1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2005-2009 Samsung Electronics 4 * Copyright © 2007 Nokia Corporation 5 * 6 * Kyungmin Park <kyungmin.park@samsung.com> 7 * 8 * Credits: 9 * Adrian Hunter <ext-adrian.hunter@nokia.com>: 10 * auto-placement support, read-while load support, various fixes 11 * 12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com> 13 * Flex-OneNAND support 14 * Amul Kumar Saha <amul.saha at samsung.com> 15 * OTP support 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/slab.h> 22 #include <linux/sched.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/jiffies.h> 26 #include <linux/mtd/mtd.h> 27 #include <linux/mtd/onenand.h> 28 #include <linux/mtd/partitions.h> 29 30 #include <asm/io.h> 31 32 /* 33 * Multiblock erase if number of blocks to erase is 2 or more. 34 * Maximum number of blocks for simultaneous erase is 64. 35 */ 36 #define MB_ERASE_MIN_BLK_COUNT 2 37 #define MB_ERASE_MAX_BLK_COUNT 64 38 39 /* Default Flex-OneNAND boundary and lock respectively */ 40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 }; 41 42 module_param_array(flex_bdry, int, NULL, 0400); 43 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND" 44 "Syntax:flex_bdry=DIE_BDRY,LOCK,..." 45 "DIE_BDRY: SLC boundary of the die" 46 "LOCK: Locking information for SLC boundary" 47 " : 0->Set boundary in unlocked status" 48 " : 1->Set boundary in locked status"); 49 50 /* Default OneNAND/Flex-OneNAND OTP options*/ 51 static int otp; 52 53 module_param(otp, int, 0400); 54 MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" 55 "Syntax : otp=LOCK_TYPE" 56 "LOCK_TYPE : Keys issued, for specific OTP Lock type" 57 " : 0 -> Default (No Blocks Locked)" 58 " : 1 -> OTP Block lock" 59 " : 2 -> 1st Block lock" 60 " : 3 -> BOTH OTP Block and 1st Block lock"); 61 62 /* 63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page 64 * For now, we expose only 64 out of 80 ecc bytes 65 */ 66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section, 67 struct mtd_oob_region *oobregion) 68 { 69 if (section > 7) 70 return -ERANGE; 71 72 oobregion->offset = (section * 16) + 6; 73 oobregion->length = 10; 74 75 return 0; 76 } 77 78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section, 79 struct mtd_oob_region *oobregion) 80 { 81 if (section > 7) 82 return -ERANGE; 83 84 oobregion->offset = (section * 16) + 2; 85 oobregion->length = 4; 86 87 return 0; 88 } 89 90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = { 91 .ecc = flexonenand_ooblayout_ecc, 92 .free = flexonenand_ooblayout_free, 93 }; 94 95 /* 96 * onenand_oob_128 - oob info for OneNAND with 4KB page 97 * 98 * Based on specification: 99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 100 * 101 */ 102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section, 103 struct mtd_oob_region *oobregion) 104 { 105 if (section > 7) 106 return -ERANGE; 107 108 oobregion->offset = (section * 16) + 7; 109 oobregion->length = 9; 110 111 return 0; 112 } 113 114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section, 115 struct mtd_oob_region *oobregion) 116 { 117 if (section >= 8) 118 return -ERANGE; 119 120 /* 121 * free bytes are using the spare area fields marked as 122 * "Managed by internal ECC logic for Logical Sector Number area" 123 */ 124 oobregion->offset = (section * 16) + 2; 125 oobregion->length = 3; 126 127 return 0; 128 } 129 130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = { 131 .ecc = onenand_ooblayout_128_ecc, 132 .free = onenand_ooblayout_128_free, 133 }; 134 135 /** 136 * onenand_oob_32_64 - oob info for large (2KB) page 137 */ 138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section, 139 struct mtd_oob_region *oobregion) 140 { 141 if (section > 3) 142 return -ERANGE; 143 144 oobregion->offset = (section * 16) + 8; 145 oobregion->length = 5; 146 147 return 0; 148 } 149 150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section, 151 struct mtd_oob_region *oobregion) 152 { 153 int sections = (mtd->oobsize / 32) * 2; 154 155 if (section >= sections) 156 return -ERANGE; 157 158 if (section & 1) { 159 oobregion->offset = ((section - 1) * 16) + 14; 160 oobregion->length = 2; 161 } else { 162 oobregion->offset = (section * 16) + 2; 163 oobregion->length = 3; 164 } 165 166 return 0; 167 } 168 169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = { 170 .ecc = onenand_ooblayout_32_64_ecc, 171 .free = onenand_ooblayout_32_64_free, 172 }; 173 174 static const unsigned char ffchars[] = { 175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 179 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ 185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ 187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ 189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ 191 }; 192 193 /** 194 * onenand_readw - [OneNAND Interface] Read OneNAND register 195 * @param addr address to read 196 * 197 * Read OneNAND register 198 */ 199 static unsigned short onenand_readw(void __iomem *addr) 200 { 201 return readw(addr); 202 } 203 204 /** 205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value 206 * @param value value to write 207 * @param addr address to write 208 * 209 * Write OneNAND register with value 210 */ 211 static void onenand_writew(unsigned short value, void __iomem *addr) 212 { 213 writew(value, addr); 214 } 215 216 /** 217 * onenand_block_address - [DEFAULT] Get block address 218 * @param this onenand chip data structure 219 * @param block the block 220 * @return translated block address if DDP, otherwise same 221 * 222 * Setup Start Address 1 Register (F100h) 223 */ 224 static int onenand_block_address(struct onenand_chip *this, int block) 225 { 226 /* Device Flash Core select, NAND Flash Block Address */ 227 if (block & this->density_mask) 228 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); 229 230 return block; 231 } 232 233 /** 234 * onenand_bufferram_address - [DEFAULT] Get bufferram address 235 * @param this onenand chip data structure 236 * @param block the block 237 * @return set DBS value if DDP, otherwise 0 238 * 239 * Setup Start Address 2 Register (F101h) for DDP 240 */ 241 static int onenand_bufferram_address(struct onenand_chip *this, int block) 242 { 243 /* Device BufferRAM Select */ 244 if (block & this->density_mask) 245 return ONENAND_DDP_CHIP1; 246 247 return ONENAND_DDP_CHIP0; 248 } 249 250 /** 251 * onenand_page_address - [DEFAULT] Get page address 252 * @param page the page address 253 * @param sector the sector address 254 * @return combined page and sector address 255 * 256 * Setup Start Address 8 Register (F107h) 257 */ 258 static int onenand_page_address(int page, int sector) 259 { 260 /* Flash Page Address, Flash Sector Address */ 261 int fpa, fsa; 262 263 fpa = page & ONENAND_FPA_MASK; 264 fsa = sector & ONENAND_FSA_MASK; 265 266 return ((fpa << ONENAND_FPA_SHIFT) | fsa); 267 } 268 269 /** 270 * onenand_buffer_address - [DEFAULT] Get buffer address 271 * @param dataram1 DataRAM index 272 * @param sectors the sector address 273 * @param count the number of sectors 274 * @return the start buffer value 275 * 276 * Setup Start Buffer Register (F200h) 277 */ 278 static int onenand_buffer_address(int dataram1, int sectors, int count) 279 { 280 int bsa, bsc; 281 282 /* BufferRAM Sector Address */ 283 bsa = sectors & ONENAND_BSA_MASK; 284 285 if (dataram1) 286 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ 287 else 288 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ 289 290 /* BufferRAM Sector Count */ 291 bsc = count & ONENAND_BSC_MASK; 292 293 return ((bsa << ONENAND_BSA_SHIFT) | bsc); 294 } 295 296 /** 297 * flexonenand_block- For given address return block number 298 * @param this - OneNAND device structure 299 * @param addr - Address for which block number is needed 300 */ 301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr) 302 { 303 unsigned boundary, blk, die = 0; 304 305 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { 306 die = 1; 307 addr -= this->diesize[0]; 308 } 309 310 boundary = this->boundary[die]; 311 312 blk = addr >> (this->erase_shift - 1); 313 if (blk > boundary) 314 blk = (blk + boundary + 1) >> 1; 315 316 blk += die ? this->density_mask : 0; 317 return blk; 318 } 319 320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr) 321 { 322 if (!FLEXONENAND(this)) 323 return addr >> this->erase_shift; 324 return flexonenand_block(this, addr); 325 } 326 327 /** 328 * flexonenand_addr - Return address of the block 329 * @this: OneNAND device structure 330 * @block: Block number on Flex-OneNAND 331 * 332 * Return address of the block 333 */ 334 static loff_t flexonenand_addr(struct onenand_chip *this, int block) 335 { 336 loff_t ofs = 0; 337 int die = 0, boundary; 338 339 if (ONENAND_IS_DDP(this) && block >= this->density_mask) { 340 block -= this->density_mask; 341 die = 1; 342 ofs = this->diesize[0]; 343 } 344 345 boundary = this->boundary[die]; 346 ofs += (loff_t)block << (this->erase_shift - 1); 347 if (block > (boundary + 1)) 348 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1); 349 return ofs; 350 } 351 352 loff_t onenand_addr(struct onenand_chip *this, int block) 353 { 354 if (!FLEXONENAND(this)) 355 return (loff_t)block << this->erase_shift; 356 return flexonenand_addr(this, block); 357 } 358 EXPORT_SYMBOL(onenand_addr); 359 360 /** 361 * onenand_get_density - [DEFAULT] Get OneNAND density 362 * @param dev_id OneNAND device ID 363 * 364 * Get OneNAND density from device ID 365 */ 366 static inline int onenand_get_density(int dev_id) 367 { 368 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; 369 return (density & ONENAND_DEVICE_DENSITY_MASK); 370 } 371 372 /** 373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr 374 * @param mtd MTD device structure 375 * @param addr address whose erase region needs to be identified 376 */ 377 int flexonenand_region(struct mtd_info *mtd, loff_t addr) 378 { 379 int i; 380 381 for (i = 0; i < mtd->numeraseregions; i++) 382 if (addr < mtd->eraseregions[i].offset) 383 break; 384 return i - 1; 385 } 386 EXPORT_SYMBOL(flexonenand_region); 387 388 /** 389 * onenand_command - [DEFAULT] Send command to OneNAND device 390 * @param mtd MTD device structure 391 * @param cmd the command to be sent 392 * @param addr offset to read from or write to 393 * @param len number of bytes to read or write 394 * 395 * Send command to OneNAND device. This function is used for middle/large page 396 * devices (1KB/2KB Bytes per page) 397 */ 398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) 399 { 400 struct onenand_chip *this = mtd->priv; 401 int value, block, page; 402 403 /* Address translation */ 404 switch (cmd) { 405 case ONENAND_CMD_UNLOCK: 406 case ONENAND_CMD_LOCK: 407 case ONENAND_CMD_LOCK_TIGHT: 408 case ONENAND_CMD_UNLOCK_ALL: 409 block = -1; 410 page = -1; 411 break; 412 413 case FLEXONENAND_CMD_PI_ACCESS: 414 /* addr contains die index */ 415 block = addr * this->density_mask; 416 page = -1; 417 break; 418 419 case ONENAND_CMD_ERASE: 420 case ONENAND_CMD_MULTIBLOCK_ERASE: 421 case ONENAND_CMD_ERASE_VERIFY: 422 case ONENAND_CMD_BUFFERRAM: 423 case ONENAND_CMD_OTP_ACCESS: 424 block = onenand_block(this, addr); 425 page = -1; 426 break; 427 428 case FLEXONENAND_CMD_READ_PI: 429 cmd = ONENAND_CMD_READ; 430 block = addr * this->density_mask; 431 page = 0; 432 break; 433 434 default: 435 block = onenand_block(this, addr); 436 if (FLEXONENAND(this)) 437 page = (int) (addr - onenand_addr(this, block))>>\ 438 this->page_shift; 439 else 440 page = (int) (addr >> this->page_shift); 441 if (ONENAND_IS_2PLANE(this)) { 442 /* Make the even block number */ 443 block &= ~1; 444 /* Is it the odd plane? */ 445 if (addr & this->writesize) 446 block++; 447 page >>= 1; 448 } 449 page &= this->page_mask; 450 break; 451 } 452 453 /* NOTE: The setting order of the registers is very important! */ 454 if (cmd == ONENAND_CMD_BUFFERRAM) { 455 /* Select DataRAM for DDP */ 456 value = onenand_bufferram_address(this, block); 457 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 458 459 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) 460 /* It is always BufferRAM0 */ 461 ONENAND_SET_BUFFERRAM0(this); 462 else 463 /* Switch to the next data buffer */ 464 ONENAND_SET_NEXT_BUFFERRAM(this); 465 466 return 0; 467 } 468 469 if (block != -1) { 470 /* Write 'DFS, FBA' of Flash */ 471 value = onenand_block_address(this, block); 472 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 473 474 /* Select DataRAM for DDP */ 475 value = onenand_bufferram_address(this, block); 476 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 477 } 478 479 if (page != -1) { 480 /* Now we use page size operation */ 481 int sectors = 0, count = 0; 482 int dataram; 483 484 switch (cmd) { 485 case FLEXONENAND_CMD_RECOVER_LSB: 486 case ONENAND_CMD_READ: 487 case ONENAND_CMD_READOOB: 488 if (ONENAND_IS_4KB_PAGE(this)) 489 /* It is always BufferRAM0 */ 490 dataram = ONENAND_SET_BUFFERRAM0(this); 491 else 492 dataram = ONENAND_SET_NEXT_BUFFERRAM(this); 493 break; 494 495 default: 496 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) 497 cmd = ONENAND_CMD_2X_PROG; 498 dataram = ONENAND_CURRENT_BUFFERRAM(this); 499 break; 500 } 501 502 /* Write 'FPA, FSA' of Flash */ 503 value = onenand_page_address(page, sectors); 504 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); 505 506 /* Write 'BSA, BSC' of DataRAM */ 507 value = onenand_buffer_address(dataram, sectors, count); 508 this->write_word(value, this->base + ONENAND_REG_START_BUFFER); 509 } 510 511 /* Interrupt clear */ 512 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); 513 514 /* Write command */ 515 this->write_word(cmd, this->base + ONENAND_REG_COMMAND); 516 517 return 0; 518 } 519 520 /** 521 * onenand_read_ecc - return ecc status 522 * @param this onenand chip structure 523 */ 524 static inline int onenand_read_ecc(struct onenand_chip *this) 525 { 526 int ecc, i, result = 0; 527 528 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this)) 529 return this->read_word(this->base + ONENAND_REG_ECC_STATUS); 530 531 for (i = 0; i < 4; i++) { 532 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2); 533 if (likely(!ecc)) 534 continue; 535 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) 536 return ONENAND_ECC_2BIT_ALL; 537 else 538 result = ONENAND_ECC_1BIT_ALL; 539 } 540 541 return result; 542 } 543 544 /** 545 * onenand_wait - [DEFAULT] wait until the command is done 546 * @param mtd MTD device structure 547 * @param state state to select the max. timeout value 548 * 549 * Wait for command done. This applies to all OneNAND command 550 * Read can take up to 30us, erase up to 2ms and program up to 350us 551 * according to general OneNAND specs 552 */ 553 static int onenand_wait(struct mtd_info *mtd, int state) 554 { 555 struct onenand_chip * this = mtd->priv; 556 unsigned long timeout; 557 unsigned int flags = ONENAND_INT_MASTER; 558 unsigned int interrupt = 0; 559 unsigned int ctrl; 560 561 /* The 20 msec is enough */ 562 timeout = jiffies + msecs_to_jiffies(20); 563 while (time_before(jiffies, timeout)) { 564 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 565 566 if (interrupt & flags) 567 break; 568 569 if (state != FL_READING && state != FL_PREPARING_ERASE) 570 cond_resched(); 571 } 572 /* To get correct interrupt status in timeout case */ 573 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 574 575 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 576 577 /* 578 * In the Spec. it checks the controller status first 579 * However if you get the correct information in case of 580 * power off recovery (POR) test, it should read ECC status first 581 */ 582 if (interrupt & ONENAND_INT_READ) { 583 int ecc = onenand_read_ecc(this); 584 if (ecc) { 585 if (ecc & ONENAND_ECC_2BIT_ALL) { 586 printk(KERN_ERR "%s: ECC error = 0x%04x\n", 587 __func__, ecc); 588 mtd->ecc_stats.failed++; 589 return -EBADMSG; 590 } else if (ecc & ONENAND_ECC_1BIT_ALL) { 591 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n", 592 __func__, ecc); 593 mtd->ecc_stats.corrected++; 594 } 595 } 596 } else if (state == FL_READING) { 597 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", 598 __func__, ctrl, interrupt); 599 return -EIO; 600 } 601 602 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) { 603 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n", 604 __func__, ctrl, interrupt); 605 return -EIO; 606 } 607 608 if (!