1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 #include <linux/of.h> 34 35 #include "mtdcore.h" 36 37 /* Our partition linked list */ 38 static LIST_HEAD(mtd_partitions); 39 static DEFINE_MUTEX(mtd_partitions_mutex); 40 41 /** 42 * struct mtd_part - our partition node structure 43 * 44 * @mtd: struct holding partition details 45 * @parent: parent mtd - flash device or another partition 46 * @offset: partition offset relative to the *flash device* 47 */ 48 struct mtd_part { 49 struct mtd_info mtd; 50 struct mtd_info *parent; 51 uint64_t offset; 52 struct list_head list; 53 }; 54 55 /* 56 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 57 * the pointer to that structure. 58 */ 59 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) 60 { 61 return container_of(mtd, struct mtd_part, mtd); 62 } 63 64 65 /* 66 * MTD methods which simply translate the effective address and pass through 67 * to the _real_ device. 68 */ 69 70 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 71 size_t *retlen, u_char *buf) 72 { 73 struct mtd_part *part = mtd_to_part(mtd); 74 struct mtd_ecc_stats stats; 75 int res; 76 77 stats = part->parent->ecc_stats; 78 res = part->parent->_read(part->parent, from + part->offset, len, 79 retlen, buf); 80 if (unlikely(mtd_is_eccerr(res))) 81 mtd->ecc_stats.failed += 82 part->parent->ecc_stats.failed - stats.failed; 83 else 84 mtd->ecc_stats.corrected += 85 part->parent->ecc_stats.corrected - stats.corrected; 86 return res; 87 } 88 89 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 90 size_t *retlen, void **virt, resource_size_t *phys) 91 { 92 struct mtd_part *part = mtd_to_part(mtd); 93 94 return part->parent->_point(part->parent, from + part->offset, len, 95 retlen, virt, phys); 96 } 97 98 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 99 { 100 struct mtd_part *part = mtd_to_part(mtd); 101 102 return part->parent->_unpoint(part->parent, from + part->offset, len); 103 } 104 105 static int part_read_oob(struct mtd_info *mtd, loff_t from, 106 struct mtd_oob_ops *ops) 107 { 108 struct mtd_part *part = mtd_to_part(mtd); 109 struct mtd_ecc_stats stats; 110 int res; 111 112 stats = part->parent->ecc_stats; 113 res = part->parent->_read_oob(part->parent, from + part->offset, ops); 114 if (unlikely(mtd_is_eccerr(res))) 115 mtd->ecc_stats.failed += 116 part->parent->ecc_stats.failed - stats.failed; 117 else 118 mtd->ecc_stats.corrected += 119 part->parent->ecc_stats.corrected - stats.corrected; 120 return res; 121 } 122 123 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 124 size_t len, size_t *retlen, u_char *buf) 125 { 126 struct mtd_part *part = mtd_to_part(mtd); 127 return part->parent->_read_user_prot_reg(part->parent, from, len, 128 retlen, buf); 129 } 130 131 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 132 size_t *retlen, struct otp_info *buf) 133 { 134 struct mtd_part *part = mtd_to_part(mtd); 135 return part->parent->_get_user_prot_info(part->parent, len, retlen, 136 buf); 137 } 138 139 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 140 size_t len, size_t *retlen, u_char *buf) 141 { 142 struct mtd_part *part = mtd_to_part(mtd); 143 return part->parent->_read_fact_prot_reg(part->parent, from, len, 144 retlen, buf); 145 } 146 147 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 148 size_t *retlen, struct otp_info *buf) 149 { 150 struct mtd_part *part = mtd_to_part(mtd); 151 return part->parent->_get_fact_prot_info(part->parent, len, retlen, 152 buf); 153 } 154 155 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 156 size_t *retlen, const u_char *buf) 157 { 158 struct mtd_part *part = mtd_to_part(mtd); 159 return part->parent->_write(part->parent, to + part->offset, len, 160 retlen, buf); 161 } 162 163 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 164 size_t *retlen, const u_char *buf) 165 { 166 struct mtd_part *part = mtd_to_part(mtd); 167 return part->parent->_panic_write(part->parent, to + part->offset, len, 168 retlen, buf); 169 } 170 171 static int part_write_oob(struct mtd_info *mtd, loff_t to, 172 struct mtd_oob_ops *ops) 173 { 174 struct mtd_part *part = mtd_to_part(mtd); 175 176 return