xref: /linux/drivers/mtd/nand/raw/atmel/nand-controller.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *
20  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22  *
23  *   Derived from Das U-Boot source code
24  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25  *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26  *
27  *   Add Programmable Multibit ECC support for various AT91 SoC
28  *	Copyright 2012 ATMEL, Hong Xu
29  *
30  *   Add Nand Flash Controller support for SAMA5 SoC
31  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32  *
33  * A few words about the naming convention in this file. This convention
34  * applies to structure and function names.
35  *
36  * Prefixes:
37  *
38  * - atmel_nand_: all generic structures/functions
39  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40  *		      (at91sam9 and avr32 SoCs)
41  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42  *		       (sama5 SoCs and later)
43  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44  *		 that is available in the HSMC block
45  * - <soc>_nand_: all SoC specific structures/functions
46  */
47 
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66 
67 #include "pmecc.h"
68 
69 #define ATMEL_HSMC_NFC_CFG			0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
80 
81 #define ATMEL_HSMC_NFC_CTRL			0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
84 
85 #define ATMEL_HSMC_NFC_SR			0x8
86 #define ATMEL_HSMC_NFC_IER			0xc
87 #define ATMEL_HSMC_NFC_IDR			0x10
88 #define ATMEL_HSMC_NFC_IMR			0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR			BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
102 						 ATMEL_HSMC_NFC_SR_UNDEF | \
103 						 ATMEL_HSMC_NFC_SR_AWB | \
104 						 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
106 
107 #define ATMEL_HSMC_NFC_ADDR			0x18
108 #define ATMEL_HSMC_NFC_BANK			0x1c
109 
110 #define ATMEL_NFC_MAX_RB_ID			7
111 
112 #define ATMEL_NFC_SRAM_SIZE			0x2400
113 
114 #define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2				BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs)			((cs) << 22)
118 #define ATMEL_NFC_DATAEN			BIT(25)
119 #define ATMEL_NFC_NFCWR				BIT(26)
120 
121 #define ATMEL_NFC_MAX_ADDR_CYCLES		5
122 
123 #define ATMEL_NAND_ALE_OFFSET			BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET			BIT(22)
125 
126 #define DEFAULT_TIMEOUT_MS			1000
127 #define MIN_DMA_LEN				128
128 
129 static bool atmel_nand_avoid_dma __read_mostly;
130 
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133 
134 enum atmel_nand_rb_type {
135 	ATMEL_NAND_NO_RB,
136 	ATMEL_NAND_NATIVE_RB,
137 	ATMEL_NAND_GPIO_RB,
138 };
139 
140 struct atmel_nand_rb {
141 	enum atmel_nand_rb_type type;
142 	union {
143 		struct gpio_desc *gpio;
144 		int id;
145 	};
146 };
147 
148 struct atmel_nand_cs {
149 	int id;
150 	struct atmel_nand_rb rb;
151 	struct gpio_desc *csgpio;
152 	struct {
153 		void __iomem *virt;
154 		dma_addr_t dma;
155 	} io;
156 
157 	struct atmel_smc_cs_conf smcconf;
158 };
159 
160 struct atmel_nand {
161 	struct list_head node;
162 	struct device *dev;
163 	struct nand_chip base;
164 	struct atmel_nand_cs *activecs;
165 	struct atmel_pmecc_user *pmecc;
166 	struct gpio_desc *cdgpio;
167 	int numcs;
168 	struct atmel_nand_cs cs[];
169 };
170 
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 	return container_of(chip, struct atmel_nand, base);
174 }
175 
176 enum atmel_nfc_data_xfer {
177 	ATMEL_NFC_NO_DATA,
178 	ATMEL_NFC_READ_DATA,
179 	ATMEL_NFC_WRITE_DATA,
180 };
181 
182 struct atmel_nfc_op {
183 	u8 cs;
184 	u8 ncmds;
185 	u8 cmds[2];
186 	u8 naddrs;
187 	u8 addrs[5];
188 	enum atmel_nfc_data_xfer data;
189 	u32 wait;
190 	u32 errors;
191 };
192 
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195 
196 struct atmel_nand_controller_ops {
197 	int (*probe)(struct platform_device *pdev,
198 		     const struct atmel_nand_controller_caps *caps);
199 	int (*remove)(struct atmel_nand_controller *nc);
200 	void (*nand_init)(struct atmel_nand_controller *nc,
201 			  struct atmel_nand *nand);
202 	int (*ecc_init)(struct nand_chip *chip);
203 	int (*setup_interface)(struct atmel_nand *nand, int csline,
204 			       const struct nand_interface_config *conf);
205 	int (*exec_op)(struct atmel_nand *nand,
206 		       const struct nand_operation *op, bool check_only);
207 };
208 
209 struct atmel_nand_controller_caps {
210 	bool has_dma;
211 	bool legacy_of_bindings;
212 	u32 ale_offs;
213 	u32 cle_offs;
214 	const char *ebi_csa_regmap_name;
215 	const struct atmel_nand_controller_ops *ops;
216 };
217 
218 struct atmel_nand_controller {
219 	struct nand_controller base;
220 	const struct atmel_nand_controller_caps *caps;
221 	struct device *dev;
222 	struct regmap *smc;
223 	struct dma_chan *dmac;
224 	struct atmel_pmecc *pmecc;
225 	struct list_head chips;
226 	struct clk *mck;
227 };
228 
229 static inline struct atmel_nand_controller *
230 to_nand_controller(struct nand_controller *ctl)
231 {
232 	return container_of(ctl, struct atmel_nand_controller, base);
233 }
234 
235 struct atmel_smc_nand_ebi_csa_cfg {
236 	u32 offs;
237 	u32 nfd0_on_d16;
238 };
239 
240 struct atmel_smc_nand_controller {
241 	struct atmel_nand_controller base;
242 	struct regmap *ebi_csa_regmap;
243 	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245 
246 static inline struct atmel_smc_nand_controller *
247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249 	return container_of(to_nand_controller(ctl),
250 			    struct atmel_smc_nand_controller, base);
251 }
252 
253 struct atmel_hsmc_nand_controller {
254 	struct atmel_nand_controller base;
255 	struct {
256 		struct gen_pool *pool;
257 		void __iomem *virt;
258 		dma_addr_t dma;
259 	} sram;
260 	const struct atmel_hsmc_reg_layout *hsmc_layout;
261 	struct regmap *io;
262 	struct atmel_nfc_op op;
263 	struct completion complete;
264 	u32 cfg;
265 	int irq;
266 
267 	/* Only used when instantiating from legacy DT bindings. */
268 	struct clk *clk;
269 };
270 
271 static inline struct atmel_hsmc_nand_controller *
272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274 	return container_of(to_nand_controller(ctl),
275 			    struct atmel_hsmc_nand_controller, base);
276 }
277 
278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280 	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 	op->wait ^= status & op->wait;
282 
283 	return !op->wait || op->errors;
284 }
285 
286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288 	struct atmel_hsmc_nand_controller *nc = data;
289 	u32 sr, rcvd;
290 	bool done;
291 
292 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293 
294 	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 	done = atmel_nfc_op_done(&nc->op, sr);
296 
297 	if (rcvd)
298 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299 
300 	if (done)
301 		complete(&nc->complete);
302 
303 	return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305 
306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 			  unsigned int timeout_ms)
308 {
309 	int ret;
310 
311 	if (!timeout_ms)
312 		timeout_ms = DEFAULT_TIMEOUT_MS;
313 
314 	if (poll) {
315 		u32 status;
316 
317 		ret = regmap_read_poll_timeout(nc->base.smc,
318 					       ATMEL_HSMC_NFC_SR, status,
319 					       atmel_nfc_op_done(&nc->op,
320 								 status),
321 					       0, timeout_ms * 1000);
322 	} else {
323 		init_completion(&nc->complete);
324 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 		ret = wait_for_completion_timeout(&nc->complete,
327 						msecs_to_jiffies(timeout_ms));
328 		if (!ret)
329 			ret = -ETIMEDOUT;
330 		else
331 			ret = 0;
332 
333 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334 	}
335 
336 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 		ret = -ETIMEDOUT;
339 	}
340 
341 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 		dev_err(nc->base.dev, "Access to an undefined area\n");
343 		ret = -EIO;
344 	}
345 
346 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 		dev_err(nc->base.dev, "Access while busy\n");
348 		ret = -EIO;
349 	}
350 
351 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 		dev_err(nc->base.dev, "Wrong access size\n");
353 		ret = -EIO;
354 	}
355 
356 	return ret;
357 }
358 
359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361 	struct completion *finished = data;
362 
363 	complete(finished);
364 }
365 
366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 				   void *buf, dma_addr_t dev_dma, size_t len,
368 				   enum dma_data_direction dir)
369 {
370 	DECLARE_COMPLETION_ONSTACK(finished);
371 	dma_addr_t src_dma, dst_dma, buf_dma;
372 	struct dma_async_tx_descriptor *tx;
373 	dma_cookie_t cookie;
374 
375 	buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 	if (dma_mapping_error(nc->dev, dev_dma)) {
377 		dev_err(nc->dev,
378 			"Failed to prepare a buffer for DMA access\n");
379 		goto err;
380 	}
381 
382 	if (dir == DMA_FROM_DEVICE) {
383 		src_dma = dev_dma;
384 		dst_dma = buf_dma;
385 	} else {
386 		src_dma = buf_dma;
387 		dst_dma = dev_dma;
388 	}
389 
390 	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 	if (!tx) {
393 		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 		goto err_unmap;
395 	}
396 
397 	tx->callback = atmel_nand_dma_transfer_finished;
398 	tx->callback_param = &finished;
399 
400 	cookie = dmaengine_submit(tx);
401 	if (dma_submit_error(cookie)) {
402 		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 		goto err_unmap;
404 	}
405 
406 	dma_async_issue_pending(nc->dmac);
407 	wait_for_completion(&finished);
408 
409 	return 0;
410 
411 err_unmap:
412 	dma_unmap_single(nc->dev, buf_dma, len, dir);
413 
414 err:
415 	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
416 
417 	return -EIO;
418 }
419 
420 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
421 {
422 	u8 *addrs = nc->op.addrs;
423 	unsigned int op = 0;
424 	u32 addr, val;
425 	int i, ret;
426 
427 	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
428 
429 	for (i = 0; i < nc->op.ncmds; i++)
430 		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
431 
432 	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
433 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
434 
435 	op |= ATMEL_NFC_CSID(nc->op.cs) |
436 	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
437 
438 	if (nc->op.ncmds > 1)
439 		op |= ATMEL_NFC_VCMD2;
440 
441 	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
442 	       (addrs[3] << 24);
443 
444 	if (nc->op.data != ATMEL_NFC_NO_DATA) {
445 		op |= ATMEL_NFC_DATAEN;
446 		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
447 
448 		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
449 			op |= ATMEL_NFC_NFCWR;
450 	}
451 
452 	/* Clear all flags. */
453 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
454 
455 	/* Send the command. */
456 	regmap_write(nc->io, op, addr);
457 
458 	ret = atmel_nfc_wait(nc, poll, 0);
459 	if (ret)
460 		dev_err(nc->base.dev,
461 			"Failed to send NAND command (err = %d)!",
462 			ret);
463 
464 	/* Reset the op state. */
465 	memset(&nc->op, 0, sizeof(nc->op));
466 
467 	return ret;
468 }
469 
470 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
471 			       unsigned int len, bool force_8bit)
472 {
473 	struct atmel_nand_controller *nc;
474 
475 	nc = to_nand_controller(nand->base.controller);
476 
477 	/*
478 	 * If the controller supports DMA, the buffer address is DMA-able and
479 	 * len is long enough to make DMA transfers profitable, let's trigger
480 	 * a DMA transfer. If it fails, fallback to PIO mode.
