xref: /linux/drivers/mtd/nand/raw/atmel/nand-controller.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *
20  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22  *
23  *   Derived from Das U-Boot source code
24  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25  *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26  *
27  *   Add Programmable Multibit ECC support for various AT91 SoC
28  *	Copyright 2012 ATMEL, Hong Xu
29  *
30  *   Add Nand Flash Controller support for SAMA5 SoC
31  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32  *
33  * A few words about the naming convention in this file. This convention
34  * applies to structure and function names.
35  *
36  * Prefixes:
37  *
38  * - atmel_nand_: all generic structures/functions
39  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40  *		      (at91sam9 and avr32 SoCs)
41  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42  *		       (sama5 SoCs and later)
43  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44  *		 that is available in the HSMC block
45  * - <soc>_nand_: all SoC specific structures/functions
46  */
47 
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66 
67 #include "pmecc.h"
68 
69 #define ATMEL_HSMC_NFC_CFG			0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
80 
81 #define ATMEL_HSMC_NFC_CTRL			0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
84 
85 #define ATMEL_HSMC_NFC_SR			0x8
86 #define ATMEL_HSMC_NFC_IER			0xc
87 #define ATMEL_HSMC_NFC_IDR			0x10
88 #define ATMEL_HSMC_NFC_IMR			0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR			BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
102 						 ATMEL_HSMC_NFC_SR_UNDEF | \
103 						 ATMEL_HSMC_NFC_SR_AWB | \
104 						 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
106 
107 #define ATMEL_HSMC_NFC_ADDR			0x18
108 #define ATMEL_HSMC_NFC_BANK			0x1c
109 
110 #define ATMEL_NFC_MAX_RB_ID			7
111 
112 #define ATMEL_NFC_SRAM_SIZE			0x2400
113 
114 #define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2				BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs)			((cs) << 22)
118 #define ATMEL_NFC_DATAEN			BIT(25)
119 #define ATMEL_NFC_NFCWR				BIT(26)
120 
121 #define ATMEL_NFC_MAX_ADDR_CYCLES		5
122 
123 #define ATMEL_NAND_ALE_OFFSET			BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET			BIT(22)
125 
126 #define DEFAULT_TIMEOUT_MS			1000
127 #define MIN_DMA_LEN				128
128 
129 static bool atmel_nand_avoid_dma __read_mostly;
130 
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133 
134 enum atmel_nand_rb_type {
135 	ATMEL_NAND_NO_RB,
136 	ATMEL_NAND_NATIVE_RB,
137 	ATMEL_NAND_GPIO_RB,
138 };
139 
140 struct atmel_nand_rb {
141 	enum atmel_nand_rb_type type;
142 	union {
143 		struct gpio_desc *gpio;
144 		int id;
145 	};
146 };
147 
148 struct atmel_nand_cs {
149 	int id;
150 	struct atmel_nand_rb rb;
151 	struct gpio_desc *csgpio;
152 	struct {
153 		void __iomem *virt;
154 		dma_addr_t dma;
155 	} io;
156 
157 	struct atmel_smc_cs_conf smcconf;
158 };
159 
160 struct atmel_nand {
161 	struct list_head node;
162 	struct device *dev;
163 	struct nand_chip base;
164 	struct atmel_nand_cs *activecs;
165 	struct atmel_pmecc_user *pmecc;
166 	struct gpio_desc *cdgpio;
167 	int numcs;
168 	struct atmel_nand_cs cs[] __counted_by(numcs);
169 };
170 
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 	return container_of(chip, struct atmel_nand, base);
174 }
175 
176 enum atmel_nfc_data_xfer {
177 	ATMEL_NFC_NO_DATA,
178 	ATMEL_NFC_READ_DATA,
179 	ATMEL_NFC_WRITE_DATA,
180 };
181 
182 struct atmel_nfc_op {
183 	u8 cs;
184 	u8 ncmds;
185 	u8 cmds[2];
186 	u8 naddrs;
187 	u8 addrs[5];
188 	enum atmel_nfc_data_xfer data;
189 	u32 wait;
190 	u32 errors;
191 };
192 
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195 
196 struct atmel_nand_controller_ops {
197 	int (*probe)(struct platform_device *pdev,
198 		     const struct atmel_nand_controller_caps *caps);
199 	int (*remove)(struct atmel_nand_controller *nc);
200 	void (*nand_init)(struct atmel_nand_controller *nc,
201 			  struct atmel_nand *nand);
202 	int (*ecc_init)(struct nand_chip *chip);
203 	int (*setup_interface)(struct atmel_nand *nand, int csline,
204 			       const struct nand_interface_config *conf);
205 	int (*exec_op)(struct atmel_nand *nand,
206 		       const struct nand_operation *op, bool check_only);
207 };
208 
209 struct atmel_nand_controller_caps {
210 	bool has_dma;
211 	bool legacy_of_bindings;
212 	u32 ale_offs;
213 	u32 cle_offs;
214 	const char *ebi_csa_regmap_name;
215 	const struct atmel_nand_controller_ops *ops;
216 };
217 
218 struct atmel_nand_controller {
219 	struct nand_controller base;
220 	const struct atmel_nand_controller_caps *caps;
221 	struct device *dev;
222 	struct regmap *smc;
223 	struct dma_chan *dmac;
224 	struct atmel_pmecc *pmecc;
225 	struct list_head chips;
226 	struct clk *mck;
227 };
228 
229 static inline struct atmel_nand_controller *
230 to_nand_controller(struct nand_controller *ctl)
231 {
232 	return container_of(ctl, struct atmel_nand_controller, base);
233 }
234 
235 struct atmel_smc_nand_ebi_csa_cfg {
236 	u32 offs;
237 	u32 nfd0_on_d16;
238 };
239 
240 struct atmel_smc_nand_controller {
241 	struct atmel_nand_controller base;
242 	struct regmap *ebi_csa_regmap;
243 	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245 
246 static inline struct atmel_smc_nand_controller *
247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249 	return container_of(to_nand_controller(ctl),
250 			    struct atmel_smc_nand_controller, base);
251 }
252 
253 struct atmel_hsmc_nand_controller {
254 	struct atmel_nand_controller base;
255 	struct {
256 		struct gen_pool *pool;
257 		void __iomem *virt;
258 		dma_addr_t dma;
259 	} sram;
260 	const struct atmel_hsmc_reg_layout *hsmc_layout;
261 	struct regmap *io;
262 	struct atmel_nfc_op op;
263 	struct completion complete;
264 	u32 cfg;
265 	int irq;
266 
267 	/* Only used when instantiating from legacy DT bindings. */
268 	struct clk *clk;
269 };
270 
271 static inline struct atmel_hsmc_nand_controller *
272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274 	return container_of(to_nand_controller(ctl),
275 			    struct atmel_hsmc_nand_controller, base);
276 }
277 
278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280 	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 	op->wait ^= status & op->wait;
282 
283 	return !op->wait || op->errors;
284 }
285 
286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288 	struct atmel_hsmc_nand_controller *nc = data;
289 	u32 sr, rcvd;
290 	bool done;
291 
292 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293 
294 	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 	done = atmel_nfc_op_done(&nc->op, sr);
296 
297 	if (rcvd)
298 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299 
300 	if (done)
301 		complete(&nc->complete);
302 
303 	return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305 
306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 			  unsigned int timeout_ms)
308 {
309 	int ret;
310 
311 	if (!timeout_ms)
312 		timeout_ms = DEFAULT_TIMEOUT_MS;
313 
314 	if (poll) {
315 		u32 status;
316 
317 		ret = regmap_read_poll_timeout(nc->base.smc,
318 					       ATMEL_HSMC_NFC_SR, status,
319 					       atmel_nfc_op_done(&nc->op,
320 								 status),
321 					       0, timeout_ms * 1000);
322 	} else {
323 		init_completion(&nc->complete);
324 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 		ret = wait_for_completion_timeout(&nc->complete,
327 						msecs_to_jiffies(timeout_ms));
328 		if (!ret)
329 			ret = -ETIMEDOUT;
330 		else
331 			ret = 0;
332 
333 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334 	}
335 
336 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 		ret = -ETIMEDOUT;
339 	}
340 
341 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 		dev_err(nc->base.dev, "Access to an undefined area\n");
343 		ret = -EIO;
344 	}
345 
346 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 		dev_err(nc->base.dev, "Access while busy\n");
348 		ret = -EIO;
349 	}
350 
351 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 		dev_err(nc->base.dev, "Wrong access size\n");
353 		ret = -EIO;
354 	}
355 
356 	return ret;
357 }
358 
359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361 	struct completion *finished = data;
362 
363 	complete(finished);
364 }
365 
366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 				   void *buf, dma_addr_t dev_dma, size_t len,
368 				   enum dma_data_direction dir)
369 {
370 	DECLARE_COMPLETION_ONSTACK(finished);
371 	dma_addr_t src_dma, dst_dma, buf_dma;
372 	struct dma_async_tx_descriptor *tx;
373 	dma_cookie_t cookie;
374 
375 	buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 	if (dma_mapping_error(nc->dev, buf_dma)) {
377 		dev_err(nc->dev,
378 			"Failed to prepare a buffer for DMA access\n");
379 		goto err;
380 	}
381 
382 	if (dir == DMA_FROM_DEVICE) {
383 		src_dma = dev_dma;
384 		dst_dma = buf_dma;
385 	} else {
386 		src_dma = buf_dma;
387 		dst_dma = dev_dma;
388 	}
389 
390 	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 	if (!tx) {
393 		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 		goto err_unmap;
395 	}
396 
397 	tx->callback = atmel_nand_dma_transfer_finished;
398 	tx->callback_param = &finished;
399 
400 	cookie = dmaengine_submit(tx);
401 	if (dma_submit_error(cookie)) {
402 		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 		goto err_unmap;
404 	}
405 
406 	dma_async_issue_pending(nc->dmac);
407 	wait_for_completion(&finished);
408 	dma_unmap_single(nc->dev, buf_dma, len, dir);
409 
410 	return 0;
411 
412 err_unmap:
413 	dma_unmap_single(nc->dev, buf_dma, len, dir);
414 
415 err:
416 	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417 
418 	return -EIO;
419 }
420 
421 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422 {
423 	u8 *addrs = nc->op.addrs;
424 	unsigned int op = 0;
425 	u32 addr, val;
426 	int i, ret;
427 
428 	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429 
430 	for (i = 0; i < nc->op.ncmds; i++)
431 		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432 
433 	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435 
436 	op |= ATMEL_NFC_CSID(nc->op.cs) |
437 	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
438 
439 	if (nc->op.ncmds > 1)
440 		op |= ATMEL_NFC_VCMD2;
441 
442 	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443 	       (addrs[3] << 24);
444 
445 	if (nc->op.data != ATMEL_NFC_NO_DATA) {
446 		op |= ATMEL_NFC_DATAEN;
447 		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448 
449 		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450 			op |= ATMEL_NFC_NFCWR;
451 	}
452 
453 	/* Clear all flags. */
454 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455 
456 	/* Send the command. */
457 	regmap_write(nc->io, op, addr);
458 
459 	ret = atmel_nfc_wait(nc, poll, 0);
460 	if (ret)
461 		dev_err(nc->base.dev,
462 			"Failed to send NAND command (err = %d)!",
463 			ret);
464 
465 	/* Reset the op state. */
466 	memset(&nc->op, 0, sizeof(nc->op));
467 
468 	return ret;
469 }
470 
471 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472 			       unsigned int len, bool force_8bit)
473 {
474 	struct atmel_nand_controller *nc;
475 
476 	nc = to_nand_controller(nand->base.controller);
477 
478 	/*
479 	 * If the controller supports DMA, the buffer address is DMA-able and
480 	 * len is long enough to make DMA transfers profitable, let's trigger
481 	 * a DMA transfer. If it fails, fallback to PIO mode.
