1 /* 2 * Simple MTD partitioning layer 3 * 4 * (C) 2000 Nicolas Pitre <nico@cam.org> 5 * 6 * This code is GPL 7 * 8 * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $ 9 * 10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> 11 * added support for read_oob, write_oob 12 */ 13 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/list.h> 19 #include <linux/config.h> 20 #include <linux/kmod.h> 21 #include <linux/mtd/mtd.h> 22 #include <linux/mtd/partitions.h> 23 #include <linux/mtd/compatmac.h> 24 25 /* Our partition linked list */ 26 static LIST_HEAD(mtd_partitions); 27 28 /* Our partition node structure */ 29 struct mtd_part { 30 struct mtd_info mtd; 31 struct mtd_info *master; 32 u_int32_t offset; 33 int index; 34 struct list_head list; 35 int registered; 36 }; 37 38 /* 39 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 40 * the pointer to that structure with this macro. 41 */ 42 #define PART(x) ((struct mtd_part *)(x)) 43 44 45 /* 46 * MTD methods which simply translate the effective address and pass through 47 * to the _real_ device. 48 */ 49 50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len, 51 size_t *retlen, u_char *buf) 52 { 53 struct mtd_part *part = PART(mtd); 54 int res; 55 56 if (from >= mtd->size) 57 len = 0; 58 else if (from + len > mtd->size) 59 len = mtd->size - from; 60 res = part->master->read (part->master, from + part->offset, 61 len, retlen, buf); 62 if (unlikely(res)) { 63 if (res == -EUCLEAN) 64 mtd->ecc_stats.corrected++; 65 if (res == -EBADMSG) 66 mtd->ecc_stats.failed++; 67 } 68 return res; 69 } 70 71 static int part_point (struct mtd_info *mtd, loff_t from, size_t len, 72 size_t *retlen, u_char **buf) 73 { 74 struct mtd_part *part = PART(mtd); 75 if (from >= mtd->size) 76 len = 0; 77 else if (from + len > mtd->size) 78 len = mtd->size - from; 79 return part->master->point (part->master, from + part->offset, 80 len, retlen, buf); 81 } 82 83 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) 84 { 85 struct mtd_part *part = PART(mtd); 86 87 part->master->unpoint (part->master, addr, from + part->offset, len); 88 } 89 90 static int part_read_oob(struct mtd_info *mtd, loff_t from, 91 struct mtd_oob_ops *ops) 92 { 93 struct mtd_part *part = PART(mtd); 94 int res; 95 96 if (from >= mtd->size) 97 return -EINVAL; 98 if (from + ops->len > mtd->size) 99 return -EINVAL; 100 res = part->master->read_oob(part->master, from + part->offset, ops); 101 102 if (unlikely(res)) { 103 if (res == -EUCLEAN) 104 mtd->ecc_stats.corrected++; 105 if (res == -EBADMSG) 106 mtd->ecc_stats.failed++; 107 } 108 return res; 109 } 110 111 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 112 size_t *retlen, u_char *buf) 113 { 114 struct mtd_part *part = PART(mtd); 115 return part->master->read_user_prot_reg (part->master, from, 116 len, retlen, buf); 117 } 118 119 static int part_get_user_prot_info (struct mtd_info *mtd, 120 struct otp_info *buf, size_t len) 121 { 122 struct mtd_part *part = PART(mtd); 123 return part->master->get_user_prot_info (part->master, buf, len); 124 } 125 126 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 127 size_t *retlen, u_char *buf) 128 { 129 struct mtd_part *part = PART(mtd); 130 return part->master->read_fact_prot_reg (part->master, from, 131 len, retlen, buf); 132 } 133 134 static int part_get_fact_prot_info (struct mtd_info *mtd, 135 struct otp_info *buf, size_t len) 136 { 137 struct mtd_part *part = PART(mtd); 138 return part->master->get_fact_prot_info (part->master, buf, len); 139 } 140 141 static int part_write (struct mtd_info *mtd, loff_t to, size_t len, 142 size_t *retlen, const u_char *buf) 143 { 144 struct mtd_part *part = PART(mtd); 145 if (!(mtd->flags & MTD_WRITEABLE)) 146 return -EROFS; 147 if (to >= mtd->size) 148 len = 0; 149 else if (to + len > mtd->size) 150 len = mtd->size - to; 151 return part->master->write (part->master, to + part->offset, 152 len, retlen, buf); 153 } 154 155 static int part_write_oob(struct mtd_info *mtd, loff_t to, 156 struct mtd_oob_ops *ops) 157 { 158 struct mtd_part *part = PART(mtd); 159 160 if (!