDU_DONE, 0); 1619 edu_readl(ctrl, EDU_DONE); 1620 } 1621 1622 /* edu irq */ 1623 static irqreturn_t brcmnand_edu_irq(int irq, void *data) 1624 { 1625 struct brcmnand_controller *ctrl = data; 1626 1627 if (ctrl->edu_count) { 1628 ctrl->edu_count--; 1629 while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK)) 1630 udelay(1); 1631 edu_writel(ctrl, EDU_DONE, 0); 1632 edu_readl(ctrl, EDU_DONE); 1633 } 1634 1635 if (ctrl->edu_count) { 1636 ctrl->edu_dram_addr += FC_BYTES; 1637 ctrl->edu_ext_addr += FC_BYTES; 1638 1639 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); 1640 edu_readl(ctrl, EDU_DRAM_ADDR); 1641 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); 1642 edu_readl(ctrl, EDU_EXT_ADDR); 1643 1644 if (ctrl->oob) { 1645 if (ctrl->edu_cmd == EDU_CMD_READ) { 1646 ctrl->oob += read_oob_from_regs(ctrl, 1647 ctrl->edu_count + 1, 1648 ctrl->oob, ctrl->sas, 1649 ctrl->sector_size_1k); 1650 } else { 1651 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, 1652 ctrl->edu_ext_addr); 1653 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); 1654 ctrl->oob += write_oob_to_regs(ctrl, 1655 ctrl->edu_count, 1656 ctrl->oob, ctrl->sas, 1657 ctrl->sector_size_1k); 1658 } 1659 } 1660 1661 mb(); /* flush previous writes */ 1662 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); 1663 edu_readl(ctrl, EDU_CMD); 1664 1665 return IRQ_HANDLED; 1666 } 1667 1668 complete(&ctrl->edu_done); 1669 1670 return IRQ_HANDLED; 1671 } 1672 1673 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) 1674 { 1675 struct brcmnand_controller *ctrl = data; 1676 1677 /* Discard all NAND_CTLRDY interrupts during DMA */ 1678 if (ctrl->dma_pending) 1679 return IRQ_HANDLED; 1680 1681 /* check if you need to piggy back on the ctrlrdy irq */ 1682 if (ctrl->edu_pending) { 1683 if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0)) 1684 /* Discard interrupts while using dedicated edu irq */ 1685 return IRQ_HANDLED; 1686 1687 /* no registered edu irq, call handler */ 1688 return brcmnand_edu_irq(irq, data); 1689 } 1690 1691 complete(&ctrl->done); 1692 return IRQ_HANDLED; 1693 } 1694 1695 /* Handle SoC-specific interrupt hardware */ 1696 static irqreturn_t brcmnand_irq(int irq, void *data) 1697 { 1698 struct brcmnand_controller *ctrl = data; 1699 1700 if (ctrl->soc->ctlrdy_ack(ctrl->soc)) 1701 return brcmnand_ctlrdy_irq(irq, data); 1702 1703 return IRQ_NONE; 1704 } 1705 1706 static irqreturn_t brcmnand_dma_irq(int irq, void *data) 1707 { 1708 struct brcmnand_controller *ctrl = data; 1709 1710 complete(&ctrl->dma_done); 1711 1712 return IRQ_HANDLED; 1713 } 1714 1715 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) 1716 { 1717 struct brcmnand_controller *ctrl = host->ctrl; 1718 int ret; 1719 u64 cmd_addr; 1720 1721 cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); 1722 1723 dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr); 1724 1725 /* 1726 * If we came here through _panic_write and there is a pending 1727 * command, try to wait for it. If it times out, rather than 1728 * hitting BUG_ON, just return so we don't crash while crashing. 1729 */ 1730 if (oops_in_progress) { 1731 if (ctrl->cmd_pending && 1732 bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0)) 1733 return; 1734 } else 1735 BUG_ON(ctrl->cmd_pending != 0); 1736 ctrl->cmd_pending = cmd; 1737 1738 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); 1739 WARN_ON(ret); 1740 1741 mb(); /* flush previous writes */ 1742 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, 1743 cmd << brcmnand_cmd_shift(ctrl)); 1744 } 1745 1746 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip) 1747 { 1748 struct brcmnand_host *host = nand_get_controller_data(chip); 1749 struct brcmnand_controller *ctrl = host->ctrl; 1750 struct mtd_info *mtd = nand_to_mtd(chip); 1751 bool err = false; 1752 int sts; 1753 1754 if (mtd->oops_panic_write || ctrl->irq < 0) { 1755 /* switch to interrupt polling and PIO mode */ 1756 disable_ctrl_irqs(ctrl); 1757 sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, 1758 NAND_CTRL_RDY, 0); 1759 err = sts < 0; 1760 } else { 1761 unsigned long timeo = msecs_to_jiffies( 1762 NAND_POLL_STATUS_TIMEOUT_MS); 1763 /* wait for completion interrupt */ 1764 sts = wait_for_completion_timeout(&ctrl->done, timeo); 1765 err = !sts; 1766 } 1767 1768 return err; 1769 } 1770 1771 static int brcmnand_waitfunc(struct nand_chip *chip) 1772 { 1773 struct brcmnand_host *host = nand_get_controller_data(chip); 1774 struct brcmnand_controller *ctrl = host->ctrl; 1775 bool err = false; 1776 1777 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); 1778 if (ctrl->cmd_pending) 1779 err = brcmstb_nand_wait_for_completion(chip); 1780 1781 ctrl->cmd_pending = 0; 1782 if (err) { 1783 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) 1784 >> brcmnand_cmd_shift(ctrl); 1785 1786 dev_err_ratelimited(ctrl->dev, 1787 "timeout waiting for command %#02x\n", cmd); 1788 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", 1789 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); 1790 return -ETIMEDOUT; 1791 } 1792 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & 1793 INTFC_FLASH_STATUS; 1794 } 1795 1796 static int brcmnand_status(struct brcmnand_host *host) 1797 { 1798 struct nand_chip *chip = &host->chip; 1799 struct mtd_info *mtd = nand_to_mtd(chip); 1800 1801 brcmnand_set_cmd_addr(mtd, 0); 1802 brcmnand_send_cmd(host, CMD_STATUS_READ); 1803 1804 return brcmnand_waitfunc(chip); 1805 } 1806 1807 static int brcmnand_reset(struct brcmnand_host *host) 1808 { 1809 struct nand_chip *chip = &host->chip; 1810 1811 brcmnand_send_cmd(host, CMD_FLASH_RESET); 1812 1813 return brcmnand_waitfunc(chip); 1814 } 1815 1816 enum { 1817 LLOP_RE = BIT(16), 1818 LLOP_WE = BIT(17), 1819 LLOP_ALE = BIT(18), 1820 LLOP_CLE = BIT(19), 1821 LLOP_RETURN_IDLE = BIT(31), 1822 1823 LLOP_DATA_MASK = GENMASK(15, 0), 1824 }; 1825 1826 static int brcmnand_low_level_op(struct brcmnand_host *host, 1827 enum brcmnand_llop_type type, u32 data, 1828 bool last_op) 1829 { 1830 struct nand_chip *chip = &host->chip; 1831 struct brcmnand_controller *ctrl = host->ctrl; 1832 u32 tmp; 1833 1834 tmp = data & LLOP_DATA_MASK; 1835 switch (type) { 1836 case LL_OP_CMD: 1837 tmp |= LLOP_WE | LLOP_CLE; 1838 break; 1839 case LL_OP_ADDR: 1840 /* WE | ALE */ 1841 tmp |= LLOP_WE | LLOP_ALE; 1842 break; 1843 case LL_OP_WR: 1844 /* WE */ 1845 tmp |= LLOP_WE; 1846 break; 1847 case LL_OP_RD: 1848 /* RE */ 1849 tmp |= LLOP_RE; 1850 break; 1851 } 1852 if (last_op) 1853 /* RETURN_IDLE */ 1854 tmp |= LLOP_RETURN_IDLE; 1855 1856 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); 1857 1858 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); 1859 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); 1860 1861 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); 1862 return brcmnand_waitfunc(chip); 1863 } 1864 1865 /* 1866 * Kick EDU engine 1867 */ 1868 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf, 1869 u8 *oob, u32 len, u8 cmd) 1870 { 1871 struct brcmnand_controller *ctrl = host->ctrl; 1872 struct brcmnand_cfg *cfg = &host->hwcfg; 1873 unsigned long timeo = msecs_to_jiffies(200); 1874 int ret = 0; 1875 int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1876 u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE); 1877 unsigned int trans = len >> FC_SHIFT; 1878 dma_addr_t pa; 