part->parent->_write_oob(part->parent, to + part->offset, ops); 177 } 178 179 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 180 size_t len, size_t *retlen, u_char *buf) 181 { 182 struct mtd_part *part = mtd_to_part(mtd); 183 return part->parent->_write_user_prot_reg(part->parent, from, len, 184 retlen, buf); 185 } 186 187 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 188 size_t len) 189 { 190 struct mtd_part *part = mtd_to_part(mtd); 191 return part->parent->_lock_user_prot_reg(part->parent, from, len); 192 } 193 194 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 195 unsigned long count, loff_t to, size_t *retlen) 196 { 197 struct mtd_part *part = mtd_to_part(mtd); 198 return part->parent->_writev(part->parent, vecs, count, 199 to + part->offset, retlen); 200 } 201 202 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 203 { 204 struct mtd_part *part = mtd_to_part(mtd); 205 int ret; 206 207 instr->addr += part->offset; 208 ret = part->parent->_erase(part->parent, instr); 209 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 210 instr->fail_addr -= part->offset; 211 instr->addr -= part->offset; 212 213 return ret; 214 } 215 216 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 217 { 218 struct mtd_part *part = mtd_to_part(mtd); 219 return part->parent->_lock(part->parent, ofs + part->offset, len); 220 } 221 222 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 223 { 224 struct mtd_part *part = mtd_to_part(mtd); 225 return part->parent->_unlock(part->parent, ofs + part->offset, len); 226 } 227 228 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 229 { 230 struct mtd_part *part = mtd_to_part(mtd); 231 return part->parent->_is_locked(part->parent, ofs + part->offset, len); 232 } 233 234 static void part_sync(struct mtd_info *mtd) 235 { 236 struct mtd_part *part = mtd_to_part(mtd); 237 part->parent->_sync(part->parent); 238 } 239 240 static int part_suspend(struct mtd_info *mtd) 241 { 242 struct mtd_part *part = mtd_to_part(mtd); 243 return part->parent->_suspend(part->parent); 244 } 245 246 static void part_resume(struct mtd_info *mtd) 247 { 248 struct mtd_part *part = mtd_to_part(mtd); 249 part->parent->_resume(part->parent); 250 } 251 252 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 253 { 254 struct mtd_part *part = mtd_to_part(mtd); 255 ofs += part->offset; 256 return part->parent->_block_isreserved(part->parent, ofs); 257 } 258 259 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 260 { 261 struct mtd_part *part = mtd_to_part(mtd); 262 ofs += part->offset; 263 return part->parent->_block_isbad(part->parent, ofs); 264 } 265 266 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 267 { 268 struct mtd_part *part = mtd_to_part(mtd); 269 int res; 270 271 ofs += part->offset; 272 res = part->parent->_block_markbad(part->parent, ofs); 273 if (!res) 274 mtd->ecc_stats.badblocks++; 275 return res; 276 } 277 278 static int part_get_device(struct mtd_info *mtd) 279 { 280 struct mtd_part *part = mtd_to_part(mtd); 281 return part->parent->_get_device(part->parent); 282 } 283 284 static void part_put_device(struct mtd_info *mtd) 285 { 286 struct mtd_part *part = mtd_to_part(mtd); 287 part->parent->_put_device(part->parent); 288 } 289 290 static int part_ooblayout_ecc(struct mtd_info *mtd, int section, 291 struct mtd_oob_region *oobregion) 292 { 293 struct mtd_part *part = mtd_to_part(mtd); 294 295 return mtd_ooblayout_ecc(part->parent, section, oobregion); 296 } 297 298 static int part_ooblayout_free(struct mtd_info *mtd, int section, 299 struct mtd_oob_region *oobregion) 300 { 301 struct mtd_part *part = mtd_to_part(mtd); 302 303 return mtd_ooblayout_free(part->parent, section, oobregion); 304 } 305 306 static const struct mtd_ooblayout_ops part_ooblayout_ops = { 307 .ecc = part_ooblayout_ecc, 308 .free = part_ooblayout_free, 309 }; 310 311 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 312 { 313 struct mtd_part *part = mtd_to_part(mtd); 314 315 return part->parent->_max_bad_blocks(part->parent, 316 ofs + part->offset, len); 317 } 318 319 static inline void free_partition(struct mtd_part *p) 320 { 321 kfree(p->mtd.name); 322 kfree(p); 323 } 324 325 /** 326 * mtd_parse_part - parse MTD partition looking for subpartitions 327 * 328 * @slave: part that is supposed to be a container and should be parsed 329 * @types: NULL-terminated array with names of partition parsers to try 330 * 331 * Some partitions are kind of containers with extra subpartitions (volumes). 