xref: /linux/drivers/mtd/nand/raw/au1550nd.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  *  Copyright (C) 2004 Embedded Edge, LLC
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/gpio.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/rawnand.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/platform_device.h>
18 #include <asm/io.h>
19 #include <asm/mach-au1x00/au1000.h>
20 #include <asm/mach-au1x00/au1550nd.h>
21 
22 
23 struct au1550nd_ctx {
24 	struct nand_chip chip;
25 
26 	int cs;
27 	void __iomem *base;
28 	void (*write_byte)(struct mtd_info *, u_char);
29 };
30 
31 /**
32  * au_read_byte -  read one byte from the chip
33  * @mtd:	MTD device structure
34  *
35  * read function for 8bit buswidth
36  */
37 static u_char au_read_byte(struct mtd_info *mtd)
38 {
39 	struct nand_chip *this = mtd_to_nand(mtd);
40 	u_char ret = readb(this->IO_ADDR_R);
41 	wmb(); /* drain writebuffer */
42 	return ret;
43 }
44 
45 /**
46  * au_write_byte -  write one byte to the chip
47  * @mtd:	MTD device structure
48  * @byte:	pointer to data byte to write
49  *
50  * write function for 8it buswidth
51  */
52 static void au_write_byte(struct mtd_info *mtd, u_char byte)
53 {
54 	struct nand_chip *this = mtd_to_nand(mtd);
55 	writeb(byte, this->IO_ADDR_W);
56 	wmb(); /* drain writebuffer */
57 }
58 
59 /**
60  * au_read_byte16 -  read one byte endianness aware from the chip
61  * @mtd:	MTD device structure
62  *
63  * read function for 16bit buswidth with endianness conversion
64  */
65 static u_char au_read_byte16(struct mtd_info *mtd)
66 {
67 	struct nand_chip *this = mtd_to_nand(mtd);
68 	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
69 	wmb(); /* drain writebuffer */
70 	return ret;
71 }
72 
73 /**
74  * au_write_byte16 -  write one byte endianness aware to the chip
75  * @mtd:	MTD device structure
76  * @byte:	pointer to data byte to write
77  *
78  * write function for 16bit buswidth with endianness conversion
79  */
80 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
81 {
82 	struct nand_chip *this = mtd_to_nand(mtd);
83 	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
84 	wmb(); /* drain writebuffer */
85 }
86 
87 /**
88  * au_read_word -  read one word from the chip
89  * @mtd:	MTD device structure
90  *
91  * read function for 16bit buswidth without endianness conversion
92  */
93 static u16 au_read_word(struct mtd_info *mtd)
94 {
95 	struct nand_chip *this = mtd_to_nand(mtd);
96 	u16 ret = readw(this->IO_ADDR_R);
97 	wmb(); /* drain writebuffer */
98 	return ret;
99 }
100 
101 /**
102  * au_write_buf -  write buffer to chip
103  * @mtd:	MTD device structure
104  * @buf:	data buffer
105  * @len:	number of bytes to write
106  *
107  * write function for 8bit buswidth
108  */
109 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
110 {
111 	int i;
112 	struct nand_chip *this = mtd_to_nand(mtd);
113 
114 	for (i = 0; i < len; i++) {
115 		writeb(buf[i], this->IO_ADDR_W);
116 		wmb(); /* drain writebuffer */
117 	}
118 }
119 
120 /**
121  * au_read_buf -  read chip data into buffer
122  * @mtd:	MTD device structure
123  * @buf:	buffer to store date
124  * @len:	number of bytes to read
125  *
126  * read function for 8bit buswidth
127  */
128 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
129 {
130 	int i;
131 	struct nand_chip *this = mtd_to_nand(mtd);
132 
133 	for (i = 0; i < len; i++) {
134 		buf[i] = readb(this->IO_ADDR_R);
135 		wmb(); /* drain writebuffer */
136 	}
137 }
138 
139 /**
140  * au_write_buf16 -  write buffer to chip
141  * @mtd:	MTD device structure
142  * @buf:	data buffer
143  * @len:	number of bytes to write
144  *
145  * write function for 16bit buswidth
146  */
147 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
148 {
149 	int i;
150 	struct nand_chip *this = mtd_to_nand(mtd);