1879 1880 dev_dbg(ctrl->dev, "EDU %s %p:%p\n", 1881 str_read_write(edu_cmd == EDU_CMD_READ), buf, oob); 1882 1883 pa = dma_map_single(ctrl->dev, buf, len, dir); 1884 if (dma_mapping_error(ctrl->dev, pa)) { 1885 dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n"); 1886 return -ENOMEM; 1887 } 1888 1889 ctrl->edu_pending = true; 1890 ctrl->edu_dram_addr = pa; 1891 ctrl->edu_ext_addr = addr; 1892 ctrl->edu_cmd = edu_cmd; 1893 ctrl->edu_count = trans; 1894 ctrl->sas = cfg->spare_area_size; 1895 ctrl->oob = oob; 1896 1897 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); 1898 edu_readl(ctrl, EDU_DRAM_ADDR); 1899 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); 1900 edu_readl(ctrl, EDU_EXT_ADDR); 1901 edu_writel(ctrl, EDU_LENGTH, FC_BYTES); 1902 edu_readl(ctrl, EDU_LENGTH); 1903 1904 if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) { 1905 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, 1906 ctrl->edu_ext_addr); 1907 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); 1908 ctrl->oob += write_oob_to_regs(ctrl, 1909 1, 1910 ctrl->oob, ctrl->sas, 1911 ctrl->sector_size_1k); 1912 } 1913 1914 /* Start edu engine */ 1915 mb(); /* flush previous writes */ 1916 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); 1917 edu_readl(ctrl, EDU_CMD); 1918 1919 if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) { 1920 dev_err(ctrl->dev, 1921 "timeout waiting for EDU; status %#x, error status %#x\n", 1922 edu_readl(ctrl, EDU_STATUS), 1923 edu_readl(ctrl, EDU_ERR_STATUS)); 1924 } 1925 1926 dma_unmap_single(ctrl->dev, pa, len, dir); 1927 1928 /* read last subpage oob */ 1929 if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) { 1930 ctrl->oob += read_oob_from_regs(ctrl, 1931 1, 1932 ctrl->oob, ctrl->sas, 1933 ctrl->sector_size_1k); 1934 } 1935 1936 /* for program page check NAND status */ 1937 if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & 1938 INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) && 1939 edu_cmd == EDU_CMD_WRITE) { 1940 dev_info(ctrl->dev, "program failed at %llx\n", 1941 (unsigned long long)addr); 1942 ret = -EIO; 1943 } 1944 1945 /* Make sure the EDU status is clean */ 1946 if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE) 1947 dev_warn(ctrl->dev, "EDU still active: %#x\n", 1948 edu_readl(ctrl, EDU_STATUS)); 1949 1950 if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) { 1951 dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n", 1952 (unsigned long long)addr); 1953 ret = -EIO; 1954 } 1955 1956 ctrl->edu_pending = false; 1957 brcmnand_edu_init(ctrl); 1958 edu_writel(ctrl, EDU_STOP, 0); /* force stop */ 1959 edu_readl(ctrl, EDU_STOP); 1960 1961 if (!ret && edu_cmd == EDU_CMD_READ) { 1962 u64 err_addr = 0; 1963 1964 /* 1965 * check for ECC errors here, subpage ECC errors are 1966 * retained in ECC error address register 1967 */ 1968 err_addr = brcmnand_get_uncorrecc_addr(ctrl); 1969 if (!err_addr) { 1970 err_addr = brcmnand_get_correcc_addr(ctrl); 1971 if (err_addr) 1972 ret = -EUCLEAN; 1973 } else 1974 ret = -EBADMSG; 1975 } 1976 1977 return ret; 1978 } 1979 1980 /* 1981 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the 1982 * following ahead of time: 1983 * - Is this descriptor the beginning or end of a linked list? 1984 * - What is the (DMA) address of the next descriptor in the linked list? 1985 */ 1986 static int brcmnand_fill_dma_desc(struct brcmnand_host *host, 1987 struct brcm_nand_dma_desc *desc, u64 addr, 1988 dma_addr_t buf, u32 len, u8 dma_cmd, 1989 bool begin, bool end, 1990 dma_addr_t next_desc) 1991 { 1992 memset(desc, 0, sizeof(*desc)); 1993 /* Descriptors are written in native byte order (wordwise) */ 1994 desc->next_desc = lower_32_bits(next_desc); 1995 desc->next_desc_ext = upper_32_bits(next_desc); 1996 desc->cmd_irq = (dma_cmd << 24) | 1997 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ 1998 (!!begin) | ((!!end) << 1); /* head, tail */ 1999 #ifdef CONFIG_CPU_BIG_ENDIAN 2000 desc->cmd_irq |= 0x01 << 12; 2001 #endif 2002 desc->dram_addr = lower_32_bits(buf); 2003 desc->dram_addr_ext = upper_32_bits(buf); 2004 desc->tfr_len = len; 2005 desc->total_len = len; 2006 desc->flash_addr = lower_32_bits(addr); 2007 desc->flash_addr_ext = upper_32_bits(addr); 2008 desc->cs = host->cs; 2009 desc->status_valid = 0x01; 2010 return 0; 2011 } 2012 2013 /* 2014 * Kick the FLASH_DMA engine, with a given DMA descriptor 2015 */ 2016 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) 2017 { 2018 struct brcmnand_controller *ctrl = host->ctrl; 2019 unsigned long timeo = msecs_to_jiffies(100); 2020 2021 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); 2022 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); 2023 if (ctrl->nand_version > 0x0602) { 2024 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, 2025 upper_32_bits(desc)); 2026 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); 2027 } 2028 2029 /* Start FLASH_DMA engine */ 2030 ctrl->dma_pending = true; 2031 mb(); /* flush previous writes */ 2032 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ 2033 2034 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { 2035 dev_err(ctrl->dev, 2036 "timeout waiting for DMA; status %#x, error status %#x\n", 2037 flash_dma_readl(ctrl, FLASH_DMA_STATUS), 2038 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); 2039 } 2040 ctrl->dma_pending = false; 2041 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ 2042 } 2043 2044 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, 2045 u8 *oob, u32 len, u8 dma_cmd) 2046 { 2047 struct brcmnand_controller *ctrl = host->ctrl; 2048 dma_addr_t buf_pa; 2049 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2050 2051 buf_pa = dma_map_single(ctrl->dev, buf, len, dir); 2052 if (dma_mapping_error(ctrl->dev, buf_pa)) { 2053 dev_err(ctrl->dev, "unable to map buffer for DMA\n"); 2054 return -ENOMEM; 2055 } 2056 2057 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, 2058 dma_cmd, true, true, 0); 2059 2060 brcmnand_dma_run(host, ctrl->dma_pa); 2061 2062 dma_unmap_single(ctrl->dev, buf_pa, len, dir); 2063 2064 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) 2065 return -EBADMSG; 2066 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) 2067 return -EUCLEAN; 2068 2069 return 0; 2070 } 2071 2072 /* 2073 * Assumes proper CS is already set 2074 */ 2075 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, 2076 u64 addr, unsigned int trans, u32 *buf, 2077 u8 *oob, u64 *err_addr, unsigned int *corr) 2078 { 2079 struct brcmnand_host *host = nand_get_controller_data(chip); 2080 struct brcmnand_controller *ctrl = host->ctrl; 2081 int i, ret = 0; 2082 unsigned int prev_corr; 2083 2084 if (corr) 2085 *corr = 0; 2086 2087 brcmnand_clear_ecc_addr(ctrl); 2088 2089 for (i = 0; i < trans; i++, addr += FC_BYTES) { 2090 prev_corr = brcmnand_corr_total(ctrl); 2091 brcmnand_set_cmd_addr(mtd, addr); 2092 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ 2093 brcmnand_send_cmd(host, CMD_PAGE_READ); 2094 brcmnand_waitfunc(chip); 2095 2096 if (likely(buf)) { 2097 brcmnand_soc_data_bus_prepare(ctrl->soc, false); 2098 2099 brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS); 2100 buf += FC_WORDS; 2101 2102 brcmnand_soc_data_bus_unprepare(ctrl->soc, false); 2103 } 2104 2105 if (oob) 2106 oob += read_oob_from_regs(ctrl, i, oob, 2107 mtd->oobsize / trans, 2108 host->hwcfg.sector_size_1k); 2109 2110 if (ret != -EBADMSG) { 2111 *err_addr = brcmnand_get_uncorrecc_addr(ctrl); 2112 2113 if (*err_addr) 2114 ret = -EBADMSG; 2115 else { 2116 *err_addr = brcmnand_get_correcc_addr(ctrl); 2117 2118 if (*err_addr) { 2119 ret = -EUCLEAN; 2120 2121 if (corr && (brcmnand_corr_total(ctrl) - prev_corr) > *corr) 2122 *corr = brcmnand_corr_total(ctrl) - prev_corr; 2123 } 2124 } 2125 } 2126 } 2127 2128 return ret; 2129 } 2130 2131 /* 2132 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC 2133 * error 2134 * 2135 * Because the HW ECC signals an ECC error if an erase paged has even a single 2136 * bitflip, we must check each ECC error to see if it is actually an erased 2137 * page with bitflips, not a truly corrupted page. 2138 * 2139 * On a real error, return a negative error code (-EBADMSG for ECC error), and 2140 * buf will contain raw data. 2141 * Otherwise, buf gets filled with 0xffs and return the maximum number of 2142 * bitflips-per-ECC-sector to the caller. 