481 	 */
482 	if (nc->dmac && virt_addr_valid(buf) &&
483 	    len >= MIN_DMA_LEN && !force_8bit &&
484 	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
485 				     DMA_FROM_DEVICE))
486 		return;
487 
488 	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
489 		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
490 	else
491 		ioread8_rep(nand->activecs->io.virt, buf, len);
492 }
493 
494 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
495 				unsigned int len, bool force_8bit)
496 {
497 	struct atmel_nand_controller *nc;
498 
499 	nc = to_nand_controller(nand->base.controller);
500 
501 	/*
502 	 * If the controller supports DMA, the buffer address is DMA-able and
503 	 * len is long enough to make DMA transfers profitable, let's trigger
504 	 * a DMA transfer. If it fails, fallback to PIO mode.
505 	 */
506 	if (nc->dmac && virt_addr_valid(buf) &&
507 	    len >= MIN_DMA_LEN && !force_8bit &&
508 	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
509 				     len, DMA_TO_DEVICE))
510 		return;
511 
512 	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
513 		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
514 	else
515 		iowrite8_rep(nand->activecs->io.virt, buf, len);
516 }
517 
518 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
519 {
520 	if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
521 		return nand_soft_waitrdy(&nand->base, timeout_ms);
522 
523 	return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
524 				 timeout_ms);
525 }
526 
527 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
528 				   unsigned int timeout_ms)
529 {
530 	struct atmel_hsmc_nand_controller *nc;
531 	u32 status, mask;
532 
533 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
534 		return atmel_nand_waitrdy(nand, timeout_ms);
535 
536 	nc = to_hsmc_nand_controller(nand->base.controller);
537 	mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
538 	return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
539 					       status, status & mask,
540 					       10, timeout_ms * 1000);
541 }
542 
543 static void atmel_nand_select_target(struct atmel_nand *nand,
544 				     unsigned int cs)
545 {
546 	nand->activecs = &nand->cs[cs];
547 }
548 
549 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
550 					  unsigned int cs)
551 {
552 	struct mtd_info *mtd = nand_to_mtd(&nand->base);
553 	struct atmel_hsmc_nand_controller *nc;
554 	u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
555 		  ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
556 		  ATMEL_HSMC_NFC_CFG_RSPARE;
557 
558 	nand->activecs = &nand->cs[cs];
559 	nc = to_hsmc_nand_controller(nand->base.controller);
560 	if (nc->cfg == cfg)
561 		return;
562 
563 	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
564 			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
565 			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
566 			   ATMEL_HSMC_NFC_CFG_RSPARE |
567 			   ATMEL_HSMC_NFC_CFG_WSPARE,
568 			   cfg);
569 	nc->cfg = cfg;
570 }
571 
572 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
573 				     const struct nand_op_instr *instr)
574 {
575 	struct atmel_nand_controller *nc;
576 	unsigned int i;
577 
578 	nc = to_nand_controller(nand->base.controller);
579 	switch (instr->type) {
580 	case NAND_OP_CMD_INSTR:
581 		writeb(instr->ctx.cmd.opcode,
582 		       nand->activecs->io.virt + nc->caps->cle_offs);
583 		return 0;
584 	case NAND_OP_ADDR_INSTR:
585 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
586 			writeb(instr->ctx.addr.addrs[i],
587 			       nand->activecs->io.virt + nc->caps->ale_offs);
588 		return 0;
589 	case NAND_OP_DATA_IN_INSTR:
590 		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
591 				   instr->ctx.data.len,
592 				   instr->ctx.data.force_8bit);
593 		return 0;
594 	case NAND_OP_DATA_OUT_INSTR:
595 		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
596 				    instr->ctx.data.len,
597 				    instr->ctx.data.force_8bit);
598 		return 0;
599 	case NAND_OP_WAITRDY_INSTR:
600 		return atmel_nand_waitrdy(nand,
601 					  instr->ctx.waitrdy.timeout_ms);
602 	default:
603 		break;
604 	}
605 
606 	return -EINVAL;
607 }
608 
609 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
610 				  const struct nand_operation *op,
611 				  bool check_only)
612 {
613 	unsigned int i;
614 	int ret = 0;
615 
616 	if (check_only)
617 		return 0;
618 
619 	atmel_nand_select_target(nand, op->cs);
620 	gpiod_set_value(nand->activecs->csgpio, 0);
621 	for (i = 0; i < op->ninstrs; i++) {
622 		ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
623 		if (ret)
624 			break;
625 	}
626 	gpiod_set_value(nand->activecs->csgpio, 1);
627 
628 	return ret;
629 }
630 
631 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
632 				    const struct nand_subop *subop)
633 {
634 	struct atmel_nand *nand = to_atmel_nand(chip);
635 	struct atmel_hsmc_nand_controller *nc;
636 	unsigned int i, j;
637 
638 	nc = to_hsmc_nand_controller(chip->controller);
639 
640 	nc->op.cs = nand->activecs->id;
641 	for (i = 0; i < subop->ninstrs; i++) {
642 		const struct nand_op_instr *instr = &subop->instrs[i];
643 
644 		if (instr->type == NAND_OP_CMD_INSTR) {
645 			nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
646 			continue;
647 		}
648 
649 		for (j = nand_subop_get_addr_start_off(subop, i);
650 		     j < nand_subop_get_num_addr_cyc(subop, i); j++) {
651 			nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
652 			nc->op.naddrs++;
653 		}
654 	}
655 
656 	return atmel_nfc_exec_op(nc, true);
657 }
658 
659 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
660 			      const struct nand_subop *subop)
661 {
662 	const struct nand_op_instr *instr = subop->instrs;
663 	struct atmel_nand *nand = to_atmel_nand(chip);
664 
665 	if (instr->type == NAND_OP_DATA_IN_INSTR)
666 		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
667 				   instr->ctx.data.len,
668 				   instr->ctx.data.force_8bit);
669 	else
670 		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
671 				    instr->ctx.data.len,
672 				    instr->ctx.data.force_8bit);
673 
674 	return 0;
675 }
676 
677 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
678 				   const struct nand_subop *subop)
679 {
680 	const struct nand_op_instr *instr = subop->instrs;
681 	struct atmel_nand *nand = to_atmel_nand(chip);
682 
683 	return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
684 }
685 
686 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
687 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
688 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
689 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
690 		NAND_OP_PARSER_PAT_CMD_ELEM(true)),
691 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
692 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
693 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
694 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
695 	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
696 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
697 );
698 
699 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
700 				   const struct nand_operation *op,
701 				   bool check_only)
702 {
703 	int ret;
704 
705 	if (check_only)
706 		return nand_op_parser_exec_op(&nand->base,
707 					      &atmel_hsmc_op_parser, op, true);
708 
709 	atmel_hsmc_nand_select_target(nand, op->cs);
710 	ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
711 				     false);
712 
713 	return ret;
714 }
715 
716 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
717 				   bool oob_required)
718 {
719 	struct mtd_info *mtd = nand_to_mtd(chip);
720 	struct atmel_hsmc_nand_controller *nc;
721 	int ret = -EIO;
722 
723 	nc = to_hsmc_nand_controller(chip->controller);
724 
725 	if (nc->base.dmac)
726 		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
727 					      nc->sram.dma, mtd->writesize,
728 					      DMA_TO_DEVICE);
729 
730 	/* Falling back to CPU copy. */
731 	if (ret)
732 		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
733 
734 	if (oob_required)
735 		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
736 			    mtd->oobsize);
737 }
738 
739 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
740 				     bool oob_required)
741 {
742 	struct mtd_info *mtd = nand_to_mtd(chip);
743 	struct atmel_hsmc_nand_controller *nc;
744 	int ret = -EIO;
745 
746 	nc = to_hsmc_nand_controller(chip->controller);
747 
748 	if (nc->base.dmac)
749 		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
750 					      mtd->writesize, DMA_FROM_DEVICE);
751 
752 	/* Falling back to CPU copy. */
753 	if (ret)
754 		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
755 
756 	if (oob_required)
757 		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
758 			      mtd->oobsize);
759 }
760 
761 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
762 {
763 	struct mtd_info *mtd = nand_to_mtd(chip);
764 	struct atmel_hsmc_nand_controller *nc;
765 
766 	nc = to_hsmc_nand_controller(chip->controller);
767 
768 	if (column >= 0) {
769 		nc->op.addrs[nc->op.naddrs++] = column;
770 
771 		/*
772 		 * 2 address cycles for the column offset on large page NANDs.