332 * There can be various formats of such containers. This function tries to use 333 * specified parsers to analyze given partition and registers found 334 * subpartitions on success. 335 */ 336 static int mtd_parse_part(struct mtd_part *slave, const char *const *types) 337 { 338 return parse_mtd_partitions(&slave->mtd, types, NULL); 339 } 340 341 static struct mtd_part *allocate_partition(struct mtd_info *parent, 342 const struct mtd_partition *part, int partno, 343 uint64_t cur_offset) 344 { 345 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize : 346 parent->erasesize; 347 struct mtd_part *slave; 348 u32 remainder; 349 char *name; 350 u64 tmp; 351 352 /* allocate the partition structure */ 353 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 354 name = kstrdup(part->name, GFP_KERNEL); 355 if (!name || !slave) { 356 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 357 parent->name); 358 kfree(name); 359 kfree(slave); 360 return ERR_PTR(-ENOMEM); 361 } 362 363 /* set up the MTD object for this partition */ 364 slave->mtd.type = parent->type; 365 slave->mtd.flags = parent->flags & ~part->mask_flags; 366 slave->mtd.size = part->size; 367 slave->mtd.writesize = parent->writesize; 368 slave->mtd.writebufsize = parent->writebufsize; 369 slave->mtd.oobsize = parent->oobsize; 370 slave->mtd.oobavail = parent->oobavail; 371 slave->mtd.subpage_sft = parent->subpage_sft; 372 slave->mtd.pairing = parent->pairing; 373 374 slave->mtd.name = name; 375 slave->mtd.owner = parent->owner; 376 377 /* NOTE: Historically, we didn't arrange MTDs as a tree out of 378 * concern for showing the same data in multiple partitions. 379 * However, it is very useful to have the master node present, 380 * so the MTD_PARTITIONED_MASTER option allows that. The master 381 * will have device nodes etc only if this is set, so make the 382 * parent conditional on that option. Note, this is a way to 383 * distinguish between the master and the partition in sysfs. 384 */ 385 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ? 386 &parent->dev : 387 parent->dev.parent; 388 slave->mtd.dev.of_node = part->of_node; 389 390 if (parent->_read) 391 slave->mtd._read = part_read; 392 if (parent->_write) 393 slave->mtd._write = part_write; 394 395 if (parent->_panic_write) 396 slave->mtd._panic_write = part_panic_write; 397 398 if (parent->_point && parent->_unpoint) { 399 slave->mtd._point = part_point; 400 slave->mtd._unpoint = part_unpoint; 401 } 402 403 if (parent->_read_oob) 404 slave->mtd._read_oob = part_read_oob; 405 if (parent->_write_oob) 406 slave->mtd._write_oob = part_write_oob; 407 if (parent->_read_user_prot_reg) 408 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 409 if (parent->_read_fact_prot_reg) 410 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 411 if (parent->_write_user_prot_reg) 412 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 413 if (parent->_lock_user_prot_reg) 414 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 415 if (parent->_get_user_prot_info) 416 slave->mtd._get_user_prot_info = part_get_user_prot_info; 417 if (parent->_get_fact_prot_info) 418 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 419 if (parent->_sync) 420 slave->mtd._sync = part_sync; 421 if (!partno && !parent->dev.class && parent->_suspend && 422 parent->_resume) { 423 slave->mtd._suspend = part_suspend; 424 slave->mtd._resume = part_resume; 425 } 426 if (parent->_writev) 427 slave->mtd._writev = part_writev; 428 if (parent->_lock) 429 slave->mtd._lock = part_lock; 430 if (parent->_unlock) 431 slave->mtd._unlock = part_unlock; 432 if (parent->_is_locked) 433 slave->mtd._is_locked = part_is_locked; 434 if (parent->_block_isreserved) 435 slave->mtd._block_isreserved = part_block_isreserved; 436 if (parent->_block_isbad) 437 