2143 * 2144 */ 2145 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, 2146 struct nand_chip *chip, void *buf, u64 addr) 2147 { 2148 struct mtd_oob_region ecc; 2149 int i; 2150 int bitflips = 0; 2151 int page = addr >> chip->page_shift; 2152 int ret; 2153 void *ecc_bytes; 2154 void *ecc_chunk; 2155 2156 if (!buf) 2157 buf = nand_get_data_buf(chip); 2158 2159 /* read without ecc for verification */ 2160 ret = chip->ecc.read_page_raw(chip, buf, true, page); 2161 if (ret) 2162 return ret; 2163 2164 for (i = 0; i < chip->ecc.steps; i++) { 2165 ecc_chunk = buf + chip->ecc.size * i; 2166 2167 mtd_ooblayout_ecc(mtd, i, &ecc); 2168 ecc_bytes = chip->oob_poi + ecc.offset; 2169 2170 ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size, 2171 ecc_bytes, ecc.length, 2172 NULL, 0, 2173 chip->ecc.strength); 2174 if (ret < 0) 2175 return ret; 2176 2177 bitflips = max(bitflips, ret); 2178 } 2179 2180 return bitflips; 2181 } 2182 2183 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, 2184 u64 addr, unsigned int trans, u32 *buf, u8 *oob) 2185 { 2186 struct brcmnand_host *host = nand_get_controller_data(chip); 2187 struct brcmnand_controller *ctrl = host->ctrl; 2188 u64 err_addr = 0; 2189 int err; 2190 bool retry = true; 2191 bool edu_err = false; 2192 unsigned int corrected = 0; /* max corrected bits per subpage */ 2193 unsigned int prev_tot = brcmnand_corr_total(ctrl); 2194 2195 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); 2196 2197 try_dmaread: 2198 brcmnand_clear_ecc_addr(ctrl); 2199 2200 if (ctrl->dma_trans && (has_edu(ctrl) || !oob) && 2201 flash_dma_buf_ok(buf)) { 2202 err = ctrl->dma_trans(host, addr, buf, oob, 2203 trans * FC_BYTES, 2204 CMD_PAGE_READ); 2205 2206 if (err) { 2207 if (mtd_is_bitflip_or_eccerr(err)) 2208 err_addr = addr; 2209 else 2210 return -EIO; 2211 } 2212 2213 if (has_edu(ctrl) && err_addr) 2214 edu_err = true; 2215 2216 } else { 2217 if (oob) 2218 memset(oob, 0x99, mtd->oobsize); 2219 2220 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, 2221 oob, &err_addr, &corrected); 2222 } 2223 2224 mtd->ecc_stats.corrected += brcmnand_corr_total(ctrl) - prev_tot; 2225 2226 if (mtd_is_eccerr(err)) { 2227 /* 2228 * On controller version and 7.0, 7.1 , DMA read after a 2229 * prior PIO read that reported uncorrectable error, 2230 * the DMA engine captures this error following DMA read 2231 * cleared only on subsequent DMA read, so just retry once 2232 * to clear a possible false error reported for current DMA 2233 * read 2234 */ 2235 if ((ctrl->nand_version == 0x0700) || 2236 (ctrl->nand_version == 0x0701)) { 2237 if (retry) { 2238 retry = false; 2239 goto try_dmaread; 2240 } 2241 } 2242 2243 /* 2244 * Controller version 7.2 has hw encoder to detect erased page 2245 * bitflips, apply sw verification for older controllers only 2246 */ 2247 if (ctrl->nand_version < 0x0702) { 2248 err = brcmstb_nand_verify_erased_page(mtd, chip, buf, 2249 addr); 2250 /* erased page bitflips corrected */ 2251 if (err >= 0) 2252 return err; 2253 } 2254 2255 dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n", 2256 (unsigned long long)err_addr); 2257 mtd->ecc_stats.failed++; 2258 /* NAND layer expects zero on ECC errors */ 2259 return 0; 2260 } 2261 2262 if (mtd_is_bitflip(err)) { 2263 /* in case of EDU correctable error we read again using PIO */ 2264 if (edu_err) 2265 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, 2266 oob, &err_addr, &corrected); 2267 2268 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", 2269 (unsigned long long)err_addr); 2270 /* 2271 * if flipped bits accumulator is not supported but we detected 2272 * a correction, increase stat by 1 to match previous behavior. 2273 */ 2274 if (brcmnand_corr_total(ctrl) == prev_tot) 2275 mtd->ecc_stats.corrected++; 2276 2277 /* Always exceed the software-imposed threshold */ 2278 return max(mtd->bitflip_threshold, corrected); 2279 } 2280 2281 return 0; 2282 } 2283 2284 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf, 2285 int oob_required, int page) 2286 { 2287 struct mtd_info *mtd = nand_to_mtd(chip); 2288 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; 2289 u64 addr = (u64)page << chip->page_shift; 2290 2291 return brcmnand_read(mtd, chip, addr, mtd->writesize >> FC_SHIFT, 2292 (u32 *)buf, oob); 2293 } 2294 2295 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf, 2296 int oob_required, int page) 2297 { 2298 struct brcmnand_host *host = nand_get_controller_data(chip); 2299 struct mtd_info *mtd = nand_to_mtd(chip); 2300 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; 2301 int ret; 2302 u64 addr = (u64)page << chip->page_shift; 2303 2304 brcmnand_set_ecc_enabled(host, 0); 2305 ret = brcmnand_read(mtd, chip, addr, mtd->writesize >> FC_SHIFT, 2306 (u32 *)buf, oob); 2307 brcmnand_set_ecc_enabled(host, 1); 2308 return ret; 2309 } 2310 2311 static int brcmnand_read_oob(struct nand_chip *chip, int page) 2312 { 2313 struct mtd_info *mtd = nand_to_mtd(chip); 2314 2315 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, 2316 mtd->writesize >> FC_SHIFT, 2317 NULL, (u8 *)chip->oob_poi); 2318 } 2319 2320 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page) 2321 { 2322 struct mtd_info *mtd = nand_to_mtd(chip); 2323 struct brcmnand_host *host = nand_get_controller_data(chip); 2324 2325 brcmnand_set_ecc_enabled(host, 0); 2326 brcmnand_read(mtd, chip, (u64)page << chip->page_shift, 2327 mtd->writesize >> FC_SHIFT, 2328 NULL, (u8 *)chip->oob_poi); 2329 brcmnand_set_ecc_enabled(host, 1); 2330 return 0; 2331 } 2332 2333 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, 2334 u64 addr, const u32 *buf, u8 *oob) 2335 { 2336 struct brcmnand_host *host = nand_get_controller_data(chip); 2337 struct brcmnand_controller *ctrl = host->ctrl; 2338 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; 2339 int status, ret = 0; 2340 2341 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); 2342 2343 if (unlikely((unsigned long)buf & 0x03)) { 2344 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); 2345 buf = (u32 *)((unsigned long)buf & ~0x03); 2346 } 2347 2348 brcmnand_wp(mtd, 0); 2349 2350 for (i = 0; i < ctrl->max_oob; i += 4) 2351 oob_reg_write(ctrl, i, 0xffffffff); 2352 2353 if (mtd->oops_panic_write) 2354 /* switch to interrupt polling and PIO mode */ 2355 disable_ctrl_irqs(ctrl); 2356 2357 