773 		 */
774 		if (mtd->writesize > 512)
775 			nc->op.addrs[nc->op.naddrs++] = column >> 8;
776 	}
777 
778 	if (page >= 0) {
779 		nc->op.addrs[nc->op.naddrs++] = page;
780 		nc->op.addrs[nc->op.naddrs++] = page >> 8;
781 
782 		if (chip->options & NAND_ROW_ADDR_3)
783 			nc->op.addrs[nc->op.naddrs++] = page >> 16;
784 	}
785 }
786 
787 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
788 {
789 	struct atmel_nand *nand = to_atmel_nand(chip);
790 	struct atmel_nand_controller *nc;
791 	int ret;
792 
793 	nc = to_nand_controller(chip->controller);
794 
795 	if (raw)
796 		return 0;
797 
798 	ret = atmel_pmecc_enable(nand->pmecc, op);
799 	if (ret)
800 		dev_err(nc->dev,
801 			"Failed to enable ECC engine (err = %d)\n", ret);
802 
803 	return ret;
804 }
805 
806 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
807 {
808 	struct atmel_nand *nand = to_atmel_nand(chip);
809 
810 	if (!raw)
811 		atmel_pmecc_disable(nand->pmecc);
812 }
813 
814 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
815 {
816 	struct atmel_nand *nand = to_atmel_nand(chip);
817 	struct mtd_info *mtd = nand_to_mtd(chip);
818 	struct atmel_nand_controller *nc;
819 	struct mtd_oob_region oobregion;
820 	void *eccbuf;
821 	int ret, i;
822 
823 	nc = to_nand_controller(chip->controller);
824 
825 	if (raw)
826 		return 0;
827 
828 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
829 	if (ret) {
830 		dev_err(nc->dev,
831 			"Failed to transfer NAND page data (err = %d)\n",
832 			ret);
833 		return ret;
834 	}
835 
836 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
837 	eccbuf = chip->oob_poi + oobregion.offset;
838 
839 	for (i = 0; i < chip->ecc.steps; i++) {
840 		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
841 						   eccbuf);
842 		eccbuf += chip->ecc.bytes;
843 	}
844 
845 	return 0;
846 }
847 
848 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
849 					 bool raw)
850 {
851 	struct atmel_nand *nand = to_atmel_nand(chip);
852 	struct mtd_info *mtd = nand_to_mtd(chip);
853 	struct atmel_nand_controller *nc;
854 	struct mtd_oob_region oobregion;
855 	int ret, i, max_bitflips = 0;
856 	void *databuf, *eccbuf;
857 
858 	nc = to_nand_controller(chip->controller);
859 
860 	if (raw)
861 		return 0;
862 
863 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
864 	if (ret) {
865 		dev_err(nc->dev,
866 			"Failed to read NAND page data (err = %d)\n",
867 			ret);
868 		return ret;
869 	}
870 
871 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
872 	eccbuf = chip->oob_poi + oobregion.offset;
873 	databuf = buf;
874 
875 	for (i = 0; i < chip->ecc.steps; i++) {
876 		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
877 						 eccbuf);
878 		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
879 			ret = nand_check_erased_ecc_chunk(databuf,
880 							  chip->ecc.size,
881 							  eccbuf,
882 							  chip->ecc.bytes,
883 							  NULL, 0,
884 							  chip->ecc.strength);
885 
886 		if (ret >= 0)
887 			max_bitflips = max(ret, max_bitflips);
888 		else
889 			mtd->ecc_stats.failed++;
890 
891 		databuf += chip->ecc.size;
892 		eccbuf += chip->ecc.bytes;
893 	}
894 
895 	return max_bitflips;
896 }
897 
898 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
899 				     bool oob_required, int page, bool raw)
900 {
901 	struct mtd_info *mtd = nand_to_mtd(chip);
902 	struct atmel_nand *nand = to_atmel_nand(chip);
903 	int ret;
904 
905 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
906 
907 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
908 	if (ret)
909 		return ret;
910 
911 	nand_write_data_op(chip, buf, mtd->writesize, false);
912 
913 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
914 	if (ret) {
915 		atmel_pmecc_disable(nand->pmecc);
916 		return ret;
917 	}
918 
919 	atmel_nand_pmecc_disable(chip, raw);
920 
921 	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
922 
923 	return nand_prog_page_end_op(chip);
924 }
925 
926 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
927 				       int oob_required, int page)
928 {
929 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
930 }
931 
932 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
933 					   const u8 *buf, int oob_required,
934 					   int page)
935 {
936 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
937 }
938 
939 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
940 				    bool oob_required, int page, bool raw)
941 {
942 	struct mtd_info *mtd = nand_to_mtd(chip);
943 	int ret;
944 
945 	nand_read_page_op(chip, page, 0, NULL, 0);
946 
947 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
948 	if (ret)
949 		return ret;
950 
951 	ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
952 	if (ret)
953 		goto out_disable;
954 
955 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
956 	if (ret)
957 		goto out_disable;
958 
959 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
960 
961 out_disable:
962 	atmel_nand_pmecc_disable(chip, raw);
963 
964 	return ret;
965 }
966 
967 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
968 				      int oob_required, int page)
969 {
970 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
971 }
972 
973 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
974 					  int oob_required, int page)
975 {
976 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
977 }
978 
979 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
980 					  const u8 *buf, bool oob_required,
981 					  int page, bool raw)
982 {
983 	struct mtd_info *mtd = nand_to_mtd(chip);
984 	struct atmel_nand *nand = to_atmel_nand(chip);
985 	struct atmel_hsmc_nand_controller *nc;
986 	int ret;
987 
988 	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
989 	nc = to_hsmc_nand_controller(chip->controller);
990 
991 	atmel_nfc_copy_to_sram(chip, buf, false);
992 
993 	nc->op.cmds[0] = NAND_CMD_SEQIN;
994 	nc->op.ncmds = 1;
995 	atmel_nfc_set_op_addr(chip, page, 0x0);
996 	nc->op.cs = nand->activecs->id;
997 	nc->op.data = ATMEL_NFC_WRITE_DATA;
998 
999 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1000 	if (ret)
1001 		return ret;
1002 
1003 	ret = atmel_nfc_exec_op(nc, false);
1004 	if (ret) {
1005 		atmel_nand_pmecc_disable(chip, raw);
1006 		dev_err(nc->base.dev,
1007 			"Failed to transfer NAND page data (err = %d)\n",
1008 			ret);
1009 		return ret;
1010 	}
1011 
1012 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1013 
1014 	atmel_nand_pmecc_disable(chip, raw);
1015 
1016 	if (ret)
1017 		return ret;
1018 
1019 	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1020 
1021 	return nand_prog_page_end_op(chip);
1022 }
1023 
1024 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1025 					    const u8 *buf, int oob_required,
1026 					    int page)
1027 {
1028 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1029 					      false);
1030 }
1031 
1032 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1033 						const u8 *buf,
1034 						int oob_required, int page)
1035 {
1036 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1037 					      true);
1038 }
1039 
1040 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1041 					 bool oob_required, int page,
1042 					 bool raw)
1043 {
1044 	struct mtd_info *mtd = nand_to_mtd(chip);
1045 	struct atmel_nand *nand = to_atmel_nand(chip);
1046 	struct atmel_hsmc_nand_controller *nc;
1047 	int ret;
1048 
1049 	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1050 	nc = to_hsmc_nand_controller(chip->controller);
1051 
1052 	/*
1053 	 * Optimized read page accessors only work when the NAND R/B pin is
1054 	 * connected to a native SoC R/B pin. If that's not the case, fallback
1055 	 * to the non-optimized one.
