1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * OneNAND driver for OMAP2 / OMAP3 4 * 5 * Copyright © 2005-2006 Nokia Corporation 6 * 7 * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä 8 * IRQ and DMA support written by Timo Teras 9 */ 10 11 #include <linux/device.h> 12 #include <linux/module.h> 13 #include <linux/mtd/mtd.h> 14 #include <linux/mtd/onenand.h> 15 #include <linux/mtd/partitions.h> 16 #include <linux/of.h> 17 #include <linux/omap-gpmc.h> 18 #include <linux/platform_device.h> 19 #include <linux/interrupt.h> 20 #include <linux/delay.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dmaengine.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/gpio/consumer.h> 26 27 #include <asm/mach/flash.h> 28 29 #define DRIVER_NAME "omap2-onenand" 30 31 #define ONENAND_BUFRAM_SIZE (1024 * 5) 32 33 struct omap2_onenand { 34 struct platform_device *pdev; 35 int gpmc_cs; 36 unsigned long phys_base; 37 struct gpio_desc *int_gpiod; 38 struct mtd_info mtd; 39 struct onenand_chip onenand; 40 struct completion irq_done; 41 struct completion dma_done; 42 struct dma_chan *dma_chan; 43 }; 44 45 static void omap2_onenand_dma_complete_func(void *completion) 46 { 47 complete(completion); 48 } 49 50 static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) 51 { 52 struct omap2_onenand *c = dev_id; 53 54 complete(&c->irq_done); 55 56 return IRQ_HANDLED; 57 } 58 59 static inline unsigned short read_reg(struct omap2_onenand *c, int reg) 60 { 61 return readw(c->onenand.base + reg); 62 } 63 64 static inline void write_reg(struct omap2_onenand *c, unsigned short value, 65 int reg) 66 { 67 writew(value, c->onenand.base + reg); 68 } 69 70 static int omap2_onenand_set_cfg(struct omap2_onenand *c, 71 bool sr, bool sw, 72 int latency, int burst_len) 73 { 74 unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT; 75 76 reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT; 77 78 switch (burst_len) { 79 case 0: /* continuous */ 80 break; 81 case 4: 82 reg |= ONENAND_SYS_CFG1_BL_4; 83 break; 84 case 8: 85 reg |= ONENAND_SYS_CFG1_BL_8; 86 break; 87 case 16: 88 reg |= ONENAND_SYS_CFG1_BL_16; 89 break; 90 case 32: 91 reg |= ONENAND_SYS_CFG1_BL_32; 92 break; 93 default: 94 return -EINVAL; 95 } 96 97 if (latency > 5) 98 reg |= ONENAND_SYS_CFG1_HF; 99 if (latency > 7) 100 reg |= ONENAND_SYS_CFG1_VHF; 101 if (sr) 102 reg |= ONENAND_SYS_CFG1_SYNC_READ; 103 if (sw) 104 reg |= ONENAND_SYS_CFG1_SYNC_WRITE; 105 106 write_reg(c, reg, ONENAND_REG_SYS_CFG1); 107 108 return 0; 109 } 110 111 static int omap2_onenand_get_freq(int ver) 112 { 113 switch ((ver >> 4) & 0xf) { 114 case 0: 115 return 40; 116 case 1: 117 return 54; 118 case 2: 119 return 66; 120 case 3: 121 return 83; 122 case 4: 123 return 104; 124 } 125 126 return -EINVAL; 127 } 128 129 static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) 130 { 131 printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", 132 msg, state, ctrl, intr); 133 } 134 135 static void wait_warn(char *msg, int state, unsigned int ctrl, 136 unsigned int intr) 137 { 138 printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " 139 "intr 0x%04x\n", msg, state, ctrl, intr); 140 } 141 142 static int omap2_onenand_wait(struct mtd_info *mtd, int state) 143 { 144 struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); 145 struct onenand_chip *this = mtd->priv; 146 unsigned int intr = 0; 147 unsigned int ctrl, ctrl_mask; 148 unsigned long timeout; 149 u32 syscfg; 150 151 if (state == FL_RESETTING || state == FL_PREPARING_ERASE || 152 state == FL_VERIFYING_ERASE) { 153 int i = 21; 154 unsigned int intr_flags = ONENAND_INT_MASTER; 155 156 switch (state) { 157 case FL_RESETTING: 158 intr_flags |= ONENAND_INT_RESET; 159 break; 160 case FL_PREPARING_ERASE: 161 intr_flags |= ONENAND_INT_ERASE; 162 break; 163 case FL_VERIFYING_ERASE: 164 i = 101; 165 break; 166 } 167 168 while (--i) { 169 udelay(1); 170 intr = read_reg(c, ONENAND_REG_INTERRUPT); 171 if (intr & ONENAND_INT_MASTER) 172 break; 173 } 174 ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); 