if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) { 2358 if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize, 2359 CMD_PROGRAM_PAGE)) 2360 2361 ret = -EIO; 2362 2363 goto out; 2364 } 2365 2366 for (i = 0; i < trans; i++, addr += FC_BYTES) { 2367 /* full address MUST be set before populating FC */ 2368 brcmnand_set_cmd_addr(mtd, addr); 2369 2370 if (buf) { 2371 brcmnand_soc_data_bus_prepare(ctrl->soc, false); 2372 2373 for (j = 0; j < FC_WORDS; j++, buf++) 2374 brcmnand_write_fc(ctrl, j, *buf); 2375 2376 brcmnand_soc_data_bus_unprepare(ctrl->soc, false); 2377 } else if (oob) { 2378 for (j = 0; j < FC_WORDS; j++) 2379 brcmnand_write_fc(ctrl, j, 0xffffffff); 2380 } 2381 2382 if (oob) { 2383 oob += write_oob_to_regs(ctrl, i, oob, 2384 mtd->oobsize / trans, 2385 host->hwcfg.sector_size_1k); 2386 } 2387 2388 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ 2389 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); 2390 status = brcmnand_waitfunc(chip); 2391 2392 if (status < 0) { 2393 ret = status; 2394 goto out; 2395 } 2396 2397 if (status & NAND_STATUS_FAIL) { 2398 dev_info(ctrl->dev, "program failed at %llx\n", 2399 (unsigned long long)addr); 2400 ret = -EIO; 2401 goto out; 2402 } 2403 } 2404 out: 2405 brcmnand_wp(mtd, 1); 2406 return ret; 2407 } 2408 2409 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf, 2410 int oob_required, int page) 2411 { 2412 struct mtd_info *mtd = nand_to_mtd(chip); 2413 void *oob = oob_required ? chip->oob_poi : NULL; 2414 u64 addr = (u64)page << chip->page_shift; 2415 2416 return brcmnand_write(mtd, chip, addr, (const u32 *)buf, oob); 2417 } 2418 2419 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 2420 int oob_required, int page) 2421 { 2422 struct mtd_info *mtd = nand_to_mtd(chip); 2423 struct brcmnand_host *host = nand_get_controller_data(chip); 2424 void *oob = oob_required ? chip->oob_poi : NULL; 2425 u64 addr = (u64)page << chip->page_shift; 2426 int ret = 0; 2427 2428 brcmnand_set_ecc_enabled(host, 0); 2429 ret = brcmnand_write(mtd, chip, addr, (const u32 *)buf, oob); 2430 brcmnand_set_ecc_enabled(host, 1); 2431 2432 return ret; 2433 } 2434 2435 static int brcmnand_write_oob(struct nand_chip *chip, int page) 2436 { 2437 return brcmnand_write(nand_to_mtd(chip), chip, 2438 (u64)page << chip->page_shift, NULL, 2439 chip->oob_poi); 2440 } 2441 2442 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page) 2443 { 2444 struct mtd_info *mtd = nand_to_mtd(chip); 2445 struct brcmnand_host *host = nand_get_controller_data(chip); 2446 int ret; 2447 2448 brcmnand_set_ecc_enabled(host, 0); 2449 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, 2450 (u8 *)chip->oob_poi); 2451 brcmnand_set_ecc_enabled(host, 1); 2452 2453 return ret; 2454 } 2455 2456 static int brcmnand_exec_instr(struct brcmnand_host *host, int i, 2457 const struct nand_operation *op) 2458 { 2459 const struct nand_op_instr *instr = &op->instrs[i]; 2460 struct brcmnand_controller *ctrl = host->ctrl; 2461 const u8 *out; 2462 bool last_op; 2463 int ret = 0; 2464 u8 *in; 2465 2466 /* 2467 * The controller needs to be aware of the last command in the operation 2468 * (WAITRDY excepted). 2469 */ 2470 last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) || 2471 ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR)); 2472 2473 switch (instr->type) { 2474 case NAND_OP_CMD_INSTR: 2475 brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op); 2476 break; 2477 2478 case NAND_OP_ADDR_INSTR: 2479 for (i = 0; i < instr->ctx.addr.naddrs; i++) 2480 brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i], 2481 last_op && (i == (instr->ctx.addr.naddrs - 1))); 2482 break; 2483 2484 case NAND_OP_DATA_IN_INSTR: 2485 in = instr->ctx.data.buf.in; 2486 for (i = 0; i < instr->ctx.data.len; i++) { 2487 brcmnand_low_level_op(host, LL_OP_RD, 0, 2488 last_op && (i == (instr->ctx.data.len - 1))); 2489 in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA); 2490 } 2491 break; 2492 2493 case NAND_OP_DATA_OUT_INSTR: 2494 out = instr->ctx.data.buf.out; 2495 for (i = 0; i < instr->ctx.data.len; i++) 2496 brcmnand_low_level_op(host, LL_OP_WR, out[i], 2497 last_op && (i == (instr->ctx.data.len - 1))); 2498 break; 2499 2500 case NAND_OP_WAITRDY_INSTR: 2501 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); 2502 break; 2503 2504 default: 2505 dev_err(ctrl->dev, "unsupported instruction type: %d\n", 2506 instr->type); 2507 ret = -EINVAL; 2508 break; 2509 } 2510 2511 return ret; 2512 } 2513 2514 static int brcmnand_op_is_status(const struct nand_operation *op) 2515 { 2516 if (op->ninstrs == 2 && 2517 op->instrs[0].type == NAND_OP_CMD_INSTR && 2518 op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS && 2519 op->instrs[1].type == NAND_OP_DATA_IN_INSTR) 2520 return 1; 2521 2522 return 0; 2523 } 2524 2525 static int brcmnand_op_is_reset(const struct nand_operation *op) 2526 { 2527 if (op->ninstrs == 2 && 2528 op->instrs[0].type == NAND_OP_CMD_INSTR && 2529 op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET && 2530 op->instrs[1].type == NAND_OP_WAITRDY_INSTR) 2531 return 1; 2532 2533 return 0; 2534 } 2535 2536 static int brcmnand_check_instructions(struct nand_chip *chip, 2537 const struct nand_operation *op) 2538 { 2539 return 0; 2540 } 2541 2542 static int brcmnand_exec_instructions(struct nand_chip *chip, 2543 const struct nand_operation *op) 2544 { 2545 struct brcmnand_host *host = nand_get_controller_data(chip); 2546 unsigned int i; 2547 int ret = 0; 2548 2549 for (i = 0; i < op->ninstrs; i++) { 2550 ret = brcmnand_exec_instr(host, i, op); 2551 if (ret) 2552 break; 2553 } 2554 2555 return ret; 2556 } 2557 2558 static int brcmnand_check_instructions_legacy(struct nand_chip *chip, 2559 const struct nand_operation *op) 2560 { 2561 const struct nand_op_instr *instr; 2562 unsigned int i; 2563 u8 cmd; 2564 2565 for (i = 0; i < op->ninstrs; i++) { 2566 instr = &op->instrs[i]; 2567 2568 switch (instr->type) { 2569 case NAND_OP_CMD_INSTR: 2570 cmd = native_cmd_conv[instr->ctx.cmd.opcode]; 2571 if (cmd == CMD_NOT_SUPPORTED) 2572 return -EOPNOTSUPP; 2573 break; 2574 case NAND_OP_ADDR_INSTR: 2575 case NAND_OP_DATA_IN_INSTR: 2576 case NAND_OP_WAITRDY_INSTR: 2577 break; 2578 default: 2579 return -EOPNOTSUPP; 2580 } 2581 } 2582 2583 return 0; 2584 } 2585 2586 static int brcmnand_exec_instructions_legacy(struct nand_chip *chip, 2587 const struct nand_operation *op) 2588 { 2589 struct mtd_info *mtd = nand_to_mtd(chip); 2590 struct brcmnand_host *host = nand_get_controller_data(chip); 2591 struct brcmnand_controller *ctrl = host->ctrl; 2592 const struct nand_op_instr *instr; 2593 unsigned int i, j; 2594 u8 cmd = CMD_NULL, last_cmd = CMD_NULL; 2595 int ret = 0; 2596 u64 last_addr; 2597 2598 for (i = 0; i < op->ninstrs; i++) { 2599 instr = &op->instrs[i]; 2600 2601 if (instr->type == NAND_OP_CMD_INSTR) { 2602 cmd = native_cmd_conv[instr->ctx.cmd.opcode]; 2603 if (cmd == CMD_NOT_SUPPORTED) { 2604 dev_err(ctrl->dev, "unsupported cmd=%d\n", 2605 instr->ctx.cmd.opcode); 2606 ret = -EOPNOTSUPP; 2607 break; 2608 } 2609 } else if (instr->type == NAND_OP_ADDR_INSTR) { 2610 u64 addr = 0; 2611 2612 if (cmd == CMD_NULL) 2613 continue; 2614 2615 if (instr->ctx.addr.naddrs > 8) { 2616 dev_err(ctrl->dev, "unsupported naddrs=%u\n", 2617 instr->ctx.addr.naddrs); 2618 ret = -EOPNOTSUPP; 2619 break; 2620 } 2621 2622 for (j = 0; j < instr->ctx.addr.naddrs; j++) 2623 addr |= (instr->ctx.addr.addrs[j]) << (j << 3); 2624 2625 if (cmd == CMD_BLOCK_ERASE) 2626 addr <<= chip->page_shift; 2627 else if (cmd == CMD_PARAMETER_CHANGE_COL) 2628 addr &= ~((u64)(FC_BYTES - 1)); 2629 2630 brcmnand_set_cmd_addr(mtd, addr); 2631 brcmnand_send_cmd(host, cmd); 2632 last_addr = addr; 2633 last_cmd = cmd; 2634 cmd = CMD_NULL; 2635 brcmnand_waitfunc(chip); 2636 2637 if (last_cmd == CMD_PARAMETER_READ || 2638 last_cmd == CMD_PARAMETER_CHANGE_COL) { 2639 /* Copy flash cache word-wise */ 2640 u32 *flash_cache = (u32 *)ctrl->flash_cache; 2641 2642 brcmnand_soc_data_bus_prepare(ctrl->soc, true); 2643 2644 /* 2645 * Must cache the FLASH_CACHE now, since changes in 2646 * SECTOR_SIZE_1K may invalidate it 2647 */ 2648 for (j = 0; j < FC_WORDS; j++) 2649 /* 2650 * Flash cache is big endian for parameter pages, at 2651 * least on STB SoCs 2652 */ 2653 flash_cache[j] = be32_to_cpu(brcmnand_read_fc(ctrl, j)); 2654 2655 brcmnand_soc_data_bus_unprepare(ctrl->soc, true); 2656 } 2657 } else if (instr->type == NAND_OP_DATA_IN_INSTR) { 2658 u8 *in = instr->ctx.data.buf.in; 2659 2660 if (last_cmd == CMD_DEVICE_ID_READ) { 2661 u32 val; 2662 2663 if (instr->ctx.data.len > 8) { 2664 dev_err(ctrl->dev, "unsupported len=%u\n", 2665 instr->ctx.data.len); 2666 ret = -EOPNOTSUPP; 2667 break; 2668 } 2669 2670 for (j = 0; j < instr->ctx.data.len; j++) { 2671 if (j == 0) 2672 val = brcmnand_read_reg(ctrl, BRCMNAND_ID); 2673 else if (j == 4) 2674 val = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT); 2675 2676 in[j] = (val >> (24 - ((j % 4) << 3))) & 0xff; 2677 } 2678 } else if (last_cmd == CMD_PARAMETER_READ || 2679 last_cmd == CMD_PARAMETER_CHANGE_COL) { 2680 u64 addr; 2681 u32 offs; 2682 2683 for (j = 0; j < instr->ctx.data.len; j++) { 2684 addr = last_addr + j; 2685 offs = addr & (FC_BYTES - 1); 2686 2687 if (j > 0 && offs == 0) 2688 nand_change_read_column_op(chip, addr, NULL, 0, 2689 false); 2690 2691 in[j] = ctrl->flash_cache[offs]; 2692 } 2693 } 2694 } else if (instr->type == NAND_OP_WAITRDY_INSTR) { 2695 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); 2696 if (ret) 2697 break; 2698 } else { 2699 dev_err(ctrl->dev, "unsupported instruction type: %d\n", instr->type); 2700 ret = -EOPNOTSUPP; 2701 break; 2702 } 2703 } 2704 2705 return ret; 2706 } 2707 2708 static int brcmnand_exec_op(struct nand_chip *chip, 2709 const struct nand_operation *op, 2710 bool check_only) 2711 { 2712 struct brcmnand_host *host = nand_get_controller_data(chip); 2713 struct brcmnand_controller *ctrl = host->ctrl; 2714 struct mtd_info *mtd = nand_to_mtd(chip); 2715 u8 *status; 2716 int ret = 0; 2717 2718 if (check_only) 2719 return ctrl->check_instr(chip, op); 2720 2721 if (brcmnand_op_is_status(op)) { 2722 status = op->instrs[1].ctx.data.buf.in; 2723 ret = brcmnand_status(host); 2724 if (ret < 0) 2725 return ret; 2726 2727 *status = ret & 0xFF; 2728 2729 return 0; 2730 } else if (brcmnand_op_is_reset(op)) { 2731 ret = brcmnand_reset(host); 2732 if (ret < 0) 2733 return ret; 2734 2735 brcmnand_wp(mtd, 1); 2736 2737 return 0; 2738 } 2739 2740 if (op->deassert_wp) 2741 brcmnand_wp(mtd, 0); 2742 2743 ret = ctrl->exec_instr(chip, op); 2744 2745 if (op->deassert_wp) 2746 brcmnand_wp(mtd, 1); 2747 2748 return ret; 2749 } 2750 2751 /*********************************************************************** 2752 * Per-CS setup (1 NAND device) 2753 ***********************************************************************/ 2754 2755 static int brcmnand_set_cfg(struct brcmnand_host *host, 2756 struct brcmnand_cfg *cfg) 2757 { 2758 struct brcmnand_controller *ctrl = host->ctrl; 2759 struct nand_chip *chip = &host->chip; 2760 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); 2761 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, 2762 BRCMNAND_CS_CFG_EXT); 2763 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 2764 BRCMNAND_CS_ACC_CONTROL); 2765 u8 block_size = 0, page_size = 0, device_size = 0; 2766 u32 tmp; 2767 2768 if (ctrl->block_sizes) { 2769 int i, found; 2770 2771 for (i = 0, found = 0; ctrl->block_sizes[i]; i++) 2772 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { 2773 block_size = i; 2774 found = 1; 2775 } 2776 if (!found) { 2777 dev_warn(ctrl->dev, "invalid block size %u\n", 2778 cfg->block_size); 2779 return -EINVAL; 2780 } 2781 } else { 2782 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); 2783 } 2784 2785 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && 2786 cfg->block_size > ctrl->max_block_size)) { 2787 dev_warn(ctrl->dev, "invalid block size %u\n", 2788 cfg->block_size); 2789 block_size = 0; 2790 } 2791 2792 if (ctrl->page_sizes) { 2793 int i, found; 2794 2795 for (i = 0, found = 0; ctrl->page_sizes[i]; i++) 2796 if (ctrl->page_sizes[i] == cfg->page_size) { 2797 page_size = i; 2798 found = 1; 2799 } 2800 if (!found) { 2801 dev_warn(ctrl->dev, "invalid page size %u\n", 2802 cfg->page_size); 2803 return -EINVAL; 2804 } 2805 } else { 2806 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); 2807 } 2808 2809 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && 2810 cfg->page_size > ctrl->max_page_size)) { 2811 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); 2812 return -EINVAL; 2813 } 2814 2815 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { 2816 dev_warn(ctrl->dev, "invalid device size 0x%llx\n", 2817 (unsigned long long)cfg->device_size); 2818 return -EINVAL; 2819 } 2820 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); 2821 2822 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) | 2823 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) | 2824 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) | 2825 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) | 2826 (device_size << CFG_DEVICE_SIZE_SHIFT); 2827 if (cfg_offs == cfg_ext_offs) { 2828 tmp |= (page_size << ctrl->page_size_shift) | 2829 (block_size << CFG_BLK_SIZE_SHIFT); 2830 nand_writereg(ctrl, cfg_offs, tmp); 2831 } else { 2832 nand_writereg(ctrl, cfg_offs, tmp); 2833 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) | 2834 (block_size << CFG_EXT_BLK_SIZE_SHIFT); 2835 nand_writereg(ctrl, cfg_ext_offs, tmp); 2836 } 2837 2838 tmp = nand_readreg(ctrl, acc_control_offs); 2839 tmp &= ~brcmnand_ecc_level_mask(ctrl); 2840 tmp &= ~brcmnand_spare_area_mask(ctrl); 2841 if (ctrl->nand_version >= 0x0302) { 2842 tmp |= cfg->ecc_level << ctrl->ecc_level_shift; 2843 tmp |= cfg->spare_area_size; 2844 } 2845 nand_writereg(ctrl, acc_control_offs, tmp); 2846 2847 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); 2848 2849 /* threshold = ceil(BCH-level * 0.75) */ 2850 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); 2851 2852 return 0; 2853 } 2854 2855 static void brcmnand_print_cfg(struct brcmnand_host *host, 2856 char *buf, struct brcmnand_cfg *cfg) 2857 { 2858 buf += sprintf(buf, 2859 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", 2860 (unsigned long long)cfg->device_size >> 20, 2861 cfg->block_size >> 10, 2862 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, 2863 cfg->page_size >= 1024 ? "KiB" : "B", 2864 cfg->spare_area_size, cfg->device_width); 2865 2866 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ 2867 if (is_hamming_ecc(host->ctrl, cfg)) 2868 sprintf(buf, ", Hamming ECC"); 2869 else if (cfg->sector_size_1k) 2870 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); 2871 else 2872 sprintf(buf, ", BCH-%u", cfg->ecc_level); 2873 } 2874 2875 /* 2876 * Minimum number of bytes to address a page. Calculated as: 2877 * roundup(log2(size / page-size) / 8) 2878 * 2879 * NB: the following does not "round up" for non-power-of-2 'size'; but this is 2880 * OK because many other things will break if 'size' is irregular... 