(interrupt & ONENAND_INT_MASTER)) { 609 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n", 610 __func__, ctrl, interrupt); 611 return -EIO; 612 } 613 614 /* If there's controller error, it's a real error */ 615 if (ctrl & ONENAND_CTRL_ERROR) { 616 printk(KERN_ERR "%s: controller error = 0x%04x\n", 617 __func__, ctrl); 618 if (ctrl & ONENAND_CTRL_LOCK) 619 printk(KERN_ERR "%s: it's locked error.\n", __func__); 620 return -EIO; 621 } 622 623 return 0; 624 } 625 626 /* 627 * onenand_interrupt - [DEFAULT] onenand interrupt handler 628 * @param irq onenand interrupt number 629 * @param dev_id interrupt data 630 * 631 * complete the work 632 */ 633 static irqreturn_t onenand_interrupt(int irq, void *data) 634 { 635 struct onenand_chip *this = data; 636 637 /* To handle shared interrupt */ 638 if (!this->complete.done) 639 complete(&this->complete); 640 641 return IRQ_HANDLED; 642 } 643 644 /* 645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done 646 * @param mtd MTD device structure 647 * @param state state to select the max. timeout value 648 * 649 * Wait for command done. 650 */ 651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state) 652 { 653 struct onenand_chip *this = mtd->priv; 654 655 wait_for_completion(&this->complete); 656 657 return onenand_wait(mtd, state); 658 } 659 660 /* 661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait 662 * @param mtd MTD device structure 663 * @param state state to select the max. timeout value 664 * 665 * Try interrupt based wait (It is used one-time) 666 */ 667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state) 668 { 669 struct onenand_chip *this = mtd->priv; 670 unsigned long remain, timeout; 671 672 /* We use interrupt wait first */ 673 this->wait = onenand_interrupt_wait; 674 675 timeout = msecs_to_jiffies(100); 676 remain = wait_for_completion_timeout(&this->complete, timeout); 677 if (!remain) { 678 printk(KERN_INFO "OneNAND: There's no interrupt. " 679 "We use the normal wait\n"); 680 681 /* Release the irq */ 682 free_irq(this->irq, this); 683 684 this->wait = onenand_wait; 685 } 686 687 return onenand_wait(mtd, state); 688 } 689 690 /* 691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method 692 * @param mtd MTD device structure 693 * 694 * There's two method to wait onenand work 695 * 1. polling - read interrupt status register 696 * 2. interrupt - use the kernel interrupt method 697 */ 698 static void onenand_setup_wait(struct mtd_info *mtd) 699 { 700 struct onenand_chip *this = mtd->priv; 701 int syscfg; 702 703 init_completion(&this->complete); 704 705 if (this->irq <= 0) { 706 this->wait = onenand_wait; 707 return; 708 } 709 710 if (request_irq(this->irq, &onenand_interrupt, 711 IRQF_SHARED, "onenand", this)) { 712 /* If we can't get irq, use the normal wait */ 713 this->wait = onenand_wait; 714 return; 715 } 716 717 /* Enable interrupt */ 718 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 719 syscfg |= ONENAND_SYS_CFG1_IOBE; 720 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 721 722 this->wait = onenand_try_interrupt_wait; 723 } 724 725 /** 726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset 727 * @param mtd MTD data structure 728 * @param area BufferRAM area 729 * @return offset given area 730 * 731 * Return BufferRAM offset given area 732 */ 733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) 734 { 735 struct onenand_chip *this = mtd->priv; 736 737 if (ONENAND_CURRENT_BUFFERRAM(this)) { 738 /* Note: the 'this->writesize' is a real page size */ 739 if (area == ONENAND_DATARAM) 740 return this->writesize; 741 if (area == ONENAND_SPARERAM) 742 return mtd->oobsize; 743 } 744 745 return 0; 746 } 747 748 /** 749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area 750 * @param mtd MTD data structure 751 * @param area BufferRAM area 752 * @param buffer the databuffer to put/get data 753 * @param offset offset to read from or write to 754 * @param count number of bytes to read/write 755 * 756 * Read the BufferRAM area 757 */ 758 static int onenand_read_bufferram(struct mtd_info *mtd, int area, 759 unsigned char *buffer, int offset, size_t count) 760 { 761 struct onenand_chip *this = mtd->priv; 762 void __iomem *bufferram; 763 764 bufferram = this->base + area; 765 766 bufferram += onenand_bufferram_offset(mtd, area); 767 768 if (ONENAND_CHECK_BYTE_ACCESS(count)) { 769 unsigned short word; 770 771 /* Align with word(16-bit) size */ 772 count--; 773 774 /* Read word and save byte */ 775 word = this->read_word(bufferram + offset + count); 776 buffer[count] = (word & 0xff); 777 } 778 779 memcpy(buffer, bufferram + offset, count); 780 781 return 0; 782 } 783 784 /** 785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode 786 * @param mtd MTD data structure 787 * @param area BufferRAM area 788 * @param buffer the databuffer to put/get data 789 * @param offset offset to read from or write to 790 * @param count number of bytes to read/write 791 * 792 * Read the BufferRAM area with Sync. Burst Mode 793 */ 794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, 795 unsigned char *buffer, int offset, size_t count) 796 { 797 struct onenand_chip *this = mtd->priv; 798 void __iomem *bufferram; 799 800 bufferram = this->base + area; 801 802 bufferram += onenand_bufferram_offset(mtd, area); 803 804 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); 805 806 if (ONENAND_CHECK_BYTE_ACCESS(count)) { 807 unsigned short word; 808 809 /* Align with word(16-bit) size */ 810 count--; 811 812 /* Read word and save byte */ 813 word = this->read_word(bufferram + offset + count); 814 buffer[count] = (word & 0xff); 815 } 816 817 memcpy(buffer, bufferram + offset, count); 818 819 this->mmcontrol(mtd, 0); 820 821 return 0; 822 } 823 824 /** 825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area 826 * @param mtd MTD data structure 827 * @param area BufferRAM area 828 * @param buffer the databuffer to put/get data 829 * @param offset offset to read from or write to 830 * @param count number of bytes to read/write 831 * 832 * Write the BufferRAM area 833 */ 834 static int onenand_write_bufferram(struct mtd_info *mtd, int area, 835 const unsigned char *buffer, int offset, size_t count) 836 { 837 struct onenand_chip *this = mtd->priv; 838 void __iomem *bufferram; 839 840 bufferram = this->base + area; 841 842 bufferram += onenand_bufferram_offset(mtd, area); 843 844 if (ONENAND_CHECK_BYTE_ACCESS(count)) { 845 unsigned short word; 846 int byte_offset; 847 848 /* Align with word(16-bit) size */ 849 count--; 850 851 /* Calculate byte access offset */ 852 byte_offset = offset + count; 853 854 /* Read word and save byte */ 855 word = this->read_word(bufferram + byte_offset); 856 word = (word & ~0xff) | buffer[count]; 857 this->write_word(word, bufferram + byte_offset); 858 } 859 860 memcpy(bufferram + offset, buffer, count); 861 862 return 0; 863 } 864 865 /** 866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode 867 * @param mtd MTD data structure 868 * @param addr address to check 869 * @return blockpage address 870 * 871 * Get blockpage address at 2x program mode 872 */ 873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) 874 { 875 struct onenand_chip *this = mtd->priv; 876 int blockpage, block, page; 877 878 /* Calculate the even block number */ 879 block = (int) (addr >> this->erase_shift) & ~1; 880 /* Is it the odd plane? */ 881 if (addr & this->writesize) 882 block++; 883 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; 884 blockpage = (block << 7) | page; 885 886 return blockpage; 887 } 888 889 /** 890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information 891 * @param mtd MTD data structure 892 * @param addr address to check 893 * @return 1 if there are valid data, otherwise 0 894 * 895 * Check bufferram if there is data we required 896 */ 897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) 898 { 899 struct onenand_chip *this = mtd->priv; 900 int blockpage, found = 0; 901 unsigned int i; 902 903 if (ONENAND_IS_2PLANE(this)) 904 blockpage = onenand_get_2x_blockpage(mtd, addr); 905 else 906 blockpage = (int) (addr >> this->page_shift); 907 908 /* Is there valid data? */ 909 i = ONENAND_CURRENT_BUFFERRAM(this); 910 if (this->bufferram[i].blockpage == blockpage) 911 found = 1; 912 else { 913 /* Check another BufferRAM */ 914 i = ONENAND_NEXT_BUFFERRAM(this); 915 if (this->bufferram[i].blockpage == blockpage) { 916 ONENAND_SET_NEXT_BUFFERRAM(this); 917 found = 1; 918 } 919 } 920 921 if (found && ONENAND_IS_DDP(this)) { 922 /* Select DataRAM for DDP */ 923 int block = onenand_block(this, addr); 924 int value = onenand_bufferram_address(this, block); 925 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 926 } 927 928 return found; 929 } 930 931 /** 932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information 933 * @param mtd MTD data structure 934 * @param addr address to update 935 * @param valid valid flag 936 * 937 * Update BufferRAM information 938 */ 939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, 940 int valid) 941 { 942 struct onenand_chip *this = mtd->priv; 943 int blockpage; 944 unsigned int i; 945 946 if (ONENAND_IS_2PLANE(this)) 947 blockpage = onenand_get_2x_blockpage(mtd, addr); 948 else 949 blockpage = (int) (addr >> this->page_shift); 950 951 /* Invalidate another BufferRAM */ 952 i = ONENAND_NEXT_BUFFERRAM(this); 953 if (this->bufferram[i].blockpage == blockpage) 954 this->bufferram[i].blockpage = -1; 955 956 /* Update BufferRAM */ 957 i = ONENAND_CURRENT_BUFFERRAM(this); 958 if (valid) 959 this->bufferram[i].blockpage = blockpage; 960 else 961 this->bufferram[i].blockpage = -1; 962 } 963 964 /** 965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information 966 * @param mtd MTD data structure 967 * @param addr start address to invalidate 968 * @param len length to invalidate 969 * 970 * Invalidate BufferRAM information 971 */ 972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, 973 unsigned int len) 974 { 975 struct onenand_chip *this = mtd->priv; 976 int i; 977 loff_t end_addr = addr + len; 978 979 /* Invalidate BufferRAM */ 980 for (i = 0; i < MAX_BUFFERRAM; i++) { 981 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; 982 if (buf_addr >= addr && buf_addr < end_addr) 983 this->bufferram[i].blockpage = -1; 984 } 985 } 986 987 /** 988 * onenand_get_device - [GENERIC] Get chip for selected access 989 * @param mtd MTD device structure 990 * @param new_state the state which is requested 991 * 992 * Get the device and lock it for exclusive access 993 */ 994 static int onenand_get_device(struct mtd_info *mtd, int new_state) 995 { 996 struct onenand_chip *this = mtd->priv; 997 DECLARE_WAITQUEUE(wait, current); 998 999 /* 1000 * Grab the lock and see if the device is available 1001 */ 1002 while (1) { 1003 spin_lock(&this->chip_lock); 1004 if (this->state == FL_READY) { 1005 this->state = new_state; 1006 spin_unlock(&this->chip_lock); 1007 if (new_state != FL_PM_SUSPENDED && this->enable) 1008 this->enable(mtd); 1009 break; 1010 } 1011 if (new_state == FL_PM_SUSPENDED) { 1012 spin_unlock(&this->chip_lock); 1013 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; 1014 } 1015 set_current_state(TASK_UNINTERRUPTIBLE); 1016 add_wait_queue(&this->wq, &wait); 1017 spin_unlock(&this->chip_lock); 1018 schedule(); 1019 remove_wait_queue(&this->wq, &wait); 1020 } 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * onenand_release_device - [GENERIC] release chip 1027 * @param mtd MTD device structure 1028 * 1029 * Deselect, release chip lock and wake up anyone waiting on the device 1030 */ 1031 static void onenand_release_device(struct mtd_info *mtd) 1032 { 1033 struct onenand_chip *this = mtd->priv; 1034 1035 if (this->state != FL_PM_SUSPENDED && this->disable) 1036 this->disable(mtd); 1037 /* Release the chip */ 1038 spin_lock(&this->chip_lock); 1039 this->state = FL_READY; 1040 wake_up(&this->wq); 1041 spin_unlock(&this->chip_lock); 1042 } 1043 1044 /** 1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer 1046 * @param mtd MTD device structure 1047 * @param buf destination address 1048 * @param column oob offset to read from 1049 * @param thislen oob length to read 1050 */ 1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, 1052 int thislen) 1053 { 1054 struct onenand_chip *this = mtd->priv; 1055 int ret; 1056 1057 this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0, 1058 mtd->oobsize); 1059 ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf, 1060 column, thislen); 1061 if (ret) 1062 return ret; 1063 1064 return 0; 1065 } 1066 1067 /** 1068 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data 1069 * @param mtd MTD device structure 1070 * @param addr address to recover 1071 * @param status return value from onenand_wait / onenand_bbt_wait 1072 * 1073 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has 1074 * lower page address and MSB page has higher page address in paired pages. 