xref: /linux/drivers/mtd/nand/raw/atmel/pmecc.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21  *
22  *   Derived from Das U-Boot source code
23  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25  *
26  *   Add Programmable Multibit ECC support for various AT91 SoC
27  *	Copyright 2012 ATMEL, Hong Xu
28  *
29  *   Add Nand Flash Controller support for SAMA5 SoC
30  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31  *
32  * The PMECC is an hardware assisted BCH engine, which means part of the
33  * ECC algorithm is left to the software. The hardware/software repartition
34  * is explained in the "PMECC Controller Functional Description" chapter in
35  * Atmel datasheets, and some of the functions in this file are directly
36  * implementing the algorithms described in the "Software Implementation"
37  * sub-section.
38  *
39  * TODO: it seems that the software BCH implementation in lib/bch.c is already
40  * providing some of the logic we are implementing here. It would be smart
41  * to expose the needed lib/bch.c helpers/functions and re-use them here.
42  */
43 
44 #include <linux/genalloc.h>
45 #include <linux/iopoll.h>
46 #include <linux/module.h>
47 #include <linux/mtd/rawnand.h>
48 #include <linux/of_irq.h>
49 #include <linux/of_platform.h>
50 #include <linux/platform_device.h>
51 #include <linux/slab.h>
52 
53 #include "pmecc.h"
54 
55 /* Galois field dimension */
56 #define PMECC_GF_DIMENSION_13			13
57 #define PMECC_GF_DIMENSION_14			14
58 
59 /* Primitive Polynomial used by PMECC */
60 #define PMECC_GF_13_PRIMITIVE_POLY		0x201b
61 #define PMECC_GF_14_PRIMITIVE_POLY		0x4443
62 
63 #define PMECC_LOOKUP_TABLE_SIZE_512		0x2000
64 #define PMECC_LOOKUP_TABLE_SIZE_1024		0x4000
65 
66 /* Time out value for reading PMECC status register */
67 #define PMECC_MAX_TIMEOUT_MS			100
68 
69 /* PMECC Register Definitions */
70 #define ATMEL_PMECC_CFG				0x0
71 #define PMECC_CFG_BCH_STRENGTH(x)		(x)
72 #define PMECC_CFG_BCH_STRENGTH_MASK		GENMASK(2, 0)
73 #define PMECC_CFG_SECTOR512			(0 << 4)
74 #define PMECC_CFG_SECTOR1024			(1 << 4)
75 #define PMECC_CFG_NSECTORS(x)			((fls(x) - 1) << 8)
76 #define PMECC_CFG_READ_OP			(0 << 12)
77 #define PMECC_CFG_WRITE_OP			(1 << 12)
78 #define PMECC_CFG_SPARE_ENABLE			BIT(16)
79 #define PMECC_CFG_AUTO_ENABLE			BIT(20)
80 
81 #define ATMEL_PMECC_SAREA			0x4
82 #define ATMEL_PMECC_SADDR			0x8
83 #define ATMEL_PMECC_EADDR			0xc
84 
85 #define ATMEL_PMECC_CLK				0x10
86 #define PMECC_CLK_133MHZ			(2 << 0)
87 
88 #define ATMEL_PMECC_CTRL			0x14
89 #define PMECC_CTRL_RST				BIT(0)
90 #define PMECC_CTRL_DATA				BIT(1)
91 #define PMECC_CTRL_USER				BIT(2)
92 #define PMECC_CTRL_ENABLE			BIT(4)
93 #define PMECC_CTRL_DISABLE			BIT(5)
94 
95 #define ATMEL_PMECC_SR				0x18
96 #define PMECC_SR_BUSY				BIT(0)
97 #define PMECC_SR_ENABLE				BIT(4)
98 
99 #define ATMEL_PMECC_IER				0x1c
100 #define ATMEL_PMECC_IDR				0x20
101 #define ATMEL_PMECC_IMR				0x24
102 #define ATMEL_PMECC_ISR				0x28
103 #define PMECC_ERROR_INT				BIT(0)
104 
105 #define ATMEL_PMECC_ECC(sector, n)		\
106 	((((sector) + 1) * 0x40) + (n))
107 
108 #define ATMEL_PMECC_REM(sector, n)		\
109 	((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
110 
111 /* PMERRLOC Register Definitions */
112 #define ATMEL_PMERRLOC_ELCFG			0x0
113 #define PMERRLOC_ELCFG_SECTOR_512		(0 << 0)
114 #define PMERRLOC_ELCFG_SECTOR_1024		(1 << 0)
115 #define PMERRLOC_ELCFG_NUM_ERRORS(n)		((n) << 16)
116 
117 #define ATMEL_PMERRLOC_ELPRIM			0x4
118 #define ATMEL_PMERRLOC_ELEN			0x8
119 #define ATMEL_PMERRLOC_ELDIS			0xc