1056 	 */
1057 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1058 		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1059 						raw);
1060 
1061 	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1062 
1063 	if (mtd->writesize > 512)
1064 		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1065 
1066 	atmel_nfc_set_op_addr(chip, page, 0x0);
1067 	nc->op.cs = nand->activecs->id;
1068 	nc->op.data = ATMEL_NFC_READ_DATA;
1069 
1070 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1071 	if (ret)
1072 		return ret;
1073 
1074 	ret = atmel_nfc_exec_op(nc, false);
1075 	if (ret) {
1076 		atmel_nand_pmecc_disable(chip, raw);
1077 		dev_err(nc->base.dev,
1078 			"Failed to load NAND page data (err = %d)\n",
1079 			ret);
1080 		return ret;
1081 	}
1082 
1083 	atmel_nfc_copy_from_sram(chip, buf, true);
1084 
1085 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1086 
1087 	atmel_nand_pmecc_disable(chip, raw);
1088 
1089 	return ret;
1090 }
1091 
1092 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1093 					   int oob_required, int page)
1094 {
1095 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1096 					     false);
1097 }
1098 
1099 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1100 					       u8 *buf, int oob_required,
1101 					       int page)
1102 {
1103 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1104 					     true);
1105 }
1106 
1107 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1108 {
1109 	const struct nand_ecc_props *requirements =
1110 		nanddev_get_ecc_requirements(&chip->base);
1111 	struct mtd_info *mtd = nand_to_mtd(chip);
1112 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
1113 	struct atmel_nand *nand = to_atmel_nand(chip);
1114 	struct atmel_nand_controller *nc;
1115 	struct atmel_pmecc_user_req req;
1116 
1117 	nc = to_nand_controller(chip->controller);
1118 
1119 	if (!nc->pmecc) {
1120 		dev_err(nc->dev, "HW ECC not supported\n");
1121 		return -ENOTSUPP;
1122 	}
1123 
1124 	if (nc->caps->legacy_of_bindings) {
1125 		u32 val;
1126 
1127 		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1128 					  &val))
1129 			chip->ecc.strength = val;
1130 
1131 		if (!of_property_read_u32(nc->dev->of_node,
1132 					  "atmel,pmecc-sector-size",
1133 					  &val))
1134 			chip->ecc.size = val;
1135 	}
1136 
1137 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1138 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1139 	else if (chip->ecc.strength)
1140 		req.ecc.strength = chip->ecc.strength;
1141 	else if (requirements->strength)
1142 		req.ecc.strength = requirements->strength;
1143 	else
1144 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1145 
1146 	if (chip->ecc.size)
1147 		req.ecc.sectorsize = chip->ecc.size;
1148 	else if (requirements->step_size)
1149 		req.ecc.sectorsize = requirements->step_size;
1150 	else
1151 		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1152 
1153 	req.pagesize = mtd->writesize;
1154 	req.oobsize = mtd->oobsize;
1155 
1156 	if (mtd->writesize <= 512) {
1157 		req.ecc.bytes = 4;
1158 		req.ecc.ooboffset = 0;
1159 	} else {
1160 		req.ecc.bytes = mtd->oobsize - 2;
1161 		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1162 	}
1163 
1164 	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1165 	if (IS_ERR(nand->pmecc))
1166 		return PTR_ERR(nand->pmecc);
1167 
1168 	chip->ecc.algo = NAND_ECC_ALGO_BCH;
1169 	chip->ecc.size = req.ecc.sectorsize;
1170 	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1171 	chip->ecc.strength = req.ecc.strength;
1172 
1173 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1174 
1175 	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1176 
1177 	return 0;
1178 }
1179 
1180 static int atmel_nand_ecc_init(struct nand_chip *chip)
1181 {
1182 	struct atmel_nand_controller *nc;
1183 	int ret;
1184 
1185 	nc = to_nand_controller(chip->controller);
1186 
1187 	switch (chip->ecc.engine_type) {
1188 	case NAND_ECC_ENGINE_TYPE_NONE:
1189 	case NAND_ECC_ENGINE_TYPE_SOFT:
1190 		/*
1191 		 * Nothing to do, the core will initialize everything for us.
1192 		 */
1193 		break;
1194 
1195 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1196 		ret = atmel_nand_pmecc_init(chip);
1197 		if (ret)
1198 			return ret;
1199 
1200 		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1201 		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1202 		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1203 		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1204 		break;
1205 
1206 	default:
1207 		/* Other modes are not supported. */
1208 		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1209 			chip->ecc.engine_type);
1210 		return -ENOTSUPP;
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1217 {
1218 	int ret;
1219 
1220 	ret = atmel_nand_ecc_init(chip);
1221 	if (ret)
1222 		return ret;
1223 
1224 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1225 		return 0;
1226 
1227 	/* Adjust the ECC operations for the HSMC IP. */
1228 	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1229 	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1230 	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1231 	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1232 
1233 	return 0;
1234 }
1235 
1236 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1237 					const struct nand_interface_config *conf,
1238 					struct atmel_smc_cs_conf *smcconf)
1239 {
1240 	u32 ncycles, totalcycles, timeps, mckperiodps;
1241 	struct atmel_nand_controller *nc;
1242 	int ret;
1243 
1244 	nc = to_nand_controller(nand->base.controller);
1245 
1246 	/* DDR interface not supported. */
1247 	if (conf->type != NAND_SDR_IFACE)
1248 		return -ENOTSUPP;
1249 
1250 	/*
1251 	 * tRC < 30ns implies EDO mode. This controller does not support this
1252 	 * mode.
1253 	 */
1254 	if (conf->timings.sdr.tRC_min < 30000)
1255 		return -ENOTSUPP;
1256 
1257 	atmel_smc_cs_conf_init(smcconf);
1258 
1259 	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1260 	mckperiodps *= 1000;
1261 
1262 	/*
1263 	 * Set write pulse timing. This one is easy to extract:
1264 	 *
1265 	 * NWE_PULSE = tWP
1266 	 */
1267 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1268 	totalcycles = ncycles;
1269 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1270 					  ncycles);
1271 	if (ret)
1272 		return ret;
1273 
1274 	/*
1275 	 * The write setup timing depends on the operation done on the NAND.
1276 	 * All operations goes through the same data bus, but the operation
1277 	 * type depends on the address we are writing to (ALE/CLE address
1278 	 * lines).
1279 	 * Since we have no way to differentiate the different operations at
1280 	 * the SMC level, we must consider the worst case (the biggest setup
1281 	 * time among all operation types):
1282 	 *
1283 	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1284 	 */
1285 	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1286 		      conf->timings.sdr.tALS_min);
1287 	timeps = max(timeps, conf->timings.sdr.tDS_min);
1288 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1289 	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1290 	totalcycles += ncycles;
1291 	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1292 					  ncycles);
1293 	if (ret)
1294 		return ret;
1295 
1296 	/*
1297 	 * As for the write setup timing, the write hold timing depends on the
1298 	 * operation done on the NAND:
1299 	 *
1300 	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1301 	 */
1302 	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1303 		      conf->timings.sdr.tALH_min);
1304 	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1305 		      conf->timings.sdr.tWH_min);
1306 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1307 	totalcycles += ncycles;
1308 
1309 	/*
1310 	 * The write cycle timing is directly matching tWC, but is also
1311 	 * dependent on the other timings on the setup and hold timings we
1312 	 * calculated earlier, which gives:
1313 	 *
1314 	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1315 	 */
1316 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1317 	ncycles = max(totalcycles, ncycles);
1318 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1319 					  ncycles);
1320 	if (ret)
1321 		return ret;
1322 
1323 	/*
1324 	 * We don't want the CS line to be toggled between each byte/word
1325 	 * transfer to the NAND. The only way to guarantee that is to have the
1326 	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1327 	 *
1328 	 * NCS_WR_PULSE = NWE_CYCLE
1329 	 */
1330 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1331 					  ncycles);
1332 	if (ret)
1333 		return ret;
1334 
1335 	/*
1336 	 * As for the write setup timing, the read hold timing depends on the
1337 	 * operation done on the NAND:
1338 	 *
1339 	 * NRD_HOLD = max(tREH, tRHOH)
1340 	 */
1341 	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1342 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1343 	totalcycles = ncycles;
1344 
1345 	/*
1346 	 * TDF = tRHZ - NRD_HOLD
1347 	 */
1348 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1349 	ncycles -= totalcycles;
1350 
1351 	/*
1352 	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1353 	 * we might end up with a config that does not fit in the TDF field.
1354 	 * Just take the max value in this case and hope that the NAND is more
1355 	 * tolerant than advertised.
1356 	 */
1357 	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1358 		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1359 	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1360 		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1361 
1362 	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1363 			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1364 
1365 	/*
1366 	 * Read pulse timing directly matches tRP:
1367 	 *
1368 	 * NRD_PULSE = tRP
1369 	 */
1370 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1371 	totalcycles += ncycles;
1372 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1373 					  ncycles);
1374 	if (ret)
1375 		return ret;
1376 
1377 	/*
1378 	 * The write cycle timing is directly matching tWC, but is also
1379 	 * dependent on the setup and hold timings we calculated earlier,
1380 	 * which gives:
1381 	 *
1382 	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1383 	 *
1384 	 * NRD_SETUP is always 0.
1385 	 */
1386 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1387 	ncycles = max(totalcycles, ncycles);
1388 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1389 					  ncycles);
1390 	if (ret)
1391 		return ret;
1392 
1393 	/*
1394 	 * We don't want the CS line to be toggled between each byte/word
1395 	 * transfer from the NAND. The only way to guarantee that is to have
1396 	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1397 	 *
1398 	 * NCS_RD_PULSE = NRD_CYCLE
1399 	 */
1400 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1401 					  ncycles);
1402 	if (ret)
1403 		return ret;
1404 
1405 	/* Txxx timings are directly matching tXXX ones. */
1406 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1407 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1408 					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1409 					   ncycles);
1410 	if (ret)
1411 		return ret;
1412 
1413 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1414 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1415 					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1416 					   ncycles);
1417 	/*
1418 	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1419 	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1420 	 * fit in the tADL field of the SMC reg. We need to relax the check and
1421 	 * accept the -ERANGE return code.