482 	 */
483 	if (nc->dmac && virt_addr_valid(buf) &&
484 	    len >= MIN_DMA_LEN && !force_8bit &&
485 	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486 				     DMA_FROM_DEVICE))
487 		return;
488 
489 	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490 		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491 	else
492 		ioread8_rep(nand->activecs->io.virt, buf, len);
493 }
494 
495 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496 				unsigned int len, bool force_8bit)
497 {
498 	struct atmel_nand_controller *nc;
499 
500 	nc = to_nand_controller(nand->base.controller);
501 
502 	/*
503 	 * If the controller supports DMA, the buffer address is DMA-able and
504 	 * len is long enough to make DMA transfers profitable, let's trigger
505 	 * a DMA transfer. If it fails, fallback to PIO mode.
506 	 */
507 	if (nc->dmac && virt_addr_valid(buf) &&
508 	    len >= MIN_DMA_LEN && !force_8bit &&
509 	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510 				     len, DMA_TO_DEVICE))
511 		return;
512 
513 	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514 		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515 	else
516 		iowrite8_rep(nand->activecs->io.virt, buf, len);
517 }
518 
519 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520 {
521 	if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522 		return nand_soft_waitrdy(&nand->base, timeout_ms);
523 
524 	return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525 				 timeout_ms);
526 }
527 
528 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529 				   unsigned int timeout_ms)
530 {
531 	struct atmel_hsmc_nand_controller *nc;
532 	u32 status, mask;
533 
534 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535 		return atmel_nand_waitrdy(nand, timeout_ms);
536 
537 	nc = to_hsmc_nand_controller(nand->base.controller);
538 	mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539 	return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540 					       status, status & mask,
541 					       10, timeout_ms * 1000);
542 }
543 
544 static void atmel_nand_select_target(struct atmel_nand *nand,
545 				     unsigned int cs)
546 {
547 	nand->activecs = &nand->cs[cs];
548 }
549 
550 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551 					  unsigned int cs)
552 {
553 	struct mtd_info *mtd = nand_to_mtd(&nand->base);
554 	struct atmel_hsmc_nand_controller *nc;
555 	u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556 		  ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557 		  ATMEL_HSMC_NFC_CFG_RSPARE;
558 
559 	nand->activecs = &nand->cs[cs];
560 	nc = to_hsmc_nand_controller(nand->base.controller);
561 	if (nc->cfg == cfg)
562 		return;
563 
564 	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565 			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566 			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567 			   ATMEL_HSMC_NFC_CFG_RSPARE |
568 			   ATMEL_HSMC_NFC_CFG_WSPARE,
569 			   cfg);
570 	nc->cfg = cfg;
571 }
572 
573 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574 				     const struct nand_op_instr *instr)
575 {
576 	struct atmel_nand_controller *nc;
577 	unsigned int i;
578 
579 	nc = to_nand_controller(nand->base.controller);
580 	switch (instr->type) {
581 	case NAND_OP_CMD_INSTR:
582 		writeb(instr->ctx.cmd.opcode,
583 		       nand->activecs->io.virt + nc->caps->cle_offs);
584 		return 0;
585 	case NAND_OP_ADDR_INSTR:
586 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
587 			writeb(instr->ctx.addr.addrs[i],
588 			       nand->activecs->io.virt + nc->caps->ale_offs);
589 		return 0;
590 	case NAND_OP_DATA_IN_INSTR:
591 		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592 				   instr->ctx.data.len,
593 				   instr->ctx.data.force_8bit);
594 		return 0;
595 	case NAND_OP_DATA_OUT_INSTR:
596 		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597 				    instr->ctx.data.len,
598 				    instr->ctx.data.force_8bit);
599 		return 0;
600 	case NAND_OP_WAITRDY_INSTR:
601 		return atmel_nand_waitrdy(nand,
602 					  instr->ctx.waitrdy.timeout_ms);
603 	default:
604 		break;
605 	}
606 
607 	return -EINVAL;
608 }
609 
610 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611 				  const struct nand_operation *op,
612 				  bool check_only)
613 {
614 	unsigned int i;
615 	int ret = 0;
616 
617 	if (check_only)
618 		return 0;
619 
620 	atmel_nand_select_target(nand, op->cs);
621 	gpiod_set_value(nand->activecs->csgpio, 0);
622 	for (i = 0; i < op->ninstrs; i++) {
623 		ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624 		if (ret)
625 			break;
626 	}
627 	gpiod_set_value(nand->activecs->csgpio, 1);
628 
629 	return ret;
630 }
631 
632 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633 				    const struct nand_subop *subop)
634 {
635 	struct atmel_nand *nand = to_atmel_nand(chip);
636 	struct atmel_hsmc_nand_controller *nc;
637 	unsigned int i, j;
638 
639 	nc = to_hsmc_nand_controller(chip->controller);
640 
641 	nc->op.cs = nand->activecs->id;
642 	for (i = 0; i < subop->ninstrs; i++) {
643 		const struct nand_op_instr *instr = &subop->instrs[i];
644 
645 		if (instr->type == NAND_OP_CMD_INSTR) {
646 			nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647 			continue;
648 		}
649 
650 		for (j = nand_subop_get_addr_start_off(subop, i);
651 		     j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652 			nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653 			nc->op.naddrs++;
654 		}
655 	}
656 
657 	return atmel_nfc_exec_op(nc, true);
658 }
659 
660 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661 			      const struct nand_subop *subop)
662 {
663 	const struct nand_op_instr *instr = subop->instrs;
664 	struct atmel_nand *nand = to_atmel_nand(chip);
665 
666 	if (instr->type == NAND_OP_DATA_IN_INSTR)
667 		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668 				   instr->ctx.data.len,
669 				   instr->ctx.data.force_8bit);
670 	else
671 		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672 				    instr->ctx.data.len,
673 				    instr->ctx.data.force_8bit);
674 
675 	return 0;
676 }
677 
678 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679 				   const struct nand_subop *subop)
680 {
681 	const struct nand_op_instr *instr = subop->instrs;
682 	struct atmel_nand *nand = to_atmel_nand(chip);
683 
684 	return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685 }
686 
687 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
690 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691 		NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698 );
699 
700 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701 				   const struct nand_operation *op,
702 				   bool check_only)
703 {
704 	int ret;
705 
706 	if (check_only)
707 		return nand_op_parser_exec_op(&nand->base,
708 					      &atmel_hsmc_op_parser, op, true);
709 
710 	atmel_hsmc_nand_select_target(nand, op->cs);
711 	ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712 				     false);
713 
714 	return ret;
715 }
716 
717 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718 				   bool oob_required)
719 {
720 	struct mtd_info *mtd = nand_to_mtd(chip);
721 	struct atmel_hsmc_nand_controller *nc;
722 	int ret = -EIO;
723 
724 	nc = to_hsmc_nand_controller(chip->controller);
725 
726 	if (nc->base.dmac)
727 		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728 					      nc->sram.dma, mtd->writesize,
729 					      DMA_TO_DEVICE);
730 
731 	/* Falling back to CPU copy. */
732 	if (ret)
733 		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734 
735 	if (oob_required)
736 		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737 			    mtd->oobsize);
738 }
739 
740 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741 				     bool oob_required)
742 {
743 	struct mtd_info *mtd = nand_to_mtd(chip);
744 	struct atmel_hsmc_nand_controller *nc;
745 	int ret = -EIO;
746 
747 	nc = to_hsmc_nand_controller(chip->controller);
748 
749 	if (nc->base.dmac)
750 		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751 					      mtd->writesize, DMA_FROM_DEVICE);
752 
753 	/* Falling back to CPU copy. */
754 	if (ret)
755 		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756 
757 	if (oob_required)
758 		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759 			      mtd->oobsize);
760 }
761 
762 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763 {
764 	struct mtd_info *mtd = nand_to_mtd(chip);
765 	struct atmel_hsmc_nand_controller *nc;
766 
767 	nc = to_hsmc_nand_controller(chip->controller);
768 
769 	if (column >= 0) {
770 		nc->op.addrs[nc->op.naddrs++] = column;
771 
772 		/*
773 		 * 2 address cycles for the column offset on large page NANDs.