(mtd->flags & MTD_WRITEABLE)) 161 return -EROFS; 162 163 if (to >= mtd->size) 164 return -EINVAL; 165 if (to + ops->len > mtd->size) 166 return -EINVAL; 167 return part->master->write_oob(part->master, to + part->offset, ops); 168 } 169 170 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 171 size_t *retlen, u_char *buf) 172 { 173 struct mtd_part *part = PART(mtd); 174 return part->master->write_user_prot_reg (part->master, from, 175 len, retlen, buf); 176 } 177 178 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len) 179 { 180 struct mtd_part *part = PART(mtd); 181 return part->master->lock_user_prot_reg (part->master, from, len); 182 } 183 184 static int part_writev (struct mtd_info *mtd, const struct kvec *vecs, 185 unsigned long count, loff_t to, size_t *retlen) 186 { 187 struct mtd_part *part = PART(mtd); 188 if (!(mtd->flags & MTD_WRITEABLE)) 189 return -EROFS; 190 return part->master->writev (part->master, vecs, count, 191 to + part->offset, retlen); 192 } 193 194 static int part_erase (struct mtd_info *mtd, struct erase_info *instr) 195 { 196 struct mtd_part *part = PART(mtd); 197 int ret; 198 if (!(mtd->flags & MTD_WRITEABLE)) 199 return -EROFS; 200 if (instr->addr >= mtd->size) 201 return -EINVAL; 202 instr->addr += part->offset; 203 ret = part->master->erase(part->master, instr); 204 return ret; 205 } 206 207 void mtd_erase_callback(struct erase_info *instr) 208 { 209 if (instr->mtd->erase == part_erase) { 210 struct mtd_part *part = PART(instr->mtd); 211 212 if (instr->fail_addr != 0xffffffff) 213 instr->fail_addr -= part->offset; 214 instr->addr -= part->offset; 215 } 216 if (instr->callback) 217 instr->callback(instr); 218 } 219 EXPORT_SYMBOL_GPL(mtd_erase_callback); 220 221 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len) 222 { 223 struct mtd_part *part = PART(mtd); 224 if ((len + ofs) > mtd->size) 225 return -EINVAL; 226 return part->master->lock(part->master, ofs + part->offset, len); 227 } 228 229 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len) 230 { 231 struct mtd_part *part = PART(mtd); 232 if ((len + ofs) > mtd->size) 233 return -EINVAL; 234 return part->master->unlock(part->master, ofs + part->offset, len); 235 } 236 237 static void part_sync(struct mtd_info *mtd) 238 { 239 struct mtd_part *part = PART(mtd); 240 part->master->sync(part->master); 241 } 242 243 static int part_suspend(struct mtd_info *mtd) 244 { 245 struct mtd_part *part = PART(mtd); 246 return part->master->suspend(part->master); 247 } 248 249 static void part_resume(struct mtd_info *mtd) 250 { 251 struct mtd_part *part = PART(mtd); 252 part->master->resume(part->master); 253 } 254 255 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs) 256 { 257 struct mtd_part *part = PART(mtd); 258 if (ofs >= mtd->size) 259 return -EINVAL; 260 ofs += part->offset; 261 return part->master->block_isbad(part->master, ofs); 262 } 263 264 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs) 265 { 266 struct mtd_part *part = PART(mtd); 267 int res; 268 269 if (!(mtd->flags & MTD_WRITEABLE)) 270 return -EROFS; 271 if (ofs >= mtd->size) 272 return -EINVAL; 273 ofs += part->offset; 274 res = part->master->block_markbad(part->master, ofs); 275 if (!res) 276 mtd->ecc_stats.badblocks++; 277 return res; 278 } 279 280 /* 281 * This function unregisters and destroy all slave MTD objects which are 282 * attached to the given master MTD object. 283 */ 284 285 int del_mtd_partitions(struct mtd_info *master) 286 { 287 struct list_head *node; 288 struct mtd_part *slave; 289 290 for (node = mtd_partitions.next; 291 node != &mtd_partitions; 292 node = node->next) { 293 slave = list_entry(node, struct mtd_part, list); 294 if (slave->master == master) { 295 struct list_head *prev = node->prev; 296 __list_del(prev, node->next); 297 if(slave->registered) 298 del_mtd_device(&slave->mtd); 299 kfree(slave); 300 node = prev; 301 } 302 } 303 304 return 0; 305 } 306 307 /* 308 * This function, given a master MTD object and a partition table, creates 309 * and registers slave MTD objects which are bound to the master according to 310 * the partition definitions. 