1422 	 *
1423 	 * Note that previous versions of the ONFI spec had a lower tADL_min
1424 	 * (100 or 200 ns). It's not clear why this timing constraint got
1425 	 * increased but it seems most NANDs are fine with values lower than
1426 	 * 400ns, so we should be safe.
1427 	 */
1428 	if (ret && ret != -ERANGE)
1429 		return ret;
1430 
1431 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1432 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1433 					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1434 					   ncycles);
1435 	if (ret)
1436 		return ret;
1437 
1438 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1439 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1440 					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1441 					   ncycles);
1442 	if (ret)
1443 		return ret;
1444 
1445 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1446 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1447 					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1448 					   ncycles);
1449 	if (ret)
1450 		return ret;
1451 
1452 	/* Attach the CS line to the NFC logic. */
1453 	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1454 
1455 	/* Set the appropriate data bus width. */
1456 	if (nand->base.options & NAND_BUSWIDTH_16)
1457 		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1458 
1459 	/* Operate in NRD/NWE READ/WRITEMODE. */
1460 	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1461 			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1462 
1463 	return 0;
1464 }
1465 
1466 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1467 					int csline,
1468 					const struct nand_interface_config *conf)
1469 {
1470 	struct atmel_nand_controller *nc;
1471 	struct atmel_smc_cs_conf smcconf;
1472 	struct atmel_nand_cs *cs;
1473 	int ret;
1474 
1475 	nc = to_nand_controller(nand->base.controller);
1476 
1477 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1478 	if (ret)
1479 		return ret;
1480 
1481 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1482 		return 0;
1483 
1484 	cs = &nand->cs[csline];
1485 	cs->smcconf = smcconf;
1486 	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1487 
1488 	return 0;
1489 }
1490 
1491 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1492 					int csline,
1493 					const struct nand_interface_config *conf)
1494 {
1495 	struct atmel_hsmc_nand_controller *nc;
1496 	struct atmel_smc_cs_conf smcconf;
1497 	struct atmel_nand_cs *cs;
1498 	int ret;
1499 
1500 	nc = to_hsmc_nand_controller(nand->base.controller);
1501 
1502 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1503 	if (ret)
1504 		return ret;
1505 
1506 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1507 		return 0;
1508 
1509 	cs = &nand->cs[csline];
1510 	cs->smcconf = smcconf;
1511 
1512 	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1513 		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1514 
1515 	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1516 				 &cs->smcconf);
1517 
1518 	return 0;
1519 }
1520 
1521 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1522 				      const struct nand_interface_config *conf)
1523 {
1524 	struct atmel_nand *nand = to_atmel_nand(chip);
1525 	struct atmel_nand_controller *nc;
1526 
1527 	nc = to_nand_controller(nand->base.controller);
1528 
1529 	if (csline >= nand->numcs ||
1530 	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1531 		return -EINVAL;
1532 
1533 	return nc->caps->ops->setup_interface(nand, csline, conf);
1534 }
1535 
1536 static int atmel_nand_exec_op(struct nand_chip *chip,
1537 			      const struct nand_operation *op,
1538 			      bool check_only)
1539 {
1540 	struct atmel_nand *nand = to_atmel_nand(chip);
1541 	struct atmel_nand_controller *nc;
1542 
1543 	nc = to_nand_controller(nand->base.controller);
1544 
1545 	return nc->caps->ops->exec_op(nand, op, check_only);
1546 }
1547 
1548 static void atmel_nand_init(struct atmel_nand_controller *nc,
1549 			    struct atmel_nand *nand)
1550 {
1551 	struct nand_chip *chip = &nand->base;
1552 	struct mtd_info *mtd = nand_to_mtd(chip);
1553 
1554 	mtd->dev.parent = nc->dev;
1555 	nand->base.controller = &nc->base;
1556 
1557 	if (!nc->mck || !nc->caps->ops->setup_interface)
1558 		chip->options |= NAND_KEEP_TIMINGS;
1559 
1560 	/*
1561 	 * Use a bounce buffer when the buffer passed by the MTD user is not
1562 	 * suitable for DMA.
1563 	 */
1564 	if (nc->dmac)
1565 		chip->options |= NAND_USES_DMA;
1566 
1567 	/* Default to HW ECC if pmecc is available. */
1568 	if (nc->pmecc)
1569 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1570 }
1571 
1572 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1573 				struct atmel_nand *nand)
1574 {
1575 	struct nand_chip *chip = &nand->base;
1576 	struct atmel_smc_nand_controller *smc_nc;
1577 	int i;
1578 
1579 	atmel_nand_init(nc, nand);
1580 
1581 	smc_nc = to_smc_nand_controller(chip->controller);
1582 	if (!smc_nc->ebi_csa_regmap)
1583 		return;
1584 
1585 	/* Attach the CS to the NAND Flash logic. */
1586 	for (i = 0; i < nand->numcs; i++)
1587 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1588 				   smc_nc->ebi_csa->offs,
1589 				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1590 
1591 	if (smc_nc->ebi_csa->nfd0_on_d16)
1592 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1593 				   smc_nc->ebi_csa->offs,
1594 				   smc_nc->ebi_csa->nfd0_on_d16,
1595 				   smc_nc->ebi_csa->nfd0_on_d16);
1596 }
1597 
1598 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1599 {
1600 	struct nand_chip *chip = &nand->base;
1601 	struct mtd_info *mtd = nand_to_mtd(chip);
1602 	int ret;
1603 
1604 	ret = mtd_device_unregister(mtd);
1605 	if (ret)
1606 		return ret;
1607 
1608 	nand_cleanup(chip);
1609 	list_del(&nand->node);
1610 
1611 	return 0;
1612 }
1613 
1614 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1615 					    struct device_node *np,
1616 					    int reg_cells)
1617 {
1618 	struct atmel_nand *nand;
1619 	struct gpio_desc *gpio;
1620 	int numcs, ret, i;
1621 
1622 	numcs = of_property_count_elems_of_size(np, "reg",
1623 						reg_cells * sizeof(u32));
1624 	if (numcs < 1) {
1625 		dev_err(nc->dev, "Missing or invalid reg property\n");
1626 		return ERR_PTR(-EINVAL);
1627 	}
1628 
1629 	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1630 	if (!nand) {
1631 		dev_err(nc->dev, "Failed to allocate NAND object\n");
1632 		return ERR_PTR(-ENOMEM);
1633 	}
1634 
1635 	nand->numcs = numcs;
1636 
1637 	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1638 				     "det", GPIOD_IN, "nand-det");
1639 	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1640 		dev_err(nc->dev,
1641 			"Failed to get detect gpio (err = %ld)\n",
1642 			PTR_ERR(gpio));
1643 		return ERR_CAST(gpio);
1644 	}
1645 
1646 	if (!IS_ERR(gpio))
1647 		nand->cdgpio = gpio;
1648 
1649 	for (i = 0; i < numcs; i++) {
1650 		struct resource res;
1651 		u32 val;
1652 
1653 		ret = of_address_to_resource(np, 0, &res);
1654 		if (ret) {
1655 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1656 				ret);
1657 			return ERR_PTR(ret);
1658 		}
1659 
1660 		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1661 						 &val);
1662 		if (ret) {
1663 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1664 				ret);
1665 			return ERR_PTR(ret);
1666 		}
1667 
1668 		nand->cs[i].id = val;
1669 
1670 		nand->cs[i].io.dma = res.start;
1671 		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1672 		if (IS_ERR(nand->cs[i].io.virt))
1673 			return ERR_CAST(nand->cs[i].io.virt);
1674 
1675 		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1676 			if (val > ATMEL_NFC_MAX_RB_ID)
1677 				return ERR_PTR(-EINVAL);
1678 
1679 			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1680 			nand->cs[i].rb.id = val;
1681 		} else {
1682 			gpio = devm_fwnode_gpiod_get_index(nc->dev,
1683 							   of_fwnode_handle(np),
1684 							   "rb", i, GPIOD_IN,
1685 							   "nand-rb");
1686 			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1687 				dev_err(nc->dev,
1688 					"Failed to get R/B gpio (err = %ld)\n",
1689 					PTR_ERR(gpio));
1690 				return ERR_CAST(gpio);
1691 			}
1692 
1693 			if (!IS_ERR(gpio)) {
1694 				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1695 				nand->cs[i].rb.gpio = gpio;
1696 			}
1697 		}
1698 
1699 		gpio = devm_fwnode_gpiod_get_index(nc->dev,
1700 						   of_fwnode_handle(np),
1701 						   "cs", i, GPIOD_OUT_HIGH,
1702 						   "nand-cs");
1703 		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1704 			dev_err(nc->dev,
1705 				"Failed to get CS gpio (err = %ld)\n",
1706 				PTR_ERR(gpio));
1707 			return ERR_CAST(gpio);
1708 		}
1709 
1710 		if (!IS_ERR(gpio))
1711 			nand->cs[i].csgpio = gpio;
1712 	}
1713 
1714 	nand_set_flash_node(&nand->base, np);
1715 
1716 	return nand;
1717 }
1718 
1719 static int
1720 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1721 			       struct atmel_nand *nand)
1722 {
1723 	struct nand_chip *chip = &nand->base;
1724 	struct mtd_info *mtd = nand_to_mtd(chip);
1725 	int ret;
1726 
1727 	/* No card inserted, skip this NAND. */
1728 	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1729 		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1730 		return 0;
1731 	}
1732 
1733 	nc->caps->ops->nand_init(nc, nand);
1734 
1735 	ret = nand_scan(chip, nand->numcs);
1736 	if (ret) {
1737 		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1738 		return ret;
1739 	}
1740 
1741 	ret = mtd_device_register(mtd, NULL, 0);
1742 	if (ret) {
1743 		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1744 		nand_cleanup(chip);
1745 		return ret;
1746 	}
1747 
1748 	list_add_tail(&nand->node, &nc->chips);
1749 
1750 	return 0;
1751 }
1752 
1753 static int
1754 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1755 {
1756 	struct atmel_nand *nand, *tmp;
1757 	int ret;
1758 
1759 	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1760 		ret = atmel_nand_controller_remove_nand(nand);
1761 		if (ret)
1762 			return ret;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static int
1769 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1770 {
1771 	struct device *dev = nc->dev;
1772 	struct platform_device *pdev = to_platform_device(dev);
1773 	struct atmel_nand *nand;
1774 	struct gpio_desc *gpio;
1775 	struct resource *res;
1776 
1777 	/*
1778 	 * Legacy bindings only allow connecting a single NAND with a unique CS
1779 	 * line to the controller.