774 		 */
775 		if (mtd->writesize > 512)
776 			nc->op.addrs[nc->op.naddrs++] = column >> 8;
777 	}
778 
779 	if (page >= 0) {
780 		nc->op.addrs[nc->op.naddrs++] = page;
781 		nc->op.addrs[nc->op.naddrs++] = page >> 8;
782 
783 		if (chip->options & NAND_ROW_ADDR_3)
784 			nc->op.addrs[nc->op.naddrs++] = page >> 16;
785 	}
786 }
787 
788 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789 {
790 	struct atmel_nand *nand = to_atmel_nand(chip);
791 	struct atmel_nand_controller *nc;
792 	int ret;
793 
794 	nc = to_nand_controller(chip->controller);
795 
796 	if (raw)
797 		return 0;
798 
799 	ret = atmel_pmecc_enable(nand->pmecc, op);
800 	if (ret)
801 		dev_err(nc->dev,
802 			"Failed to enable ECC engine (err = %d)\n", ret);
803 
804 	return ret;
805 }
806 
807 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808 {
809 	struct atmel_nand *nand = to_atmel_nand(chip);
810 
811 	if (!raw)
812 		atmel_pmecc_disable(nand->pmecc);
813 }
814 
815 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816 {
817 	struct atmel_nand *nand = to_atmel_nand(chip);
818 	struct mtd_info *mtd = nand_to_mtd(chip);
819 	struct atmel_nand_controller *nc;
820 	struct mtd_oob_region oobregion;
821 	void *eccbuf;
822 	int ret, i;
823 
824 	nc = to_nand_controller(chip->controller);
825 
826 	if (raw)
827 		return 0;
828 
829 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
830 	if (ret) {
831 		dev_err(nc->dev,
832 			"Failed to transfer NAND page data (err = %d)\n",
833 			ret);
834 		return ret;
835 	}
836 
837 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
838 	eccbuf = chip->oob_poi + oobregion.offset;
839 
840 	for (i = 0; i < chip->ecc.steps; i++) {
841 		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842 						   eccbuf);
843 		eccbuf += chip->ecc.bytes;
844 	}
845 
846 	return 0;
847 }
848 
849 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850 					 bool raw)
851 {
852 	struct atmel_nand *nand = to_atmel_nand(chip);
853 	struct mtd_info *mtd = nand_to_mtd(chip);
854 	struct atmel_nand_controller *nc;
855 	struct mtd_oob_region oobregion;
856 	int ret, i, max_bitflips = 0;
857 	void *databuf, *eccbuf;
858 
859 	nc = to_nand_controller(chip->controller);
860 
861 	if (raw)
862 		return 0;
863 
864 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
865 	if (ret) {
866 		dev_err(nc->dev,
867 			"Failed to read NAND page data (err = %d)\n",
868 			ret);
869 		return ret;
870 	}
871 
872 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
873 	eccbuf = chip->oob_poi + oobregion.offset;
874 	databuf = buf;
875 
876 	for (i = 0; i < chip->ecc.steps; i++) {
877 		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878 						 eccbuf);
879 		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880 			ret = nand_check_erased_ecc_chunk(databuf,
881 							  chip->ecc.size,
882 							  eccbuf,
883 							  chip->ecc.bytes,
884 							  NULL, 0,
885 							  chip->ecc.strength);
886 
887 		if (ret >= 0) {
888 			mtd->ecc_stats.corrected += ret;
889 			max_bitflips = max(ret, max_bitflips);
890 		} else {
891 			mtd->ecc_stats.failed++;
892 		}
893 
894 		databuf += chip->ecc.size;
895 		eccbuf += chip->ecc.bytes;
896 	}
897 
898 	return max_bitflips;
899 }
900 
901 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902 				     bool oob_required, int page, bool raw)
903 {
904 	struct mtd_info *mtd = nand_to_mtd(chip);
905 	struct atmel_nand *nand = to_atmel_nand(chip);
906 	int ret;
907 
908 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909 
910 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911 	if (ret)
912 		return ret;
913 
914 	nand_write_data_op(chip, buf, mtd->writesize, false);
915 
916 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917 	if (ret) {
918 		atmel_pmecc_disable(nand->pmecc);
919 		return ret;
920 	}
921 
922 	atmel_nand_pmecc_disable(chip, raw);
923 
924 	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925 
926 	return nand_prog_page_end_op(chip);
927 }
928 
929 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930 				       int oob_required, int page)
931 {
932 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933 }
934 
935 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936 					   const u8 *buf, int oob_required,
937 					   int page)
938 {
939 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940 }
941 
942 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943 				    bool oob_required, int page, bool raw)
944 {
945 	struct mtd_info *mtd = nand_to_mtd(chip);
946 	int ret;
947 
948 	nand_read_page_op(chip, page, 0, NULL, 0);
949 
950 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951 	if (ret)
952 		return ret;
953 
954 	ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955 	if (ret)
956 		goto out_disable;
957 
958 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959 	if (ret)
960 		goto out_disable;
961 
962 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963 
964 out_disable:
965 	atmel_nand_pmecc_disable(chip, raw);
966 
967 	return ret;
968 }
969 
970 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971 				      int oob_required, int page)
972 {
973 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974 }
975 
976 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977 					  int oob_required, int page)
978 {
979 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980 }
981 
982 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983 					  const u8 *buf, bool oob_required,
984 					  int page, bool raw)
985 {
986 	struct mtd_info *mtd = nand_to_mtd(chip);
987 	struct atmel_nand *nand = to_atmel_nand(chip);
988 	struct atmel_hsmc_nand_controller *nc;
989 	int ret;
990 
991 	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992 	nc = to_hsmc_nand_controller(chip->controller);
993 
994 	atmel_nfc_copy_to_sram(chip, buf, false);
995 
996 	nc->op.cmds[0] = NAND_CMD_SEQIN;
997 	nc->op.ncmds = 1;
998 	atmel_nfc_set_op_addr(chip, page, 0x0);
999 	nc->op.cs = nand->activecs->id;
1000 	nc->op.data = ATMEL_NFC_WRITE_DATA;
1001 
1002 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003 	if (ret)
1004 		return ret;
1005 
1006 	ret = atmel_nfc_exec_op(nc, false);
1007 	if (ret) {
1008 		atmel_nand_pmecc_disable(chip, raw);
1009 		dev_err(nc->base.dev,
1010 			"Failed to transfer NAND page data (err = %d)\n",
1011 			ret);
1012 		return ret;
1013 	}
1014 
1015 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016 
1017 	atmel_nand_pmecc_disable(chip, raw);
1018 
1019 	if (ret)
1020 		return ret;
1021 
1022 	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023 
1024 	return nand_prog_page_end_op(chip);
1025 }
1026 
1027 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028 					    const u8 *buf, int oob_required,
1029 					    int page)
1030 {
1031 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032 					      false);
1033 }
1034 
1035 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036 						const u8 *buf,
1037 						int oob_required, int page)
1038 {
1039 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040 					      true);
1041 }
1042 
1043 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044 					 bool oob_required, int page,
1045 					 bool raw)
1046 {
1047 	struct mtd_info *mtd = nand_to_mtd(chip);
1048 	struct atmel_nand *nand = to_atmel_nand(chip);
1049 	struct atmel_hsmc_nand_controller *nc;
1050 	int ret;
1051 
1052 	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053 	nc = to_hsmc_nand_controller(chip->controller);
1054 
1055 	/*
1056 	 * Optimized read page accessors only work when the NAND R/B pin is
1057 	 * connected to a native SoC R/B pin. If that's not the case, fallback
1058 	 * to the non-optimized one.