1075 * If power off occurs during MSB page program, the paired LSB page data can 1076 * become corrupt. LSB page recovery read is a way to read LSB page though page 1077 * data are corrupted. When uncorrectable error occurs as a result of LSB page 1078 * read after power up, issue LSB page recovery read. 1079 */ 1080 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) 1081 { 1082 struct onenand_chip *this = mtd->priv; 1083 int i; 1084 1085 /* Recovery is only for Flex-OneNAND */ 1086 if (!FLEXONENAND(this)) 1087 return status; 1088 1089 /* check if we failed due to uncorrectable error */ 1090 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) 1091 return status; 1092 1093 /* check if address lies in MLC region */ 1094 i = flexonenand_region(mtd, addr); 1095 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) 1096 return status; 1097 1098 /* We are attempting to reread, so decrement stats.failed 1099 * which was incremented by onenand_wait due to read failure 1100 */ 1101 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n", 1102 __func__); 1103 mtd->ecc_stats.failed--; 1104 1105 /* Issue the LSB page recovery command */ 1106 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); 1107 return this->wait(mtd, FL_READING); 1108 } 1109 1110 /** 1111 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band 1112 * @param mtd MTD device structure 1113 * @param from offset to read from 1114 * @param ops: oob operation description structure 1115 * 1116 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram. 1117 * So, read-while-load is not present. 1118 */ 1119 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, 1120 struct mtd_oob_ops *ops) 1121 { 1122 struct onenand_chip *this = mtd->priv; 1123 struct mtd_ecc_stats stats; 1124 size_t len = ops->len; 1125 size_t ooblen = ops->ooblen; 1126 u_char *buf = ops->datbuf; 1127 u_char *oobbuf = ops->oobbuf; 1128 int read = 0, column, thislen; 1129 int oobread = 0, oobcolumn, thisooblen, oobsize; 1130 int ret = 0; 1131 int writesize = this->writesize; 1132 1133 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, 1134 (int)len); 1135 1136 oobsize = mtd_oobavail(mtd, ops); 1137 oobcolumn = from & (mtd->oobsize - 1); 1138 1139 /* Do not allow reads past end of device */ 1140 if (from + len > mtd->size) { 1141 printk(KERN_ERR "%s: Attempt read beyond end of device\n", 1142 __func__); 1143 ops->retlen = 0; 1144 ops->oobretlen = 0; 1145 return -EINVAL; 1146 } 1147 1148 stats = mtd->ecc_stats; 1149 1150 while (read < len) { 1151 cond_resched(); 1152 1153 thislen = min_t(int, writesize, len - read); 1154 1155 column = from & (writesize - 1); 1156 if (column + thislen > writesize) 1157 thislen = writesize - column; 1158 1159 if (!onenand_check_bufferram(mtd, from)) { 1160 this->command(mtd, ONENAND_CMD_READ, from, writesize); 1161 1162 ret = this->wait(mtd, FL_READING); 1163 if (unlikely(ret)) 1164 ret = onenand_recover_lsb(mtd, from, ret); 1165 onenand_update_bufferram(mtd, from, !ret); 1166 if (mtd_is_eccerr(ret)) 1167 ret = 0; 1168 if (ret) 1169 break; 1170 } 1171 1172 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); 1173 if (oobbuf) { 1174 thisooblen = oobsize - oobcolumn; 1175 thisooblen = min_t(int, thisooblen, ooblen - oobread); 1176 1177 if (ops->mode == MTD_OPS_AUTO_OOB) 1178 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); 1179 else 1180 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); 1181 oobread += thisooblen; 1182 oobbuf += thisooblen; 1183 oobcolumn = 0; 1184 } 1185 1186 read += thislen; 1187 if (read == len) 1188 break; 1189 1190 from += thislen; 1191 buf += thislen; 1192 } 1193 1194 /* 1195 * Return success, if no ECC failures, else -EBADMSG 1196 * fs driver will take care of that, because 1197 * retlen == desired len and result == -EBADMSG 1198 */ 1199 ops->retlen = read; 1200 ops->oobretlen = oobread; 1201 1202 if (ret) 1203 return ret; 1204 1205 if (mtd->ecc_stats.failed - stats.failed) 1206 return -EBADMSG; 1207 1208 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ 1209 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; 1210 } 1211 1212 /** 1213 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band 1214 * @param mtd MTD device structure 1215 * @param from offset to read from 1216 * @param ops: oob operation description structure 1217 * 1218 * OneNAND read main and/or out-of-band data 1219 */ 1220 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, 1221 struct mtd_oob_ops *ops) 1222 { 1223 struct onenand_chip *this = mtd->priv; 1224 struct mtd_ecc_stats stats; 1225 size_t len = ops->len; 1226 size_t ooblen = ops->ooblen; 1227 u_char *buf = ops->datbuf; 1228 u_char *oobbuf = ops->oobbuf; 1229 int read = 0, column, thislen; 1230 int oobread = 0, oobcolumn, thisooblen, oobsize; 1231 int ret = 0, boundary = 0; 1232 int writesize = this->writesize; 1233 1234 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, 1235 (int)len); 1236 1237 oobsize = mtd_oobavail(mtd, ops); 1238 oobcolumn = from & (mtd->oobsize - 1); 1239 1240 /* Do not allow reads past end of device */ 1241 if ((from + len) > mtd->size) { 1242 printk(KERN_ERR "%s: Attempt read beyond end of device\n", 1243 __func__); 1244 ops->retlen = 0; 1245 ops->oobretlen = 0; 1246 return -EINVAL; 1247 } 1248 1249 stats = mtd->ecc_stats; 1250 1251 /* Read-while-load method */ 1252 1253 /* Do first load to bufferRAM */ 1254 if (read < len) { 1255 if (!onenand_check_bufferram(mtd, from)) { 1256 this->command(mtd, ONENAND_CMD_READ, from, writesize); 1257 ret = this->wait(mtd, FL_READING); 1258 onenand_update_bufferram(mtd, from, !ret); 1259 if (mtd_is_eccerr(ret)) 1260 ret = 0; 1261 } 1262 } 1263 1264 thislen = min_t(int, writesize, len - read); 1265 column = from & (writesize - 1); 1266 if (column + thislen > writesize) 1267 thislen = writesize - column; 1268 1269 while (!ret) { 1270 /* If there is more to load then start next load */ 1271 from += thislen; 1272 if (read + thislen < len) { 1273 this->command(mtd, ONENAND_CMD_READ, from, writesize); 1274 /* 1275 * Chip boundary handling in DDP 1276 * Now we issued chip 1 read and pointed chip 1 1277 * bufferram so we have to point chip 0 bufferram. 1278 */ 1279 if (ONENAND_IS_DDP(this) && 1280 unlikely(from == (this->chipsize >> 1))) { 1281 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); 1282 boundary = 1; 1283 } else 1284 boundary = 0; 1285 ONENAND_SET_PREV_BUFFERRAM(this); 1286 } 1287 /* While load is going, read from last bufferRAM */ 1288 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); 1289 1290 /* Read oob area if needed */ 1291 if (oobbuf) { 1292 thisooblen = oobsize - oobcolumn; 1293 thisooblen = min_t(int, thisooblen, ooblen - oobread); 1294 1295 if (ops->mode == MTD_OPS_AUTO_OOB) 1296 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); 1297 else 1298 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); 1299 oobread += thisooblen; 1300 oobbuf += thisooblen; 1301 oobcolumn = 0; 1302 } 1303 1304 /* See if we are done */ 1305 read += thislen; 1306 if (read == len) 1307 break; 1308 /* Set up for next read from bufferRAM */ 1309 if (unlikely(boundary)) 1310 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); 1311 ONENAND_SET_NEXT_BUFFERRAM(this); 1312 buf += thislen; 1313 thislen = min_t(int, writesize, len - read); 1314 column = 0; 1315 cond_resched(); 1316 /* Now wait for load */ 1317 ret = this->wait(mtd, FL_READING); 1318 onenand_update_bufferram(mtd, from, !ret); 1319 if (mtd_is_eccerr(ret)) 1320 ret = 0; 1321 } 1322 1323 /* 1324 * Return success, if no ECC failures, else -EBADMSG 1325 * fs driver will take care of that, because 1326 * retlen == desired len and result == -EBADMSG 1327 */ 1328 ops->retlen = read; 1329 ops->oobretlen = oobread; 1330 1331 if (ret) 1332 return ret; 1333 1334 if (mtd->ecc_stats.failed - stats.failed) 1335 return -EBADMSG; 1336 1337 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ 1338 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; 1339 } 1340 1341 /** 1342 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band 1343 * @param mtd MTD device structure 1344 * @param from offset to read from 1345 * @param ops: oob operation description structure 1346 * 1347 * OneNAND read out-of-band data from the spare area 1348 */ 1349 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, 1350 struct mtd_oob_ops *ops) 1351 { 1352 struct onenand_chip *this = mtd->priv; 1353 struct mtd_ecc_stats stats; 1354 int read = 0, thislen, column, oobsize; 1355 size_t len = ops->ooblen; 1356 unsigned int mode = ops->mode; 1357 u_char *buf = ops->oobbuf; 1358 int ret = 0, readcmd; 1359 1360 from += ops->ooboffs; 1361 1362 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, 1363 (int)len); 1364 1365 /* Initialize return length value */ 1366 ops->oobretlen = 0; 1367 1368 if (mode == MTD_OPS_AUTO_OOB) 1369 oobsize = mtd->oobavail; 1370 else 1371 oobsize = mtd->oobsize; 1372 1373 column = from & (mtd->oobsize - 1); 1374 1375 if (unlikely(column >= oobsize)) { 1376 printk(KERN_ERR "%s: Attempted to start read outside oob\n", 1377 __func__); 1378 return -EINVAL; 1379 } 1380 1381 stats = mtd->ecc_stats; 1382 1383 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1384 1385 while (read < len) { 1386 cond_resched(); 1387 1388 thislen = oobsize - column; 1389 thislen = min_t(int, thislen, len); 1390 1391 this->command(mtd, readcmd, from, mtd->oobsize); 1392 1393 onenand_update_bufferram(mtd, from, 0); 1394 1395 ret = this->wait(mtd, FL_READING); 1396 if (unlikely(ret)) 1397 ret = onenand_recover_lsb(mtd, from, ret); 1398 1399 if (ret && !mtd_is_eccerr(ret)) { 1400 printk(KERN_ERR "%s: read failed = 0x%x\n", 1401 __func__, ret); 1402 break; 1403 } 1404 1405 if (mode == MTD_OPS_AUTO_OOB) 1406 onenand_transfer_auto_oob(mtd, buf, column, thislen); 1407 else 1408 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); 1409 1410 read += thislen; 1411 1412 if (read == len) 1413 break; 1414 1415 buf += thislen; 1416 1417 /* Read more? */ 1418 if (read < len) { 1419 /* Page size */ 1420 from += mtd->writesize; 1421 column = 0; 1422 } 1423 } 1424 1425 ops->oobretlen = read; 1426 1427 if (ret) 1428 return ret; 1429 1430 if (mtd->ecc_stats.failed - stats.failed) 1431 return -EBADMSG; 1432 1433 return 0; 1434 } 1435 1436 /** 1437 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band 1438 * @param mtd: MTD device structure 1439 * @param from: offset to read from 1440 * @param ops: oob operation description structure 1441 1442 * Read main and/or out-of-band 1443 */ 1444 static int onenand_read_oob(struct mtd_info *mtd, loff_t from, 1445 struct mtd_oob_ops *ops) 1446 { 1447 struct onenand_chip *this = mtd->priv; 1448 int ret; 1449 1450 switch (ops->mode) { 1451 case MTD_OPS_PLACE_OOB: 1452 case MTD_OPS_AUTO_OOB: 1453 break; 1454 case MTD_OPS_RAW: 1455 /* Not implemented yet */ 1456 default: 1457 return -EINVAL; 1458 } 1459 1460 onenand_get_device(mtd, FL_READING); 1461 if (ops->datbuf) 1462 ret = ONENAND_IS_4KB_PAGE(this) ? 1463 onenand_mlc_read_ops_nolock(mtd, from, ops) : 1464 onenand_read_ops_nolock(mtd, from, ops); 1465 else 1466 ret = onenand_read_oob_nolock(mtd, from, ops); 1467 onenand_release_device(mtd); 1468 1469 return ret; 1470 } 1471 1472 /** 1473 * onenand_bbt_wait - [DEFAULT] wait until the command is done 1474 * @param mtd MTD device structure 1475 * @param state state to select the max. timeout value 1476 * 1477 * Wait for command done. 1478 */ 1479 static int onenand_bbt_wait(struct mtd_info *mtd, int state) 1480 { 1481 struct onenand_chip *this = mtd->priv; 1482 unsigned long timeout; 1483 unsigned int interrupt, ctrl, ecc, addr1, addr8; 1484 1485 /* The 20 msec is enough */ 1486 timeout = jiffies + msecs_to_jiffies(20); 1487 while (time_before(jiffies, timeout)) { 1488 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1489 if (interrupt & ONENAND_INT_MASTER) 1490 break; 1491 } 1492 /* To get correct interrupt status in timeout case */ 1493 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1494 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 1495 addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); 1496 addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); 1497 1498 if (interrupt & ONENAND_INT_READ) { 1499 ecc = onenand_read_ecc(this); 1500 if (ecc & ONENAND_ECC_2BIT_ALL) { 1501 printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " 1502 "intr 0x%04x addr1 %#x addr8 %#x\n", 1503 __func__, ecc, ctrl, interrupt, addr1, addr8); 1504 return ONENAND_BBT_READ_ECC_ERROR; 1505 } 1506 } else { 1507 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " 1508 "intr 0x%04x addr1 %#x addr8 %#x\n", 1509 __func__, ctrl, interrupt, addr1, addr8); 1510 return ONENAND_BBT_READ_FATAL_ERROR; 1511 } 1512 1513 /* Initial bad block case: 0x2400 or 0x0400 */ 1514 if (ctrl & ONENAND_CTRL_ERROR) { 1515 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " 1516 "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); 1517 return ONENAND_BBT_READ_ERROR; 1518 } 1519 1520 return 0; 1521 } 1522 1523 /** 1524 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan 1525 * @param mtd MTD device structure 1526 * @param from offset to read from 1527 * @param ops oob operation description structure 1528 * 1529 * OneNAND read out-of-band data from the spare area for bbt scan 1530 */ 1531 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 1532 struct mtd_oob_ops *ops) 1533 { 1534 struct onenand_chip *this = mtd->priv; 1535 int read = 0, thislen, column; 1536 int ret = 0, readcmd; 1537 size_t len = ops->ooblen; 1538 u_char *buf = ops->oobbuf; 1539 1540 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, 1541 len); 1542 1543 /* Initialize return value */ 1544 ops->oobretlen = 0; 1545 1546 /* Do not allow reads past end of device */ 1547 if (unlikely((from + len) > mtd->size)) { 1548 printk(KERN_ERR "%s: Attempt read beyond end of