1780 	 */
1781 	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1782 			    GFP_KERNEL);
1783 	if (!nand)
1784 		return -ENOMEM;
1785 
1786 	nand->numcs = 1;
1787 
1788 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1789 	nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1790 	if (IS_ERR(nand->cs[0].io.virt))
1791 		return PTR_ERR(nand->cs[0].io.virt);
1792 
1793 	nand->cs[0].io.dma = res->start;
1794 
1795 	/*
1796 	 * The old driver was hardcoding the CS id to 3 for all sama5
1797 	 * controllers. Since this id is only meaningful for the sama5
1798 	 * controller we can safely assign this id to 3 no matter the
1799 	 * controller.
1800 	 * If one wants to connect a NAND to a different CS line, he will
1801 	 * have to use the new bindings.
1802 	 */
1803 	nand->cs[0].id = 3;
1804 
1805 	/* R/B GPIO. */
1806 	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1807 	if (IS_ERR(gpio)) {
1808 		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1809 			PTR_ERR(gpio));
1810 		return PTR_ERR(gpio);
1811 	}
1812 
1813 	if (gpio) {
1814 		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1815 		nand->cs[0].rb.gpio = gpio;
1816 	}
1817 
1818 	/* CS GPIO. */
1819 	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1820 	if (IS_ERR(gpio)) {
1821 		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1822 			PTR_ERR(gpio));
1823 		return PTR_ERR(gpio);
1824 	}
1825 
1826 	nand->cs[0].csgpio = gpio;
1827 
1828 	/* Card detect GPIO. */
1829 	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1830 	if (IS_ERR(gpio)) {
1831 		dev_err(dev,
1832 			"Failed to get detect gpio (err = %ld)\n",
1833 			PTR_ERR(gpio));
1834 		return PTR_ERR(gpio);
1835 	}
1836 
1837 	nand->cdgpio = gpio;
1838 
1839 	nand_set_flash_node(&nand->base, nc->dev->of_node);
1840 
1841 	return atmel_nand_controller_add_nand(nc, nand);
1842 }
1843 
1844 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1845 {
1846 	struct device_node *np, *nand_np;
1847 	struct device *dev = nc->dev;
1848 	int ret, reg_cells;
1849 	u32 val;
1850 
1851 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1852 	if (nc->caps->legacy_of_bindings)
1853 		return atmel_nand_controller_legacy_add_nands(nc);
1854 
1855 	np = dev->of_node;
1856 
1857 	ret = of_property_read_u32(np, "#address-cells", &val);
1858 	if (ret) {
1859 		dev_err(dev, "missing #address-cells property\n");
1860 		return ret;
1861 	}
1862 
1863 	reg_cells = val;
1864 
1865 	ret = of_property_read_u32(np, "#size-cells", &val);
1866 	if (ret) {
1867 		dev_err(dev, "missing #size-cells property\n");
1868 		return ret;
1869 	}
1870 
1871 	reg_cells += val;
1872 
1873 	for_each_child_of_node(np, nand_np) {
1874 		struct atmel_nand *nand;
1875 
1876 		nand = atmel_nand_create(nc, nand_np, reg_cells);
1877 		if (IS_ERR(nand)) {
1878 			ret = PTR_ERR(nand);
1879 			goto err;
1880 		}
1881 
1882 		ret = atmel_nand_controller_add_nand(nc, nand);
1883 		if (ret)
1884 			goto err;
1885 	}
1886 
1887 	return 0;
1888 
1889 err:
1890 	atmel_nand_controller_remove_nands(nc);
1891 
1892 	return ret;
1893 }
1894 
1895 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1896 {
1897 	if (nc->dmac)
1898 		dma_release_channel(nc->dmac);
1899 
1900 	clk_put(nc->mck);
1901 }
1902 
1903 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1904 	.offs = AT91SAM9260_MATRIX_EBICSA,
1905 };
1906 
1907 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1908 	.offs = AT91SAM9261_MATRIX_EBICSA,
1909 };
1910 
1911 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1912 	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1913 };
1914 
1915 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1916 	.offs = AT91SAM9RL_MATRIX_EBICSA,
1917 };
1918 
1919 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1920 	.offs = AT91SAM9G45_MATRIX_EBICSA,
1921 };
1922 
1923 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1924 	.offs = AT91SAM9N12_MATRIX_EBICSA,
1925 };
1926 
1927 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1928 	.offs = AT91SAM9X5_MATRIX_EBICSA,
1929 };
1930 
1931 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1932 	.offs = AT91_SFR_CCFG_EBICSA,
1933 	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1934 };
1935 
1936 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
1937 	{
1938 		.compatible = "atmel,at91sam9260-matrix",
1939 		.data = &at91sam9260_ebi_csa,
1940 	},
1941 	{
1942 		.compatible = "atmel,at91sam9261-matrix",
1943 		.data = &at91sam9261_ebi_csa,
1944 	},
1945 	{
1946 		.compatible = "atmel,at91sam9263-matrix",
1947 		.data = &at91sam9263_ebi_csa,
1948 	},
1949 	{
1950 		.compatible = "atmel,at91sam9rl-matrix",
1951 		.data = &at91sam9rl_ebi_csa,
1952 	},
1953 	{
1954 		.compatible = "atmel,at91sam9g45-matrix",
1955 		.data = &at91sam9g45_ebi_csa,
1956 	},
1957 	{
1958 		.compatible = "atmel,at91sam9n12-matrix",
1959 		.data = &at91sam9n12_ebi_csa,
1960 	},
1961 	{
1962 		.compatible = "atmel,at91sam9x5-matrix",
1963 		.data = &at91sam9x5_ebi_csa,
1964 	},
1965 	{
1966 		.compatible = "microchip,sam9x60-sfr",
1967 		.data = &sam9x60_ebi_csa,
1968 	},
1969 	{ /* sentinel */ },
1970 };
1971 
1972 static int atmel_nand_attach_chip(struct nand_chip *chip)
1973 {
1974 	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1975 	struct atmel_nand *nand = to_atmel_nand(chip);
1976 	struct mtd_info *mtd = nand_to_mtd(chip);
1977 	int ret;
1978 
1979 	ret = nc->caps->ops->ecc_init(chip);
1980 	if (ret)
1981 		return ret;
1982 
1983 	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1984 		/*
1985 		 * We keep the MTD name unchanged to avoid breaking platforms
1986 		 * where the MTD cmdline parser is used and the bootloader
1987 		 * has not been updated to use the new naming scheme.
1988 		 */
1989 		mtd->name = "atmel_nand";
1990 	} else if (!mtd->name) {
1991 		/*
1992 		 * If the new bindings are used and the bootloader has not been
1993 		 * updated to pass a new mtdparts parameter on the cmdline, you
1994 		 * should define the following property in your nand node:
1995 		 *
1996 		 *	label = "atmel_nand";
1997 		 *
1998 		 * This way, mtd->name will be set by the core when
1999 		 * nand_set_flash_node() is called.