151 	u16 *p = (u16 *) buf;
152 	len >>= 1;
153 
154 	for (i = 0; i < len; i++) {
155 		writew(p[i], this->IO_ADDR_W);
156 		wmb(); /* drain writebuffer */
157 	}
158 
159 }
160 
161 /**
162  * au_read_buf16 -  read chip data into buffer
163  * @mtd:	MTD device structure
164  * @buf:	buffer to store date
165  * @len:	number of bytes to read
166  *
167  * read function for 16bit buswidth
168  */
169 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
170 {
171 	int i;
172 	struct nand_chip *this = mtd_to_nand(mtd);
173 	u16 *p = (u16 *) buf;
174 	len >>= 1;
175 
176 	for (i = 0; i < len; i++) {
177 		p[i] = readw(this->IO_ADDR_R);
178 		wmb(); /* drain writebuffer */
179 	}
180 }
181 
182 /* Select the chip by setting nCE to low */
183 #define NAND_CTL_SETNCE		1
184 /* Deselect the chip by setting nCE to high */
185 #define NAND_CTL_CLRNCE		2
186 /* Select the command latch by setting CLE to high */
187 #define NAND_CTL_SETCLE		3
188 /* Deselect the command latch by setting CLE to low */
189 #define NAND_CTL_CLRCLE		4
190 /* Select the address latch by setting ALE to high */
191 #define NAND_CTL_SETALE		5
192 /* Deselect the address latch by setting ALE to low */
193 #define NAND_CTL_CLRALE		6
194 
195 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
196 {
197 	struct nand_chip *this = mtd_to_nand(mtd);
198 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
199 						chip);
200 
201 	switch (cmd) {
202 
203 	case NAND_CTL_SETCLE:
204 		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
205 		break;
206 
207 	case NAND_CTL_CLRCLE:
208 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
209 		break;
210 
211 	case NAND_CTL_SETALE:
212 		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
213 		break;
214 
215 	case NAND_CTL_CLRALE:
216 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
217 		/* FIXME: Nobody knows why this is necessary,
218 		 * but it works only that way */
219 		udelay(1);
220 		break;
221 
222 	case NAND_CTL_SETNCE:
223 		/* assert (force assert) chip enable */
224 		alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
225 		break;
226 
227 	case NAND_CTL_CLRNCE:
228 		/* deassert chip enable */
229 		alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
230 		break;
231 	}
232 
233 	this->IO_ADDR_R = this->IO_ADDR_W;
234 
235 	wmb(); /* Drain the writebuffer */
236 }
237 
238 int au1550_device_ready(struct mtd_info *mtd)
239 {
240 	return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
241 }
242 
243 /**
244  * au1550_select_chip - control -CE line
245  *	Forbid driving -CE manually permitting the NAND controller to do this.
246  *	Keeping -CE asserted during the whole sector reads interferes with the
247  *	NOR flash and PCMCIA drivers as it causes contention on the static bus.
248  *	We only have to hold -CE low for the NAND read commands since the flash
249  *	chip needs it to be asserted during chip not ready time but the NAND
250  *	controller keeps it released.
251  *
252  * @mtd:	MTD device structure
253  * @chip:	chipnumber to select, -1 for deselect
254  */
255 static void au1550_select_chip(struct mtd_info *mtd, int chip)
256 {
257 }
258 
259 /**
260  * au1550_command - Send command to NAND device
261  * @mtd:	MTD device structure
262  * @command:	the command to be sent
263  * @column:	the column address for this command, -1 if none
264  * @page_addr:	the page address for this command, -1 if none
265  */
266 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
267 {
268 	struct nand_chip *this = mtd_to_nand(mtd);
269 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
270 						chip);
271 	int ce_override = 0, i;
272 	unsigned long flags = 0;
273 
274 	/* Begin command latch cycle */
275 	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
276 	/*
277 	 * Write out the command to the device.