2881 */ 2882 static inline int get_blk_adr_bytes(u64 size, u32 writesize) 2883 { 2884 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; 2885 } 2886 2887 static int brcmnand_setup_dev(struct brcmnand_host *host) 2888 { 2889 struct mtd_info *mtd = nand_to_mtd(&host->chip); 2890 struct nand_chip *chip = &host->chip; 2891 const struct nand_ecc_props *requirements = 2892 nanddev_get_ecc_requirements(&chip->base); 2893 struct nand_memory_organization *memorg = 2894 nanddev_get_memorg(&chip->base); 2895 struct brcmnand_controller *ctrl = host->ctrl; 2896 struct brcmnand_cfg *cfg = &host->hwcfg; 2897 struct device_node *np = nand_get_flash_node(chip); 2898 u32 offs, tmp, oob_sector; 2899 bool use_strap = false; 2900 char msg[128]; 2901 int ret; 2902 2903 memset(cfg, 0, sizeof(*cfg)); 2904 use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap"); 2905 2906 /* 2907 * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out 2908 * if both exist. 2909 */ 2910 if (chip->ecc.strength && use_strap) { 2911 dev_err(ctrl->dev, 2912 "ECC strap and DT ECC configuration properties are mutually exclusive\n"); 2913 return -EINVAL; 2914 } 2915 2916 if (use_strap) 2917 brcmnand_get_ecc_settings(host, chip); 2918 2919 ret = of_property_read_u32(np, "brcm,nand-oob-sector-size", 2920 &oob_sector); 2921 if (ret) { 2922 if (use_strap) 2923 cfg->spare_area_size = brcmnand_get_spare_size(host); 2924 else 2925 /* Use detected size */ 2926 cfg->spare_area_size = mtd->oobsize / 2927 (mtd->writesize >> FC_SHIFT); 2928 } else { 2929 cfg->spare_area_size = oob_sector; 2930 } 2931 if (cfg->spare_area_size > ctrl->max_oob) 2932 cfg->spare_area_size = ctrl->max_oob; 2933 /* 2934 * Set mtd and memorg oobsize to be consistent with controller's 2935 * spare_area_size, as the rest is inaccessible. 2936 */ 2937 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); 2938 memorg->oobsize = mtd->oobsize; 2939 2940 cfg->device_size = mtd->size; 2941 cfg->block_size = mtd->erasesize; 2942 cfg->page_size = mtd->writesize; 2943 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; 2944 cfg->col_adr_bytes = 2; 2945 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); 2946 2947 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { 2948 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n", 2949 chip->ecc.engine_type); 2950 return -EINVAL; 2951 } 2952 2953 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { 2954 if (chip->ecc.strength == 1 && chip->ecc.size == 512) 2955 /* Default to Hamming for 1-bit ECC, if unspecified */ 2956 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2957 else 2958 /* Otherwise, BCH */ 2959 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2960 } 2961 2962 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING && 2963 (chip->ecc.strength != 1 || chip->ecc.size != 512)) { 2964 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n", 2965 chip->ecc.strength, chip->ecc.size); 2966 return -EINVAL; 2967 } 2968 2969 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2970 (!chip->ecc.size || !chip->ecc.strength)) { 2971 if (requirements->step_size && requirements->strength) { 2972 /* use detected ECC parameters */ 2973 chip->ecc.size = requirements->step_size; 2974 chip->ecc.strength = requirements->strength; 2975 dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n", 2976 chip->ecc.size, chip->ecc.strength); 2977 } 2978 } 2979 2980 switch (chip->ecc.size) { 2981 case 512: 2982 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 2983 cfg->ecc_level = 15; 2984 else 2985 cfg->ecc_level = chip->ecc.strength; 2986 cfg->sector_size_1k = 0; 2987 break; 2988 case 1024: 2989 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { 2990 dev_err(ctrl->dev, "1KB sectors not supported\n"); 2991 return -EINVAL; 2992 } 2993 if (chip->ecc.strength & 0x1) { 2994 dev_err(ctrl->dev, 2995 "odd ECC not supported with 1KB sectors\n"); 2996 return -EINVAL; 2997 } 2998 2999 cfg->ecc_level = chip->ecc.strength >> 1; 3000 cfg->sector_size_1k = 1; 3001 break; 3002 default: 3003 dev_err(ctrl->dev, "unsupported ECC size: %d\n", 3004 chip->ecc.size); 3005 return -EINVAL; 3006 } 3007 3008 cfg->ful_adr_bytes = cfg->blk_adr_bytes; 3009 if (mtd->writesize > 512) 3010 cfg->ful_adr_bytes += cfg->col_adr_bytes; 3011 else 3012 cfg->ful_adr_bytes += 1; 3013 3014 ret = brcmnand_set_cfg(host, cfg); 3015 if (ret) 3016 return ret; 3017 3018 brcmnand_set_ecc_enabled(host, 1); 3019 3020 brcmnand_print_cfg(host, msg, cfg); 3021 dev_info(ctrl->dev, "detected %s\n", msg); 3022 3023 /* Configure ACC_CONTROL */ 3024 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); 3025 tmp = nand_readreg(ctrl, offs); 3026 tmp &= ~ACC_CONTROL_PARTIAL_PAGE; 3027 tmp &= ~ACC_CONTROL_RD_ERASED; 3028 3029 /* We need to turn on Read from erased paged protected by ECC */ 3030 if (ctrl->nand_version >= 0x0702) 3031 tmp |= ACC_CONTROL_RD_ERASED; 3032 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; 3033 if (ctrl->features & BRCMNAND_HAS_PREFETCH) 3034 tmp &= ~ACC_CONTROL_PREFETCH; 3035 3036 nand_writereg(ctrl, offs, tmp); 3037 3038 return 0; 3039 } 3040 3041 static int brcmnand_attach_chip(struct nand_chip *chip) 3042 { 3043 struct mtd_info *mtd = nand_to_mtd(chip); 3044 struct brcmnand_host *host = nand_get_controller_data(chip); 3045 int ret; 3046 3047 chip->options |= NAND_NO_SUBPAGE_WRITE; 3048 /* 3049 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA 3050 * to/from, and have nand_base pass us a bounce buffer instead, as 3051 * needed. 3052 */ 3053 chip->options |= NAND_USES_DMA; 3054 3055 if (chip->bbt_options & NAND_BBT_USE_FLASH) 3056 chip->bbt_options |= NAND_BBT_NO_OOB; 3057 3058 if (brcmnand_setup_dev(host)) 3059 return -ENXIO; 3060 3061 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; 3062 3063 /* only use our internal HW threshold */ 3064 mtd->bitflip_threshold = 1; 3065 3066 ret = brcmstb_choose_ecc_layout(host); 3067 3068 /* If OOB is written with ECC enabled it will cause ECC errors */ 3069 if (is_hamming_ecc(host->ctrl, &host->hwcfg)) { 3070 chip->ecc.write_oob = brcmnand_write_oob_raw; 3071 chip->ecc.read_oob = brcmnand_read_oob_raw; 3072 } 3073 3074 return ret; 3075 } 3076 3077 static const struct nand_controller_ops brcmnand_controller_ops = { 3078 .attach_chip = brcmnand_attach_chip, 3079 .exec_op = brcmnand_exec_op, 3080 }; 3081 3082 static int brcmnand_init_cs(struct brcmnand_host *host, 3083 const char * const *part_probe_types) 3084 { 3085 struct brcmnand_controller *ctrl = host->ctrl; 3086 struct device *dev = ctrl->dev; 3087 struct mtd_info *mtd; 3088 struct nand_chip *chip; 3089 int ret; 3090 u16 cfg_offs; 3091 3092 mtd = nand_to_mtd(&host->chip); 3093 chip = &host->chip; 3094 3095 nand_set_controller_data(chip, host); 3096 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d", 3097 host->cs); 3098 if (!mtd->name) 3099 return -ENOMEM; 3100 3101 mtd->owner = THIS_MODULE; 3102 mtd->dev.parent = dev; 3103 3104 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 3105 chip->ecc.read_page = brcmnand_read_page; 3106 chip->ecc.write_page = brcmnand_write_page; 3107 chip->ecc.read_page_raw = brcmnand_read_page_raw; 3108 chip->ecc.write_page_raw = brcmnand_write_page_raw; 3109 chip->ecc.write_oob_raw = brcmnand_write_oob_raw; 3110 chip->ecc.read_oob_raw = brcmnand_read_oob_raw; 3111 chip->ecc.read_oob = brcmnand_read_oob; 3112 chip->ecc.write_oob = brcmnand_write_oob; 3113 3114 chip->controller = &ctrl->controller; 3115 ctrl->controller.controller_wp = 1; 3116 3117 /* 3118 * The bootloader might have configured 16bit mode but 3119 * NAND READID command only works in 8bit mode. We force 3120 * 8bit mode here to ensure that NAND READID commands works. 