1059 	 */
1060 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061 		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062 						raw);
1063 
1064 	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065 
1066 	if (mtd->writesize > 512)
1067 		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068 
1069 	atmel_nfc_set_op_addr(chip, page, 0x0);
1070 	nc->op.cs = nand->activecs->id;
1071 	nc->op.data = ATMEL_NFC_READ_DATA;
1072 
1073 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074 	if (ret)
1075 		return ret;
1076 
1077 	ret = atmel_nfc_exec_op(nc, false);
1078 	if (ret) {
1079 		atmel_nand_pmecc_disable(chip, raw);
1080 		dev_err(nc->base.dev,
1081 			"Failed to load NAND page data (err = %d)\n",
1082 			ret);
1083 		return ret;
1084 	}
1085 
1086 	atmel_nfc_copy_from_sram(chip, buf, true);
1087 
1088 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089 
1090 	atmel_nand_pmecc_disable(chip, raw);
1091 
1092 	return ret;
1093 }
1094 
1095 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096 					   int oob_required, int page)
1097 {
1098 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099 					     false);
1100 }
1101 
1102 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103 					       u8 *buf, int oob_required,
1104 					       int page)
1105 {
1106 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107 					     true);
1108 }
1109 
1110 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111 {
1112 	const struct nand_ecc_props *requirements =
1113 		nanddev_get_ecc_requirements(&chip->base);
1114 	struct mtd_info *mtd = nand_to_mtd(chip);
1115 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116 	struct atmel_nand *nand = to_atmel_nand(chip);
1117 	struct atmel_nand_controller *nc;
1118 	struct atmel_pmecc_user_req req;
1119 
1120 	nc = to_nand_controller(chip->controller);
1121 
1122 	if (!nc->pmecc) {
1123 		dev_err(nc->dev, "HW ECC not supported\n");
1124 		return -ENOTSUPP;
1125 	}
1126 
1127 	if (nc->caps->legacy_of_bindings) {
1128 		u32 val;
1129 
1130 		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131 					  &val))
1132 			chip->ecc.strength = val;
1133 
1134 		if (!of_property_read_u32(nc->dev->of_node,
1135 					  "atmel,pmecc-sector-size",
1136 					  &val))
1137 			chip->ecc.size = val;
1138 	}
1139 
1140 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142 	else if (chip->ecc.strength)
1143 		req.ecc.strength = chip->ecc.strength;
1144 	else if (requirements->strength)
1145 		req.ecc.strength = requirements->strength;
1146 	else
1147 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148 
1149 	if (chip->ecc.size)
1150 		req.ecc.sectorsize = chip->ecc.size;
1151 	else if (requirements->step_size)
1152 		req.ecc.sectorsize = requirements->step_size;
1153 	else
1154 		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155 
1156 	req.pagesize = mtd->writesize;
1157 	req.oobsize = mtd->oobsize;
1158 
1159 	if (mtd->writesize <= 512) {
1160 		req.ecc.bytes = 4;
1161 		req.ecc.ooboffset = 0;
1162 	} else {
1163 		req.ecc.bytes = mtd->oobsize - 2;
1164 		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165 	}
1166 
1167 	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168 	if (IS_ERR(nand->pmecc))
1169 		return PTR_ERR(nand->pmecc);
1170 
1171 	chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172 	chip->ecc.size = req.ecc.sectorsize;
1173 	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174 	chip->ecc.strength = req.ecc.strength;
1175 
1176 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1177 
1178 	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179 
1180 	return 0;
1181 }
1182 
1183 static int atmel_nand_ecc_init(struct nand_chip *chip)
1184 {
1185 	struct atmel_nand_controller *nc;
1186 	int ret;
1187 
1188 	nc = to_nand_controller(chip->controller);
1189 
1190 	switch (chip->ecc.engine_type) {
1191 	case NAND_ECC_ENGINE_TYPE_NONE:
1192 	case NAND_ECC_ENGINE_TYPE_SOFT:
1193 		/*
1194 		 * Nothing to do, the core will initialize everything for us.
1195 		 */
1196 		break;
1197 
1198 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199 		ret = atmel_nand_pmecc_init(chip);
1200 		if (ret)
1201 			return ret;
1202 
1203 		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204 		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205 		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206 		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207 		break;
1208 
1209 	default:
1210 		/* Other modes are not supported. */
1211 		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212 			chip->ecc.engine_type);
1213 		return -ENOTSUPP;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220 {
1221 	int ret;
1222 
1223 	ret = atmel_nand_ecc_init(chip);
1224 	if (ret)
1225 		return ret;
1226 
1227 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228 		return 0;
1229 
1230 	/* Adjust the ECC operations for the HSMC IP. */
1231 	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232 	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233 	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234 	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235 
1236 	return 0;
1237 }
1238 
1239 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240 					const struct nand_interface_config *conf,
1241 					struct atmel_smc_cs_conf *smcconf)
1242 {
1243 	u32 ncycles, totalcycles, timeps, mckperiodps, pulse;
1244 	struct atmel_nand_controller *nc;
1245 	int ret;
1246 
1247 	nc = to_nand_controller(nand->base.controller);
1248 
1249 	/* DDR interface not supported. */
1250 	if (!nand_interface_is_sdr(conf))
1251 		return -ENOTSUPP;
1252 
1253 	/*
1254 	 * tRC < 30ns implies EDO mode. This controller does not support this
1255 	 * mode.
1256 	 */
1257 	if (conf->timings.sdr.tRC_min < 30000)
1258 		return -ENOTSUPP;
1259 
1260 	atmel_smc_cs_conf_init(smcconf);
1261 
1262 	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263 	mckperiodps *= 1000;
1264 
1265 	/*
1266 	 * Set write pulse timing. This one is easy to extract:
1267 	 *
1268 	 * NWE_PULSE = tWP
1269 	 */
1270 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271 	totalcycles = ncycles;
1272 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273 					  ncycles);
1274 	if (ret)
1275 		return ret;
1276 
1277 	/*
1278 	 * The write setup timing depends on the operation done on the NAND.
1279 	 * All operations goes through the same data bus, but the operation
1280 	 * type depends on the address we are writing to (ALE/CLE address
1281 	 * lines).
1282 	 * Since we have no way to differentiate the different operations at
1283 	 * the SMC level, we must consider the worst case (the biggest setup
1284 	 * time among all operation types):
1285 	 *
1286 	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287 	 */
1288 	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289 		      conf->timings.sdr.tALS_min);
1290 	timeps = max(timeps, conf->timings.sdr.tDS_min);
1291 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292 	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293 	totalcycles += ncycles;
1294 	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295 					  ncycles);
1296 	if (ret)
1297 		return ret;
1298 
1299 	/*
1300 	 * As for the write setup timing, the write hold timing depends on the
1301 	 * operation done on the NAND:
1302 	 *
1303 	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304 	 */
1305 	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306 		      conf->timings.sdr.tALH_min);
1307 	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308 		      conf->timings.sdr.tWH_min);
1309 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310 	totalcycles += ncycles;
1311 
1312 	/*
1313 	 * The write cycle timing is directly matching tWC, but is also
1314 	 * dependent on the other timings on the setup and hold timings we
1315 	 * calculated earlier, which gives:
1316 	 *
1317 	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318 	 */
1319 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320 	ncycles = max(totalcycles, ncycles);
1321 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322 					  ncycles);
1323 	if (ret)
1324 		return ret;
1325 
1326 	/*
1327 	 * We don't want the CS line to be toggled between each byte/word
1328 	 * transfer to the NAND. The only way to guarantee that is to have the
1329 	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330 	 *
1331 	 * NCS_WR_PULSE = NWE_CYCLE
1332 	 */
1333 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334 					  ncycles);
1335 	if (ret)
1336 		return ret;
1337 
1338 	/*
1339 	 * As for the write setup timing, the read hold timing depends on the
1340 	 * operation done on the NAND:
1341 	 *
1342 	 * NRD_HOLD = max(tREH, tRHOH)
1343 	 */
1344 	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346 	totalcycles = ncycles;
1347 
1348 	/*
1349 	 * TDF = tRHZ - NRD_HOLD
1350 	 */
1351 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352 	ncycles -= totalcycles;
1353 
1354 	/*
1355 	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356 	 * we might end up with a config that does not fit in the TDF field.
1357 	 * Just take the max value in this case and hope that the NAND is more
1358 	 * tolerant than advertised.
1359 	 */
1360 	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361 		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362 	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363 		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364 
1365 	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366 			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367 
1368 	/*
1369 	 * Read pulse timing would directly match tRP,
1370 	 * but some NAND flash chips (S34ML01G2 and W29N02KVxxAF)
1371 	 * do not work properly in timing mode 3.
1372 	 * The workaround is to extend the SMC NRD pulse to meet tREA
1373 	 * timing.
1374 	 *
1375 	 * NRD_PULSE = max(tRP, tREA)
1376 	 */
1377 	pulse = max(conf->timings.sdr.tRP_min, conf->timings.sdr.tREA_max);
1378 	ncycles = DIV_ROUND_UP(pulse, mckperiodps);
1379 	totalcycles += ncycles;
1380 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1381 					  ncycles);
1382 	if (ret)
1383 		return ret;
1384 
1385 	/*
1386 	 * Read setup timing depends on the operation done on the NAND:
1387 	 *
1388 	 * NRD_SETUP = max(tAR, tCLR)
1389 	 */
1390 	timeps = max(conf->timings.sdr.tAR_min, conf->timings.sdr.tCLR_min);
1391 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1392 	totalcycles += ncycles;
1393 	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NRD_SHIFT, ncycles);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/*
1398 	 * The read cycle timing is directly matching tRC, but is also
1399 	 * dependent on the setup and hold timings we calculated earlier,
1400 	 * which gives:
1401 	 *
1402 	 * NRD_CYCLE = max(tRC, NRD_SETUP + NRD_PULSE + NRD_HOLD)
1403 	 */
1404 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1405 	ncycles = max(totalcycles, ncycles);
1406 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1407 					  ncycles);
1408 	if (ret)
1409 		return ret;
1410 
1411 	/*
1412 	 * We don't want the CS line to be toggled between each byte/word
1413 	 * transfer from the NAND. The only way to guarantee that is to have
1414 	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1415 	 *
1416 	 * NCS_RD_PULSE = NRD_CYCLE
1417 	 */
1418 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1419 					  ncycles);
1420 	if (ret)
1421 		return ret;
1422 
1423 	/* Txxx timings are directly matching tXXX ones. */
1424 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1425 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1426 					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1427 					   ncycles);
1428 	if (ret)
1429 		return ret;
1430 
1431 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1432 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1433 					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1434 					   ncycles);
1435 	/*
1436 	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1437 	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1438 	 * fit in the tADL field of the SMC reg. We need to relax the check and
1439 	 * accept the -ERANGE return code.