device\n", 1549 __func__); 1550 return ONENAND_BBT_READ_FATAL_ERROR; 1551 } 1552 1553 /* Grab the lock and see if the device is available */ 1554 onenand_get_device(mtd, FL_READING); 1555 1556 column = from & (mtd->oobsize - 1); 1557 1558 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1559 1560 while (read < len) { 1561 cond_resched(); 1562 1563 thislen = mtd->oobsize - column; 1564 thislen = min_t(int, thislen, len); 1565 1566 this->command(mtd, readcmd, from, mtd->oobsize); 1567 1568 onenand_update_bufferram(mtd, from, 0); 1569 1570 ret = this->bbt_wait(mtd, FL_READING); 1571 if (unlikely(ret)) 1572 ret = onenand_recover_lsb(mtd, from, ret); 1573 1574 if (ret) 1575 break; 1576 1577 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); 1578 read += thislen; 1579 if (read == len) 1580 break; 1581 1582 buf += thislen; 1583 1584 /* Read more? */ 1585 if (read < len) { 1586 /* Update Page size */ 1587 from += this->writesize; 1588 column = 0; 1589 } 1590 } 1591 1592 /* Deselect and wake up anyone waiting on the device */ 1593 onenand_release_device(mtd); 1594 1595 ops->oobretlen = read; 1596 return ret; 1597 } 1598 1599 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE 1600 /** 1601 * onenand_verify_oob - [GENERIC] verify the oob contents after a write 1602 * @param mtd MTD device structure 1603 * @param buf the databuffer to verify 1604 * @param to offset to read from 1605 */ 1606 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) 1607 { 1608 struct onenand_chip *this = mtd->priv; 1609 u_char *oob_buf = this->oob_buf; 1610 int status, i, readcmd; 1611 1612 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1613 1614 this->command(mtd, readcmd, to, mtd->oobsize); 1615 onenand_update_bufferram(mtd, to, 0); 1616 status = this->wait(mtd, FL_READING); 1617 if (status) 1618 return status; 1619 1620 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 1621 for (i = 0; i < mtd->oobsize; i++) 1622 if (buf[i] != 0xFF && buf[i] != oob_buf[i]) 1623 return -EBADMSG; 1624 1625 return 0; 1626 } 1627 1628 /** 1629 * onenand_verify - [GENERIC] verify the chip contents after a write 1630 * @param mtd MTD device structure 1631 * @param buf the databuffer to verify 1632 * @param addr offset to read from 1633 * @param len number of bytes to read and compare 1634 */ 1635 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) 1636 { 1637 struct onenand_chip *this = mtd->priv; 1638 int ret = 0; 1639 int thislen, column; 1640 1641 column = addr & (this->writesize - 1); 1642 1643 while (len != 0) { 1644 thislen = min_t(int, this->writesize - column, len); 1645 1646 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); 1647 1648 onenand_update_bufferram(mtd, addr, 0); 1649 1650 ret = this->wait(mtd, FL_READING); 1651 if (ret) 1652 return ret; 1653 1654 onenand_update_bufferram(mtd, addr, 1); 1655 1656 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); 1657 1658 if (memcmp(buf, this->verify_buf + column, thislen)) 1659 return -EBADMSG; 1660 1661 len -= thislen; 1662 buf += thislen; 1663 addr += thislen; 1664 column = 0; 1665 } 1666 1667 return 0; 1668 } 1669 #else 1670 #define onenand_verify(...) (0) 1671 #define onenand_verify_oob(...) (0) 1672 #endif 1673 1674 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) 1675 1676 static void onenand_panic_wait(struct mtd_info *mtd) 1677 { 1678 struct onenand_chip *this = mtd->priv; 1679 unsigned int interrupt; 1680 int i; 1681 1682 for (i = 0; i < 2000; i++) { 1683 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1684 if (interrupt & ONENAND_INT_MASTER) 1685 break; 1686 udelay(10); 1687 } 1688 } 1689 1690 /** 1691 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context 1692 * @param mtd MTD device structure 1693 * @param to offset to write to 1694 * @param len number of bytes to write 1695 * @param retlen pointer to variable to store the number of written bytes 1696 * @param buf the data to write 1697 * 1698 * Write with ECC 1699 */ 1700 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 1701 size_t *retlen, const u_char *buf) 1702 { 1703 struct onenand_chip *this = mtd->priv; 1704 int column, subpage; 1705 int written = 0; 1706 1707 if (this->state == FL_PM_SUSPENDED) 1708 return -EBUSY; 1709 1710 /* Wait for any existing operation to clear */ 1711 onenand_panic_wait(mtd); 1712 1713 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, 1714 (int)len); 1715 1716 /* Reject writes, which are not page aligned */ 1717 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1718 printk(KERN_ERR "%s: Attempt to write not page aligned data\n", 1719 __func__); 1720 return -EINVAL; 1721 } 1722 1723 column = to & (mtd->writesize - 1); 1724 1725 /* Loop until all data write */ 1726 while (written < len) { 1727 int thislen = min_t(int, mtd->writesize - column, len - written); 1728 u_char *wbuf = (u_char *) buf; 1729 1730 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); 1731 1732 /* Partial page write */ 1733 subpage = thislen < mtd->writesize; 1734 if (subpage) { 1735 memset(this->page_buf, 0xff, mtd->writesize); 1736 memcpy(this->page_buf + column, buf, thislen); 1737 wbuf = this->page_buf; 1738 } 1739 1740 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); 1741 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); 1742 1743 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); 1744 1745 onenand_panic_wait(mtd); 1746 1747 /* In partial page write we don't update bufferram */ 1748 onenand_update_bufferram(mtd, to, !subpage); 1749 if (ONENAND_IS_2PLANE(this)) { 1750 ONENAND_SET_BUFFERRAM1(this); 1751 onenand_update_bufferram(mtd, to + this->writesize, !subpage); 1752 } 1753 1754 written += thislen; 1755 1756 if (written == len) 1757 break; 1758 1759 column = 0; 1760 to += thislen; 1761 buf += thislen; 1762 } 1763 1764 *retlen = written; 1765 return 0; 1766 } 1767 1768 /** 1769 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer 1770 * @param mtd MTD device structure 1771 * @param oob_buf oob buffer 1772 * @param buf source address 1773 * @param column oob offset to write to 1774 * @param thislen oob length to write 1775 */ 1776 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, 1777 const u_char *buf, int column, int thislen) 1778 { 1779 return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen); 1780 } 1781 1782 /** 1783 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band 1784 * @param mtd MTD device structure 1785 * @param to offset to write to 1786 * @param ops oob operation description structure 1787 * 1788 * Write main and/or oob with ECC 1789 */ 1790 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, 1791 struct mtd_oob_ops *ops) 1792 { 1793 struct onenand_chip *this = mtd->priv; 1794 int written = 0, column, thislen = 0, subpage = 0; 1795 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1; 1796 int oobwritten = 0, oobcolumn, thisooblen, oobsize; 1797 size_t len = ops->len; 1798 size_t ooblen = ops->ooblen; 1799 const u_char *buf = ops->datbuf; 1800 const u_char *oob = ops->oobbuf; 1801 u_char *oobbuf; 1802 int ret = 0, cmd; 1803 1804 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, 1805 (int)len); 1806 1807 /* Initialize retlen, in case of early exit */ 1808 ops->retlen = 0; 1809 ops->oobretlen = 0; 1810 1811 /* Reject writes, which are not page aligned */ 1812 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1813 printk(KERN_ERR "%s: Attempt to write not page aligned data\n", 1814 __func__); 1815 return -EINVAL; 1816 } 1817 1818 /* Check zero length */ 1819 if (!len) 1820 return 0; 1821 oobsize = mtd_oobavail(mtd, ops); 1822 oobcolumn = to & (mtd->oobsize - 1); 1823 1824 column = to & (mtd->writesize - 1); 1825 1826 /* Loop until all data write */ 1827 while (1) { 1828 if (written < len) { 1829 u_char *wbuf = (u_char *) buf; 1830 1831 thislen = min_t(int, mtd->writesize - column, len - written); 1832 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); 1833 1834 cond_resched(); 1835 1836 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); 1837 1838 /* Partial page write */ 1839 subpage = thislen < mtd->writesize; 1840 if (subpage) { 1841 memset(this->page_buf, 0xff, mtd->writesize); 1842 memcpy(this->page_buf + column, buf, thislen); 1843 wbuf = this->page_buf; 1844 } 1845 1846 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); 1847 1848 if (oob) { 1849 oobbuf = this->oob_buf; 1850 1851 /* We send data to spare ram with oobsize 1852 * to prevent byte access */ 1853 memset(oobbuf, 0xff, mtd->oobsize); 1854 if (ops->mode == MTD_OPS_AUTO_OOB) 1855 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); 1856 else 1857 memcpy(oobbuf + oobcolumn, oob, thisooblen); 1858 1859 oobwritten += thisooblen; 1860 oob += thisooblen; 1861 oobcolumn = 0; 1862 } else 1863 oobbuf = (u_char *) ffchars; 1864 1865 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1866 } else 1867 ONENAND_SET_NEXT_BUFFERRAM(this); 1868 1869 /* 1870 * 2 PLANE, MLC, and Flex-OneNAND do not support 1871 * write-while-program feature. 1872 */ 1873 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) { 1874 ONENAND_SET_PREV_BUFFERRAM(this); 1875 1876 ret = this->wait(mtd, FL_WRITING); 1877 1878 /* In partial page write we don't update bufferram */ 1879 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage); 1880 if (ret) { 1881 written -= prevlen; 1882 printk(KERN_ERR "%s: write failed %d\n", 1883 __func__, ret); 1884 break; 1885 } 1886 1887 if (written == len) { 1888 /* Only check verify write turn on */ 1889 ret = onenand_verify(mtd, buf - len, to - len, len); 1890 if (ret) 1891 printk(KERN_ERR "%s: verify failed %d\n", 1892 __func__, ret); 1893 break; 1894 } 1895 1896 ONENAND_SET_NEXT_BUFFERRAM(this); 1897 } 1898 1899 this->ongoing = 0; 1900 cmd = ONENAND_CMD_PROG; 1901 1902 /* Exclude 1st OTP and OTP blocks for cache program feature */ 1903 if (ONENAND_IS_CACHE_PROGRAM(this) && 1904 likely(onenand_block(this, to) != 0) && 1905 ONENAND_IS_4KB_PAGE(this) && 1906 ((written + thislen) < len)) { 1907 cmd = ONENAND_CMD_2X_CACHE_PROG; 1908 this->ongoing = 1; 1909 } 1910 1911 this->command(mtd, cmd, to, mtd->writesize); 1912 1913 /* 1914 * 2 PLANE, MLC, and Flex-OneNAND wait here 1915 */ 1916 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) { 1917 ret = this->wait(mtd, FL_WRITING); 1918 1919 /* In partial page write we don't update bufferram */ 1920 onenand_update_bufferram(mtd, to, !ret && !subpage); 1921 if (ret) { 1922 printk(KERN_ERR "%s: write failed %d\n", 1923 __func__, ret); 1924 break; 1925 } 1926 1927 /* Only check verify write turn on */ 1928 ret = onenand_verify(mtd, buf, to, thislen); 1929 if (ret) { 1930 printk(KERN_ERR "%s: verify failed %d\n", 1931 __func__, ret); 1932 break; 1933 } 1934 1935 written += thislen; 1936 1937 if (written == len) 1938 break; 1939 1940 } else 1941 written += thislen; 1942 1943 column = 0; 1944 prev_subpage = subpage; 1945 prev = to; 1946 prevlen = thislen; 1947 to += thislen; 1948 buf += thislen; 1949 first = 0; 1950 } 1951 1952 /* In error case, clear all bufferrams */ 1953 if (written != len) 1954 onenand_invalidate_bufferram(mtd, 0, -1); 1955 1956 ops->retlen = written; 1957 ops->oobretlen = oobwritten; 1958 1959 return ret; 1960 } 1961 1962 1963 /** 1964 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band 1965 * @param mtd MTD device structure 1966 * @param to offset to write to 1967 * @param len number of bytes to write 1968 * @param retlen pointer to variable to store the number of written bytes 1969 * @param buf the data to write 1970 * @param mode operation mode 1971 * 1972 * OneNAND write out-of-band 1973 */ 1974 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, 1975 struct mtd_oob_ops *ops) 1976 { 1977 struct onenand_chip *this = mtd->priv; 1978 int column, ret = 0, oobsize; 1979 int written = 0, oobcmd; 1980 u_char *oobbuf; 1981 size_t len = ops->ooblen; 1982 const u_char *buf = ops->oobbuf; 1983 unsigned int mode = ops->mode; 1984 1985 to += ops->ooboffs; 1986 1987 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, 1988 (int)len); 1989 1990 /* Initialize retlen, in case of early exit */ 1991 ops->oobretlen = 0; 1992 1993 if (mode == MTD_OPS_AUTO_OOB) 1994 oobsize = mtd->oobavail; 1995 else 1996 oobsize = mtd->oobsize; 1997 1998 column = to & (mtd->oobsize - 1); 1999 2000 if (unlikely(column >= oobsize)) { 2001 printk(KERN_ERR "%s: Attempted to start write outside oob\n", 2002 __func__); 2003 return -EINVAL; 2004 } 2005 2006 /* For compatibility with NAND: Do not allow write past end of page */ 2007 if (unlikely(column + len > oobsize)) { 2008 printk(KERN_ERR "%s: Attempt to write past end of page\n", 2009 __func__); 2010 return -EINVAL; 2011 } 2012 2013 oobbuf = this->oob_buf; 2014 2015 oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; 2016 2017 /* Loop until all data write */ 2018 while (written < len) { 2019 int thislen = min_t(int, oobsize, len - written); 2020 2021 cond_resched(); 2022 2023 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); 2024 2025 /* We send data to spare ram with oobsize 2026 * to prevent byte access */ 2027 memset(oobbuf, 0xff, mtd->oobsize); 2028 if (mode == MTD_OPS_AUTO_OOB) 2029 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); 2030 else 2031 memcpy(oobbuf + column, buf, thislen); 2032 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 2033 2034 if (ONENAND_IS_4KB_PAGE(this)) { 2035 /* Set main area of DataRAM to 0xff*/ 2036 memset(this->page_buf, 0xff, mtd->writesize); 2037 this->write_bufferram(mtd, ONENAND_DATARAM, 2038 this->page_buf, 0, mtd->writesize); 2039 } 2040 2041 this->command(mtd, oobcmd, to, mtd->oobsize); 2042 2043 onenand_update_bufferram(mtd, to, 0); 2044 if (ONENAND_IS_2PLANE(this)) { 2045 ONENAND_SET_BUFFERRAM1(this); 2046 onenand_update_bufferram(mtd, to + this->writesize, 0); 2047 } 2048 2049 ret = this->wait(mtd, FL_WRITING); 2050 if (ret) { 2051 printk(KERN_ERR "%s: write failed %d\n", __func__, ret); 2052 break; 2053 } 2054 2055 ret = onenand_verify_oob(mtd, oobbuf, to); 2056 if (ret) { 2057 printk(KERN_ERR "%s: verify failed %d\n", 2058 __func__, ret); 2059 break; 2060 } 2061 2062 written += thislen; 2063 if (written == len) 2064 break; 2065 2066 to += mtd->writesize; 2067 buf += thislen; 2068 column = 0; 2069 } 2070 2071 ops->oobretlen = written; 2072 2073 return ret; 2074 } 2075 2076 /** 2077 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band 2078 * @param mtd: MTD device structure 2079 * @param to: offset to write 2080 * @param ops: oob operation description structure 2081 */ 2082 static int onenand_write_oob(struct mtd_info *mtd, loff_t to, 2083 struct mtd_oob_ops *ops) 2084 { 2085 int ret; 2086 2087 switch (ops->mode) { 2088 case MTD_OPS_PLACE_OOB: 2089 case MTD_OPS_AUTO_OOB: 2090 break; 2091 case MTD_OPS_RAW: 2092 /* Not implemented yet */ 2093 default: 2094 return -EINVAL; 2095 } 2096 2097 onenand_get_device(mtd, FL_WRITING); 2098 if (ops->datbuf) 2099 ret = onenand_write_ops_nolock(mtd, to, ops); 2100 else 2101 ret = onenand_write_oob_nolock(mtd, to, ops); 2102 onenand_release_device(mtd); 2103 2104 return ret; 2105 } 2106 2107 /** 2108 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad 2109 * @param mtd MTD device structure 2110 * @param ofs offset from device start 2111 * @param allowbbt 1, if its allowed to access the bbt area 2112 * 2113 * Check, if the block is bad. Either by reading the bad block table or 2114 * calling of the scan function. 