3121 */ 3122 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); 3123 nand_writereg(ctrl, cfg_offs, 3124 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH); 3125 3126 ret = nand_scan(chip, 1); 3127 if (ret) 3128 return ret; 3129 3130 ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); 3131 if (ret) 3132 nand_cleanup(chip); 3133 3134 return ret; 3135 } 3136 3137 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, 3138 int restore) 3139 { 3140 struct brcmnand_controller *ctrl = host->ctrl; 3141 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); 3142 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, 3143 BRCMNAND_CS_CFG_EXT); 3144 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 3145 BRCMNAND_CS_ACC_CONTROL); 3146 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); 3147 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); 3148 3149 if (restore) { 3150 nand_writereg(ctrl, cfg_offs, host->hwcfg.config); 3151 if (cfg_offs != cfg_ext_offs) 3152 nand_writereg(ctrl, cfg_ext_offs, 3153 host->hwcfg.config_ext); 3154 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); 3155 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); 3156 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); 3157 } else { 3158 host->hwcfg.config = nand_readreg(ctrl, cfg_offs); 3159 if (cfg_offs != cfg_ext_offs) 3160 host->hwcfg.config_ext = 3161 nand_readreg(ctrl, cfg_ext_offs); 3162 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); 3163 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); 3164 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); 3165 } 3166 } 3167 3168 static int brcmnand_suspend(struct device *dev) 3169 { 3170 struct brcmnand_controller *ctrl = dev_get_drvdata(dev); 3171 struct brcmnand_host *host; 3172 3173 list_for_each_entry(host, &ctrl->host_list, node) 3174 brcmnand_save_restore_cs_config(host, 0); 3175 3176 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); 3177 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); 3178 ctrl->corr_stat_threshold = 3179 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); 3180 3181 if (has_flash_dma(ctrl)) 3182 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); 3183 else if (has_edu(ctrl)) 3184 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); 3185 3186 return 0; 3187 } 3188 3189 static int brcmnand_resume(struct device *dev) 3190 { 3191 struct brcmnand_controller *ctrl = dev_get_drvdata(dev); 3192 struct brcmnand_host *host; 3193 3194 if (has_flash_dma(ctrl)) { 3195 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); 3196 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); 3197 } 3198 3199 if (has_edu(ctrl)) { 3200 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); 3201 edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config); 3202 edu_readl(ctrl, EDU_CONFIG); 3203 brcmnand_edu_init(ctrl); 3204 } 3205 3206 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); 3207 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); 3208 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, 3209 ctrl->corr_stat_threshold); 3210 if (ctrl->soc) { 3211 /* Clear/re-enable interrupt */ 3212 ctrl->soc->ctlrdy_ack(ctrl->soc); 3213 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); 3214 } 3215 3216 list_for_each_entry(host, &ctrl->host_list, node) { 3217 struct nand_chip *chip = &host->chip; 3218 3219 brcmnand_save_restore_cs_config(host, 1); 3220 3221 /* Reset the chip, required by some chips after power-up */ 3222 nand_reset(chip, 0); 3223 } 3224 3225 return 0; 3226 } 3227 3228 const struct dev_pm_ops brcmnand_pm_ops = { 3229 .suspend = brcmnand_suspend, 3230 .resume = brcmnand_resume, 3231 }; 3232 EXPORT_SYMBOL_GPL(brcmnand_pm_ops); 3233 3234 static const struct of_device_id __maybe_unused brcmnand_of_match[] = { 3235 { .compatible = "brcm,brcmnand-v2.1" }, 3236 { .compatible = "brcm,brcmnand-v2.2" }, 3237 { .compatible = "brcm,brcmnand-v4.0" }, 3238 { .compatible = "brcm,brcmnand-v5.0" }, 3239 { .compatible = "brcm,brcmnand-v6.0" }, 3240 { .compatible = "brcm,brcmnand-v6.1" }, 3241 { .compatible = "brcm,brcmnand-v6.2" }, 3242 { .compatible = "brcm,brcmnand-v7.0" }, 3243 { .compatible = "brcm,brcmnand-v7.1" }, 3244 { .compatible = "brcm,brcmnand-v7.2" }, 3245 { .compatible = "brcm,brcmnand-v7.3" }, 3246 {}, 3247 }; 3248 MODULE_DEVICE_TABLE(of, brcmnand_of_match); 3249 3250 /*********************************************************************** 3251 * Platform driver setup (per controller) 3252 ***********************************************************************/ 3253 static int brcmnand_edu_setup(struct platform_device *pdev) 3254 { 3255 struct device *dev = &pdev->dev; 3256 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); 3257 struct resource *res; 3258 int ret; 3259 3260 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu"); 3261 if (res) { 3262 ctrl->edu_base = devm_ioremap_resource(dev, res); 3263 if (IS_ERR(ctrl->edu_base)) 3264 return PTR_ERR(ctrl->edu_base); 3265 3266 ctrl->edu_offsets = edu_regs; 3267 3268 edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND | 3269 EDU_CONFIG_SWAP_CFG); 3270 edu_readl(ctrl, EDU_CONFIG); 3271 3272 /* initialize edu */ 3273 brcmnand_edu_init(ctrl); 3274 3275 ctrl->edu_irq = platform_get_irq_optional(pdev, 1); 3276 if (ctrl->edu_irq < 0) { 3277 dev_warn(dev, 3278 "FLASH EDU enabled, using ctlrdy irq\n"); 3279 } else { 3280 ret = devm_request_irq(dev, ctrl->edu_irq, 3281 brcmnand_edu_irq, 0, 3282 "brcmnand-edu", ctrl); 3283 if (ret < 0) { 3284 dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n", 3285 ctrl->edu_irq, ret); 3286 return ret; 3287 } 3288 3289 dev_info(dev, "FLASH EDU enabled using irq %u\n", 3290 ctrl->edu_irq); 3291 } 3292 } 3293 3294 return 0; 3295 } 3296 3297 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) 3298 { 3299 struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev); 3300 struct device *dev = &pdev->dev; 3301 struct device_node *dn = dev->of_node, *child; 3302 struct brcmnand_controller *ctrl; 3303 struct brcmnand_host *host; 3304 struct resource *res; 3305 int ret; 3306 3307 if (dn && !of_match_node(brcmnand_of_match, dn)) 3308 return -ENODEV; 3309 3310 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); 3311 if (!ctrl) 3312 return -ENOMEM; 3313 3314 dev_set_drvdata(dev, ctrl); 3315 ctrl->dev = dev; 3316 ctrl->soc = soc; 3317 3318 /* Enable the static key if the soc provides I/O operations indicating 3319 * that a non-memory mapped IO access path must be used 3320 */ 3321 if (brcmnand_soc_has_ops(ctrl->soc)) 3322 static_branch_enable(&brcmnand_soc_has_ops_key); 3323 3324 