278 	 */
279 	if (command == NAND_CMD_SEQIN) {
280 		int readcmd;
281 
282 		if (column >= mtd->writesize) {
283 			/* OOB area */
284 			column -= mtd->writesize;
285 			readcmd = NAND_CMD_READOOB;
286 		} else if (column < 256) {
287 			/* First 256 bytes --> READ0 */
288 			readcmd = NAND_CMD_READ0;
289 		} else {
290 			column -= 256;
291 			readcmd = NAND_CMD_READ1;
292 		}
293 		ctx->write_byte(mtd, readcmd);
294 	}
295 	ctx->write_byte(mtd, command);
296 
297 	/* Set ALE and clear CLE to start address cycle */
298 	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
299 
300 	if (column != -1 || page_addr != -1) {
301 		au1550_hwcontrol(mtd, NAND_CTL_SETALE);
302 
303 		/* Serially input address */
304 		if (column != -1) {
305 			/* Adjust columns for 16 bit buswidth */
306 			if (this->options & NAND_BUSWIDTH_16 &&
307 					!nand_opcode_8bits(command))
308 				column >>= 1;
309 			ctx->write_byte(mtd, column);
310 		}
311 		if (page_addr != -1) {
312 			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
313 
314 			if (command == NAND_CMD_READ0 ||
315 			    command == NAND_CMD_READ1 ||
316 			    command == NAND_CMD_READOOB) {
317 				/*
318 				 * NAND controller will release -CE after
319 				 * the last address byte is written, so we'll
320 				 * have to forcibly assert it. No interrupts
321 				 * are allowed while we do this as we don't
322 				 * want the NOR flash or PCMCIA drivers to
323 				 * steal our precious bytes of data...
324 				 */
325 				ce_override = 1;
326 				local_irq_save(flags);
327 				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
328 			}
329 
330 			ctx->write_byte(mtd, (u8)(page_addr >> 8));
331 
332 			if (this->options & NAND_ROW_ADDR_3)
333 				ctx->write_byte(mtd,
334 						((page_addr >> 16) & 0x0f));
335 		}
336 		/* Latch in address */
337 		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
338 	}
339 
340 	/*
341 	 * Program and erase have their own busy handlers.
342 	 * Status and sequential in need no delay.
343 	 */
344 	switch (command) {
345 
346 	case NAND_CMD_PAGEPROG:
347 	case NAND_CMD_ERASE1:
348 	case NAND_CMD_ERASE2:
349 	case NAND_CMD_SEQIN:
350 	case NAND_CMD_STATUS:
351 		return;
352 
353 	case NAND_CMD_RESET:
354 		break;
355 
356 	case NAND_CMD_READ0:
357 	case NAND_CMD_READ1:
358 	case NAND_CMD_READOOB:
359 		/* Check if we're really driving -CE low (just in case) */
360 		if (unlikely(!ce_override))
361 			break;
362 
363 		/* Apply a short delay always to ensure that we do wait tWB. */
364 		ndelay(100);
365 		/* Wait for a chip to become ready... */
366 		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
367 			udelay(1);
368 
369 		/* Release -CE and re-enable interrupts. */
370 		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
371 		local_irq_restore(flags);
372 		return;
373 	}
374 	/* Apply this short delay always to ensure that we do wait tWB. */
375 	ndelay(100);
376 
377 	while(!this->dev_ready(mtd));
378 }
379 
380 static int find_nand_cs(unsigned long nand_base)
381 {
382 	void __iomem *base =
383 			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
384 	unsigned long addr, staddr, start, mask, end;
385 	int i;
386 
387 	for (i = 0; i < 4; i++) {
388 		addr = 0x1000 + (i * 0x10);			/* CSx */
389 		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
390 		/* figure out the decoded range of this CS */