120 #define PMERRLOC_DISABLE			BIT(0)
121 
122 #define ATMEL_PMERRLOC_ELSR			0x10
123 #define PMERRLOC_ELSR_BUSY			BIT(0)
124 
125 #define ATMEL_PMERRLOC_ELIER			0x14
126 #define ATMEL_PMERRLOC_ELIDR			0x18
127 #define ATMEL_PMERRLOC_ELIMR			0x1c
128 #define ATMEL_PMERRLOC_ELISR			0x20
129 #define PMERRLOC_ERR_NUM_MASK			GENMASK(12, 8)
130 #define PMERRLOC_CALC_DONE			BIT(0)
131 
132 #define ATMEL_PMERRLOC_SIGMA(x)			(((x) * 0x4) + 0x28)
133 
134 #define ATMEL_PMERRLOC_EL(offs, x)		(((x) * 0x4) + (offs))
135 
136 struct atmel_pmecc_gf_tables {
137 	u16 *alpha_to;
138 	u16 *index_of;
139 };
140 
141 struct atmel_pmecc_caps {
142 	const int *strengths;
143 	int nstrengths;
144 	int el_offset;
145 	bool correct_erased_chunks;
146 };
147 
148 struct atmel_pmecc {
149 	struct device *dev;
150 	const struct atmel_pmecc_caps *caps;
151 
152 	struct {
153 		void __iomem *base;
154 		void __iomem *errloc;
155 	} regs;
156 
157 	struct mutex lock;
158 };
159 
160 struct atmel_pmecc_user_conf_cache {
161 	u32 cfg;
162 	u32 sarea;
163 	u32 saddr;
164 	u32 eaddr;
165 };
166 
167 struct atmel_pmecc_user {
168 	struct atmel_pmecc_user_conf_cache cache;
169 	struct atmel_pmecc *pmecc;
170 	const struct atmel_pmecc_gf_tables *gf_tables;
171 	int eccbytes;
172 	s16 *partial_syn;
173 	s16 *si;
174 	s16 *lmu;
175 	s16 *smu;
176 	s32 *mu;
177 	s32 *dmu;
178 	s32 *delta;
179 	u32 isr;
180 };
181 
182 static DEFINE_MUTEX(pmecc_gf_tables_lock);
183 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
184 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
185 
186 static inline int deg(unsigned int poly)
187 {
188 	/* polynomial degree is the most-significant bit index */
189 	return fls(poly) - 1;
190 }
191 
192 static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
193 				       struct atmel_pmecc_gf_tables *gf_tables)
194 {
195 	unsigned int i, x = 1;
196 	const unsigned int k = BIT(deg(poly));
197 	unsigned int nn = BIT(mm) - 1;
198 
199 	/* primitive polynomial must be of degree m */
200 	if (k != (1u << mm))
201 		return -EINVAL;
202 
203 	for (i = 0; i < nn; i++) {
204 		gf_tables->alpha_to[i] = x;
205 		gf_tables->index_of[x] = i;
206 		if (i && (x == 1))
207 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
208 			return -EINVAL;
209 		x <<= 1;
210 		if (x & k)
211 			x ^= poly;
212 	}
213 	gf_tables->alpha_to[nn] = 1;
214 	gf_tables->index_of[0] = 0;
215 
216 	return 0;
217 }
218 
219 static const struct atmel_pmecc_gf_tables *
220 atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
221 {
222 	struct atmel_pmecc_gf_tables *gf_tables;
223 	unsigned int poly, degree, table_size;
224 	int ret;
225 
226 	if (req->ecc.sectorsize == 512) {
227 		degree = PMECC_GF_DIMENSION_13;
228 		poly = PMECC_GF_13_PRIMITIVE_POLY;
229 		table_size = PMECC_LOOKUP_TABLE_SIZE_512;
230 	} else {
231 		degree = PMECC_GF_DIMENSION_14;
232 		poly = PMECC_GF_14_PRIMITIVE_POLY;
233 		table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
234 	}
235 
236 	gf_tables = kzalloc(sizeof(*gf_tables) +
237 			    (2 * table_size * sizeof(u16)),
238 			    GFP_KERNEL);
239 	if (!gf_tables)
240 		return ERR_PTR(-ENOMEM);
241 
242 	gf_tables->alpha_to = (void *)(gf_tables + 1);
243 	gf_tables->index_of = gf_tables->alpha_to + table_size;
244 
245 	ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
246 	if (ret) {
247 		kfree(gf_tables);
248 		return ERR_PTR(ret);
249 	}
250 
251 	return gf_tables;
252 }
253 
254 static const struct atmel_pmecc_gf_tables *
255 atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
256 {