init_completion(&ctrl->done); 3325 init_completion(&ctrl->dma_done); 3326 init_completion(&ctrl->edu_done); 3327 nand_controller_init(&ctrl->controller); 3328 ctrl->controller.ops = &brcmnand_controller_ops; 3329 INIT_LIST_HEAD(&ctrl->host_list); 3330 3331 /* NAND register range */ 3332 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3333 ctrl->nand_base = devm_ioremap_resource(dev, res); 3334 if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc)) 3335 return PTR_ERR(ctrl->nand_base); 3336 3337 /* Enable clock before using NAND registers */ 3338 ctrl->clk = devm_clk_get(dev, "nand"); 3339 if (!IS_ERR(ctrl->clk)) { 3340 ret = clk_prepare_enable(ctrl->clk); 3341 if (ret) 3342 return ret; 3343 } else { 3344 ret = PTR_ERR(ctrl->clk); 3345 if (ret == -EPROBE_DEFER) 3346 return ret; 3347 3348 ctrl->clk = NULL; 3349 } 3350 3351 /* Initialize NAND revision */ 3352 ret = brcmnand_revision_init(ctrl); 3353 if (ret) 3354 goto err; 3355 3356 /* Only v5.0+ controllers have low level ops support */ 3357 if (ctrl->nand_version >= 0x0500) { 3358 ctrl->check_instr = brcmnand_check_instructions; 3359 ctrl->exec_instr = brcmnand_exec_instructions; 3360 } else { 3361 ctrl->check_instr = brcmnand_check_instructions_legacy; 3362 ctrl->exec_instr = brcmnand_exec_instructions_legacy; 3363 } 3364 3365 /* 3366 * Most chips have this cache at a fixed offset within 'nand' block. 3367 * Some must specify this region separately. 3368 */ 3369 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); 3370 if (res) { 3371 ctrl->nand_fc = devm_ioremap_resource(dev, res); 3372 if (IS_ERR(ctrl->nand_fc)) { 3373 ret = PTR_ERR(ctrl->nand_fc); 3374 goto err; 3375 } 3376 } else { 3377 ctrl->nand_fc = ctrl->nand_base + 3378 ctrl->reg_offsets[BRCMNAND_FC_BASE]; 3379 } 3380 3381 /* FLASH_DMA */ 3382 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); 3383 if (res) { 3384 ctrl->flash_dma_base = devm_ioremap_resource(dev, res); 3385 if (IS_ERR(ctrl->flash_dma_base)) { 3386 ret = PTR_ERR(ctrl->flash_dma_base); 3387 goto err; 3388 } 3389 3390 /* initialize the dma version */ 3391 brcmnand_flash_dma_revision_init(ctrl); 3392 3393 ret = -EIO; 3394 if (ctrl->nand_version >= 0x0700) 3395 ret = dma_set_mask_and_coherent(&pdev->dev, 3396 DMA_BIT_MASK(40)); 3397 if (ret) 3398 ret = dma_set_mask_and_coherent(&pdev->dev, 3399 DMA_BIT_MASK(32)); 3400 if (ret) 3401 goto err; 3402 3403 /* linked-list and stop on error */ 3404 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK); 3405 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); 3406 3407 /* Allocate descriptor(s) */ 3408 ctrl->dma_desc = dmam_alloc_coherent(dev, 3409 sizeof(*ctrl->dma_desc), 3410 &ctrl->dma_pa, GFP_KERNEL); 3411 if (!ctrl->dma_desc) { 3412 ret = -ENOMEM; 3413 goto err; 3414 } 3415 3416 ctrl->dma_irq = platform_get_irq(pdev, 1); 3417 if ((int)ctrl->dma_irq < 0) { 3418 dev_err(dev, "missing FLASH_DMA IRQ\n"); 3419 ret = -ENODEV; 3420 goto err; 3421 } 3422 3423 ret = devm_request_irq(dev, ctrl->dma_irq, 3424 brcmnand_dma_irq, 0, DRV_NAME, 3425 ctrl); 3426 if (ret < 0) { 3427 dev_err(dev, "can't allocate IRQ %d: error %d\n", 3428 ctrl->dma_irq, ret); 3429 goto err; 3430 } 3431 3432 dev_info(dev, "enabling FLASH_DMA\n"); 3433 /* set flash dma transfer function to call */ 3434 ctrl->dma_trans = brcmnand_dma_trans; 3435 } else { 3436 ret = brcmnand_edu_setup(pdev); 3437 if (ret < 0) 3438 goto err; 3439 3440 if (has_edu(ctrl)) 3441 /* set edu transfer function to call */ 3442 ctrl->dma_trans = brcmnand_edu_trans; 3443 } 3444 3445 /* Disable automatic device ID config, direct addressing */ 3446 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, 3447 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); 3448 /* Disable XOR addressing */ 3449 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); 3450 3451 /* Check if the board connects the WP pin */ 3452 if (of_property_read_bool(dn, "brcm,wp-not-connected")) 3453 wp_on = 0; 3454 3455 if (ctrl->features & BRCMNAND_HAS_WP) { 3456 /* Permanently disable write protection */ 3457 if (wp_on == 2) 3458 brcmnand_set_wp(ctrl, false); 3459 } else { 3460 wp_on = 0; 3461 } 3462 3463 /* IRQ */ 3464 ctrl->irq = platform_get_irq_optional(pdev, 0); 3465 if (ctrl->irq > 0) { 3466 /* 3467 * Some SoCs integrate this controller (e.g., its interrupt bits) in 3468 * interesting ways 3469 */ 3470 if (soc) { 3471 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, 3472 DRV_NAME, ctrl); 3473 3474 /* Enable interrupt */ 3475 ctrl->soc->ctlrdy_ack(ctrl->soc); 3476 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); 3477 } else { 3478 /* Use standard interrupt infrastructure */ 3479 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, 3480 DRV_NAME, ctrl); 3481 } 3482 if (ret < 0) { 3483 dev_err(dev, "can't allocate IRQ %d: error %d\n", 3484 ctrl->irq, ret); 3485 goto err; 3486 } 3487 } 3488 3489 for_each_available_child_of_node(dn, child) { 3490 if (of_device_is_compatible(child, "brcm,nandcs")) { 3491 3492 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 3493 if (!host) { 3494 of_node_put(child); 3495 ret = -ENOMEM; 3496 goto err; 3497 } 3498 host->pdev = pdev; 3499 host->ctrl = ctrl; 3500 3501 ret = of_property_read_u32(child, "reg", &host->cs); 3502 if (ret) { 3503 dev_err(dev, "can't get chip-select\n"); 3504 devm_kfree(dev, host); 3505 continue; 3506 } 3507 3508 nand_set_flash_node(&host->chip, child); 3509 3510 ret = brcmnand_init_cs(host, NULL); 3511 if (ret) { 3512 if (ret == -EPROBE_DEFER) { 3513 of_node_put(child); 3514 goto err; 3515 } 3516 devm_kfree(dev, host); 3517 continue; /* Try all chip-selects */ 3518 } 3519 3520 list_add_tail(&host->node, &ctrl->host_list); 3521 } 3522 } 3523 3524 if (!list_empty(&ctrl->host_list)) 3525 return 0; 3526 3527 if (!pd) { 3528 ret = -ENODEV; 3529 goto err; 3530 } 3531 3532 /* If we got there we must have been probing via platform data */ 3533 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 3534 if (!host) { 3535 ret = -ENOMEM; 3536 goto err; 3537 } 3538 host->pdev = pdev; 3539 host->ctrl = ctrl; 3540 host->cs = pd->chip_select; 3541 host->chip.ecc.size = pd->ecc_stepsize; 3542 host->chip.ecc.strength = pd->ecc_strength; 3543 3544 ret = brcmnand_init_cs(host, pd->part_probe_types); 3545 if (ret) 3546 goto err; 3547 3548 list_add_tail(&host->node, &ctrl->host_list); 3549 3550 /* No chip-selects could initialize properly */ 3551 if (list_empty(&ctrl->host_list)) { 3552 ret = -ENODEV; 3553 goto err; 3554 } 3555 3556 return 0; 3557 3558 err: 3559 clk_disable_unprepare(ctrl->clk); 3560 return ret; 3561 3562 } 3563 EXPORT_SYMBOL_GPL(brcmnand_probe); 3564 3565 void brcmnand_remove(struct platform_device *pdev) 3566 { 3567 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); 3568 struct brcmnand_host *host; 3569 struct nand_chip *chip; 3570 int ret; 3571 3572 list_for_each_entry(host, &ctrl->host_list, node) { 3573 chip = &host->chip; 3574 ret = mtd_device_unregister(nand_to_mtd(chip)); 3575 WARN_ON(ret); 3576 nand_cleanup(chip); 3577 } 3578 3579 clk_disable_unprepare(ctrl->clk); 3580 3581 dev_set_drvdata(&pdev->dev, NULL); 3582 } 3583 EXPORT_SYMBOL_GPL(brcmnand_remove); 3584 3585 MODULE_LICENSE("GPL v2"); 3586 MODULE_AUTHOR("Kevin Cernekee"); 3587 MODULE_AUTHOR("Brian Norris"); 3588 MODULE_DESCRIPTION("NAND driver for Broadcom chips"); 3589 MODULE_ALIAS("platform:brcmnand"); 3590