2115 */ 2116 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) 2117 { 2118 struct onenand_chip *this = mtd->priv; 2119 struct bbm_info *bbm = this->bbm; 2120 2121 /* Return info from the table */ 2122 return bbm->isbad_bbt(mtd, ofs, allowbbt); 2123 } 2124 2125 2126 static int onenand_multiblock_erase_verify(struct mtd_info *mtd, 2127 struct erase_info *instr) 2128 { 2129 struct onenand_chip *this = mtd->priv; 2130 loff_t addr = instr->addr; 2131 int len = instr->len; 2132 unsigned int block_size = (1 << this->erase_shift); 2133 int ret = 0; 2134 2135 while (len) { 2136 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size); 2137 ret = this->wait(mtd, FL_VERIFYING_ERASE); 2138 if (ret) { 2139 printk(KERN_ERR "%s: Failed verify, block %d\n", 2140 __func__, onenand_block(this, addr)); 2141 instr->fail_addr = addr; 2142 return -1; 2143 } 2144 len -= block_size; 2145 addr += block_size; 2146 } 2147 return 0; 2148 } 2149 2150 /** 2151 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase 2152 * @param mtd MTD device structure 2153 * @param instr erase instruction 2154 * @param region erase region 2155 * 2156 * Erase one or more blocks up to 64 block at a time 2157 */ 2158 static int onenand_multiblock_erase(struct mtd_info *mtd, 2159 struct erase_info *instr, 2160 unsigned int block_size) 2161 { 2162 struct onenand_chip *this = mtd->priv; 2163 loff_t addr = instr->addr; 2164 int len = instr->len; 2165 int eb_count = 0; 2166 int ret = 0; 2167 int bdry_block = 0; 2168 2169 if (ONENAND_IS_DDP(this)) { 2170 loff_t bdry_addr = this->chipsize >> 1; 2171 if (addr < bdry_addr && (addr + len) > bdry_addr) 2172 bdry_block = bdry_addr >> this->erase_shift; 2173 } 2174 2175 /* Pre-check bbs */ 2176 while (len) { 2177 /* Check if we have a bad block, we do not erase bad blocks */ 2178 if (onenand_block_isbad_nolock(mtd, addr, 0)) { 2179 printk(KERN_WARNING "%s: attempt to erase a bad block " 2180 "at addr 0x%012llx\n", 2181 __func__, (unsigned long long) addr); 2182 return -EIO; 2183 } 2184 len -= block_size; 2185 addr += block_size; 2186 } 2187 2188 len = instr->len; 2189 addr = instr->addr; 2190 2191 /* loop over 64 eb batches */ 2192 while (len) { 2193 struct erase_info verify_instr = *instr; 2194 int max_eb_count = MB_ERASE_MAX_BLK_COUNT; 2195 2196 verify_instr.addr = addr; 2197 verify_instr.len = 0; 2198 2199 /* do not cross chip boundary */ 2200 if (bdry_block) { 2201 int this_block = (addr >> this->erase_shift); 2202 2203 if (this_block < bdry_block) { 2204 max_eb_count = min(max_eb_count, 2205 (bdry_block - this_block)); 2206 } 2207 } 2208 2209 eb_count = 0; 2210 2211 while (len > block_size && eb_count < (max_eb_count - 1)) { 2212 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE, 2213 addr, block_size); 2214 onenand_invalidate_bufferram(mtd, addr, block_size); 2215 2216 ret = this->wait(mtd, FL_PREPARING_ERASE); 2217 if (ret) { 2218 printk(KERN_ERR "%s: Failed multiblock erase, " 2219 "block %d\n", __func__, 2220 onenand_block(this, addr)); 2221 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 2222 return -EIO; 2223 } 2224 2225 len -= block_size; 2226 addr += block_size; 2227 eb_count++; 2228 } 2229 2230 /* last block of 64-eb series */ 2231 cond_resched(); 2232 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); 2233 onenand_invalidate_bufferram(mtd, addr, block_size); 2234 2235 ret = this->wait(mtd, FL_ERASING); 2236 /* Check if it is write protected */ 2237 if (ret) { 2238 printk(KERN_ERR "%s: Failed erase, block %d\n", 2239 __func__, onenand_block(this, addr)); 2240 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 2241 return -EIO; 2242 } 2243 2244 len -= block_size; 2245 addr += block_size; 2246 eb_count++; 2247 2248 /* verify */ 2249 verify_instr.len = eb_count * block_size; 2250 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { 2251 instr->fail_addr = verify_instr.fail_addr; 2252 return -EIO; 2253 } 2254 2255 } 2256 return 0; 2257 } 2258 2259 2260 /** 2261 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase 2262 * @param mtd MTD device structure 2263 * @param instr erase instruction 2264 * @param region erase region 2265 * @param block_size erase block size 2266 * 2267 * Erase one or more blocks one block at a time 2268 */ 2269 static int onenand_block_by_block_erase(struct mtd_info *mtd, 2270 struct erase_info *instr, 2271 struct mtd_erase_region_info *region, 2272 unsigned int block_size) 2273 { 2274 struct onenand_chip *this = mtd->priv; 2275 loff_t addr = instr->addr; 2276 int len = instr->len; 2277 loff_t region_end = 0; 2278 int ret = 0; 2279 2280 if (region) { 2281 /* region is set for Flex-OneNAND */ 2282 region_end = region->offset + region->erasesize * region->numblocks; 2283 } 2284 2285 /* Loop through the blocks */ 2286 while (len) { 2287 cond_resched(); 2288 2289 /* Check if we have a bad block, we do not erase bad blocks */ 2290 if (onenand_block_isbad_nolock(mtd, addr, 0)) { 2291 printk(KERN_WARNING "%s: attempt to erase a bad block " 2292 "at addr 0x%012llx\n", 2293 __func__, (unsigned long long) addr); 2294 return -EIO; 2295 } 2296 2297 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); 2298 2299 onenand_invalidate_bufferram(mtd, addr, block_size); 2300 2301 ret = this->wait(mtd, FL_ERASING); 2302 /* Check, if it is write protected */ 2303 if (ret) { 2304 printk(KERN_ERR "%s: Failed erase, block %d\n", 2305 __func__, onenand_block(this, addr)); 2306 instr->fail_addr = addr; 2307 return -EIO; 2308 } 2309 2310 len -= block_size; 2311 addr += block_size; 2312 2313 if (region && addr == region_end) { 2314 if (!len) 2315 break; 2316 region++; 2317 2318 block_size = region->erasesize; 2319 region_end = region->offset + region->erasesize * region->numblocks; 2320 2321 if (len & (block_size - 1)) { 2322 /* FIXME: This should be handled at MTD partitioning level. */ 2323 printk(KERN_ERR "%s: Unaligned address\n", 2324 __func__); 2325 return -EIO; 2326 } 2327 } 2328 } 2329 return 0; 2330 } 2331 2332 /** 2333 * onenand_erase - [MTD Interface] erase block(s) 2334 * @param mtd MTD device structure 2335 * @param instr erase instruction 2336 * 2337 * Erase one or more blocks 2338 */ 2339 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) 2340 { 2341 struct onenand_chip *this = mtd->priv; 2342 unsigned int block_size; 2343 loff_t addr = instr->addr; 2344 loff_t len = instr->len; 2345 int ret = 0; 2346 struct mtd_erase_region_info *region = NULL; 2347 loff_t region_offset = 0; 2348 2349 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, 2350 (unsigned long long)instr->addr, 2351 (unsigned long long)instr->len); 2352 2353 if (FLEXONENAND(this)) { 2354 /* Find the eraseregion of this address */ 2355 int i = flexonenand_region(mtd, addr); 2356 2357 region = &mtd->eraseregions[i]; 2358 block_size = region->erasesize; 2359 2360 /* Start address within region must align on block boundary. 2361 * Erase region's start offset is always block start address. 2362 */ 2363 region_offset = region->offset; 2364 } else 2365 block_size = 1 << this->erase_shift; 2366 2367 /* Start address must align on block boundary */ 2368 if (unlikely((addr - region_offset) & (block_size - 1))) { 2369 printk(KERN_ERR "%s: Unaligned address\n", __func__); 2370 return -EINVAL; 2371 } 2372 2373 /* Length must align on block boundary */ 2374 if (unlikely(len & (block_size - 1))) { 2375 printk(KERN_ERR "%s: Length not block aligned\n", __func__); 2376 return -EINVAL; 2377 } 2378 2379 /* Grab the lock and see if the device is available */ 2380 onenand_get_device(mtd, FL_ERASING); 2381 2382 if (ONENAND_IS_4KB_PAGE(this) || region || 2383 instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { 2384 /* region is set for Flex-OneNAND (no mb erase) */ 2385 ret = onenand_block_by_block_erase(mtd, instr, 2386 region, block_size); 2387 } else { 2388 ret = onenand_multiblock_erase(mtd, instr, block_size); 2389 } 2390 2391 /* Deselect and wake up anyone waiting on the device */ 2392 onenand_release_device(mtd); 2393 2394 return ret; 2395 } 2396 2397 /** 2398 * onenand_sync - [MTD Interface] sync 2399 * @param mtd MTD device structure 2400 * 2401 * Sync is actually a wait for chip ready function 2402 */ 2403 static void onenand_sync(struct mtd_info *mtd) 2404 { 2405 pr_debug("%s: called\n", __func__); 2406 2407 /* Grab the lock and see if the device is available */ 2408 onenand_get_device(mtd, FL_SYNCING); 2409 2410 /* Release it and go back */ 2411 onenand_release_device(mtd); 2412 } 2413 2414 /** 2415 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad 2416 * @param mtd MTD device structure 2417 * @param ofs offset relative to mtd start 2418 * 2419 * Check whether the block is bad 2420 */ 2421 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) 2422 { 2423 int ret; 2424 2425 onenand_get_device(mtd, FL_READING); 2426 ret = onenand_block_isbad_nolock(mtd, ofs, 0); 2427 onenand_release_device(mtd); 2428 return ret; 2429 } 2430 2431 /** 2432 * onenand_default_block_markbad - [DEFAULT] mark a block bad 2433 * @param mtd MTD device structure 2434 * @param ofs offset from device start 2435 * 2436 * This is the default implementation, which can be overridden by 2437 * a hardware specific driver. 2438 */ 2439 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 2440 { 2441 struct onenand_chip *this = mtd->priv; 2442 struct bbm_info *bbm = this->bbm; 2443 u_char buf[2] = {0, 0}; 2444 struct mtd_oob_ops ops = { 2445 .mode = MTD_OPS_PLACE_OOB, 2446 .ooblen = 2, 2447 .oobbuf = buf, 2448 .ooboffs = 0, 2449 }; 2450 int block; 2451 2452 /* Get block number */ 2453 block = onenand_block(this, ofs); 2454 if (bbm->bbt) 2455 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 2456 2457 /* We write two bytes, so we don't have to mess with 16-bit access */ 2458 ofs += mtd->oobsize + (this->badblockpos & ~0x01); 2459 /* FIXME : What to do when marking SLC block in partition 2460 * with MLC erasesize? For now, it is not advisable to 2461 * create partitions containing both SLC and MLC regions. 2462 */ 2463 return onenand_write_oob_nolock(mtd, ofs, &ops); 2464 } 2465 2466 /** 2467 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad 2468 * @param mtd MTD device structure 2469 * @param ofs offset relative to mtd start 2470 * 2471 * Mark the block as bad 2472 */ 2473 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) 2474 { 2475 struct onenand_chip *this = mtd->priv; 2476 int ret; 2477 2478 ret = onenand_block_isbad(mtd, ofs); 2479 if (ret) { 2480 /* If it was bad already, return success and do nothing */ 2481 if (ret > 0) 2482 return 0; 2483 return ret; 2484 } 2485 2486 onenand_get_device(mtd, FL_WRITING); 2487 ret = this->block_markbad(mtd, ofs); 2488 onenand_release_device(mtd); 2489 return ret; 2490 } 2491 2492 /** 2493 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) 2494 * @param mtd MTD device structure 2495 * @param ofs offset relative to mtd start 2496 * @param len number of bytes to lock or unlock 2497 * @param cmd lock or unlock command 2498 * 2499 * Lock or unlock one or more blocks 2500 */ 2501 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) 2502 { 2503 struct onenand_chip *this = mtd->priv; 2504 int start, end, block, value, status; 2505 int wp_status_mask; 2506 2507 start = onenand_block(this, ofs); 2508 end = onenand_block(this, ofs + len) - 1; 2509 2510 if (cmd == ONENAND_CMD_LOCK) 2511 wp_status_mask = ONENAND_WP_LS; 2512 else 2513 wp_status_mask = ONENAND_WP_US; 2514 2515 /* Continuous lock scheme */ 2516 if (this->options & ONENAND_HAS_CONT_LOCK) { 2517 /* Set start block address */ 2518 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2519 /* Set end block address */ 2520 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS); 2521 /* Write lock command */ 2522 this->command(mtd, cmd, 0, 0); 2523 2524 /* There's no return value */ 2525 this->wait(mtd, FL_LOCKING); 2526 2527 /* Sanity check */ 2528 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2529 & ONENAND_CTRL_ONGO) 2530 continue; 2531 2532 /* Check lock status */ 2533 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2534 if (!(status & wp_status_mask)) 2535 printk(KERN_ERR "%s: wp status = 0x%x\n", 2536 __func__, status); 2537 2538 return 0; 2539 } 2540 2541 /* Block lock scheme */ 2542 for (block = start; block < end + 1; block++) { 2543 /* Set block address */ 2544 value = onenand_block_address(this, block); 2545 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 2546 /* Select DataRAM for DDP */ 2547 value = onenand_bufferram_address(this, block); 2548 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 2549 /* Set start block address */ 2550 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2551 /* Write lock command */ 2552 this->command(mtd, cmd, 0, 0); 2553 2554 /* There's no return value */ 2555 this->wait(mtd, FL_LOCKING); 2556 2557 /* Sanity check */ 2558 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2559 & ONENAND_CTRL_ONGO) 2560 continue; 2561 2562 /* Check lock status */ 2563 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2564 if (!