311 * (Q: should we register the master MTD object as well?) 312 */ 313 314 int add_mtd_partitions(struct mtd_info *master, 315 const struct mtd_partition *parts, 316 int nbparts) 317 { 318 struct mtd_part *slave; 319 u_int32_t cur_offset = 0; 320 int i; 321 322 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 323 324 for (i = 0; i < nbparts; i++) { 325 326 /* allocate the partition structure */ 327 slave = kmalloc (sizeof(*slave), GFP_KERNEL); 328 if (!slave) { 329 printk ("memory allocation error while creating partitions for \"%s\"\n", 330 master->name); 331 del_mtd_partitions(master); 332 return -ENOMEM; 333 } 334 memset(slave, 0, sizeof(*slave)); 335 list_add(&slave->list, &mtd_partitions); 336 337 /* set up the MTD object for this partition */ 338 slave->mtd.type = master->type; 339 slave->mtd.flags = master->flags & ~parts[i].mask_flags; 340 slave->mtd.size = parts[i].size; 341 slave->mtd.writesize = master->writesize; 342 slave->mtd.oobsize = master->oobsize; 343 slave->mtd.ecctype = master->ecctype; 344 slave->mtd.eccsize = master->eccsize; 345 346 slave->mtd.name = parts[i].name; 347 slave->mtd.bank_size = master->bank_size; 348 slave->mtd.owner = master->owner; 349 350 slave->mtd.read = part_read; 351 slave->mtd.write = part_write; 352 353 if(master->point && master->unpoint){ 354 slave->mtd.point = part_point; 355 slave->mtd.unpoint = part_unpoint; 356 } 357 358 if (master->read_oob) 359 slave->mtd.read_oob = part_read_oob; 360 if (master->write_oob) 361 slave->mtd.write_oob = part_write_oob; 362 if(master->read_user_prot_reg) 363 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 364 if(master->read_fact_prot_reg) 365 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 366 if(master->write_user_prot_reg) 367 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 368 if(master->lock_user_prot_reg) 369 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 370 if(master->get_user_prot_info) 371 slave->mtd.get_user_prot_info = part_get_user_prot_info; 372 if(master->get_fact_prot_info) 373 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 374 if (master->sync) 375 slave->mtd.sync = part_sync; 376 if (!i && master->suspend && master->resume) { 377 slave->mtd.suspend = part_suspend; 378 slave->mtd.resume = part_resume; 379 } 380 if (master->writev) 381 slave->mtd.writev = part_writev; 382 if (master->lock) 383 slave->mtd.lock = part_lock; 384 if (master->unlock) 385 slave->mtd.unlock = part_unlock; 386 if (master->block_isbad) 387 slave->mtd.block_isbad = part_block_isbad; 388 if (master->block_markbad) 389 slave->mtd.block_markbad = part_block_markbad; 390 slave->mtd.erase = part_erase; 391 slave->master = master; 392 slave->offset = parts[i].offset; 393 slave->index = i; 394 395 if (slave->offset == MTDPART_OFS_APPEND) 396 slave->offset = cur_offset; 397 if (slave->offset == MTDPART_OFS_NXTBLK) { 398 slave->offset = cur_offset; 399 if ((cur_offset % master->erasesize) != 0) { 400 /* Round up to next erasesize */ 401 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize; 402 printk(KERN_NOTICE "Moving partition %d: " 403 "0x%08x -> 0x%08x\n", i, 404 cur_offset, slave->offset); 405 } 406 } 407 if (slave->mtd.size == MTDPART_SIZ_FULL) 408 slave->mtd.size = master->size - slave->offset; 409 cur_offset = slave->offset + slave->mtd.size; 410 411 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset, 412 slave->offset + slave->mtd.size, slave->mtd.name); 413 414 /* let's do some sanity checks */ 415 if (slave->offset >= master->size) { 416 /* let's register it anyway to preserve ordering */ 417 slave->offset = 0; 418 slave->mtd.size = 0; 419 printk ("mtd: partition \"%s\" is out of reach -- disabled\n", 420 parts[i].name); 421 } 422 if (slave->offset + slave->mtd.size > master->size) { 423 slave->mtd.size = master->size - slave->offset; 424 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n", 425 parts[i].name, master->name, slave->mtd.size); 426 } 427 if (master->numeraseregions>1) { 428 /* Deal with variable erase size stuff */ 429 int i; 430 struct mtd_erase_region_info *regions = master->eraseregions; 431 432 /* Find the first erase regions which is part of this partition. */ 433 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++) 434 ; 435 436 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) { 437 if (slave->mtd.erasesize < regions[i].erasesize) { 438 slave->mtd.erasesize = regions[i].erasesize; 439 } 440 } 441 } else { 442 /* Single erase size */ 443 slave->mtd.erasesize = master->erasesize; 444 } 445 446 if ((slave->mtd.flags & MTD_WRITEABLE) && 447 (slave->offset % slave->mtd.erasesize)) { 448 /* Doesn't start on a boundary of major erase size */ 449 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */ 450 slave->mtd.flags &= ~MTD_WRITEABLE; 451 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 452 parts[i].name); 453 } 454 if ((slave->mtd.flags & MTD_WRITEABLE) && 455 (slave->mtd.size % slave->mtd.erasesize)) { 456 slave->mtd.flags &= ~MTD_WRITEABLE; 457 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 458 parts[i].name); 459 } 460 461 slave->mtd.ecclayout = master->ecclayout; 462 if (master->block_isbad) { 463 uint32_t offs = 0; 464 465 while(offs < slave->mtd.size) { 466 if (master->block_isbad(master, 467 offs + slave->offset)) 468 slave->mtd.ecc_stats.badblocks++; 469 offs += slave->mtd.erasesize; 470 } 471 } 472 473 if(parts[i].mtdp) 474 { /* store the object pointer (caller may or may not register it */ 475 *parts[i].mtdp = &slave->mtd; 476 slave->registered = 0; 477 } 478 else 479 { 480 /* register our partition */ 481 add_mtd_device(&slave->mtd); 482 slave->registered = 1; 483 } 484 } 485 486 return 0; 487 } 488 489 EXPORT_SYMBOL(add_mtd_partitions); 490 EXPORT_SYMBOL(del_mtd_partitions); 491 492 static DEFINE_SPINLOCK(part_parser_lock); 493 static LIST_HEAD(part_parsers); 494 495 static struct mtd_part_parser *get_partition_parser(const char *name) 496 { 497 struct list_head *this; 498 void *ret = NULL; 499 spin_lock(&part_parser_lock); 500 501 list_for_each(this, &part_parsers) { 502 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list); 503 504 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 505 ret = p; 506 break; 507 } 508 } 509 spin_unlock(&part_parser_lock); 510 511 return ret; 512 } 513 514 int register_mtd_parser(struct mtd_part_parser *p) 515 { 516 spin_lock(&part_parser_lock); 517 list_add(&p->list, &part_parsers); 518 spin_unlock(&part_parser_lock); 519 520 return 0; 521 } 522 523 int deregister_mtd_parser(struct mtd_part_parser *p) 524 { 525 spin_lock(&part_parser_lock); 526 list_del(&p->list); 527 spin_unlock(&part_parser_lock); 528 return 0; 529 } 530 531 int parse_mtd_partitions(struct mtd_info *master, const char **types, 532 struct mtd_partition **pparts, unsigned long origin) 533 { 534 struct mtd_part_parser *parser; 535 int ret = 0; 536 537 for ( ; ret <= 0 && *types; types++) { 538 parser = get_partition_parser(*types); 539 #ifdef CONFIG_KMOD 540 if (!parser && !request_module("%s", *types)) 541 parser = get_partition_parser(*types); 542 #endif 543 if (!parser) { 544 printk(KERN_NOTICE "%s partition parsing not available\n", 545 *types); 546 continue; 547 } 548 ret = (*parser->parse_fn)(master, pparts, origin); 549 if (ret > 0) { 550 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 551 ret, parser->name, master->name); 552 } 553 put_partition_parser(parser); 554 } 555 return ret; 556 } 557 558 EXPORT_SYMBOL_GPL(parse_mtd_partitions); 559 EXPORT_SYMBOL_GPL(register_mtd_parser); 560 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 561 562 MODULE_LICENSE("GPL"); 563 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>"); 564 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices"); 565 566