257 	const struct atmel_pmecc_gf_tables **gf_tables, *ret;
258 
259 	mutex_lock(&pmecc_gf_tables_lock);
260 	if (req->ecc.sectorsize == 512)
261 		gf_tables = &pmecc_gf_tables_512;
262 	else
263 		gf_tables = &pmecc_gf_tables_1024;
264 
265 	ret = *gf_tables;
266 
267 	if (!ret) {
268 		ret = atmel_pmecc_create_gf_tables(req);
269 		if (!IS_ERR(ret))
270 			*gf_tables = ret;
271 	}
272 	mutex_unlock(&pmecc_gf_tables_lock);
273 
274 	return ret;
275 }
276 
277 static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
278 					struct atmel_pmecc_user_req *req)
279 {
280 	int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
281 
282 	if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
283 		return -EINVAL;
284 
285 	if (req->ecc.ooboffset >= 0 &&
286 	    req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
287 		return -EINVAL;
288 
289 	if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
290 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
291 			return -EINVAL;
292 
293 		if (req->pagesize > 512)
294 			req->ecc.sectorsize = 1024;
295 		else
296 			req->ecc.sectorsize = 512;
297 	}
298 
299 	if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
300 		return -EINVAL;
301 
302 	if (req->pagesize % req->ecc.sectorsize)
303 		return -EINVAL;
304 
305 	req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
306 
307 	max_eccbytes = req->ecc.bytes;
308 
309 	for (i = 0; i < pmecc->caps->nstrengths; i++) {
310 		int nbytes, strength = pmecc->caps->strengths[i];
311 
312 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
313 		    strength < req->ecc.strength)
314 			continue;
315 
316 		nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
317 				      8);
318 		nbytes *= req->ecc.nsectors;
319 
320 		if (nbytes > max_eccbytes)
321 			break;
322 
323 		eccstrength = strength;
324 		eccbytes = nbytes;
325 
326 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
327 			break;
328 	}
329 
330 	if (!eccstrength)
331 		return -EINVAL;
332 
333 	req->ecc.bytes = eccbytes;
334 	req->ecc.strength = eccstrength;
335 
336 	if (req->ecc.ooboffset < 0)
337 		req->ecc.ooboffset = req->oobsize - eccbytes;
338 
339 	return 0;
340 }
341 
342 struct atmel_pmecc_user *
343 atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
344 			struct atmel_pmecc_user_req *req)
345 {
346 	struct atmel_pmecc_user *user;
347 	const struct atmel_pmecc_gf_tables *gf_tables;
348 	int strength, size, ret;
349 
350 	ret = atmel_pmecc_prepare_user_req(pmecc, req);
351 	if (ret)
352 		return ERR_PTR(ret);
353 
354 	size = sizeof(*user);
355 	size = ALIGN(size, sizeof(u16));
356 	/* Reserve space for partial_syn, si and smu */
357 	size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
358 		(2 + req->ecc.strength + 2);
359 	/* Reserve space for lmu. */
360 	size += (req->ecc.strength + 1) * sizeof(u16);
361 	/* Reserve space for mu, dmu and delta. */
362 	size = ALIGN(size, sizeof(s32));
363 	size += (req->ecc.strength + 1) * sizeof(s32) * 3;
364 
365 	user = devm_kzalloc(pmecc->dev, size, GFP_KERNEL);
366 	if (!user)
367 		return ERR_PTR(-ENOMEM);
368 
369 	user->pmecc = pmecc;
370 
371 	user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
372 	user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
373 	user->lmu = user->si + ((2 * req->ecc.strength) + 1);
374 	user->smu = user->lmu + (req->ecc.strength + 1);
375 	user->mu = (s32 *)PTR_ALIGN(user->smu +
376 				    (((2 * req->ecc.strength) + 1) *
377 				     (req->ecc.strength + 2)),
378 				    sizeof(s32));
379 	user->dmu = user->mu + req->ecc.strength + 1;