2000 		 */
2001 		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2002 					   "%s:nand.%d", dev_name(nc->dev),
2003 					   nand->cs[0].id);
2004 		if (!mtd->name) {
2005 			dev_err(nc->dev, "Failed to allocate mtd->name\n");
2006 			return -ENOMEM;
2007 		}
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static const struct nand_controller_ops atmel_nand_controller_ops = {
2014 	.attach_chip = atmel_nand_attach_chip,
2015 	.setup_interface = atmel_nand_setup_interface,
2016 	.exec_op = atmel_nand_exec_op,
2017 };
2018 
2019 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2020 				struct platform_device *pdev,
2021 				const struct atmel_nand_controller_caps *caps)
2022 {
2023 	struct device *dev = &pdev->dev;
2024 	struct device_node *np = dev->of_node;
2025 	int ret;
2026 
2027 	nand_controller_init(&nc->base);
2028 	nc->base.ops = &atmel_nand_controller_ops;
2029 	INIT_LIST_HEAD(&nc->chips);
2030 	nc->dev = dev;
2031 	nc->caps = caps;
2032 
2033 	platform_set_drvdata(pdev, nc);
2034 
2035 	nc->pmecc = devm_atmel_pmecc_get(dev);
2036 	if (IS_ERR(nc->pmecc))
2037 		return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2038 				     "Could not get PMECC object\n");
2039 
2040 	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2041 		dma_cap_mask_t mask;
2042 
2043 		dma_cap_zero(mask);
2044 		dma_cap_set(DMA_MEMCPY, mask);
2045 
2046 		nc->dmac = dma_request_channel(mask, NULL, NULL);
2047 		if (!nc->dmac)
2048 			dev_err(nc->dev, "Failed to request DMA channel\n");
2049 	}
2050 
2051 	/* We do not retrieve the SMC syscon when parsing old DTs. */
2052 	if (nc->caps->legacy_of_bindings)
2053 		return 0;
2054 
2055 	nc->mck = of_clk_get(dev->parent->of_node, 0);
2056 	if (IS_ERR(nc->mck)) {
2057 		dev_err(dev, "Failed to retrieve MCK clk\n");
2058 		return PTR_ERR(nc->mck);
2059 	}
2060 
2061 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2062 	if (!np) {
2063 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2064 		return -EINVAL;
2065 	}
2066 
2067 	nc->smc = syscon_node_to_regmap(np);
2068 	of_node_put(np);
2069 	if (IS_ERR(nc->smc)) {
2070 		ret = PTR_ERR(nc->smc);
2071 		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2072 		return ret;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static int
2079 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2080 {
2081 	struct device *dev = nc->base.dev;
2082 	const struct of_device_id *match;
2083 	struct device_node *np;
2084 	int ret;
2085 
2086 	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
2087 	if (nc->base.caps->legacy_of_bindings)
2088 		return 0;
2089 
2090 	np = of_parse_phandle(dev->parent->of_node,
2091 			      nc->base.caps->ebi_csa_regmap_name, 0);
2092 	if (!np)
2093 		return 0;
2094 
2095 	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2096 	if (!match) {
2097 		of_node_put(np);
2098 		return 0;
2099 	}
2100 
2101 	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2102 	of_node_put(np);
2103 	if (IS_ERR(nc->ebi_csa_regmap)) {
2104 		ret = PTR_ERR(nc->ebi_csa_regmap);
2105 		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2106 		return ret;
2107 	}
2108 
2109 	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2110 
2111 	/*
2112 	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2113 	 * add 4 to ->ebi_csa->offs.
2114 	 */
2115 	if (of_device_is_compatible(dev->parent->of_node,
2116 				    "atmel,at91sam9263-ebi1"))
2117 		nc->ebi_csa->offs += 4;
2118 
2119 	return 0;
2120 }
2121 
2122 static int
2123 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2124 {
2125 	struct regmap_config regmap_conf = {
2126 		.reg_bits = 32,
2127 		.val_bits = 32,
2128 		.reg_stride = 4,
2129 	};
2130 
2131 	struct device *dev = nc->base.dev;
2132 	struct device_node *nand_np, *nfc_np;
2133 	void __iomem *iomem;
2134 	struct resource res;
2135 	int ret;
2136 
2137 	nand_np = dev->of_node;
2138 	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2139 	if (!nfc_np) {
2140 		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2141 		return -ENODEV;
2142 	}
2143 
2144 	nc->clk = of_clk_get(nfc_np, 0);
2145 	if (IS_ERR(nc->clk)) {
2146 		ret = PTR_ERR(nc->clk);
2147 		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2148 			ret);
2149 		goto out;
2150 	}
2151 
2152 	ret = clk_prepare_enable(nc->clk);
2153 	if (ret) {
2154 		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2155 			ret);
2156 		goto out;
2157 	}
2158 
2159 	nc->irq = of_irq_get(nand_np, 0);
2160 	if (nc->irq <= 0) {
2161 		ret = nc->irq ?: -ENXIO;
2162 		if (ret != -EPROBE_DEFER)
2163 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2164 				ret);
2165 		goto out;
2166 	}
2167 
2168 	ret = of_address_to_resource(nfc_np, 0, &res);
2169 	if (ret) {
2170 		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2171 			ret);
2172 		goto out;
2173 	}
2174 
2175 	iomem = devm_ioremap_resource(dev, &res);
2176 	if (IS_ERR(iomem)) {
2177 		ret = PTR_ERR(iomem);
2178 		goto out;
2179 	}
2180 
2181 	regmap_conf.name = "nfc-io";
2182 	regmap_conf.max_register = resource_size(&res) - 4;
2183 	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2184 	if (IS_ERR(nc->io)) {
2185 		ret = PTR_ERR(nc->io);
2186 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2187 			ret);
2188 		goto out;
2189 	}
2190 
2191 	ret = of_address_to_resource(nfc_np, 1, &res);
2192 	if (ret) {
2193 		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2194 			ret);
2195 		goto out;
2196 	}
2197 
2198 	iomem = devm_ioremap_resource(dev, &res);
2199 	if (IS_ERR(iomem)) {
2200 		ret = PTR_ERR(iomem);
2201 		goto out;
2202 	}
2203 
2204 	regmap_conf.name = "smc";
2205 	regmap_conf.max_register = resource_size(&res) - 4;
2206 	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2207 	if (IS_ERR(nc->base.smc)) {
2208 		ret = PTR_ERR(nc->base.smc);
2209 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2210 			ret);
2211 		goto out;
2212 	}
2213 
2214 	ret = of_address_to_resource(nfc_np, 2, &res);
2215 	if (ret) {
2216 		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2217 			ret);
2218 		goto out;
2219 	}
2220 
2221 	nc->sram.virt = devm_ioremap_resource(dev, &res);
2222 	if (IS_ERR(nc->sram.virt)) {
2223 		ret = PTR_ERR(nc->sram.virt);
2224 		goto out;
2225 	}
2226 
2227 	nc->sram.dma = res.start;
2228 
2229 out:
2230 	of_node_put(nfc_np);
2231 
2232 	return ret;
2233 }
2234 
2235 static int
2236 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2237 {
2238 	struct device *dev = nc->base.dev;
2239 	struct device_node *np;
2240 	int ret;
2241 
2242 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2243 	if (!np) {
2244 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2245 		return -EINVAL;
2246 	}
2247 
2248 	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2249 
2250 	nc->irq = of_irq_get(np, 0);
2251 	of_node_put(np);
2252 	if (nc->irq <= 0) {
2253 		ret = nc->irq ?: -ENXIO;
2254 		if (ret != -EPROBE_DEFER)
2255 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2256 				ret);
2257 		return ret;
2258 	}
2259 
2260 	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2261 	if (!np) {
2262 		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2263 		return -EINVAL;
2264 	}
2265 
2266 	nc->io = syscon_node_to_regmap(np);
2267 	of_node_put(np);
2268 	if (IS_ERR(nc->io)) {
2269 		ret = PTR_ERR(nc->io);
2270 		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2271 		return ret;
2272 	}
2273 
2274 	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2275 					 "atmel,nfc-sram", 0);
2276 	if (!nc->sram.pool) {
2277 		dev_err(nc->base.dev, "Missing SRAM\n");
2278 		return -ENOMEM;
2279 	}
2280 
2281 	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2282 							   ATMEL_NFC_SRAM_SIZE,
2283 							   &nc->sram.dma);
2284 	if (!nc->sram.virt) {
2285 		dev_err(nc->base.dev,
2286 			"Could not allocate memory from the NFC SRAM pool\n");
2287 		return -ENOMEM;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 static int
2294 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2295 {
2296 	struct atmel_hsmc_nand_controller *hsmc_nc;
2297 	int ret;
2298 
2299 	ret = atmel_nand_controller_remove_nands(nc);
2300 	if (ret)
2301 		return ret;
2302 
2303 	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2304 	regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2305 		     ATMEL_HSMC_NFC_CTRL_DIS);
2306 
2307 	if (hsmc_nc->sram.pool)
2308 		gen_pool_free(hsmc_nc->sram.pool,
2309 			      (unsigned long)hsmc_nc->sram.virt,
2310 			      ATMEL_NFC_SRAM_SIZE);
2311 
2312 	if (hsmc_nc->clk) {
2313 		clk_disable_unprepare(hsmc_nc->clk);
2314 		clk_put(hsmc_nc->clk);
2315 	}
2316 
2317 	atmel_nand_controller_cleanup(nc);
2318 
2319 	return 0;
2320 }
2321 
2322 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2323 				const struct atmel_nand_controller_caps *caps)
2324 {
2325 	struct device *dev = &pdev->dev;
2326 	struct atmel_hsmc_nand_controller *nc;
2327 	int ret;
2328 
2329 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2330 	if (!nc)
2331 		return -ENOMEM;
2332 
2333 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2334 	if (ret)
2335 		return ret;
2336 
2337 	if (caps->legacy_of_bindings)
2338 		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2339 	else
2340 		ret = atmel_hsmc_nand_controller_init(nc);
2341 
2342 	if (ret)
2343 		return ret;
2344 
2345 	/* Make sure all irqs are masked before registering our IRQ handler. */
2346 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2347 	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2348 			       IRQF_SHARED, "nfc", nc);
2349 	if (ret) {
2350 		dev_err(dev,
2351 			"Could not get register NFC interrupt handler (err = %d)\n",
2352 			ret);
2353 		goto err;
2354 	}
2355 
2356 	/* Initial NFC configuration. */
2357 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2358 		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2359 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2360 		     ATMEL_HSMC_NFC_CTRL_EN);
2361 
2362 	ret = atmel_nand_controller_add_nands(&nc->base);
2363 	if (ret)
2364 		goto err;
2365 
2366 	return 0;
2367 
2368 err:
2369 	atmel_hsmc_nand_controller_remove(&nc->base);
2370 
2371 	return ret;
2372 }
2373 
2374 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2375 	.probe = atmel_hsmc_nand_controller_probe,
2376 	.remove = atmel_hsmc_nand_controller_remove,
2377 	.ecc_init = atmel_hsmc_nand_ecc_init,
2378 	.nand_init = atmel_nand_init,
2379 	.setup_interface = atmel_hsmc_nand_setup_interface,
2380 	.exec_op = atmel_hsmc_nand_exec_op,
2381 };
2382 
2383 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2384 	.has_dma = true,
2385 	.ale_offs = BIT(21),
2386 	.cle_offs = BIT(22),
2387 	.ops = &atmel_hsmc_nc_ops,
2388 };
2389 
2390 /* Only used to parse old bindings. */
2391 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2392 	.has_dma = true,
2393 	.ale_offs = BIT(21),
2394 	.cle_offs = BIT(22),
2395 	.ops = &atmel_hsmc_nc_ops,
2396 	.legacy_of_bindings = true,
2397 };
2398 
2399 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2400 				const struct atmel_nand_controller_caps *caps)
2401 {
2402 	struct device *dev = &pdev->dev;
2403 	struct atmel_smc_nand_controller *nc;
2404 	int ret;
2405 
2406 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2407 	if (!nc)
2408 		return -ENOMEM;
2409 
2410 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2411 	if (ret)
2412 		return ret;
2413 
2414 	ret = atmel_smc_nand_controller_init(nc);
2415 	if (ret)
2416 		return ret;
2417 
2418 	return atmel_nand_controller_add_nands(&nc->base);
2419 }
2420 
2421 static int
2422 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2423 {
2424 	int ret;
2425 
2426 	ret = atmel_nand_controller_remove_nands(nc);
2427 	if (ret)
2428 		return ret;
2429 
2430 	atmel_nand_controller_cleanup(nc);
2431 
2432 	return 0;
2433 }
2434 
2435 /*
2436  * The SMC reg layout of at91rm9200 is completely different which prevents us
2437  * from re-using atmel_smc_nand_setup_interface() for the
2438  * ->setup_interface() hook.