175 if (ctrl & ONENAND_CTRL_ERROR) { 176 wait_err("controller error", state, ctrl, intr); 177 return -EIO; 178 } 179 if ((intr & intr_flags) == intr_flags) 180 return 0; 181 /* Continue in wait for interrupt branch */ 182 } 183 184 if (state != FL_READING) { 185 int result; 186 187 /* Turn interrupts on */ 188 syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); 189 if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { 190 syscfg |= ONENAND_SYS_CFG1_IOBE; 191 write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); 192 /* Add a delay to let GPIO settle */ 193 syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); 194 } 195 196 reinit_completion(&c->irq_done); 197 result = gpiod_get_value(c->int_gpiod); 198 if (result < 0) { 199 ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); 200 intr = read_reg(c, ONENAND_REG_INTERRUPT); 201 wait_err("gpio error", state, ctrl, intr); 202 return result; 203 } else if (result == 0) { 204 int retry_cnt = 0; 205 retry: 206 if (!wait_for_completion_io_timeout(&c->irq_done, 207 msecs_to_jiffies(20))) { 208 /* Timeout after 20ms */ 209 ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); 210 if (ctrl & ONENAND_CTRL_ONGO && 211 !this->ongoing) { 212 /* 213 * The operation seems to be still going 214 * so give it some more time. 215 */ 216 retry_cnt += 1; 217 if (retry_cnt < 3) 218 goto retry; 219 intr = read_reg(c, 220 ONENAND_REG_INTERRUPT); 221 wait_err("timeout", state, ctrl, intr); 222 return -EIO; 223 } 224 intr = read_reg(c, ONENAND_REG_INTERRUPT); 225 if ((intr & ONENAND_INT_MASTER) == 0) 226 wait_warn("timeout", state, ctrl, intr); 227 } 228 } 229 } else { 230 int retry_cnt = 0; 231 232 /* Turn interrupts off */ 233 syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); 234 syscfg &= ~ONENAND_SYS_CFG1_IOBE; 235 write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); 236 237 timeout = jiffies + msecs_to_jiffies(20); 238 while (1) { 239 if (time_before(jiffies, timeout)) { 240 intr = read_reg(c, ONENAND_REG_INTERRUPT); 241 if (intr & ONENAND_INT_MASTER) 242 break; 243 } else { 244 /* Timeout after 20ms */ 245 ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); 246 if (ctrl & ONENAND_CTRL_ONGO) { 247 /* 248 * The operation seems to be still going 249 * so give it some more time. 250 */ 251 retry_cnt += 1; 252 if (retry_cnt < 3) { 253 timeout = jiffies + 254 msecs_to_jiffies(20); 255 continue; 256 } 257 } 258 break; 259 } 260 } 261 } 262 263 intr = read_reg(c, ONENAND_REG_INTERRUPT); 264 ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); 265 266 if (intr & ONENAND_INT_READ) { 267 int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); 268 269 if (ecc) { 270 unsigned int addr1, addr8; 271 272 addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); 273 addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); 274 if (ecc & ONENAND_ECC_2BIT_ALL) { 275 printk(KERN_ERR "onenand_wait: ECC error = " 276 "0x%04x, addr1 %#x, addr8 %#x\n", 277 ecc, addr1, addr8); 278 mtd->ecc_stats.failed++; 279 return -EBADMSG; 280 } else if (ecc & ONENAND_ECC_1BIT_ALL) { 281 printk(KERN_NOTICE "onenand_wait: correctable " 282 "ECC error = 0x%04x, addr1 %#x, " 283 "addr8 %#x\n", ecc, addr1, addr8); 284 mtd->ecc_stats.corrected++; 285 } 286 } 287 } else if (state == FL_READING) { 288 wait_err("timeout", state, ctrl, intr); 289 return -EIO; 290 } 291 292 if (ctrl & ONENAND_CTRL_ERROR) { 293 wait_err("controller error", state, ctrl, intr); 294 if (ctrl & ONENAND_CTRL_LOCK) 295 printk(KERN_ERR "onenand_wait: " 296 "Device is write protected!!!