380 	user->delta = user->dmu + req->ecc.strength + 1;
381 
382 	gf_tables = atmel_pmecc_get_gf_tables(req);
383 	if (IS_ERR(gf_tables)) {
384 		kfree(user);
385 		return ERR_CAST(gf_tables);
386 	}
387 
388 	user->gf_tables = gf_tables;
389 
390 	user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
391 
392 	for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
393 		if (pmecc->caps->strengths[strength] == req->ecc.strength)
394 			break;
395 	}
396 
397 	user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
398 			  PMECC_CFG_NSECTORS(req->ecc.nsectors);
399 
400 	if (req->ecc.sectorsize == 1024)
401 		user->cache.cfg |= PMECC_CFG_SECTOR1024;
402 
403 	user->cache.sarea = req->oobsize - 1;
404 	user->cache.saddr = req->ecc.ooboffset;
405 	user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
406 
407 	return user;
408 }
409 EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
410 
411 static int get_strength(struct atmel_pmecc_user *user)
412 {
413 	const int *strengths = user->pmecc->caps->strengths;
414 
415 	return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
416 }
417 
418 static int get_sectorsize(struct atmel_pmecc_user *user)
419 {
420 	return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512;
421 }
422 
423 static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
424 {
425 	int strength = get_strength(user);
426 	u32 value;
427 	int i;
428 
429 	/* Fill odd syndromes */
430 	for (i = 0; i < strength; i++) {
431 		value = readl_relaxed(user->pmecc->regs.base +
432 				      ATMEL_PMECC_REM(sector, i / 2));
433 		if (i & 1)
434 			value >>= 16;
435 
436 		user->partial_syn[(2 * i) + 1] = value;
437 	}
438 }
439 
440 static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
441 {
442 	int degree = get_sectorsize(user) == 512 ? 13 : 14;
443 	int cw_len = BIT(degree) - 1;
444 	int strength = get_strength(user);
445 	s16 *alpha_to = user->gf_tables->alpha_to;
446 	s16 *index_of = user->gf_tables->index_of;
447 	s16 *partial_syn = user->partial_syn;
448 	s16 *si;
449 	int i, j;
450 
451 	/*
452 	 * si[] is a table that holds the current syndrome value,
453 	 * an element of that table belongs to the field
454 	 */
455 	si = user->si;
456 
457 	memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
458 
459 	/* Computation 2t syndromes based on S(x) */
460 	/* Odd syndromes */
461 	for (i = 1; i < 2 * strength; i += 2) {
462 		for (j = 0; j < degree; j++) {
463 			if (partial_syn[i] & BIT(j))
464 				si[i] = alpha_to[i * j] ^ si[i];
465 		}
466 	}
467 	/* Even syndrome = (Odd syndrome) ** 2 */
468 	for (i = 2, j = 1; j <= strength; i = ++j << 1) {
469 		if (si[j] == 0) {
470 			si[i] = 0;
471 		} else {
472 			s16 tmp;
473 
474 			tmp = index_of[si[j]];
475 			tmp = (tmp * 2) % cw_len;
476 			si[i] = alpha_to[tmp];
477 		}
478 	}
479 }
480 
481 static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
482 {
483 	s16 *lmu = user->lmu;
484 	s16 *si = user->si;
485 	s32 *mu = user->mu;
486 	s32 *dmu = user->dmu;
487 	s32 *delta = user->delta;
488 	int degree = get_sectorsize(user) == 512 ? 13 : 14;
489 	int cw_len = BIT(degree) - 1;
490 	int strength = get_strength(user);
491 	int num = 2 * strength + 1;
492 	s16 *index_of = user->gf_tables->index_of;
493 	s16 *alpha_to = user->gf_tables->alpha_to;
494 	int i, j, k;
495 	u32 dmu_0_count, tmp;
496 	s16 *smu = user->smu;
497 
498 	/* index of largest delta */
499 	int ro;
500 	int largest;
501 	int diff;
502 
503 	dmu_0_count = 0;
504 
505 	/* First Row */
506 
507 	/* Mu */
508 	mu[0] = -1;