2439  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2440  * ->setup_interface() unassigned.
2441  */
2442 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2443 	.probe = atmel_smc_nand_controller_probe,
2444 	.remove = atmel_smc_nand_controller_remove,
2445 	.ecc_init = atmel_nand_ecc_init,
2446 	.nand_init = atmel_smc_nand_init,
2447 	.exec_op = atmel_smc_nand_exec_op,
2448 };
2449 
2450 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2451 	.ale_offs = BIT(21),
2452 	.cle_offs = BIT(22),
2453 	.ebi_csa_regmap_name = "atmel,matrix",
2454 	.ops = &at91rm9200_nc_ops,
2455 };
2456 
2457 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2458 	.probe = atmel_smc_nand_controller_probe,
2459 	.remove = atmel_smc_nand_controller_remove,
2460 	.ecc_init = atmel_nand_ecc_init,
2461 	.nand_init = atmel_smc_nand_init,
2462 	.setup_interface = atmel_smc_nand_setup_interface,
2463 	.exec_op = atmel_smc_nand_exec_op,
2464 };
2465 
2466 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2467 	.ale_offs = BIT(21),
2468 	.cle_offs = BIT(22),
2469 	.ebi_csa_regmap_name = "atmel,matrix",
2470 	.ops = &atmel_smc_nc_ops,
2471 };
2472 
2473 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2474 	.ale_offs = BIT(22),
2475 	.cle_offs = BIT(21),
2476 	.ebi_csa_regmap_name = "atmel,matrix",
2477 	.ops = &atmel_smc_nc_ops,
2478 };
2479 
2480 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2481 	.has_dma = true,
2482 	.ale_offs = BIT(21),
2483 	.cle_offs = BIT(22),
2484 	.ebi_csa_regmap_name = "atmel,matrix",
2485 	.ops = &atmel_smc_nc_ops,
2486 };
2487 
2488 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2489 	.has_dma = true,
2490 	.ale_offs = BIT(21),
2491 	.cle_offs = BIT(22),
2492 	.ebi_csa_regmap_name = "microchip,sfr",
2493 	.ops = &atmel_smc_nc_ops,
2494 };
2495 
2496 /* Only used to parse old bindings. */
2497 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2498 	.ale_offs = BIT(21),
2499 	.cle_offs = BIT(22),
2500 	.ops = &atmel_smc_nc_ops,
2501 	.legacy_of_bindings = true,
2502 };
2503 
2504 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2505 	.ale_offs = BIT(22),
2506 	.cle_offs = BIT(21),
2507 	.ops = &atmel_smc_nc_ops,
2508 	.legacy_of_bindings = true,
2509 };
2510 
2511 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2512 	.has_dma = true,
2513 	.ale_offs = BIT(21),
2514 	.cle_offs = BIT(22),
2515 	.ops = &atmel_smc_nc_ops,
2516 	.legacy_of_bindings = true,
2517 };
2518 
2519 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2520 	{
2521 		.compatible = "atmel,at91rm9200-nand-controller",
2522 		.data = &atmel_rm9200_nc_caps,
2523 	},
2524 	{
2525 		.compatible = "atmel,at91sam9260-nand-controller",
2526 		.data = &atmel_sam9260_nc_caps,
2527 	},
2528 	{
2529 		.compatible = "atmel,at91sam9261-nand-controller",
2530 		.data = &atmel_sam9261_nc_caps,
2531 	},
2532 	{
2533 		.compatible = "atmel,at91sam9g45-nand-controller",
2534 		.data = &atmel_sam9g45_nc_caps,
2535 	},
2536 	{
2537 		.compatible = "atmel,sama5d3-nand-controller",
2538 		.data = &atmel_sama5_nc_caps,
2539 	},
2540 	{
2541 		.compatible = "microchip,sam9x60-nand-controller",
2542 		.data = &microchip_sam9x60_nc_caps,
2543 	},
2544 	/* Support for old/deprecated bindings: */
2545 	{
2546 		.compatible = "atmel,at91rm9200-nand",
2547 		.data = &atmel_rm9200_nand_caps,
2548 	},
2549 	{
2550 		.compatible = "atmel,sama5d4-nand",
2551 		.data = &atmel_rm9200_nand_caps,
2552 	},
2553 	{
2554 		.compatible = "atmel,sama5d2-nand",
2555 		.data = &atmel_rm9200_nand_caps,
2556 	},
2557 	{ /* sentinel */ },
2558 };
2559 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2560 
2561 static int atmel_nand_controller_probe(struct platform_device *pdev)
2562 {
2563 	const struct atmel_nand_controller_caps *caps;
2564 
2565 	if (pdev->id_entry)
2566 		caps = (void *)pdev->id_entry->driver_data;
2567 	else
2568 		caps = of_device_get_match_data(&pdev->dev);
2569 
2570 	if (!caps) {
2571 		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2572 		return -EINVAL;
2573 	}
2574 
2575 	if (caps->legacy_of_bindings) {
2576 		struct device_node *nfc_node;
2577 		u32 ale_offs = 21;
2578 
2579 		/*
2580 		 * If we are parsing legacy DT props and the DT contains a
2581 		 * valid NFC node, forward the request to the sama5 logic.
2582 		 */
2583 		nfc_node = of_get_compatible_child(pdev->dev.of_node,
2584 						   "atmel,sama5d3-nfc");
2585 		if (nfc_node) {
2586 			caps = &atmel_sama5_nand_caps;
2587 			of_node_put(nfc_node);
2588 		}
2589 
2590 		/*
2591 		 * Even if the compatible says we are dealing with an
2592 		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2593 		 * this controller supports DMA, which means we are in fact
2594 		 * dealing with an at91sam9g45+ controller.
2595 		 */
2596 		if (!caps->has_dma &&
2597 		    of_property_read_bool(pdev->dev.of_node,
2598 					  "atmel,nand-has-dma"))
2599 			caps = &atmel_sam9g45_nand_caps;
2600 
2601 		/*
2602 		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2603 		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2604 		 * actually dealing with an at91sam9261 controller.
2605 		 */
2606 		of_property_read_u32(pdev->dev.of_node,
2607 				     "atmel,nand-addr-offset", &ale_offs);
2608 		if (ale_offs != 21)
2609 			caps = &atmel_sam9261_nand_caps;
2610 	}
2611 
2612 	return caps->ops->probe(pdev, caps);
2613 }
2614 
2615 static int atmel_nand_controller_remove(struct platform_device *pdev)
2616 {
2617 	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2618 
2619 	return nc->caps->ops->remove(nc);
2620 }
2621 
2622 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2623 {
2624 	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2625 	struct atmel_nand *nand;
2626 
2627 	if (nc->pmecc)
2628 		atmel_pmecc_reset(nc->pmecc);
2629 
2630 	list_for_each_entry(nand, &nc->chips, node) {
2631 		int i;
2632 
2633 		for (i = 0; i < nand->numcs; i++)
2634 			nand_reset(&nand->base, i);
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2641 			 atmel_nand_controller_resume);
2642 
2643 static struct platform_driver atmel_nand_controller_driver = {
2644 	.driver = {
2645 		.name = "atmel-nand-controller",
2646 		.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2647 		.pm = &atmel_nand_controller_pm_ops,
2648 	},
2649 	.probe = atmel_nand_controller_probe,
2650 	.remove = atmel_nand_controller_remove,
2651 };
2652 module_platform_driver(atmel_nand_controller_driver);
2653 
2654 MODULE_LICENSE("GPL");
2655 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2656 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2657 MODULE_ALIAS("platform:atmel-nand-controller");
2658