\n"); 297 return -EIO; 298 } 299 300 ctrl_mask = 0xFE9F; 301 if (this->ongoing) 302 ctrl_mask &= ~0x8000; 303 304 if (ctrl & ctrl_mask) 305 wait_warn("unexpected controller status", state, ctrl, intr); 306 307 return 0; 308 } 309 310 static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) 311 { 312 struct onenand_chip *this = mtd->priv; 313 314 if (ONENAND_CURRENT_BUFFERRAM(this)) { 315 if (area == ONENAND_DATARAM) 316 return this->writesize; 317 if (area == ONENAND_SPARERAM) 318 return mtd->oobsize; 319 } 320 321 return 0; 322 } 323 324 static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c, 325 dma_addr_t src, dma_addr_t dst, 326 size_t count) 327 { 328 struct dma_async_tx_descriptor *tx; 329 dma_cookie_t cookie; 330 331 tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, 332 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 333 if (!tx) { 334 dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n"); 335 return -EIO; 336 } 337 338 reinit_completion(&c->dma_done); 339 340 tx->callback = omap2_onenand_dma_complete_func; 341 tx->callback_param = &c->dma_done; 342 343 cookie = tx->tx_submit(tx); 344 if (dma_submit_error(cookie)) { 345 dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n"); 346 return -EIO; 347 } 348 349 dma_async_issue_pending(c->dma_chan); 350 351 if (!wait_for_completion_io_timeout(&c->dma_done, 352 msecs_to_jiffies(20))) { 353 dmaengine_terminate_sync(c->dma_chan); 354 return -ETIMEDOUT; 355 } 356 357 return 0; 358 } 359 360 static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, 361 unsigned char *buffer, int offset, 362 size_t count) 363 { 364 struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); 365 struct onenand_chip *this = mtd->priv; 366 struct device *dev = &c->pdev->dev; 367 void *buf = (void *)buffer; 368 dma_addr_t dma_src, dma_dst; 369 int bram_offset, err; 370 size_t xtra; 371 372 bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; 373 /* 374 * If the buffer address is not DMA-able, len is not long enough to 375 * make DMA transfers profitable or if invoked from panic_write() 376 * fallback to PIO mode. 377 */ 378 if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 || 379 count < 384 || mtd->oops_panic_write) 380 goto out_copy; 381 382 xtra = count & 3; 383 if (xtra) { 384 count -= xtra; 385 memcpy(buf + count, this->base + bram_offset + count, xtra); 386 } 387 388 dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); 389 dma_src = c->phys_base + bram_offset; 390 391 if (dma_mapping_error(dev, dma_dst)) { 392 dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count); 393 goto out_copy; 394 } 395 396 err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); 397 dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); 398 if (!err) 399 return 0; 400 401 dev_err(dev, "timeout waiting for DMA\n"); 402 403 out_copy: 404 memcpy(buf, this->base + bram_offset, count); 405 return 0; 406 } 407 408 static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, 409 const unsigned char *buffer, 410 int offset, size_t count) 411 { 412 struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); 413 struct onenand_chip *this = mtd->priv; 414 struct device *dev = &c->pdev->dev; 415 void *buf = (void *)buffer; 416 dma_addr_t dma_src, dma_dst; 417 int bram_offset, err; 418 419 bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; 420 /* 421 * If the buffer address is not DMA-able, len is not long enough to 422 * make DMA transfers profitable or if invoked from panic_write() 423 * fallback to PIO mode. 424 */ 425 if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 || 426 count < 384 || mtd->oops_panic_write) 427 goto out_copy; 428 429 dma_src = dma_map_single(dev, buf, count, DMA_TO_DEVICE); 430 dma_dst = c->phys_base + bram_offset; 431 if (dma_mapping_error(dev, dma_src)) { 432 dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count); 433 goto out_copy; 434 } 435 436 err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); 437 dma_unmap_page(dev, dma_src, count, DMA_TO_DEVICE); 438 if (!err) 439 return 0; 440 441 dev_err(dev, "timeout waiting for DMA\n"); 442 443 out_copy: 444 memcpy(this->base + bram_offset, buf, count); 445 return 0; 446 } 447 448 static void omap2_onenand_shutdown(struct platform_device *pdev) 449 { 450 struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); 451 452 /* With certain content in the buffer RAM, the OMAP boot ROM code 453 * can recognize the flash chip incorrectly. Zero it out before 454 * soft reset. 