1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017 Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10 #define pr_fmt(fmt) "nand: " fmt 11 12 #include <linux/module.h> 13 #include <linux/mtd/nand.h> 14 15 /** 16 * nanddev_isbad() - Check if a block is bad 17 * @nand: NAND device 18 * @pos: position pointing to the block we want to check 19 * 20 * Return: true if the block is bad, false otherwise. 21 */ 22 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos) 23 { 24 if (mtd_check_expert_analysis_mode()) 25 return false; 26 27 if (nanddev_bbt_is_initialized(nand)) { 28 unsigned int entry; 29 int status; 30 31 entry = nanddev_bbt_pos_to_entry(nand, pos); 32 status = nanddev_bbt_get_block_status(nand, entry); 33 /* Lazy block status retrieval */ 34 if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) { 35 if (nand->ops->isbad(nand, pos)) 36 status = NAND_BBT_BLOCK_FACTORY_BAD; 37 else 38 status = NAND_BBT_BLOCK_GOOD; 39 40 nanddev_bbt_set_block_status(nand, entry, status); 41 } 42 43 if (status == NAND_BBT_BLOCK_WORN || 44 status == NAND_BBT_BLOCK_FACTORY_BAD) 45 return true; 46 47 return false; 48 } 49 50 return nand->ops->isbad(nand, pos); 51 } 52 EXPORT_SYMBOL_GPL(nanddev_isbad); 53 54 /** 55 * nanddev_markbad() - Mark a block as bad 56 * @nand: NAND device 57 * @pos: position of the block to mark bad 58 * 59 * Mark a block bad. This function is updating the BBT if available and 60 * calls the low-level markbad hook (nand->ops->markbad()). 61 * 62 * Return: 0 in case of success, a negative error code otherwise. 63 */ 64 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos) 65 { 66 struct mtd_info *mtd = nanddev_to_mtd(nand); 67 unsigned int entry; 68 int ret = 0; 69 70 if (nanddev_isbad(nand, pos)) 71 return 0; 72 73 ret = nand->ops->markbad(nand, pos); 74 if (ret) 75 pr_warn("failed to write BBM to block @%llx (err = %d)\n", 76 nanddev_pos_to_offs(nand, pos), ret); 77 78 if (!nanddev_bbt_is_initialized(nand)) 79 goto out; 80 81 entry = nanddev_bbt_pos_to_entry(nand, pos); 82 ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN); 83 if (ret) 84 goto out; 85 86 ret = nanddev_bbt_update(nand); 87 88 out: 89 if (!ret) 90 mtd->ecc_stats.badblocks++; 91 92 return ret; 93 } 94 EXPORT_SYMBOL_GPL(nanddev_markbad); 95 96 /** 97 * nanddev_isreserved() - Check whether an eraseblock is reserved or not 98 * @nand: NAND device 99 * @pos: NAND position to test 100 * 101 * Checks whether the eraseblock pointed by @pos is reserved or not. 102 * 103 * Return: true if the eraseblock is reserved, false otherwise. 104 */ 105 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos) 106 { 107 unsigned int entry; 108 int status; 109 110 if (!nanddev_bbt_is_initialized(nand)) 111 return false; 112 113 /* Return info from the table */ 114 entry = nanddev_bbt_pos_to_entry(nand, pos); 115 status = nanddev_bbt_get_block_status(nand, entry); 116 return status == NAND_BBT_BLOCK_RESERVED; 117 } 118 EXPORT_SYMBOL_GPL(nanddev_isreserved); 119 120 /** 121 * nanddev_erase() - Erase a NAND portion 122 * @nand: NAND device 123 * @pos: position of the block to erase 124 * 125 * Erases the block if it's not bad. 126 * 127 * Return: 0 in case of success, a negative error code otherwise. 128 */ 129 static int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos) 130 { 131 if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) { 132 pr_warn("attempt to erase a bad/reserved block @%llx\n", 133 nanddev_pos_to_offs(nand, pos)); 134 return -EIO; 135 } 136 137 return nand->ops->erase(nand, pos); 138 } 139 140 /** 141 * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices 142 * @mtd: MTD device 143 * @einfo: erase request 144 * 145 * This is a simple mtd->_erase() implementation iterating over all blocks 146 * concerned by @einfo and calling nand->ops->erase() on each of them. 147 * 148 * Note that mtd->_erase should not be directly assigned to this helper, 149 * because there's no locking here. NAND specialized layers should instead 150 * implement there own wrapper around nanddev_mtd_erase() taking the 151 * appropriate lock before calling nanddev_mtd_erase(). 