509 
510 	memset(smu, 0, sizeof(s16) * num);
511 	smu[0] = 1;
512 
513 	/* discrepancy set to 1 */
514 	dmu[0] = 1;
515 	/* polynom order set to 0 */
516 	lmu[0] = 0;
517 	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
518 
519 	/* Second Row */
520 
521 	/* Mu */
522 	mu[1] = 0;
523 	/* Sigma(x) set to 1 */
524 	memset(&smu[num], 0, sizeof(s16) * num);
525 	smu[num] = 1;
526 
527 	/* discrepancy set to S1 */
528 	dmu[1] = si[1];
529 
530 	/* polynom order set to 0 */
531 	lmu[1] = 0;
532 
533 	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
534 
535 	/* Init the Sigma(x) last row */
536 	memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
537 
538 	for (i = 1; i <= strength; i++) {
539 		mu[i + 1] = i << 1;
540 		/* Begin Computing Sigma (Mu+1) and L(mu) */
541 		/* check if discrepancy is set to 0 */
542 		if (dmu[i] == 0) {
543 			dmu_0_count++;
544 
545 			tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
546 			if ((strength - (lmu[i] >> 1) - 1) & 0x1)
547 				tmp += 2;
548 			else
549 				tmp += 1;
550 
551 			if (dmu_0_count == tmp) {
552 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
553 					smu[(strength + 1) * num + j] =
554 							smu[i * num + j];
555 
556 				lmu[strength + 1] = lmu[i];
557 				return;
558 			}
559 
560 			/* copy polynom */
561 			for (j = 0; j <= lmu[i] >> 1; j++)
562 				smu[(i + 1) * num + j] = smu[i * num + j];
563 
564 			/* copy previous polynom order to the next */
565 			lmu[i + 1] = lmu[i];
566 		} else {
567 			ro = 0;
568 			largest = -1;
569 			/* find largest delta with dmu != 0 */
570 			for (j = 0; j < i; j++) {
571 				if ((dmu[j]) && (delta[j] > largest)) {
572 					largest = delta[j];
573 					ro = j;
574 				}
575 			}
576 
577 			/* compute difference */
578 			diff = (mu[i] - mu[ro]);
579 
580 			/* Compute degree of the new smu polynomial */
581 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
582 				lmu[i + 1] = lmu[i];
583 			else
584 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
585 
586 			/* Init smu[i+1] with 0 */
587 			for (k = 0; k < num; k++)
588 				smu[(i + 1) * num + k] = 0;
589 
590 			/* Compute smu[i+1] */
591 			for (k = 0; k <= lmu[ro] >> 1; k++) {
592 				s16 a, b, c;
593 
594 				if (!(smu[ro * num + k] && dmu[i]))
595 					continue;
596 
597 				a = index_of[dmu[i]];
598 				b = index_of[dmu[ro]];
599 				c = index_of[smu[ro * num + k]];
600 				tmp = a + (cw_len - b) + c;
601 				a = alpha_to[tmp % cw_len];
602 				smu[(i + 1) * num + (k + diff)] = a;
603 			}
604 
605 			for (k = 0; k <= lmu[i] >> 1; k++)
606 				smu[(i + 1) * num + k] ^= smu[i * num + k];
607 		}
608 
609 		/* End Computing Sigma (Mu+1) and L(mu) */
610 		/* In either case compute delta */
611 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
612 
613 		/* Do not compute discrepancy for the last iteration */
614 		if (i >= strength)
615 			continue;
616 
617 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
618 			tmp = 2 * (i - 1);
619 			if (k == 0) {
620 				dmu[i + 1] = si[tmp + 3];
621 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
622 				s16 a, b, c;
623 
624 				a = index_of[smu[(i + 1) * num + k]];
625 				b = si[2 * (i - 1) + 3 - k];
626 				c = index_of[b];
627 				tmp = a + c;
628 				tmp %= cw_len;
629 				dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
630 			}
631 		}
632 	}
633 }
634 
635 static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
636 {
637 	int sector_size = get_sectorsize(user);
638 	int degree = sector_size == 512 ? 13 : 14;
639 	struct atmel_pmecc *pmecc = user->pmecc;