(status & wp_status_mask)) 2565 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", 2566 __func__, block, status); 2567 } 2568 2569 return 0; 2570 } 2571 2572 /** 2573 * onenand_lock - [MTD Interface] Lock block(s) 2574 * @param mtd MTD device structure 2575 * @param ofs offset relative to mtd start 2576 * @param len number of bytes to unlock 2577 * 2578 * Lock one or more blocks 2579 */ 2580 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2581 { 2582 int ret; 2583 2584 onenand_get_device(mtd, FL_LOCKING); 2585 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); 2586 onenand_release_device(mtd); 2587 return ret; 2588 } 2589 2590 /** 2591 * onenand_unlock - [MTD Interface] Unlock block(s) 2592 * @param mtd MTD device structure 2593 * @param ofs offset relative to mtd start 2594 * @param len number of bytes to unlock 2595 * 2596 * Unlock one or more blocks 2597 */ 2598 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2599 { 2600 int ret; 2601 2602 onenand_get_device(mtd, FL_LOCKING); 2603 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2604 onenand_release_device(mtd); 2605 return ret; 2606 } 2607 2608 /** 2609 * onenand_check_lock_status - [OneNAND Interface] Check lock status 2610 * @param this onenand chip data structure 2611 * 2612 * Check lock status 2613 */ 2614 static int onenand_check_lock_status(struct onenand_chip *this) 2615 { 2616 unsigned int value, block, status; 2617 unsigned int end; 2618 2619 end = this->chipsize >> this->erase_shift; 2620 for (block = 0; block < end; block++) { 2621 /* Set block address */ 2622 value = onenand_block_address(this, block); 2623 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 2624 /* Select DataRAM for DDP */ 2625 value = onenand_bufferram_address(this, block); 2626 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 2627 /* Set start block address */ 2628 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2629 2630 /* Check lock status */ 2631 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2632 if (!(status & ONENAND_WP_US)) { 2633 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", 2634 __func__, block, status); 2635 return 0; 2636 } 2637 } 2638 2639 return 1; 2640 } 2641 2642 /** 2643 * onenand_unlock_all - [OneNAND Interface] unlock all blocks 2644 * @param mtd MTD device structure 2645 * 2646 * Unlock all blocks 2647 */ 2648 static void onenand_unlock_all(struct mtd_info *mtd) 2649 { 2650 struct onenand_chip *this = mtd->priv; 2651 loff_t ofs = 0; 2652 loff_t len = mtd->size; 2653 2654 if (this->options & ONENAND_HAS_UNLOCK_ALL) { 2655 /* Set start block address */ 2656 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2657 /* Write unlock command */ 2658 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); 2659 2660 /* There's no return value */ 2661 this->wait(mtd, FL_LOCKING); 2662 2663 /* Sanity check */ 2664 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2665 & ONENAND_CTRL_ONGO) 2666 continue; 2667 2668 /* Don't check lock status */ 2669 if (this->options & ONENAND_SKIP_UNLOCK_CHECK) 2670 return; 2671 2672 /* Check lock status */ 2673 if (onenand_check_lock_status(this)) 2674 return; 2675 2676 /* Workaround for all block unlock in DDP */ 2677 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { 2678 /* All blocks on another chip */ 2679 ofs = this->chipsize >> 1; 2680 len = this->chipsize >> 1; 2681 } 2682 } 2683 2684 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2685 } 2686 2687 #ifdef CONFIG_MTD_ONENAND_OTP 2688 2689 /** 2690 * onenand_otp_command - Send OTP specific command to OneNAND device 2691 * @param mtd MTD device structure 2692 * @param cmd the command to be sent 2693 * @param addr offset to read from or write to 2694 * @param len number of bytes to read or write 2695 */ 2696 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, 2697 size_t len) 2698 { 2699 struct onenand_chip *this = mtd->priv; 2700 int value, block, page; 2701 2702 /* Address translation */ 2703 switch (cmd) { 2704 case ONENAND_CMD_OTP_ACCESS: 2705 block = (int) (addr >> this->erase_shift); 2706 page = -1; 2707 break; 2708 2709 default: 2710 block = (int) (addr >> this->erase_shift); 2711 page = (int) (addr >> this->page_shift); 2712 2713 if (ONENAND_IS_2PLANE(this)) { 2714 /* Make the even block number */ 2715 block &= ~1; 2716 /* Is it the odd plane? */ 2717 if (addr & this->writesize) 2718 block++; 2719 page >>= 1; 2720 } 2721 page &= this->page_mask; 2722 break; 2723 } 2724 2725 if (block != -1) { 2726 /* Write 'DFS, FBA' of Flash */ 2727 value = onenand_block_address(this, block); 2728 this->write_word(value, this->base + 2729 ONENAND_REG_START_ADDRESS1); 2730 } 2731 2732 if (page != -1) { 2733 /* Now we use page size operation */ 2734 int sectors = 4, count = 4; 2735 int dataram; 2736 2737 switch (cmd) { 2738 default: 2739 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) 2740 cmd = ONENAND_CMD_2X_PROG; 2741 dataram = ONENAND_CURRENT_BUFFERRAM(this); 2742 break; 2743 } 2744 2745 /* Write 'FPA, FSA' of Flash */ 2746 value = onenand_page_address(page, sectors); 2747 this->write_word(value, this->base + 2748 ONENAND_REG_START_ADDRESS8); 2749 2750 /* Write 'BSA, BSC' of DataRAM */ 2751 value = onenand_buffer_address(dataram, sectors, count); 2752 this->write_word(value, this->base + ONENAND_REG_START_BUFFER); 2753 } 2754 2755 /* Interrupt clear */ 2756 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); 2757 2758 /* Write command */ 2759 this->write_word(cmd, this->base + ONENAND_REG_COMMAND); 2760 2761 return 0; 2762 } 2763 2764 /** 2765 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP 2766 * @param mtd MTD device structure 2767 * @param to offset to write to 2768 * @param len number of bytes to write 2769 * @param retlen pointer to variable to store the number of written bytes 2770 * @param buf the data to write 2771 * 2772 * OneNAND write out-of-band only for OTP 2773 */ 2774 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to, 2775 struct mtd_oob_ops *ops) 2776 { 2777 struct onenand_chip *this = mtd->priv; 2778 int column, ret = 0, oobsize; 2779 int written = 0; 2780 u_char *oobbuf; 2781 size_t len = ops->ooblen; 2782 const u_char *buf = ops->oobbuf; 2783 int block, value, status; 2784 2785 to += ops->ooboffs; 2786 2787 /* Initialize retlen, in case of early exit */ 2788 ops->oobretlen = 0; 2789 2790 oobsize = mtd->oobsize; 2791 2792 column = to & (mtd->oobsize - 1); 2793 2794 oobbuf = this->oob_buf; 2795 2796 /* Loop until all data write */ 2797 while (written < len) { 2798 int thislen = min_t(int, oobsize, len - written); 2799 2800 cond_resched(); 2801 2802 block = (int) (to >> this->erase_shift); 2803 /* 2804 * Write 'DFS, FBA' of Flash 2805 * Add: F100h DQ=DFS, FBA 2806 */ 2807 2808 value = onenand_block_address(this, block); 2809 this->write_word(value, this->base + 2810 ONENAND_REG_START_ADDRESS1); 2811 2812 /* 2813 * Select DataRAM for DDP 2814 * Add: F101h DQ=DBS 2815 */ 2816 2817 value = onenand_bufferram_address(this, block); 2818 this->write_word(value, this->base + 2819 ONENAND_REG_START_ADDRESS2); 2820 ONENAND_SET_NEXT_BUFFERRAM(this); 2821 2822 /* 2823 * Enter OTP access mode 2824 */ 2825 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); 2826 this->wait(mtd, FL_OTPING); 2827 2828 /* We send data to spare ram with oobsize 2829 * to prevent byte access */ 2830 memcpy(oobbuf + column, buf, thislen); 2831 2832 /* 2833 * Write Data into DataRAM 2834 * Add: 8th Word 2835 * in sector0/spare/page0 2836 * DQ=XXFCh 2837 */ 2838 this->write_bufferram(mtd, ONENAND_SPARERAM, 2839 oobbuf, 0, mtd->oobsize); 2840 2841 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); 2842 onenand_update_bufferram(mtd, to, 0); 2843 if (ONENAND_IS_2PLANE(this)) { 2844 ONENAND_SET_BUFFERRAM1(this); 2845 onenand_update_bufferram(mtd, to + this->writesize, 0); 2846 } 2847 2848 ret = this->wait(mtd, FL_WRITING); 2849 if (ret) { 2850 printk(KERN_ERR "%s: write failed %d\n", __func__, ret); 2851 break; 2852 } 2853 2854 /* Exit OTP access mode */ 2855 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2856 this->wait(mtd, FL_RESETING); 2857 2858 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 2859 status &= 0x60; 2860 2861 if (status == 0x60) { 2862 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); 2863 printk(KERN_DEBUG "1st Block\tLOCKED\n"); 2864 printk(KERN_DEBUG "OTP Block\tLOCKED\n"); 2865 } else if (status == 0x20) { 2866 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); 2867 printk(KERN_DEBUG "1st Block\tLOCKED\n"); 2868 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n"); 2869 } else if (status == 0x40) { 2870 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); 2871 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n"); 2872 printk(KERN_DEBUG "OTP Block\tLOCKED\n"); 2873 } else { 2874 printk(KERN_DEBUG "Reboot to check\n"); 2875 } 2876 2877 written += thislen; 2878 if (written == len) 2879 break; 2880 2881 to += mtd->writesize; 2882 buf += thislen; 2883 column = 0; 2884 } 2885 2886 ops->oobretlen = written; 2887 2888 return ret; 2889 } 2890 2891 /* Internal OTP operation */ 2892 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len, 2893 size_t *retlen, u_char *buf); 2894 2895 /** 2896 * do_otp_read - [DEFAULT] Read OTP block area 2897 * @param mtd MTD device structure 2898 * @param from The offset to read 2899 * @param len number of bytes to read 2900 * @param retlen pointer to variable to store the number of readbytes 2901 * @param buf the databuffer to put/get data 2902 * 2903 * Read OTP block area. 2904 */ 2905 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, 2906 size_t *retlen, u_char *buf) 2907 { 2908 struct onenand_chip *this = mtd->priv; 2909 struct mtd_oob_ops ops = { 2910 .len = len, 2911 .ooblen = 0, 2912 .datbuf = buf, 2913 .oobbuf = NULL, 2914 }; 2915 int ret; 2916 2917 /* Enter OTP access mode */ 2918 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); 2919 this->wait(mtd, FL_OTPING); 2920 2921 ret = ONENAND_IS_4KB_PAGE(this) ? 2922 onenand_mlc_read_ops_nolock(mtd, from, &ops) : 2923 onenand_read_ops_nolock(mtd, from, &ops); 2924 2925 /* Exit OTP access mode */ 2926 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2927 this->wait(mtd, FL_RESETING); 2928 2929 return ret; 2930 } 2931 2932 /** 2933 * do_otp_write - [DEFAULT] Write OTP block area 2934 * @param mtd MTD device structure 2935 * @param to The offset to write 2936 * @param len number of bytes to write 2937 * @param retlen pointer to variable to store the number of write bytes 2938 * @param buf the databuffer to put/get data 2939 * 2940 * Write OTP block area. 2941 */ 2942 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len, 2943 size_t *retlen, u_char *buf) 2944 { 2945 struct onenand_chip *this = mtd->priv; 2946 unsigned char *pbuf = buf; 2947 int ret; 2948 struct mtd_oob_ops ops; 2949 2950 /* Force buffer page aligned */ 2951 if (len < mtd->writesize) { 2952 memcpy(this->page_buf, buf, len); 2953 memset(this->page_buf + len, 0xff, mtd->writesize - len); 2954 pbuf = this->page_buf; 2955 len = mtd->writesize; 2956 } 2957 2958 /* Enter OTP access mode */ 2959 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); 2960 this->wait(mtd, FL_OTPING); 2961 2962 ops.len = len; 2963 ops.ooblen = 0; 2964 ops.datbuf = pbuf; 2965 ops.oobbuf = NULL; 2966 ret = onenand_write_ops_nolock(mtd, to, &ops); 2967 *retlen = ops.retlen; 2968 2969 /* Exit OTP access mode */ 2970 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2971 this->wait(mtd, FL_RESETING); 2972 2973 return ret; 2974 } 2975 2976 /** 2977 * do_otp_lock - [DEFAULT] Lock OTP block area 2978 * @param mtd MTD device structure 2979 * @param from The offset to lock 2980 * @param len number of bytes to lock 2981 * @param retlen pointer to variable to store the number of lock bytes 2982 * @param buf the databuffer to put/get data 2983 * 2984 * Lock OTP block area. 2985 */ 2986 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, 2987 size_t *retlen, u_char *buf) 2988 { 2989 struct onenand_chip *this = mtd->priv; 2990 struct mtd_oob_ops ops; 2991 int ret; 2992 2993 if (FLEXONENAND(this)) { 2994 2995 /* Enter OTP access mode */ 2996 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); 2997 this->wait(mtd, FL_OTPING); 2998 /* 2999 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of 3000 * main area of page 49. 3001 */ 3002 ops.len = mtd->writesize; 3003 ops.ooblen = 0; 3004 ops.datbuf = buf; 3005 ops.oobbuf = NULL; 3006 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops); 3007 *retlen = ops.retlen; 3008 3009 /* Exit OTP access mode */ 3010 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 3011 this->wait(mtd, FL_RESETING); 3012 } else { 3013 ops.mode = MTD_OPS_PLACE_OOB; 3014 ops.ooblen = len; 3015 ops.oobbuf = buf; 3016 ops.ooboffs = 0; 3017 ret = onenand_otp_write_oob_nolock(mtd, from, &ops); 3018 *retlen = ops.oobretlen; 3019 } 3020 3021 return ret; 3022 } 3023 3024 /** 3025 * onenand_otp_walk - [DEFAULT] Handle OTP operation 3026 * @param mtd MTD device structure 3027 * @param from The offset to read/write 3028 * @param len number of bytes to read/write 3029 * @param retlen pointer to variable to store the number of read bytes 3030 * @param buf the databuffer to put/get data 3031 * @param action do given action 3032 * @param mode specify user and factory 3033 * 3034 * Handle OTP operation. 