1440 	 *
1441 	 * Note that previous versions of the ONFI spec had a lower tADL_min
1442 	 * (100 or 200 ns). It's not clear why this timing constraint got
1443 	 * increased but it seems most NANDs are fine with values lower than
1444 	 * 400ns, so we should be safe.
1445 	 */
1446 	if (ret && ret != -ERANGE)
1447 		return ret;
1448 
1449 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1450 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1451 					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1452 					   ncycles);
1453 	if (ret)
1454 		return ret;
1455 
1456 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1457 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1458 					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1459 					   ncycles);
1460 	if (ret)
1461 		return ret;
1462 
1463 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1464 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1465 					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1466 					   ncycles);
1467 	if (ret)
1468 		return ret;
1469 
1470 	/* Attach the CS line to the NFC logic. */
1471 	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1472 
1473 	/* Set the appropriate data bus width. */
1474 	if (nand->base.options & NAND_BUSWIDTH_16)
1475 		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1476 
1477 	/* Operate in NRD/NWE READ/WRITEMODE. */
1478 	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1479 			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1480 
1481 	return 0;
1482 }
1483 
1484 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1485 					int csline,
1486 					const struct nand_interface_config *conf)
1487 {
1488 	struct atmel_nand_controller *nc;
1489 	struct atmel_smc_cs_conf smcconf;
1490 	struct atmel_nand_cs *cs;
1491 	int ret;
1492 
1493 	nc = to_nand_controller(nand->base.controller);
1494 
1495 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1496 	if (ret)
1497 		return ret;
1498 
1499 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1500 		return 0;
1501 
1502 	cs = &nand->cs[csline];
1503 	cs->smcconf = smcconf;
1504 	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1505 
1506 	return 0;
1507 }
1508 
1509 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1510 					int csline,
1511 					const struct nand_interface_config *conf)
1512 {
1513 	struct atmel_hsmc_nand_controller *nc;
1514 	struct atmel_smc_cs_conf smcconf;
1515 	struct atmel_nand_cs *cs;
1516 	int ret;
1517 
1518 	nc = to_hsmc_nand_controller(nand->base.controller);
1519 
1520 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1521 	if (ret)
1522 		return ret;
1523 
1524 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1525 		return 0;
1526 
1527 	cs = &nand->cs[csline];
1528 	cs->smcconf = smcconf;
1529 
1530 	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1531 		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1532 
1533 	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1534 				 &cs->smcconf);
1535 
1536 	return 0;
1537 }
1538 
1539 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1540 				      const struct nand_interface_config *conf)
1541 {
1542 	struct atmel_nand *nand = to_atmel_nand(chip);
1543 	const struct nand_sdr_timings *sdr;
1544 	struct atmel_nand_controller *nc;
1545 
1546 	sdr = nand_get_sdr_timings(conf);
1547 	if (IS_ERR(sdr))
1548 		return PTR_ERR(sdr);
1549 
1550 	nc = to_nand_controller(nand->base.controller);
1551 
1552 	if (csline >= nand->numcs ||
1553 	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1554 		return -EINVAL;
1555 
1556 	return nc->caps->ops->setup_interface(nand, csline, conf);
1557 }
1558 
1559 static int atmel_nand_exec_op(struct nand_chip *chip,
1560 			      const struct nand_operation *op,
1561 			      bool check_only)
1562 {
1563 	struct atmel_nand *nand = to_atmel_nand(chip);
1564 	struct atmel_nand_controller *nc;
1565 
1566 	nc = to_nand_controller(nand->base.controller);
1567 
1568 	return nc->caps->ops->exec_op(nand, op, check_only);
1569 }
1570 
1571 static void atmel_nand_init(struct atmel_nand_controller *nc,
1572 			    struct atmel_nand *nand)
1573 {
1574 	struct nand_chip *chip = &nand->base;
1575 	struct mtd_info *mtd = nand_to_mtd(chip);
1576 
1577 	mtd->dev.parent = nc->dev;
1578 	nand->base.controller = &nc->base;
1579 
1580 	if (!nc->mck || !nc->caps->ops->setup_interface)
1581 		chip->options |= NAND_KEEP_TIMINGS;
1582 
1583 	/*
1584 	 * Use a bounce buffer when the buffer passed by the MTD user is not
1585 	 * suitable for DMA.
1586 	 */
1587 	if (nc->dmac)
1588 		chip->options |= NAND_USES_DMA;
1589 
1590 	/* Default to HW ECC if pmecc is available. */
1591 	if (nc->pmecc)
1592 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1593 }
1594 
1595 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1596 				struct atmel_nand *nand)
1597 {
1598 	struct nand_chip *chip = &nand->base;
1599 	struct atmel_smc_nand_controller *smc_nc;
1600 	int i;
1601 
1602 	atmel_nand_init(nc, nand);
1603 
1604 	smc_nc = to_smc_nand_controller(chip->controller);
1605 	if (!smc_nc->ebi_csa_regmap)
1606 		return;
1607 
1608 	/* Attach the CS to the NAND Flash logic. */
1609 	for (i = 0; i < nand->numcs; i++)
1610 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1611 				   smc_nc->ebi_csa->offs,
1612 				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1613 
1614 	if (smc_nc->ebi_csa->nfd0_on_d16)
1615 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1616 				   smc_nc->ebi_csa->offs,
1617 				   smc_nc->ebi_csa->nfd0_on_d16,
1618 				   smc_nc->ebi_csa->nfd0_on_d16);
1619 }
1620 
1621 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1622 {
1623 	struct nand_chip *chip = &nand->base;
1624 	struct mtd_info *mtd = nand_to_mtd(chip);
1625 	int ret;
1626 
1627 	ret = mtd_device_unregister(mtd);
1628 	if (ret)
1629 		return ret;
1630 
1631 	nand_cleanup(chip);
1632 	list_del(&nand->node);
1633 
1634 	return 0;
1635 }
1636 
1637 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1638 					    struct device_node *np,
1639 					    int reg_cells)
1640 {
1641 	struct atmel_nand *nand;
1642 	struct gpio_desc *gpio;
1643 	int numcs, ret, i;
1644 
1645 	numcs = of_property_count_elems_of_size(np, "reg",
1646 						reg_cells * sizeof(u32));
1647 	if (numcs < 1) {
1648 		dev_err(nc->dev, "Missing or invalid reg property\n");
1649 		return ERR_PTR(-EINVAL);
1650 	}
1651 
1652 	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1653 	if (!nand)
1654 		return ERR_PTR(-ENOMEM);
1655 
1656 	nand->numcs = numcs;
1657 
1658 	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1659 				     "det", GPIOD_IN, "nand-det");
1660 	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1661 		dev_err(nc->dev,
1662 			"Failed to get detect gpio (err = %ld)\n",
1663 			PTR_ERR(gpio));
1664 		return ERR_CAST(gpio);
1665 	}
1666 
1667 	if (!IS_ERR(gpio))
1668 		nand->cdgpio = gpio;
1669 
1670 	for (i = 0; i < numcs; i++) {
1671 		struct resource res;
1672 		u32 val;
1673 
1674 		ret = of_address_to_resource(np, 0, &res);
1675 		if (ret) {
1676 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1677 				ret);
1678 			return ERR_PTR(ret);
1679 		}
1680 
1681 		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1682 						 &val);
1683 		if (ret) {
1684 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1685 				ret);
1686 			return ERR_PTR(ret);
1687 		}
1688 
1689 		nand->cs[i].id = val;
1690 
1691 		nand->cs[i].io.dma = res.start;
1692 		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1693 		if (IS_ERR(nand->cs[i].io.virt))
1694 			return ERR_CAST(nand->cs[i].io.virt);
1695 
1696 		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1697 			if (val > ATMEL_NFC_MAX_RB_ID)
1698 				return ERR_PTR(-EINVAL);
1699 
1700 			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1701 			nand->cs[i].rb.id = val;
1702 		} else {
1703 			gpio = devm_fwnode_gpiod_get_index(nc->dev,
1704 							   of_fwnode_handle(np),
1705 							   "rb", i, GPIOD_IN,
1706 							   "nand-rb");
1707 			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1708 				dev_err(nc->dev,
1709 					"Failed to get R/B gpio (err = %ld)\n",
1710 					PTR_ERR(gpio));
1711 				return ERR_CAST(gpio);
1712 			}
1713 
1714 			if (!IS_ERR(gpio)) {
1715 				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1716 				nand->cs[i].rb.gpio = gpio;
1717 			}
1718 		}
1719 
1720 		gpio = devm_fwnode_gpiod_get_index(nc->dev,
1721 						   of_fwnode_handle(np),
1722 						   "cs", i, GPIOD_OUT_HIGH,
1723 						   "nand-cs");
1724 		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1725 			dev_err(nc->dev,
1726 				"Failed to get CS gpio (err = %ld)\n",
1727 				PTR_ERR(gpio));
1728 			return ERR_CAST(gpio);
1729 		}
1730 
1731 		if (!IS_ERR(gpio))
1732 			nand->cs[i].csgpio = gpio;
1733 	}
1734 
1735 	nand_set_flash_node(&nand->base, np);
1736 
1737 	return nand;
1738 }
1739 
1740 static int
1741 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1742 			       struct atmel_nand *nand)
1743 {
1744 	struct nand_chip *chip = &nand->base;
1745 	struct mtd_info *mtd = nand_to_mtd(chip);
1746 	int ret;
1747 
1748 	/* No card inserted, skip this NAND. */
1749 	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1750 		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1751 		return 0;
1752 	}
1753 
1754 	nc->caps->ops->nand_init(nc, nand);
1755 
1756 	ret = nand_scan(chip, nand->numcs);
1757 	if (ret) {
1758 		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1759 		return ret;
1760 	}
1761 
1762 	ret = mtd_device_register(mtd, NULL, 0);
1763 	if (ret) {
1764 		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1765 		nand_cleanup(chip);
1766 		return ret;
1767 	}
1768 
1769 	list_add_tail(&nand->node, &nc->chips);
1770 
1771 	return 0;
1772 }
1773 
1774 static int
1775 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1776 {
1777 	struct atmel_nand *nand, *tmp;
1778 	int ret;
1779 
1780 	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1781 		ret = atmel_nand_controller_remove_nand(nand);
1782 		if (ret)
1783 			return ret;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 static int
1790 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1791 {
1792 	struct device *dev = nc->dev;
1793 	struct platform_device *pdev = to_platform_device(dev);
1794 	struct atmel_nand *nand;
1795 	struct gpio_desc *gpio;
1796 	struct resource *res;
1797 
1798 	/*
1799 	 * Legacy bindings only allow connecting a single NAND with a unique CS
1800 	 * line to the controller.