152 * 153 * Return: 0 in case of success, a negative error code otherwise. 154 */ 155 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo) 156 { 157 struct nand_device *nand = mtd_to_nanddev(mtd); 158 struct nand_pos pos, last; 159 int ret; 160 161 nanddev_offs_to_pos(nand, einfo->addr, &pos); 162 nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last); 163 while (nanddev_pos_cmp(&pos, &last) <= 0) { 164 ret = nanddev_erase(nand, &pos); 165 if (ret) { 166 einfo->fail_addr = nanddev_pos_to_offs(nand, &pos); 167 168 return ret; 169 } 170 171 nanddev_pos_next_eraseblock(nand, &pos); 172 } 173 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(nanddev_mtd_erase); 177 178 /** 179 * nanddev_mtd_max_bad_blocks() - Get the maximum number of bad eraseblock on 180 * a specific region of the NAND device 181 * @mtd: MTD device 182 * @offs: offset of the NAND region 183 * @len: length of the NAND region 184 * 185 * Default implementation for mtd->_max_bad_blocks(). Only works if 186 * nand->memorg.max_bad_eraseblocks_per_lun is > 0. 187 * 188 * Return: a positive number encoding the maximum number of eraseblocks on a 189 * portion of memory, a negative error code otherwise. 190 */ 191 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len) 192 { 193 struct nand_device *nand = mtd_to_nanddev(mtd); 194 struct nand_pos pos, end; 195 unsigned int max_bb = 0; 196 197 if (!nand->memorg.max_bad_eraseblocks_per_lun) 198 return -ENOTSUPP; 199 200 nanddev_offs_to_pos(nand, offs, &pos); 201 nanddev_offs_to_pos(nand, offs + len, &end); 202 203 for (nanddev_offs_to_pos(nand, offs, &pos); 204 nanddev_pos_cmp(&pos, &end) < 0; 205 nanddev_pos_next_lun(nand, &pos)) 206 max_bb += nand->memorg.max_bad_eraseblocks_per_lun; 207 208 return max_bb; 209 } 210 EXPORT_SYMBOL_GPL(nanddev_mtd_max_bad_blocks); 211 212 /** 213 * nanddev_get_ecc_engine() - Find and get a suitable ECC engine 214 * @nand: NAND device 215 */ 216 static int nanddev_get_ecc_engine(struct nand_device *nand) 217 { 218 int engine_type; 219 220 /* Read the user desires in terms of ECC engine/configuration */ 221 of_get_nand_ecc_user_config(nand); 222 223 engine_type = nand->ecc.user_conf.engine_type; 224 if (engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 225 engine_type = nand->ecc.defaults.engine_type; 226 227 switch (engine_type) { 228 case NAND_ECC_ENGINE_TYPE_NONE: 229 return 0; 230 case NAND_ECC_ENGINE_TYPE_SOFT: 231 nand->ecc.engine = nand_ecc_get_sw_engine(nand); 232 break; 233 case NAND_ECC_ENGINE_TYPE_ON_DIE: 234 nand->ecc.engine = nand_ecc_get_on_die_hw_engine(nand); 235 break; 236 case NAND_ECC_ENGINE_TYPE_ON_HOST: 237 nand->ecc.engine = nand_ecc_get_on_host_hw_engine(nand); 238 if (PTR_ERR(nand->ecc.engine) == -EPROBE_DEFER) 239 return -EPROBE_DEFER; 240 break; 241 default: 242 pr_err("Missing ECC engine type\n"); 243 } 244 245 if (!nand->ecc.engine) 246 return -EINVAL; 247 248 return 0; 249 } 250 251 /** 252 * nanddev_put_ecc_engine() - Dettach and put the in-use ECC engine 253 * @nand: NAND device 254 */ 255 static int nanddev_put_ecc_engine(struct nand_device *nand) 256 { 257 switch (nand->ecc.ctx.conf.engine_type) { 258 case NAND_ECC_ENGINE_TYPE_ON_HOST: 259 nand_ecc_put_on_host_hw_engine(nand); 260 break; 261 case NAND_ECC_ENGINE_TYPE_NONE: 262 case NAND_ECC_ENGINE_TYPE_SOFT: 263 case NAND_ECC_ENGINE_TYPE_ON_DIE: 264 default: 265 break; 