455 */ 456 memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); 457 } 458 459 static int omap2_onenand_probe(struct platform_device *pdev) 460 { 461 u32 val; 462 dma_cap_mask_t mask; 463 int freq, latency, r; 464 struct resource *res; 465 struct omap2_onenand *c; 466 struct gpmc_onenand_info info; 467 struct device *dev = &pdev->dev; 468 struct device_node *np = dev->of_node; 469 470 r = of_property_read_u32(np, "reg", &val); 471 if (r) { 472 dev_err(dev, "reg not found in DT\n"); 473 return r; 474 } 475 476 c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL); 477 if (!c) 478 return -ENOMEM; 479 480 init_completion(&c->irq_done); 481 init_completion(&c->dma_done); 482 c->gpmc_cs = val; 483 484 c->onenand.base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 485 if (IS_ERR(c->onenand.base)) 486 return PTR_ERR(c->onenand.base); 487 c->phys_base = res->start; 488 489 c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN); 490 if (IS_ERR(c->int_gpiod)) { 491 /* Just try again if this happens */ 492 return dev_err_probe(dev, PTR_ERR(c->int_gpiod), "error getting gpio\n"); 493 } 494 495 if (c->int_gpiod) { 496 r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod), 497 omap2_onenand_interrupt, 498 IRQF_TRIGGER_RISING, "onenand", c); 499 if (r) 500 return r; 501 502 c->onenand.wait = omap2_onenand_wait; 503 } 504 505 dma_cap_zero(mask); 506 dma_cap_set(DMA_MEMCPY, mask); 507 508 c->dma_chan = dma_request_channel(mask, NULL, NULL); 509 if (c->dma_chan) { 510 c->onenand.read_bufferram = omap2_onenand_read_bufferram; 511 c->onenand.write_bufferram = omap2_onenand_write_bufferram; 512 } 513 514 c->pdev = pdev; 515 c->mtd.priv = &c->onenand; 516 c->mtd.dev.parent = dev; 517 mtd_set_of_node(&c->mtd, dev->of_node); 518 519 dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n", 520 c->gpmc_cs, c->phys_base, c->onenand.base, 521 c->dma_chan ? "DMA" : "PIO"); 522 523 r = onenand_scan(&c->mtd, 1); 524 if (r < 0) 525 goto err_release_dma; 526 527 freq = omap2_onenand_get_freq(c->onenand.version_id); 528 if (freq > 0) { 529 switch (freq) { 530 case 104: 531 latency = 7; 532 break; 533 case 83: 534 latency = 6; 535 break; 536 case 66: 537 latency = 5; 538 break; 539 case 56: 540 latency = 4; 541 break; 542 default: /* 40 MHz or lower */ 543 latency = 3; 544 break; 545 } 546 547 r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs, 548 freq, latency, &info); 549 if (r) 550 goto err_release_onenand; 551 552 r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write, 553 latency, info.burst_len); 554 if (r) 555 goto err_release_onenand; 556 557 if (info.sync_read || info.sync_write) 558 dev_info(dev, "optimized timings for %d MHz\n", freq); 559 } 560 561 r = mtd_device_register(&c->mtd, NULL, 0); 562 if (r) 563 goto err_release_onenand; 564 565 platform_set_drvdata(pdev, c); 566 567 return 0; 568 569 err_release_onenand: 570 onenand_release(&c->mtd); 571 err_release_dma: 572 if (c->dma_chan) 573 dma_release_channel(c->dma_chan); 574 575 return r; 576 } 577 578 static void omap2_onenand_remove(struct platform_device *pdev) 579 { 580 struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); 581 582 onenand_release(&c->mtd); 583 if (c->dma_chan) 584 dma_release_channel(c->dma_chan); 585 omap2_onenand_shutdown(pdev); 586 } 587 588 static const struct of_device_id omap2_onenand_id_table[] = { 589 { .compatible = "ti,omap2-onenand", }, 590 {}, 591 }; 592 MODULE_DEVICE_TABLE(of, omap2_onenand_id_table); 593 594 static struct platform_driver omap2_onenand_driver = { 595 .probe = omap2_onenand_probe, 596 .remove = omap2_onenand_remove, 597 .shutdown = omap2_onenand_shutdown, 598 .driver = { 599 .name = DRIVER_NAME, 600 .of_match_table = omap2_onenand_id_table, 601 }, 602 }; 603 604 module_platform_driver(omap2_onenand_driver); 605 606 MODULE_ALIAS("platform:" DRIVER_NAME); 607 MODULE_LICENSE("GPL"); 608 MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); 609 MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); 610