1801 	 */
1802 	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1803 			    GFP_KERNEL);
1804 	if (!nand)
1805 		return -ENOMEM;
1806 
1807 	nand->numcs = 1;
1808 
1809 	nand->cs[0].io.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1810 	if (IS_ERR(nand->cs[0].io.virt))
1811 		return PTR_ERR(nand->cs[0].io.virt);
1812 
1813 	nand->cs[0].io.dma = res->start;
1814 
1815 	/*
1816 	 * The old driver was hardcoding the CS id to 3 for all sama5
1817 	 * controllers. Since this id is only meaningful for the sama5
1818 	 * controller we can safely assign this id to 3 no matter the
1819 	 * controller.
1820 	 * If one wants to connect a NAND to a different CS line, he will
1821 	 * have to use the new bindings.
1822 	 */
1823 	nand->cs[0].id = 3;
1824 
1825 	/* R/B GPIO. */
1826 	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1827 	if (IS_ERR(gpio)) {
1828 		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1829 			PTR_ERR(gpio));
1830 		return PTR_ERR(gpio);
1831 	}
1832 
1833 	if (gpio) {
1834 		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1835 		nand->cs[0].rb.gpio = gpio;
1836 	}
1837 
1838 	/* CS GPIO. */
1839 	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1840 	if (IS_ERR(gpio)) {
1841 		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1842 			PTR_ERR(gpio));
1843 		return PTR_ERR(gpio);
1844 	}
1845 
1846 	nand->cs[0].csgpio = gpio;
1847 
1848 	/* Card detect GPIO. */
1849 	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1850 	if (IS_ERR(gpio)) {
1851 		dev_err(dev,
1852 			"Failed to get detect gpio (err = %ld)\n",
1853 			PTR_ERR(gpio));
1854 		return PTR_ERR(gpio);
1855 	}
1856 
1857 	nand->cdgpio = gpio;
1858 
1859 	nand_set_flash_node(&nand->base, nc->dev->of_node);
1860 
1861 	return atmel_nand_controller_add_nand(nc, nand);
1862 }
1863 
1864 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1865 {
1866 	struct device_node *np;
1867 	struct device *dev = nc->dev;
1868 	int ret, reg_cells;
1869 	u32 val;
1870 
1871 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1872 	if (nc->caps->legacy_of_bindings)
1873 		return atmel_nand_controller_legacy_add_nands(nc);
1874 
1875 	np = dev->of_node;
1876 
1877 	ret = of_property_read_u32(np, "#address-cells", &val);
1878 	if (ret) {
1879 		dev_err(dev, "missing #address-cells property\n");
1880 		return ret;
1881 	}
1882 
1883 	reg_cells = val;
1884 
1885 	ret = of_property_read_u32(np, "#size-cells", &val);
1886 	if (ret) {
1887 		dev_err(dev, "missing #size-cells property\n");
1888 		return ret;
1889 	}
1890 
1891 	reg_cells += val;
1892 
1893 	for_each_child_of_node_scoped(np, nand_np) {
1894 		struct atmel_nand *nand;
1895 
1896 		nand = atmel_nand_create(nc, nand_np, reg_cells);
1897 		if (IS_ERR(nand)) {
1898 			ret = PTR_ERR(nand);
1899 			goto err;
1900 		}
1901 
1902 		ret = atmel_nand_controller_add_nand(nc, nand);
1903 		if (ret)
1904 			goto err;
1905 	}
1906 
1907 	return 0;
1908 
1909 err:
1910 	atmel_nand_controller_remove_nands(nc);
1911 
1912 	return ret;
1913 }
1914 
1915 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1916 {
1917 	if (nc->dmac)
1918 		dma_release_channel(nc->dmac);
1919 
1920 	clk_put(nc->mck);
1921 }
1922 
1923 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1924 	.offs = AT91SAM9260_MATRIX_EBICSA,
1925 };
1926 
1927 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1928 	.offs = AT91SAM9261_MATRIX_EBICSA,
1929 };
1930 
1931 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1932 	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1933 };
1934 
1935 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1936 	.offs = AT91SAM9RL_MATRIX_EBICSA,
1937 };
1938 
1939 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1940 	.offs = AT91SAM9G45_MATRIX_EBICSA,
1941 };
1942 
1943 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1944 	.offs = AT91SAM9N12_MATRIX_EBICSA,
1945 };
1946 
1947 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1948 	.offs = AT91SAM9X5_MATRIX_EBICSA,
1949 };
1950 
1951 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1952 	.offs = AT91_SFR_CCFG_EBICSA,
1953 	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1954 };
1955 
1956 static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
1957 	{
1958 		.compatible = "atmel,at91sam9260-matrix",
1959 		.data = &at91sam9260_ebi_csa,
1960 	},
1961 	{
1962 		.compatible = "atmel,at91sam9261-matrix",
1963 		.data = &at91sam9261_ebi_csa,
1964 	},
1965 	{
1966 		.compatible = "atmel,at91sam9263-matrix",
1967 		.data = &at91sam9263_ebi_csa,
1968 	},
1969 	{
1970 		.compatible = "atmel,at91sam9rl-matrix",
1971 		.data = &at91sam9rl_ebi_csa,
1972 	},
1973 	{
1974 		.compatible = "atmel,at91sam9g45-matrix",
1975 		.data = &at91sam9g45_ebi_csa,
1976 	},
1977 	{
1978 		.compatible = "atmel,at91sam9n12-matrix",
1979 		.data = &at91sam9n12_ebi_csa,
1980 	},
1981 	{
1982 		.compatible = "atmel,at91sam9x5-matrix",
1983 		.data = &at91sam9x5_ebi_csa,
1984 	},
1985 	{
1986 		.compatible = "microchip,sam9x60-sfr",
1987 		.data = &sam9x60_ebi_csa,
1988 	},
1989 	{ /* sentinel */ },
1990 };
1991 
1992 static int atmel_nand_attach_chip(struct nand_chip *chip)
1993 {
1994 	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1995 	struct atmel_nand *nand = to_atmel_nand(chip);
1996 	struct mtd_info *mtd = nand_to_mtd(chip);
1997 	int ret;
1998 
1999 	ret = nc->caps->ops->ecc_init(chip);
2000 	if (ret)
2001 		return ret;
2002 
2003 	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
2004 		/*
2005 		 * We keep the MTD name unchanged to avoid breaking platforms
2006 		 * where the MTD cmdline parser is used and the bootloader
2007 		 * has not been updated to use the new naming scheme.
2008 		 */
2009 		mtd->name = "atmel_nand";
2010 	} else if (!mtd->name) {
2011 		/*
2012 		 * If the new bindings are used and the bootloader has not been
2013 		 * updated to pass a new mtdparts parameter on the cmdline, you
2014 		 * should define the following property in your nand node:
2015 		 *
2016 		 *	label = "atmel_nand";
2017 		 *
2018 		 * This way, mtd->name will be set by the core when
2019 		 * nand_set_flash_node() is called.