640 	int strength = get_strength(user);
641 	int ret, roots_nbr, i, err_nbr = 0;
642 	int num = (2 * strength) + 1;
643 	s16 *smu = user->smu;
644 	u32 val;
645 
646 	writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
647 
648 	for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
649 		writel_relaxed(smu[(strength + 1) * num + i],
650 			       pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
651 		err_nbr++;
652 	}
653 
654 	val = (err_nbr - 1) << 16;
655 	if (sector_size == 1024)
656 		val |= 1;
657 
658 	writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
659 	writel((sector_size * 8) + (degree * strength),
660 	       pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
661 
662 	ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
663 					 ATMEL_PMERRLOC_ELISR,
664 					 val, val & PMERRLOC_CALC_DONE, 0,
665 					 PMECC_MAX_TIMEOUT_MS * 1000);
666 	if (ret) {
667 		dev_err(pmecc->dev,
668 			"PMECC: Timeout to calculate error location.\n");
669 		return ret;
670 	}
671 
672 	roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
673 	/* Number of roots == degree of smu hence <= cap */
674 	if (roots_nbr == user->lmu[strength + 1] >> 1)
675 		return err_nbr - 1;
676 
677 	/*
678 	 * Number of roots does not match the degree of smu
679 	 * unable to correct error.
680 	 */
681 	return -EBADMSG;
682 }
683 
684 int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
685 			       void *data, void *ecc)
686 {
687 	struct atmel_pmecc *pmecc = user->pmecc;
688 	int sectorsize = get_sectorsize(user);
689 	int eccbytes = user->eccbytes;
690 	int i, nerrors;
691 
692 	if (!(user->isr & BIT(sector)))
693 		return 0;
694 
695 	atmel_pmecc_gen_syndrome(user, sector);
696 	atmel_pmecc_substitute(user);
697 	atmel_pmecc_get_sigma(user);
698 
699 	nerrors = atmel_pmecc_err_location(user);
700 	if (nerrors < 0)
701 		return nerrors;
702 
703 	for (i = 0; i < nerrors; i++) {
704 		const char *area;
705 		int byte, bit;
706 		u32 errpos;
707 		u8 *ptr;
708 
709 		errpos = readl_relaxed(pmecc->regs.errloc +
710 				ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
711 		errpos--;
712 
713 		byte = errpos / 8;
714 		bit = errpos % 8;
715 
716 		if (byte < sectorsize) {
717 			ptr = data + byte;
718 			area = "data";
719 		} else if (byte < sectorsize + eccbytes) {
720 			ptr = ecc + byte - sectorsize;
721 			area = "ECC";
722 		} else {
723 			dev_dbg(pmecc->dev,
724 				"Invalid errpos value (%d, max is %d)\n",
725 				errpos, (sectorsize + eccbytes) * 8);
726 			return -EINVAL;
727 		}
728 
729 		dev_dbg(pmecc->dev,
730 			"Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
731 			area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
732 
733 		*ptr ^= BIT(bit);
734 	}
735 
736 	return nerrors;
737 }
738 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
739 
740 bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
741 {
742 	return user->pmecc->caps->correct_erased_chunks;
743 }
744 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
745 
746 void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
747 					int sector, void *ecc)
748 {
749 	struct atmel_pmecc *pmecc = user->pmecc;
750 	u8 *ptr = ecc;
751 	int i;
752 
753 	for (i = 0; i < user->eccbytes; i++)
754 		ptr[i] = readb_relaxed(pmecc->regs.base +
755 				       ATMEL_PMECC_ECC(sector, i));
756 }
757 EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
758 
759 void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
760 {
761 	writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