3035 */ 3036 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, 3037 size_t *retlen, u_char *buf, 3038 otp_op_t action, int mode) 3039 { 3040 struct onenand_chip *this = mtd->priv; 3041 int otp_pages; 3042 int density; 3043 int ret = 0; 3044 3045 *retlen = 0; 3046 3047 density = onenand_get_density(this->device_id); 3048 if (density < ONENAND_DEVICE_DENSITY_512Mb) 3049 otp_pages = 20; 3050 else 3051 otp_pages = 50; 3052 3053 if (mode == MTD_OTP_FACTORY) { 3054 from += mtd->writesize * otp_pages; 3055 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages; 3056 } 3057 3058 /* Check User/Factory boundary */ 3059 if (mode == MTD_OTP_USER) { 3060 if (mtd->writesize * otp_pages < from + len) 3061 return 0; 3062 } else { 3063 if (mtd->writesize * otp_pages < len) 3064 return 0; 3065 } 3066 3067 onenand_get_device(mtd, FL_OTPING); 3068 while (len > 0 && otp_pages > 0) { 3069 if (!action) { /* OTP Info functions */ 3070 struct otp_info *otpinfo; 3071 3072 len -= sizeof(struct otp_info); 3073 if (len <= 0) { 3074 ret = -ENOSPC; 3075 break; 3076 } 3077 3078 otpinfo = (struct otp_info *) buf; 3079 otpinfo->start = from; 3080 otpinfo->length = mtd->writesize; 3081 otpinfo->locked = 0; 3082 3083 from += mtd->writesize; 3084 buf += sizeof(struct otp_info); 3085 *retlen += sizeof(struct otp_info); 3086 } else { 3087 size_t tmp_retlen; 3088 3089 ret = action(mtd, from, len, &tmp_retlen, buf); 3090 if (ret) 3091 break; 3092 3093 buf += tmp_retlen; 3094 len -= tmp_retlen; 3095 *retlen += tmp_retlen; 3096 3097 } 3098 otp_pages--; 3099 } 3100 onenand_release_device(mtd); 3101 3102 return ret; 3103 } 3104 3105 /** 3106 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info 3107 * @param mtd MTD device structure 3108 * @param len number of bytes to read 3109 * @param retlen pointer to variable to store the number of read bytes 3110 * @param buf the databuffer to put/get data 3111 * 3112 * Read factory OTP info. 3113 */ 3114 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, 3115 size_t *retlen, struct otp_info *buf) 3116 { 3117 return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, 3118 MTD_OTP_FACTORY); 3119 } 3120 3121 /** 3122 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area 3123 * @param mtd MTD device structure 3124 * @param from The offset to read 3125 * @param len number of bytes to read 3126 * @param retlen pointer to variable to store the number of read bytes 3127 * @param buf the databuffer to put/get data 3128 * 3129 * Read factory OTP area. 3130 */ 3131 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 3132 size_t len, size_t *retlen, u_char *buf) 3133 { 3134 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY); 3135 } 3136 3137 /** 3138 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info 3139 * @param mtd MTD device structure 3140 * @param retlen pointer to variable to store the number of read bytes 3141 * @param len number of bytes to read 3142 * @param buf the databuffer to put/get data 3143 * 3144 * Read user OTP info. 3145 */ 3146 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, 3147 size_t *retlen, struct otp_info *buf) 3148 { 3149 return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, 3150 MTD_OTP_USER); 3151 } 3152 3153 /** 3154 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area 3155 * @param mtd MTD device structure 3156 * @param from The offset to read 3157 * @param len number of bytes to read 3158 * @param retlen pointer to variable to store the number of read bytes 3159 * @param buf the databuffer to put/get data 3160 * 3161 * Read user OTP area. 3162 */ 3163 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 3164 size_t len, size_t *retlen, u_char *buf) 3165 { 3166 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER); 3167 } 3168 3169 /** 3170 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area 3171 * @param mtd MTD device structure 3172 * @param from The offset to write 3173 * @param len number of bytes to write 3174 * @param retlen pointer to variable to store the number of write bytes 3175 * @param buf the databuffer to put/get data 3176 * 3177 * Write user OTP area. 3178 */ 3179 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 3180 size_t len, size_t *retlen, u_char *buf) 3181 { 3182 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER); 3183 } 3184 3185 /** 3186 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area 3187 * @param mtd MTD device structure 3188 * @param from The offset to lock 3189 * @param len number of bytes to unlock 3190 * 3191 * Write lock mark on spare area in page 0 in OTP block 3192 */ 3193 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 3194 size_t len) 3195 { 3196 struct onenand_chip *this = mtd->priv; 3197 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf; 3198 size_t retlen; 3199 int ret; 3200 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET; 3201 3202 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize 3203 : mtd->oobsize); 3204 /* 3205 * Write lock mark to 8th word of sector0 of page0 of the spare0. 3206 * We write 16 bytes spare area instead of 2 bytes. 3207 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of 3208 * main area of page 49. 3209 */ 3210 3211 from = 0; 3212 len = FLEXONENAND(this) ? mtd->writesize : 16; 3213 3214 /* 3215 * Note: OTP lock operation 3216 * OTP block : 0xXXFC XX 1111 1100 3217 * 1st block : 0xXXF3 (If chip support) XX 1111 0011 3218 * Both : 0xXXF0 (If chip support) XX 1111 0000 3219 */ 3220 if (FLEXONENAND(this)) 3221 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET; 3222 3223 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */ 3224 if (otp == 1) 3225 buf[otp_lock_offset] = 0xFC; 3226 else if (otp == 2) 3227 buf[otp_lock_offset] = 0xF3; 3228 else if (otp == 3) 3229 buf[otp_lock_offset] = 0xF0; 3230 else if (otp != 0) 3231 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n"); 3232 3233 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER); 3234 3235 return ret ? : retlen; 3236 } 3237 3238 #endif /* CONFIG_MTD_ONENAND_OTP */ 3239 3240 /** 3241 * onenand_check_features - Check and set OneNAND features 3242 * @param mtd MTD data structure 3243 * 3244 * Check and set OneNAND features 3245 * - lock scheme 3246 * - two plane 3247 */ 3248 static void onenand_check_features(struct mtd_info *mtd) 3249 { 3250 struct onenand_chip *this = mtd->priv; 3251 unsigned int density, process, numbufs; 3252 3253 /* Lock scheme depends on density and process */ 3254 density = onenand_get_density(this->device_id); 3255 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; 3256 numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; 3257 3258 /* Lock scheme */ 3259 switch (density) { 3260 case ONENAND_DEVICE_DENSITY_4Gb: 3261 if (ONENAND_IS_DDP(this)) 3262 this->options |= ONENAND_HAS_2PLANE; 3263 else if (numbufs == 1) { 3264 this->options |= ONENAND_HAS_4KB_PAGE; 3265 this->options |= ONENAND_HAS_CACHE_PROGRAM; 3266 /* 3267 * There are two different 4KiB pagesize chips 3268 * and no way to detect it by H/W config values. 3269 * 3270 * To detect the correct NOP for each chips, 3271 * It should check the version ID as workaround. 3272 * 3273 * Now it has as following 3274 * KFM4G16Q4M has NOP 4 with version ID 0x0131 3275 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e 3276 */ 3277 if ((this->version_id & 0xf) == 0xe) 3278 this->options |= ONENAND_HAS_NOP_1; 3279 } 3280 3281 case ONENAND_DEVICE_DENSITY_2Gb: 3282 /* 2Gb DDP does not have 2 plane */ 3283 if (!ONENAND_IS_DDP(this)) 3284 this->options |= ONENAND_HAS_2PLANE; 3285 this->options |= ONENAND_HAS_UNLOCK_ALL; 3286 3287 case ONENAND_DEVICE_DENSITY_1Gb: 3288 /* A-Die has all block unlock */ 3289 if (process) 3290 this->options |= ONENAND_HAS_UNLOCK_ALL; 3291 break; 3292 3293 default: 3294 /* Some OneNAND has continuous lock scheme */ 3295 if (!process) 3296 this->options |= ONENAND_HAS_CONT_LOCK; 3297 break; 3298 } 3299 3300 /* The MLC has 4KiB pagesize. */ 3301 if (ONENAND_IS_MLC(this)) 3302 this->options |= ONENAND_HAS_4KB_PAGE; 3303 3304 if (ONENAND_IS_4KB_PAGE(this)) 3305 this->options &= ~ONENAND_HAS_2PLANE; 3306 3307 if (FLEXONENAND(this)) { 3308 this->options &= ~ONENAND_HAS_CONT_LOCK; 3309 this->options |= ONENAND_HAS_UNLOCK_ALL; 3310 } 3311 3312 if (this->options & ONENAND_HAS_CONT_LOCK) 3313 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); 3314 if (this->options & ONENAND_HAS_UNLOCK_ALL) 3315 printk(KERN_DEBUG "Chip support all block unlock\n"); 3316 if (this->options & ONENAND_HAS_2PLANE) 3317 printk(KERN_DEBUG "Chip has 2 plane\n"); 3318 if (this->options & ONENAND_HAS_4KB_PAGE) 3319 printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); 3320 if (this->options & ONENAND_HAS_CACHE_PROGRAM) 3321 printk(KERN_DEBUG "Chip has cache program feature\n"); 3322 } 3323 3324 /** 3325 * onenand_print_device_info - Print device & version ID 3326 * @param device device ID 3327 * @param version version ID 3328 * 3329 * Print device & version ID 3330 */ 3331 static void onenand_print_device_info(int device, int version) 3332 { 3333 int vcc, demuxed, ddp, density, flexonenand; 3334 3335 vcc = device & ONENAND_DEVICE_VCC_MASK; 3336 demuxed = device & ONENAND_DEVICE_IS_DEMUX; 3337 ddp = device & ONENAND_DEVICE_IS_DDP; 3338 density = onenand_get_density(device); 3339 flexonenand = device & DEVICE_IS_FLEXONENAND; 3340 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", 3341 demuxed ? "" : "Muxed ", 3342 flexonenand ? "Flex-" : "", 3343 ddp ? "(DDP)" : "", 3344 (16 << density), 3345 vcc ? "2.65/3.3" : "1.8", 3346 device); 3347 printk(KERN_INFO "OneNAND version = 0x%04x\n", version); 3348 } 3349 3350 static const struct onenand_manufacturers onenand_manuf_ids[] = { 3351 {ONENAND_MFR_SAMSUNG, "Samsung"}, 3352 {ONENAND_MFR_NUMONYX, "Numonyx"}, 3353 }; 3354 3355 /** 3356 * onenand_check_maf - Check manufacturer ID 3357 * @param manuf manufacturer ID 3358 * 3359 * Check manufacturer ID 3360 */ 3361 static int onenand_check_maf(int manuf) 3362 { 3363 int size = ARRAY_SIZE(onenand_manuf_ids); 3364 char *name; 3365 int i; 3366 3367 for (i = 0; i < size; i++) 3368 if (manuf == onenand_manuf_ids[i].id) 3369 break; 3370 3371 if (i < size) 3372 name = onenand_manuf_ids[i].name; 3373 else 3374 name = "Unknown"; 3375 3376 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); 3377 3378 return (i == size); 3379 } 3380 3381 /** 3382 * flexonenand_get_boundary - Reads the SLC boundary 3383 * @param onenand_info - onenand info structure 3384 **/ 3385 static int flexonenand_get_boundary(struct mtd_info *mtd) 3386 { 3387 struct onenand_chip *this = mtd->priv; 3388 unsigned die, bdry; 3389 int syscfg, locked; 3390 3391 /* Disable ECC */ 3392 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 3393 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); 3394 3395 for (die = 0; die < this->dies; die++) { 3396 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 3397 this->wait(mtd, FL_SYNCING); 3398 3399 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 3400 this->wait(mtd, FL_READING); 3401 3402 bdry = this->read_word(this->base + ONENAND_DATARAM); 3403 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) 3404 locked = 0; 3405 else 3406 locked = 1; 3407 this->boundary[die] = bdry & FLEXONENAND_PI_MASK; 3408 3409 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 3410 this->wait(mtd, FL_RESETING); 3411 3412 printk(KERN_INFO "Die %d boundary: %d%s\n", die, 3413 this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); 3414 } 3415 3416 /* Enable ECC */ 3417 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 3418 return 0; 3419 } 3420 3421 /** 3422 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info 3423 * boundary[], diesize[], mtd->size, mtd->erasesize 3424 * @param mtd - MTD device structure 3425 */ 3426 static void flexonenand_get_size(struct mtd_info *mtd) 3427 { 3428 struct onenand_chip *this = mtd->priv; 3429 int die, i, eraseshift, density; 3430 int blksperdie, maxbdry; 3431 loff_t ofs; 3432 3433 density = onenand_get_density(this->device_id); 3434 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); 3435 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 3436 maxbdry = blksperdie - 1; 3437 eraseshift = this->erase_shift - 1; 3438 3439 mtd->numeraseregions = this->dies << 1; 3440 3441 /* This fills up the device boundary */ 3442 flexonenand_get_boundary(mtd); 3443 die = ofs = 0; 3444 i = -1; 3445 for (; die < this->dies; die++) { 3446 if (!die || this->boundary[die-1] != maxbdry) { 3447 i++; 3448 mtd->eraseregions[i].offset = ofs; 3449 mtd->eraseregions[i].erasesize = 1 << eraseshift; 3450 mtd->eraseregions[i].numblocks = 3451 this->boundary[die] + 1; 3452 ofs += mtd->eraseregions[i].numblocks << eraseshift; 3453 eraseshift++; 3454 } else { 3455 mtd->numeraseregions -= 1; 3456 mtd->eraseregions[i].numblocks += 3457 this->boundary[die] + 1; 3458 ofs += (this->boundary[die] + 1) << (eraseshift - 1); 3459 } 3460 if (this->boundary[die] != maxbdry) { 3461 i++; 3462 mtd->eraseregions[i].offset = ofs; 3463 mtd->eraseregions[i].erasesize = 1 << eraseshift; 3464 mtd->eraseregions[i].numblocks = maxbdry ^ 3465 this->boundary[die]; 3466 ofs += mtd->eraseregions[i].numblocks << eraseshift; 3467 eraseshift--; 3468 } else 3469 mtd->numeraseregions -= 1; 3470 } 3471 3472 /* Expose MLC erase size except when all blocks are SLC */ 3473 mtd->erasesize = 1 << this->erase_shift; 3474 if (mtd->numeraseregions == 1) 3475 mtd->erasesize >>= 1; 3476 3477 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); 3478 for (i = 0; i < mtd->numeraseregions; i++) 3479 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x," 3480 " numblocks: %04u]\n", 3481 (unsigned int) mtd->eraseregions[i].offset, 3482 mtd->eraseregions[i].erasesize, 3483 mtd->eraseregions[i].numblocks); 3484 3485 for (die = 0, mtd->size = 0; die < this->dies; die++) { 3486 this->diesize[die] = (loff_t)blksperdie << this->erase_shift; 3487 this->diesize[die] -= (loff_t)(this->boundary[die] + 1) 3488 << (this->erase_shift - 1); 3489 mtd->size += this->diesize[die]; 3490 } 3491 } 3492 3493 /** 3494 * flexonenand_check_blocks_erased - Check if blocks are erased 3495 * @param mtd_info - mtd info structure 3496 * @param start - first erase block to check 3497 * @param end - last erase block to check 3498 * 3499 * Converting an unerased block from MLC to SLC 3500 * causes byte values to change. Since both data and its ECC 3501 * have changed, reads on the block give uncorrectable error. 3502 * This might lead to the block being detected as bad. 3503 * 3504 * Avoid this by ensuring that the block to be converted is 3505 * erased. 3506 */ 3507 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) 3508 { 3509 struct onenand_chip *this = mtd->priv; 3510 int i, ret; 3511 int block; 3512 struct mtd_oob_ops ops = { 3513 .mode = MTD_OPS_PLACE_OOB, 3514 .ooboffs = 0, 3515 .ooblen = mtd->oobsize, 3516 .datbuf = NULL, 3517 .oobbuf = this->oob_buf, 3518 }; 3519 loff_t addr; 3520 3521 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); 3522 3523 for (block = start; block <= end; block++) { 3524 addr = flexonenand_addr(this, block); 3525 if (onenand_block_isbad_nolock(mtd, addr, 0)) 3526 continue; 3527 3528 /* 3529 * Since main area write results in ECC write to spare, 3530 * it is sufficient to check only ECC bytes for change. 3531 */ 3532 ret = onenand_read_oob_nolock(mtd, addr, &ops); 3533 if (ret) 3534 return ret; 3535 3536 for (i = 0; i < mtd->oobsize; i++) 3537 if (this->oob_buf[i] != 0xff) 3538 break; 3539 3540 if (i != mtd->oobsize) { 3541 printk(KERN_WARNING "%s: Block %d not erased.