2020 		 */
2021 		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2022 					   "%s:nand.%d", dev_name(nc->dev),
2023 					   nand->cs[0].id);
2024 		if (!mtd->name) {
2025 			dev_err(nc->dev, "Failed to allocate mtd->name\n");
2026 			return -ENOMEM;
2027 		}
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 static const struct nand_controller_ops atmel_nand_controller_ops = {
2034 	.attach_chip = atmel_nand_attach_chip,
2035 	.setup_interface = atmel_nand_setup_interface,
2036 	.exec_op = atmel_nand_exec_op,
2037 };
2038 
2039 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2040 				struct platform_device *pdev,
2041 				const struct atmel_nand_controller_caps *caps)
2042 {
2043 	struct device *dev = &pdev->dev;
2044 	struct device_node *np = dev->of_node;
2045 	int ret;
2046 
2047 	nand_controller_init(&nc->base);
2048 	nc->base.ops = &atmel_nand_controller_ops;
2049 	INIT_LIST_HEAD(&nc->chips);
2050 	nc->dev = dev;
2051 	nc->caps = caps;
2052 
2053 	platform_set_drvdata(pdev, nc);
2054 
2055 	nc->pmecc = devm_atmel_pmecc_get(dev);
2056 	if (IS_ERR(nc->pmecc))
2057 		return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2058 				     "Could not get PMECC object\n");
2059 
2060 	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2061 		dma_cap_mask_t mask;
2062 
2063 		dma_cap_zero(mask);
2064 		dma_cap_set(DMA_MEMCPY, mask);
2065 
2066 		nc->dmac = dma_request_channel(mask, NULL, NULL);
2067 		if (nc->dmac)
2068 			dev_info(nc->dev, "using %s for DMA transfers\n",
2069 				 dma_chan_name(nc->dmac));
2070 		else
2071 			dev_err(nc->dev, "Failed to request DMA channel\n");
2072 	}
2073 
2074 	/* We do not retrieve the SMC syscon when parsing old DTs. */
2075 	if (nc->caps->legacy_of_bindings)
2076 		return 0;
2077 
2078 	nc->mck = of_clk_get(dev->parent->of_node, 0);
2079 	if (IS_ERR(nc->mck)) {
2080 		dev_err(dev, "Failed to retrieve MCK clk\n");
2081 		ret = PTR_ERR(nc->mck);
2082 		goto out_release_dma;
2083 	}
2084 
2085 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2086 	if (!np) {
2087 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2088 		ret = -EINVAL;
2089 		goto out_release_dma;
2090 	}
2091 
2092 	nc->smc = syscon_node_to_regmap(np);
2093 	of_node_put(np);
2094 	if (IS_ERR(nc->smc)) {
2095 		ret = PTR_ERR(nc->smc);
2096 		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2097 		goto out_release_dma;
2098 	}
2099 
2100 	return 0;
2101 
2102 out_release_dma:
2103 	if (nc->dmac)
2104 		dma_release_channel(nc->dmac);
2105 
2106 	return ret;
2107 }
2108 
2109 static int
2110 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2111 {
2112 	struct device *dev = nc->base.dev;
2113 	const struct of_device_id *match;
2114 	struct device_node *np;
2115 	int ret;
2116 
2117 	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
2118 	if (nc->base.caps->legacy_of_bindings)
2119 		return 0;
2120 
2121 	np = of_parse_phandle(dev->parent->of_node,
2122 			      nc->base.caps->ebi_csa_regmap_name, 0);
2123 	if (!np)
2124 		return 0;
2125 
2126 	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2127 	if (!match) {
2128 		of_node_put(np);
2129 		return 0;
2130 	}
2131 
2132 	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2133 	of_node_put(np);
2134 	if (IS_ERR(nc->ebi_csa_regmap)) {
2135 		ret = PTR_ERR(nc->ebi_csa_regmap);
2136 		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2137 		return ret;
2138 	}
2139 
2140 	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2141 
2142 	/*
2143 	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2144 	 * add 4 to ->ebi_csa->offs.
2145 	 */
2146 	if (of_device_is_compatible(dev->parent->of_node,
2147 				    "atmel,at91sam9263-ebi1"))
2148 		nc->ebi_csa->offs += 4;
2149 
2150 	return 0;
2151 }
2152 
2153 static int
2154 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2155 {
2156 	struct regmap_config regmap_conf = {
2157 		.reg_bits = 32,
2158 		.val_bits = 32,
2159 		.reg_stride = 4,
2160 	};
2161 
2162 	struct device *dev = nc->base.dev;
2163 	struct device_node *nand_np, *nfc_np;
2164 	void __iomem *iomem;
2165 	struct resource res;
2166 	int ret;
2167 
2168 	nand_np = dev->of_node;
2169 	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2170 	if (!nfc_np) {
2171 		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2172 		return -ENODEV;
2173 	}
2174 
2175 	nc->clk = of_clk_get(nfc_np, 0);
2176 	if (IS_ERR(nc->clk)) {
2177 		ret = PTR_ERR(nc->clk);
2178 		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2179 			ret);
2180 		goto out;
2181 	}
2182 
2183 	ret = clk_prepare_enable(nc->clk);
2184 	if (ret) {
2185 		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2186 			ret);
2187 		goto out;
2188 	}
2189 
2190 	nc->irq = of_irq_get(nand_np, 0);
2191 	if (nc->irq <= 0) {
2192 		ret = nc->irq ?: -ENXIO;
2193 		if (ret != -EPROBE_DEFER)
2194 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2195 				ret);
2196 		goto out;
2197 	}
2198 
2199 	ret = of_address_to_resource(nfc_np, 0, &res);
2200 	if (ret) {
2201 		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2202 			ret);
2203 		goto out;
2204 	}
2205 
2206 	iomem = devm_ioremap_resource(dev, &res);
2207 	if (IS_ERR(iomem)) {
2208 		ret = PTR_ERR(iomem);
2209 		goto out;
2210 	}
2211 
2212 	regmap_conf.name = "nfc-io";
2213 	regmap_conf.max_register = resource_size(&res) - 4;
2214 	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2215 	if (IS_ERR(nc->io)) {
2216 		ret = PTR_ERR(nc->io);
2217 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2218 			ret);
2219 		goto out;
2220 	}
2221 
2222 	ret = of_address_to_resource(nfc_np, 1, &res);
2223 	if (ret) {
2224 		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2225 			ret);
2226 		goto out;
2227 	}
2228 
2229 	iomem = devm_ioremap_resource(dev, &res);
2230 	if (IS_ERR(iomem)) {
2231 		ret = PTR_ERR(iomem);
2232 		goto out;
2233 	}
2234 
2235 	regmap_conf.name = "smc";
2236 	regmap_conf.max_register = resource_size(&res) - 4;
2237 	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2238 	if (IS_ERR(nc->base.smc)) {
2239 		ret = PTR_ERR(nc->base.smc);
2240 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2241 			ret);
2242 		goto out;
2243 	}
2244 
2245 	ret = of_address_to_resource(nfc_np, 2, &res);
2246 	if (ret) {
2247 		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2248 			ret);
2249 		goto out;
2250 	}
2251 
2252 	nc->sram.virt = devm_ioremap_resource(dev, &res);
2253 	if (IS_ERR(nc->sram.virt)) {
2254 		ret = PTR_ERR(nc->sram.virt);
2255 		goto out;
2256 	}
2257 
2258 	nc->sram.dma = res.start;
2259 
2260 out:
2261 	of_node_put(nfc_np);
2262 
2263 	return ret;
2264 }
2265 
2266 static int
2267 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2268 {
2269 	struct device *dev = nc->base.dev;
2270 	struct device_node *np;
2271 	int ret;
2272 
2273 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2274 	if (!np) {
2275 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2276 		return -EINVAL;
2277 	}
2278 
2279 	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2280 
2281 	nc->irq = of_irq_get(np, 0);
2282 	of_node_put(np);
2283 	if (nc->irq <= 0) {
2284 		ret = nc->irq ?: -ENXIO;
2285 		if (ret != -EPROBE_DEFER)
2286 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2287 				ret);
2288 		return ret;
2289 	}
2290 
2291 	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2292 	if (!np) {
2293 		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2294 		return -EINVAL;
2295 	}
2296 
2297 	nc->io = syscon_node_to_regmap(np);
2298 	of_node_put(np);
2299 	if (IS_ERR(nc->io)) {
2300 		ret = PTR_ERR(nc->io);
2301 		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2302 		return ret;
2303 	}
2304 
2305 	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2306 					 "atmel,nfc-sram", 0);
2307 	if (!nc->sram.pool) {
2308 		dev_err(nc->base.dev, "Missing SRAM\n");
2309 		return -ENOMEM;
2310 	}
2311 
2312 	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2313 							   ATMEL_NFC_SRAM_SIZE,
2314 							   &nc->sram.dma);
2315 	if (!nc->sram.virt) {
2316 		dev_err(nc->base.dev,
2317 			"Could not allocate memory from the NFC SRAM pool\n");
2318 		return -ENOMEM;
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 static int
2325 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2326 {
2327 	struct atmel_hsmc_nand_controller *hsmc_nc;
2328 	int ret;
2329 
2330 	ret = atmel_nand_controller_remove_nands(nc);
2331 	if (ret)
2332 		return ret;
2333 
2334 	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2335 	regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2336 		     ATMEL_HSMC_NFC_CTRL_DIS);
2337 
2338 	if (hsmc_nc->sram.pool)
2339 		gen_pool_free(hsmc_nc->sram.pool,
2340 			      (unsigned long)hsmc_nc->sram.virt,
2341 			      ATMEL_NFC_SRAM_SIZE);
2342 
2343 	if (hsmc_nc->clk) {
2344 		clk_disable_unprepare(hsmc_nc->clk);
2345 		clk_put(hsmc_nc->clk);
2346 	}
2347 
2348 	atmel_nand_controller_cleanup(nc);
2349 
2350 	return 0;
2351 }
2352 
2353 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2354 				const struct atmel_nand_controller_caps *caps)
2355 {
2356 	struct device *dev = &pdev->dev;
2357 	struct atmel_hsmc_nand_controller *nc;
2358 	int ret;
2359 
2360 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2361 	if (!nc)
2362 		return -ENOMEM;
2363 
2364 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2365 	if (ret)
2366 		return ret;
2367 
2368 	if (caps->legacy_of_bindings)
2369 		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2370 	else
2371 		ret = atmel_hsmc_nand_controller_init(nc);
2372 
2373 	if (ret)
2374 		return ret;
2375 
2376 	/* Make sure all irqs are masked before registering our IRQ handler. */
2377 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2378 	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2379 			       IRQF_SHARED, "nfc", nc);
2380 	if (ret) {
2381 		dev_err(dev,
2382 			"Could not get register NFC interrupt handler (err = %d)\n",
2383 			ret);
2384 		goto err;
2385 	}
2386 
2387 	/* Initial NFC configuration. */
2388 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2389 		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2390 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2391 		     ATMEL_HSMC_NFC_CTRL_EN);
2392 
2393 	ret = atmel_nand_controller_add_nands(&nc->base);
2394 	if (ret)
2395 		goto err;
2396 
2397 	return 0;
2398 
2399 err:
2400 	atmel_hsmc_nand_controller_remove(&nc->base);
2401 
2402 	return ret;
2403 }
2404 
2405 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2406 	.probe = atmel_hsmc_nand_controller_probe,
2407 	.remove = atmel_hsmc_nand_controller_remove,
2408 	.ecc_init = atmel_hsmc_nand_ecc_init,
2409 	.nand_init = atmel_nand_init,
2410 	.setup_interface = atmel_hsmc_nand_setup_interface,
2411 	.exec_op = atmel_hsmc_nand_exec_op,
2412 };
2413 
2414 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2415 	.has_dma = true,
2416 	.ale_offs = BIT(21),
2417 	.cle_offs = BIT(22),
2418 	.ops = &atmel_hsmc_nc_ops,
2419 };
2420 
2421 /* Only used to parse old bindings. */
2422 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2423 	.has_dma = true,
2424 	.ale_offs = BIT(21),
2425 	.cle_offs = BIT(22),
2426 	.ops = &atmel_hsmc_nc_ops,
2427 	.legacy_of_bindings = true,
2428 };
2429 
2430 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2431 				const struct atmel_nand_controller_caps *caps)
2432 {
2433 	struct device *dev = &pdev->dev;
2434 	struct atmel_smc_nand_controller *nc;
2435 	int ret;
2436 
2437 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2438 	if (!nc)
2439 		return -ENOMEM;
2440 
2441 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2442 	if (ret)
2443 		return ret;
2444 
2445 	ret = atmel_smc_nand_controller_init(nc);
2446 	if (ret)
2447 		return ret;
2448 
2449 	return atmel_nand_controller_add_nands(&nc->base);
2450 }
2451 
2452 static int
2453 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2454 {
2455 	int ret;
2456 
2457 	ret = atmel_nand_controller_remove_nands(nc);
2458 	if (ret)
2459 		return ret;
2460 
2461 	atmel_nand_controller_cleanup(nc);
2462 
2463 	return 0;
2464 }
2465 
2466 /*
2467  * The SMC reg layout of at91rm9200 is completely different which prevents us
2468  * from re-using atmel_smc_nand_setup_interface() for the
2469  * ->setup_interface() hook.