762 	writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
763 }
764 EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
765 
766 int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
767 {
768 	struct atmel_pmecc *pmecc = user->pmecc;
769 	u32 cfg;
770 
771 	if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
772 		dev_err(pmecc->dev, "Bad ECC operation!");
773 		return -EINVAL;
774 	}
775 
776 	mutex_lock(&user->pmecc->lock);
777 
778 	cfg = user->cache.cfg;
779 	if (op == NAND_ECC_WRITE)
780 		cfg |= PMECC_CFG_WRITE_OP;
781 	else
782 		cfg |= PMECC_CFG_AUTO_ENABLE;
783 
784 	writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
785 	writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
786 	writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
787 	writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
788 
789 	writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
790 	writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
791 
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
795 
796 void atmel_pmecc_disable(struct atmel_pmecc_user *user)
797 {
798 	atmel_pmecc_reset(user->pmecc);
799 	mutex_unlock(&user->pmecc->lock);
800 }
801 EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
802 
803 int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
804 {
805 	struct atmel_pmecc *pmecc = user->pmecc;
806 	u32 status;
807 	int ret;
808 
809 	ret = readl_relaxed_poll_timeout(pmecc->regs.base +
810 					 ATMEL_PMECC_SR,
811 					 status, !(status & PMECC_SR_BUSY), 0,
812 					 PMECC_MAX_TIMEOUT_MS * 1000);
813 	if (ret) {
814 		dev_err(pmecc->dev,
815 			"Timeout while waiting for PMECC ready.\n");
816 		return ret;
817 	}
818 
819 	user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
820 
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
824 
825 static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
826 					const struct atmel_pmecc_caps *caps,
827 					int pmecc_res_idx, int errloc_res_idx)
828 {
829 	struct device *dev = &pdev->dev;
830 	struct atmel_pmecc *pmecc;
831 
832 	pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
833 	if (!pmecc)
834 		return ERR_PTR(-ENOMEM);
835 
836 	pmecc->caps = caps;
837 	pmecc->dev = dev;
838 	mutex_init(&pmecc->lock);
839 
840 	pmecc->regs.base = devm_platform_ioremap_resource(pdev, pmecc_res_idx);
841 	if (IS_ERR(pmecc->regs.base))
842 		return ERR_CAST(pmecc->regs.base);
843 
844 	pmecc->regs.errloc = devm_platform_ioremap_resource(pdev, errloc_res_idx);
845 	if (IS_ERR(pmecc->regs.errloc))
846 		return ERR_CAST(pmecc->regs.errloc);
847 
848 	/* Disable all interrupts before registering the PMECC handler. */
849 	writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
850 	atmel_pmecc_reset(pmecc);
851 
852 	return pmecc;
853 }
854 
855 static void devm_atmel_pmecc_put(struct device *dev, void *res)
856 {
857 	struct atmel_pmecc **pmecc = res;
858 
859 	put_device((*pmecc)->dev);
860 }
861 
862 static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
863 						   struct device_node *np)
864 {
865 	struct platform_device *pdev;
866 	struct atmel_pmecc *pmecc, **ptr;
867 	int ret;
868 
869 	pdev = of_find_device_by_node(np);
870 	if (!pdev)
871 		return ERR_PTR(-EPROBE_DEFER);
872 	pmecc = platform_get_drvdata(pdev);
873 	if (!pmecc) {
874 		ret = -EPROBE_DEFER;
875 		goto err_put_device;
876 	}
877 
878 	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
879 	if (!ptr) {
880 		ret = -ENOMEM;
881 		goto err_put_device;
882 	}
883 
884 	*ptr = pmecc;
885 
886 	devres_add(userdev, ptr);