266 } 267 268 return 0; 269 } 270 271 /** 272 * nanddev_find_ecc_configuration() - Find a suitable ECC configuration 273 * @nand: NAND device 274 */ 275 static int nanddev_find_ecc_configuration(struct nand_device *nand) 276 { 277 int ret; 278 279 if (!nand->ecc.engine) 280 return -ENOTSUPP; 281 282 ret = nand_ecc_init_ctx(nand); 283 if (ret) 284 return ret; 285 286 if (!nand_ecc_is_strong_enough(nand)) 287 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 288 nand->mtd.name); 289 290 return 0; 291 } 292 293 /** 294 * nanddev_ecc_engine_init() - Initialize an ECC engine for the chip 295 * @nand: NAND device 296 */ 297 int nanddev_ecc_engine_init(struct nand_device *nand) 298 { 299 int ret; 300 301 /* Look for the ECC engine to use */ 302 ret = nanddev_get_ecc_engine(nand); 303 if (ret) { 304 if (ret != -EPROBE_DEFER) 305 pr_err("No ECC engine found\n"); 306 307 return ret; 308 } 309 310 /* No ECC engine requested */ 311 if (!nand->ecc.engine) 312 return 0; 313 314 /* Configure the engine: balance user input and chip requirements */ 315 ret = nanddev_find_ecc_configuration(nand); 316 if (ret) { 317 pr_err("No suitable ECC configuration\n"); 318 nanddev_put_ecc_engine(nand); 319 320 return ret; 321 } 322 323 return 0; 324 } 325 EXPORT_SYMBOL_GPL(nanddev_ecc_engine_init); 326 327 /** 328 * nanddev_ecc_engine_cleanup() - Cleanup ECC engine initializations 329 * @nand: NAND device 330 */ 331 void nanddev_ecc_engine_cleanup(struct nand_device *nand) 332 { 333 if (nand->ecc.engine) 334 nand_ecc_cleanup_ctx(nand); 335 336 nanddev_put_ecc_engine(nand); 337 } 338 EXPORT_SYMBOL_GPL(nanddev_ecc_engine_cleanup); 339 340 /** 341 * nanddev_init() - Initialize a NAND device 342 * @nand: NAND device 343 * @ops: NAND device operations 344 * @owner: NAND device owner 345 * 346 * Initializes a NAND device object. Consistency checks are done on @ops and 347 * @nand->memorg. Also takes care of initializing the BBT. 348 * 349 * Return: 0 in case of success, a negative error code otherwise. 350 */ 351 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 352 struct module *owner) 353 { 354 struct mtd_info *mtd = nanddev_to_mtd(nand); 355 struct nand_memory_organization *memorg = nanddev_get_memorg(nand); 356 357 if (!nand || !ops) 358 return -EINVAL; 359 360 if (!ops->erase || !ops->markbad || !ops->isbad) 361 return -EINVAL; 362 363 if (!memorg->bits_per_cell || !memorg->pagesize || 364 !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun || 365 !memorg->planes_per_lun || !memorg->luns_per_target || 366 !memorg->ntargets) 367 return -EINVAL; 368 369 nand->rowconv.eraseblock_addr_shift = 370 fls(memorg->pages_per_eraseblock - 1); 371 nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) + 372 nand->rowconv.eraseblock_addr_shift; 373 374 nand->ops = ops; 375 376 mtd->type = memorg->bits_per_cell == 1 ? 377 MTD_NANDFLASH : MTD_MLCNANDFLASH; 378 mtd->flags = MTD_CAP_NANDFLASH; 379 mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock; 380 mtd->writesize = memorg->pagesize; 381 mtd->writebufsize = memorg->pagesize; 382 mtd->oobsize = memorg->oobsize; 383 mtd->size = nanddev_size(nand); 384 mtd->owner = owner; 385 386 return nanddev_bbt_init(nand); 387 } 388 EXPORT_SYMBOL_GPL(nanddev_init); 389 390 /** 391 * nanddev_cleanup() - Release resources allocated in nanddev_init() 392 * @nand: NAND device 393 * 394 * Basically undoes what has been done in nanddev_init(). 395 */ 396 void nanddev_cleanup(struct nand_device *nand) 397 { 398 if (nanddev_bbt_is_initialized(nand)) 399 nanddev_bbt_cleanup(nand); 400 } 401 EXPORT_SYMBOL_GPL(nanddev_cleanup); 402 403 MODULE_DESCRIPTION("Generic NAND framework"); 404 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); 405 MODULE_LICENSE("GPL v2"); 406