391 		start = (staddr << 4) & 0xfffc0000;
392 		mask = (staddr << 18) & 0xfffc0000;
393 		end = (start | (start - 1)) & ~(start ^ mask);
394 		if ((nand_base >= start) && (nand_base < end))
395 			return i;
396 	}
397 
398 	return -ENODEV;
399 }
400 
401 static int au1550nd_probe(struct platform_device *pdev)
402 {
403 	struct au1550nd_platdata *pd;
404 	struct au1550nd_ctx *ctx;
405 	struct nand_chip *this;
406 	struct mtd_info *mtd;
407 	struct resource *r;
408 	int ret, cs;
409 
410 	pd = dev_get_platdata(&pdev->dev);
411 	if (!pd) {
412 		dev_err(&pdev->dev, "missing platform data\n");
413 		return -ENODEV;
414 	}
415 
416 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
417 	if (!ctx)
418 		return -ENOMEM;
419 
420 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
421 	if (!r) {
422 		dev_err(&pdev->dev, "no NAND memory resource\n");
423 		ret = -ENODEV;
424 		goto out1;
425 	}
426 	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
427 		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
428 		ret = -ENOMEM;
429 		goto out1;
430 	}
431 
432 	ctx->base = ioremap_nocache(r->start, 0x1000);
433 	if (!ctx->base) {
434 		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
435 		ret = -ENODEV;
436 		goto out2;
437 	}
438 
439 	this = &ctx->chip;
440 	mtd = nand_to_mtd(this);
441 	mtd->dev.parent = &pdev->dev;
442 
443 	/* figure out which CS# r->start belongs to */
444 	cs = find_nand_cs(r->start);
445 	if (cs < 0) {
446 		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
447 		ret = -ENODEV;
448 		goto out3;
449 	}
450 	ctx->cs = cs;
451 
452 	this->dev_ready = au1550_device_ready;
453 	this->select_chip = au1550_select_chip;
454 	this->cmdfunc = au1550_command;
455 
456 	/* 30 us command delay time */
457 	this->chip_delay = 30;
458 	this->ecc.mode = NAND_ECC_SOFT;
459 	this->ecc.algo = NAND_ECC_HAMMING;
460 
461 	if (pd->devwidth)
462 		this->options |= NAND_BUSWIDTH_16;
463 
464 	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
465 	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
466 	this->read_word = au_read_word;
467 	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
468 	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
469 
470 	ret = nand_scan(mtd, 1);
471 	if (ret) {
472 		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
473 		goto out3;
474 	}
475 
476 	mtd_device_register(mtd, pd->parts, pd->num_parts);
477 
478 	platform_set_drvdata(pdev, ctx);
479 
480 	return 0;
481 
482 out3:
483 	iounmap(ctx->base);
484 out2:
485 	release_mem_region(r->start, resource_size(r));
486 out1:
487 	kfree(ctx);
488 	return ret;
489 }
490 
491 static int au1550nd_remove(struct platform_device *pdev)
492 {
493 	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
494 	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495 
496 	nand_release(nand_to_mtd(&ctx->chip));
497 	iounmap(ctx->base);
498 	release_mem_region(r->start, 0x1000);
499 	kfree(ctx);
500 	return 0;
501 }
502 
503 static struct platform_driver au1550nd_driver = {
504 	.driver = {
505 		.name	= "au1550-nand",
506 	},
507 	.probe		= au1550nd_probe,
508 	.remove		= au1550nd_remove,
509 };
510 
511 module_platform_driver(au1550nd_driver);
512 
513 MODULE_LICENSE("GPL");
514 MODULE_AUTHOR("Embedded Edge, LLC");
515 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
516