887 
888 	return pmecc;
889 
890 err_put_device:
891 	put_device(&pdev->dev);
892 	return ERR_PTR(ret);
893 }
894 
895 static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
896 
897 static struct atmel_pmecc_caps at91sam9g45_caps = {
898 	.strengths = atmel_pmecc_strengths,
899 	.nstrengths = 5,
900 	.el_offset = 0x8c,
901 };
902 
903 static struct atmel_pmecc_caps sama5d4_caps = {
904 	.strengths = atmel_pmecc_strengths,
905 	.nstrengths = 5,
906 	.el_offset = 0x8c,
907 	.correct_erased_chunks = true,
908 };
909 
910 static struct atmel_pmecc_caps sama5d2_caps = {
911 	.strengths = atmel_pmecc_strengths,
912 	.nstrengths = 6,
913 	.el_offset = 0xac,
914 	.correct_erased_chunks = true,
915 };
916 
917 static const struct of_device_id __maybe_unused atmel_pmecc_legacy_match[] = {
918 	{ .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
919 	{ .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
920 	{ /* sentinel */ }
921 };
922 
923 struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
924 {
925 	struct atmel_pmecc *pmecc;
926 	struct device_node *np;
927 
928 	if (!userdev)
929 		return ERR_PTR(-EINVAL);
930 
931 	if (!userdev->of_node)
932 		return NULL;
933 
934 	np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
935 	if (np) {
936 		pmecc = atmel_pmecc_get_by_node(userdev, np);
937 		of_node_put(np);
938 	} else {
939 		/*
940 		 * Support old DT bindings: in this case the PMECC iomem
941 		 * resources are directly defined in the user pdev at position
942 		 * 1 and 2. Extract all relevant information from there.
943 		 */
944 		struct platform_device *pdev = to_platform_device(userdev);
945 		const struct atmel_pmecc_caps *caps;
946 		const struct of_device_id *match;
947 
948 		/* No PMECC engine available. */
949 		if (!of_property_read_bool(userdev->of_node,
950 					   "atmel,has-pmecc"))
951 			return NULL;
952 
953 		caps = &at91sam9g45_caps;
954 
955 		/* Find the caps associated to the NAND dev node. */
956 		match = of_match_node(atmel_pmecc_legacy_match,
957 				      userdev->of_node);
958 		if (match && match->data)
959 			caps = match->data;
960 
961 		pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
962 	}
963 
964 	return pmecc;
965 }
966 EXPORT_SYMBOL(devm_atmel_pmecc_get);
967 
968 static const struct of_device_id atmel_pmecc_match[] = {
969 	{ .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
970 	{ .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
971 	{ .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
972 	{ /* sentinel */ }
973 };
974 MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
975 
976 static int atmel_pmecc_probe(struct platform_device *pdev)
977 {
978 	struct device *dev = &pdev->dev;
979 	const struct atmel_pmecc_caps *caps;
980 	struct atmel_pmecc *pmecc;
981 
982 	caps = of_device_get_match_data(&pdev->dev);
983 	if (!caps) {
984 		dev_err(dev, "Invalid caps\n");
985 		return -EINVAL;
986 	}
987 
988 	pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
989 	if (IS_ERR(pmecc))
990 		return PTR_ERR(pmecc);
991 
992 	platform_set_drvdata(pdev, pmecc);
993 
994 	return 0;
995 }
996 
997 static struct platform_driver atmel_pmecc_driver = {
998 	.driver = {
999 		.name = "atmel-pmecc",
1000 		.of_match_table = atmel_pmecc_match,
1001 	},
1002 	.probe = atmel_pmecc_probe,
1003 };
1004 module_platform_driver(atmel_pmecc_driver);
1005 
1006 MODULE_LICENSE("GPL");
1007 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
1008 MODULE_DESCRIPTION("PMECC engine driver");
1009 MODULE_ALIAS("platform:atmel_pmecc");
1010