\n", 3542 __func__, block); 3543 return 1; 3544 } 3545 } 3546 3547 return 0; 3548 } 3549 3550 /** 3551 * flexonenand_set_boundary - Writes the SLC boundary 3552 * @param mtd - mtd info structure 3553 */ 3554 static int flexonenand_set_boundary(struct mtd_info *mtd, int die, 3555 int boundary, int lock) 3556 { 3557 struct onenand_chip *this = mtd->priv; 3558 int ret, density, blksperdie, old, new, thisboundary; 3559 loff_t addr; 3560 3561 /* Change only once for SDP Flex-OneNAND */ 3562 if (die && (!ONENAND_IS_DDP(this))) 3563 return 0; 3564 3565 /* boundary value of -1 indicates no required change */ 3566 if (boundary < 0 || boundary == this->boundary[die]) 3567 return 0; 3568 3569 density = onenand_get_density(this->device_id); 3570 blksperdie = ((16 << density) << 20) >> this->erase_shift; 3571 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 3572 3573 if (boundary >= blksperdie) { 3574 printk(KERN_ERR "%s: Invalid boundary value. " 3575 "Boundary not changed.\n", __func__); 3576 return -EINVAL; 3577 } 3578 3579 /* Check if converting blocks are erased */ 3580 old = this->boundary[die] + (die * this->density_mask); 3581 new = boundary + (die * this->density_mask); 3582 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); 3583 if (ret) { 3584 printk(KERN_ERR "%s: Please erase blocks " 3585 "before boundary change\n", __func__); 3586 return ret; 3587 } 3588 3589 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 3590 this->wait(mtd, FL_SYNCING); 3591 3592 /* Check is boundary is locked */ 3593 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 3594 this->wait(mtd, FL_READING); 3595 3596 thisboundary = this->read_word(this->base + ONENAND_DATARAM); 3597 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { 3598 printk(KERN_ERR "%s: boundary locked\n", __func__); 3599 ret = 1; 3600 goto out; 3601 } 3602 3603 printk(KERN_INFO "Changing die %d boundary: %d%s\n", 3604 die, boundary, lock ? "(Locked)" : "(Unlocked)"); 3605 3606 addr = die ? this->diesize[0] : 0; 3607 3608 boundary &= FLEXONENAND_PI_MASK; 3609 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); 3610 3611 this->command(mtd, ONENAND_CMD_ERASE, addr, 0); 3612 ret = this->wait(mtd, FL_ERASING); 3613 if (ret) { 3614 printk(KERN_ERR "%s: Failed PI erase for Die %d\n", 3615 __func__, die); 3616 goto out; 3617 } 3618 3619 this->write_word(boundary, this->base + ONENAND_DATARAM); 3620 this->command(mtd, ONENAND_CMD_PROG, addr, 0); 3621 ret = this->wait(mtd, FL_WRITING); 3622 if (ret) { 3623 printk(KERN_ERR "%s: Failed PI write for Die %d\n", 3624 __func__, die); 3625 goto out; 3626 } 3627 3628 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); 3629 ret = this->wait(mtd, FL_WRITING); 3630 out: 3631 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); 3632 this->wait(mtd, FL_RESETING); 3633 if (!ret) 3634 /* Recalculate device size on boundary change*/ 3635 flexonenand_get_size(mtd); 3636 3637 return ret; 3638 } 3639 3640 /** 3641 * onenand_chip_probe - [OneNAND Interface] The generic chip probe 3642 * @param mtd MTD device structure 3643 * 3644 * OneNAND detection method: 3645 * Compare the values from command with ones from register 3646 */ 3647 static int onenand_chip_probe(struct mtd_info *mtd) 3648 { 3649 struct onenand_chip *this = mtd->priv; 3650 int bram_maf_id, bram_dev_id, maf_id, dev_id; 3651 int syscfg; 3652 3653 /* Save system configuration 1 */ 3654 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 3655 /* Clear Sync. Burst Read mode to read BootRAM */ 3656 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1); 3657 3658 /* Send the command for reading device ID from BootRAM */ 3659 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); 3660 3661 /* Read manufacturer and device IDs from BootRAM */ 3662 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); 3663 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); 3664 3665 /* Reset OneNAND to read default register values */ 3666 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); 3667 /* Wait reset */ 3668 this->wait(mtd, FL_RESETING); 3669 3670 /* Restore system configuration 1 */ 3671 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 3672 3673 /* Check manufacturer ID */ 3674 if (onenand_check_maf(bram_maf_id)) 3675 return -ENXIO; 3676 3677 /* Read manufacturer and device IDs from Register */ 3678 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); 3679 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 3680 3681 /* Check OneNAND device */ 3682 if (maf_id != bram_maf_id || dev_id != bram_dev_id) 3683 return -ENXIO; 3684 3685 return 0; 3686 } 3687 3688 /** 3689 * onenand_probe - [OneNAND Interface] Probe the OneNAND device 3690 * @param mtd MTD device structure 3691 */ 3692 static int onenand_probe(struct mtd_info *mtd) 3693 { 3694 struct onenand_chip *this = mtd->priv; 3695 int dev_id, ver_id; 3696 int density; 3697 int ret; 3698 3699 ret = this->chip_probe(mtd); 3700 if (ret) 3701 return ret; 3702 3703 /* Device and version IDs from Register */ 3704 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 3705 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); 3706 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); 3707 3708 /* Flash device information */ 3709 onenand_print_device_info(dev_id, ver_id); 3710 this->device_id = dev_id; 3711 this->version_id = ver_id; 3712 3713 /* Check OneNAND features */ 3714 onenand_check_features(mtd); 3715 3716 density = onenand_get_density(dev_id); 3717 if (FLEXONENAND(this)) { 3718 this->dies = ONENAND_IS_DDP(this) ? 2 : 1; 3719 /* Maximum possible erase regions */ 3720 mtd->numeraseregions = this->dies << 1; 3721 mtd->eraseregions = 3722 kcalloc(this->dies << 1, 3723 sizeof(struct mtd_erase_region_info), 3724 GFP_KERNEL); 3725 if (!mtd->eraseregions) 3726 return -ENOMEM; 3727 } 3728 3729 /* 3730 * For Flex-OneNAND, chipsize represents maximum possible device size. 3731 * mtd->size represents the actual device size. 3732 */ 3733 this->chipsize = (16 << density) << 20; 3734 3735 /* OneNAND page size & block size */ 3736 /* The data buffer size is equal to page size */ 3737 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); 3738 /* We use the full BufferRAM */ 3739 if (ONENAND_IS_4KB_PAGE(this)) 3740 mtd->writesize <<= 1; 3741 3742 mtd->oobsize = mtd->writesize >> 5; 3743 /* Pages per a block are always 64 in OneNAND */ 3744 mtd->erasesize = mtd->writesize << 6; 3745 /* 3746 * Flex-OneNAND SLC area has 64 pages per block. 3747 * Flex-OneNAND MLC area has 128 pages per block. 3748 * Expose MLC erase size to find erase_shift and page_mask. 3749 */ 3750 if (FLEXONENAND(this)) 3751 mtd->erasesize <<= 1; 3752 3753 this->erase_shift = ffs(mtd->erasesize) - 1; 3754 this->page_shift = ffs(mtd->writesize) - 1; 3755 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; 3756 /* Set density mask. it is used for DDP */ 3757 if (ONENAND_IS_DDP(this)) 3758 this->density_mask = this->chipsize >> (this->erase_shift + 1); 3759 /* It's real page size */ 3760 this->writesize = mtd->writesize; 3761 3762 /* REVISIT: Multichip handling */ 3763 3764 if (FLEXONENAND(this)) 3765 flexonenand_get_size(mtd); 3766 else 3767 mtd->size = this->chipsize; 3768 3769 /* 3770 * We emulate the 4KiB page and 256KiB erase block size 3771 * But oobsize is still 64 bytes. 3772 * It is only valid if you turn on 2X program support, 3773 * Otherwise it will be ignored by compiler. 3774 */ 3775 if (ONENAND_IS_2PLANE(this)) { 3776 mtd->writesize <<= 1; 3777 mtd->erasesize <<= 1; 3778 } 3779 3780 return 0; 3781 } 3782 3783 /** 3784 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash 3785 * @param mtd MTD device structure 3786 */ 3787 static int onenand_suspend(struct mtd_info *mtd) 3788 { 3789 return onenand_get_device(mtd, FL_PM_SUSPENDED); 3790 } 3791 3792 /** 3793 * onenand_resume - [MTD Interface] Resume the OneNAND flash 3794 * @param mtd MTD device structure 3795 */ 3796 static void onenand_resume(struct mtd_info *mtd) 3797 { 3798 struct onenand_chip *this = mtd->priv; 3799 3800 if (this->state == FL_PM_SUSPENDED) 3801 onenand_release_device(mtd); 3802 else 3803 printk(KERN_ERR "%s: resume() called for the chip which is not " 3804 "in suspended state\n", __func__); 3805 } 3806 3807 /** 3808 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device 3809 * @param mtd MTD device structure 3810 * @param maxchips Number of chips to scan for 3811 * 3812 * This fills out all the not initialized function pointers 3813 * with the defaults. 3814 * The flash ID is read and the mtd/chip structures are 3815 * filled with the appropriate values. 3816 */ 3817 int onenand_scan(struct mtd_info *mtd, int maxchips) 3818 { 3819 int i, ret; 3820 struct onenand_chip *this = mtd->priv; 3821 3822 if (!this->read_word) 3823 this->read_word = onenand_readw; 3824 if (!this->write_word) 3825 this->write_word = onenand_writew; 3826 3827 if (!this->command) 3828 this->command = onenand_command; 3829 if (!this->wait) 3830 onenand_setup_wait(mtd); 3831 if (!this->bbt_wait) 3832 this->bbt_wait = onenand_bbt_wait; 3833 if (!this->unlock_all) 3834 this->unlock_all = onenand_unlock_all; 3835 3836 if (!this->chip_probe) 3837 this->chip_probe = onenand_chip_probe; 3838 3839 if (!this->read_bufferram) 3840 this->read_bufferram = onenand_read_bufferram; 3841 if (!this->write_bufferram) 3842 this->write_bufferram = onenand_write_bufferram; 3843 3844 if (!this->block_markbad) 3845 this->block_markbad = onenand_default_block_markbad; 3846 if (!this->scan_bbt) 3847 this->scan_bbt = onenand_default_bbt; 3848 3849 if (onenand_probe(mtd)) 3850 return -ENXIO; 3851 3852 /* Set Sync. Burst Read after probing */ 3853 if (this->mmcontrol) { 3854 printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); 3855 this->read_bufferram = onenand_sync_read_bufferram; 3856 } 3857 3858 /* Allocate buffers, if necessary */ 3859 if (!this->page_buf) { 3860 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); 3861 if (!this->page_buf) 3862 return -ENOMEM; 3863 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE 3864 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); 3865 if (!this->verify_buf) { 3866 kfree(this->page_buf); 3867 return -ENOMEM; 3868 } 3869 #endif 3870 this->options |= ONENAND_PAGEBUF_ALLOC; 3871 } 3872 if (!this->oob_buf) { 3873 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); 3874 if (!this->oob_buf) { 3875 if (this->options & ONENAND_PAGEBUF_ALLOC) { 3876 this->options &= ~ONENAND_PAGEBUF_ALLOC; 3877 kfree(this->page_buf); 3878 } 3879 return -ENOMEM; 3880 } 3881 this->options |= ONENAND_OOBBUF_ALLOC; 3882 } 3883 3884 this->state = FL_READY; 3885 init_waitqueue_head(&this->wq); 3886 spin_lock_init(&this->chip_lock); 3887 3888 /* 3889 * Allow subpage writes up to oobsize. 3890 */ 3891 switch (mtd->oobsize) { 3892 case 128: 3893 if (FLEXONENAND(this)) { 3894 mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops); 3895 mtd->subpage_sft = 0; 3896 } else { 3897 mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops); 3898 mtd->subpage_sft = 2; 3899 } 3900 if (ONENAND_IS_NOP_1(this)) 3901 mtd->subpage_sft = 0; 3902 break; 3903 case 64: 3904 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); 3905 mtd->subpage_sft = 2; 3906 break; 3907 3908 case 32: 3909 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); 3910 mtd->subpage_sft = 1; 3911 break; 3912 3913 default: 3914 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n", 3915 __func__, mtd->oobsize); 3916 mtd->subpage_sft = 0; 3917 /* To prevent kernel oops */ 3918 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); 3919 break; 3920 } 3921 3922 this->subpagesize = mtd->writesize >> mtd->subpage_sft; 3923 3924 /* 3925 * The number of bytes available for a client to place data into 3926 * the out of band area 3927 */ 3928 ret = mtd_ooblayout_count_freebytes(mtd); 3929 if (ret < 0) 3930 ret = 0; 3931 3932 mtd->oobavail = ret; 3933 3934 mtd->ecc_strength = 1; 3935 3936 /* Fill in remaining MTD driver data */ 3937 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; 3938 mtd->flags = MTD_CAP_NANDFLASH; 3939 mtd->_erase = onenand_erase; 3940 mtd->_point = NULL; 3941 mtd->_unpoint = NULL; 3942 mtd->_read_oob = onenand_read_oob; 3943 mtd->_write_oob = onenand_write_oob; 3944 mtd->_panic_write = onenand_panic_write; 3945 #ifdef CONFIG_MTD_ONENAND_OTP 3946 mtd->_get_fact_prot_info = onenand_get_fact_prot_info; 3947 mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg; 3948 mtd->_get_user_prot_info = onenand_get_user_prot_info; 3949 mtd->_read_user_prot_reg = onenand_read_user_prot_reg; 3950 mtd->_write_user_prot_reg = onenand_write_user_prot_reg; 3951 mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg; 3952 #endif 3953 mtd->_sync = onenand_sync; 3954 mtd->_lock = onenand_lock; 3955 mtd->_unlock = onenand_unlock; 3956 mtd->_suspend = onenand_suspend; 3957 mtd->_resume = onenand_resume; 3958 mtd->_block_isbad = onenand_block_isbad; 3959 mtd->_block_markbad = onenand_block_markbad; 3960 mtd->owner = THIS_MODULE; 3961 mtd->writebufsize = mtd->writesize; 3962 3963 /* Unlock whole block */ 3964 if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) 3965 this->unlock_all(mtd); 3966 3967 /* Set the bad block marker position */ 3968 this->badblockpos = ONENAND_BADBLOCK_POS; 3969 3970 ret = this->scan_bbt(mtd); 3971 if ((!FLEXONENAND(this)) || ret) 3972 return ret; 3973 3974 /* Change Flex-OneNAND boundaries if required */ 3975 for (i = 0; i < MAX_DIES; i++) 3976 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i], 3977 flex_bdry[(2 * i) + 1]); 3978 3979 return 0; 3980 } 3981 3982 /** 3983 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device 3984 * @param mtd MTD device structure 3985 */ 3986 void onenand_release(struct mtd_info *mtd) 3987 { 3988 struct onenand_chip *this = mtd->priv; 3989 3990 /* Deregister partitions */ 3991 mtd_device_unregister(mtd); 3992 3993 /* Free bad block table memory, if allocated */ 3994 if (this->bbm) { 3995 struct bbm_info *bbm = this->bbm; 3996 kfree(bbm->bbt); 3997 kfree(this->bbm); 3998 } 3999 /* Buffers allocated by onenand_scan */ 4000 if (this->options & ONENAND_PAGEBUF_ALLOC) { 4001 kfree(this->page_buf); 4002 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE 4003 kfree(this->verify_buf); 4004 #endif 4005 } 4006 if (this->options & ONENAND_OOBBUF_ALLOC) 4007 kfree(this->oob_buf); 4008 kfree(mtd->eraseregions); 4009 } 4010 4011 EXPORT_SYMBOL_GPL(onenand_scan); 4012 EXPORT_SYMBOL_GPL(onenand_release); 4013 4014 MODULE_LICENSE("GPL"); 4015 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); 4016 MODULE_DESCRIPTION("Generic OneNAND flash driver code"); 4017