2470  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2471  * ->setup_interface() unassigned.
2472  */
2473 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2474 	.probe = atmel_smc_nand_controller_probe,
2475 	.remove = atmel_smc_nand_controller_remove,
2476 	.ecc_init = atmel_nand_ecc_init,
2477 	.nand_init = atmel_smc_nand_init,
2478 	.exec_op = atmel_smc_nand_exec_op,
2479 };
2480 
2481 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2482 	.ale_offs = BIT(21),
2483 	.cle_offs = BIT(22),
2484 	.ebi_csa_regmap_name = "atmel,matrix",
2485 	.ops = &at91rm9200_nc_ops,
2486 };
2487 
2488 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2489 	.probe = atmel_smc_nand_controller_probe,
2490 	.remove = atmel_smc_nand_controller_remove,
2491 	.ecc_init = atmel_nand_ecc_init,
2492 	.nand_init = atmel_smc_nand_init,
2493 	.setup_interface = atmel_smc_nand_setup_interface,
2494 	.exec_op = atmel_smc_nand_exec_op,
2495 };
2496 
2497 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2498 	.ale_offs = BIT(21),
2499 	.cle_offs = BIT(22),
2500 	.ebi_csa_regmap_name = "atmel,matrix",
2501 	.ops = &atmel_smc_nc_ops,
2502 };
2503 
2504 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2505 	.ale_offs = BIT(22),
2506 	.cle_offs = BIT(21),
2507 	.ebi_csa_regmap_name = "atmel,matrix",
2508 	.ops = &atmel_smc_nc_ops,
2509 };
2510 
2511 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2512 	.has_dma = true,
2513 	.ale_offs = BIT(21),
2514 	.cle_offs = BIT(22),
2515 	.ebi_csa_regmap_name = "atmel,matrix",
2516 	.ops = &atmel_smc_nc_ops,
2517 };
2518 
2519 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2520 	.has_dma = true,
2521 	.ale_offs = BIT(21),
2522 	.cle_offs = BIT(22),
2523 	.ebi_csa_regmap_name = "microchip,sfr",
2524 	.ops = &atmel_smc_nc_ops,
2525 };
2526 
2527 /* Only used to parse old bindings. */
2528 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2529 	.ale_offs = BIT(21),
2530 	.cle_offs = BIT(22),
2531 	.ops = &atmel_smc_nc_ops,
2532 	.legacy_of_bindings = true,
2533 };
2534 
2535 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2536 	.ale_offs = BIT(22),
2537 	.cle_offs = BIT(21),
2538 	.ops = &atmel_smc_nc_ops,
2539 	.legacy_of_bindings = true,
2540 };
2541 
2542 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2543 	.has_dma = true,
2544 	.ale_offs = BIT(21),
2545 	.cle_offs = BIT(22),
2546 	.ops = &atmel_smc_nc_ops,
2547 	.legacy_of_bindings = true,
2548 };
2549 
2550 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2551 	{
2552 		.compatible = "atmel,at91rm9200-nand-controller",
2553 		.data = &atmel_rm9200_nc_caps,
2554 	},
2555 	{
2556 		.compatible = "atmel,at91sam9260-nand-controller",
2557 		.data = &atmel_sam9260_nc_caps,
2558 	},
2559 	{
2560 		.compatible = "atmel,at91sam9261-nand-controller",
2561 		.data = &atmel_sam9261_nc_caps,
2562 	},
2563 	{
2564 		.compatible = "atmel,at91sam9g45-nand-controller",
2565 		.data = &atmel_sam9g45_nc_caps,
2566 	},
2567 	{
2568 		.compatible = "atmel,sama5d3-nand-controller",
2569 		.data = &atmel_sama5_nc_caps,
2570 	},
2571 	{
2572 		.compatible = "microchip,sam9x60-nand-controller",
2573 		.data = &microchip_sam9x60_nc_caps,
2574 	},
2575 	/* Support for old/deprecated bindings: */
2576 	{
2577 		.compatible = "atmel,at91rm9200-nand",
2578 		.data = &atmel_rm9200_nand_caps,
2579 	},
2580 	{
2581 		.compatible = "atmel,sama5d4-nand",
2582 		.data = &atmel_rm9200_nand_caps,
2583 	},
2584 	{
2585 		.compatible = "atmel,sama5d2-nand",
2586 		.data = &atmel_rm9200_nand_caps,
2587 	},
2588 	{ /* sentinel */ },
2589 };
2590 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2591 
2592 static int atmel_nand_controller_probe(struct platform_device *pdev)
2593 {
2594 	const struct atmel_nand_controller_caps *caps;
2595 
2596 	if (pdev->id_entry)
2597 		caps = (void *)pdev->id_entry->driver_data;
2598 	else
2599 		caps = of_device_get_match_data(&pdev->dev);
2600 
2601 	if (!caps) {
2602 		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2603 		return -EINVAL;
2604 	}
2605 
2606 	if (caps->legacy_of_bindings) {
2607 		struct device_node *nfc_node;
2608 		u32 ale_offs = 21;
2609 
2610 		/*
2611 		 * If we are parsing legacy DT props and the DT contains a
2612 		 * valid NFC node, forward the request to the sama5 logic.
2613 		 */
2614 		nfc_node = of_get_compatible_child(pdev->dev.of_node,
2615 						   "atmel,sama5d3-nfc");
2616 		if (nfc_node) {
2617 			caps = &atmel_sama5_nand_caps;
2618 			of_node_put(nfc_node);
2619 		}
2620 
2621 		/*
2622 		 * Even if the compatible says we are dealing with an
2623 		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2624 		 * this controller supports DMA, which means we are in fact
2625 		 * dealing with an at91sam9g45+ controller.
2626 		 */
2627 		if (!caps->has_dma &&
2628 		    of_property_read_bool(pdev->dev.of_node,
2629 					  "atmel,nand-has-dma"))
2630 			caps = &atmel_sam9g45_nand_caps;
2631 
2632 		/*
2633 		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2634 		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2635 		 * actually dealing with an at91sam9261 controller.
2636 		 */
2637 		of_property_read_u32(pdev->dev.of_node,
2638 				     "atmel,nand-addr-offset", &ale_offs);
2639 		if (ale_offs != 21)
2640 			caps = &atmel_sam9261_nand_caps;
2641 	}
2642 
2643 	return caps->ops->probe(pdev, caps);
2644 }
2645 
2646 static void atmel_nand_controller_remove(struct platform_device *pdev)
2647 {
2648 	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2649 
2650 	WARN_ON(nc->caps->ops->remove(nc));
2651 }
2652 
2653 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2654 {
2655 	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2656 	struct atmel_nand *nand;
2657 
2658 	if (nc->pmecc)
2659 		atmel_pmecc_reset(nc->pmecc);
2660 
2661 	list_for_each_entry(nand, &nc->chips, node) {
2662 		int i;
2663 
2664 		for (i = 0; i < nand->numcs; i++)
2665 			nand_reset(&nand->base, i);
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2672 			 atmel_nand_controller_resume);
2673 
2674 static struct platform_driver atmel_nand_controller_driver = {
2675 	.driver = {
2676 		.name = "atmel-nand-controller",
2677 		.of_match_table = atmel_nand_controller_of_ids,
2678 		.pm = &atmel_nand_controller_pm_ops,
2679 	},
2680 	.probe = atmel_nand_controller_probe,
2681 	.remove = atmel_nand_controller_remove,
2682 };
2683 module_platform_driver(atmel_nand_controller_driver);
2684 
2685 MODULE_LICENSE("GPL");
2686 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2687 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2688 MODULE_ALIAS("platform:atmel-nand-controller");
2689