slave->mtd._block_isbad = part_block_isbad; 438 if (parent->_block_markbad) 439 slave->mtd._block_markbad = part_block_markbad; 440 if (parent->_max_bad_blocks) 441 slave->mtd._max_bad_blocks = part_max_bad_blocks; 442 443 if (parent->_get_device) 444 slave->mtd._get_device = part_get_device; 445 if (parent->_put_device) 446 slave->mtd._put_device = part_put_device; 447 448 slave->mtd._erase = part_erase; 449 slave->parent = parent; 450 slave->offset = part->offset; 451 452 if (slave->offset == MTDPART_OFS_APPEND) 453 slave->offset = cur_offset; 454 if (slave->offset == MTDPART_OFS_NXTBLK) { 455 tmp = cur_offset; 456 slave->offset = cur_offset; 457 remainder = do_div(tmp, wr_alignment); 458 if (remainder) { 459 slave->offset += wr_alignment - remainder; 460 printk(KERN_NOTICE "Moving partition %d: " 461 "0x%012llx -> 0x%012llx\n", partno, 462 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 463 } 464 } 465 if (slave->offset == MTDPART_OFS_RETAIN) { 466 slave->offset = cur_offset; 467 if (parent->size - slave->offset >= slave->mtd.size) { 468 slave->mtd.size = parent->size - slave->offset 469 - slave->mtd.size; 470 } else { 471 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 472 part->name, parent->size - slave->offset, 473 slave->mtd.size); 474 /* register to preserve ordering */ 475 goto out_register; 476 } 477 } 478 if (slave->mtd.size == MTDPART_SIZ_FULL) 479 slave->mtd.size = parent->size - slave->offset; 480 481 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 482 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 483 484 /* let's do some sanity checks */ 485 if (slave->offset >= parent->size) { 486 /* let's register it anyway to preserve ordering */ 487 slave->offset = 0; 488 slave->mtd.size = 0; 489 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 490 part->name); 491 goto out_register; 492 } 493 if (slave->offset + slave->mtd.size > parent->size) { 494 slave->mtd.size = parent->size - slave->offset; 495 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 496 part->name, parent->name, (unsigned long long)slave->mtd.size); 497 } 498 if (parent->numeraseregions > 1) { 499 /* Deal with variable erase size stuff */ 500 int i, max = parent->numeraseregions; 501 u64 end = slave->offset + slave->mtd.size; 502 struct mtd_erase_region_info *regions = parent->eraseregions; 503 504 /* Find the first erase regions which is part of this 505 * partition. */ 506 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 507 ; 508 /* The loop searched for the region _behind_ the first one */ 509 if (i > 0) 510 i--; 511 512 /* Pick biggest erasesize */ 513 for (; i < max && regions[i].offset < end; i++) { 514 if (slave->mtd.erasesize < regions[i].erasesize) { 515 slave->mtd.erasesize = regions[i].erasesize; 516 } 517 } 518 BUG_ON(slave->mtd.erasesize == 0); 519 } else { 520 /* Single erase size */ 521 slave->mtd.erasesize = parent->erasesize; 522 } 523 524 /* 525 * Slave erasesize might differ from the master one if the master 526 * exposes several regions with different erasesize. Adjust 527 * wr_alignment accordingly. 528 */ 529 if (!(slave->mtd.flags & MTD_NO_ERASE)) 530 wr_alignment = slave->mtd.erasesize; 531 532 tmp = slave->offset; 533 remainder = do_div(tmp, wr_alignment); 534 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { 535 /* Doesn't start on a boundary of major erase size */ 536 /* FIXME: Let it be writable if it is on a boundary of 537 * _minor_ erase size though */ 538 slave->mtd.flags &= ~MTD_WRITEABLE; 539 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n", 540 part->name); 541 } 542 543 tmp = slave->mtd.size; 544 remainder = do_div(tmp, wr_alignment); 545 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { 546 slave->mtd.flags &= ~MTD_WRITEABLE; 547 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n", 548 part->name); 549 } 550 551 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops); 552 slave->mtd.ecc_step_size = parent->ecc_step_size; 553 slave->mtd.ecc_strength = parent->ecc_strength; 554 slave->mtd.bitflip_threshold = parent->bitflip_threshold; 555 556 if (parent->_block_isbad) { 557 uint64_t offs = 0; 558 559 while (offs < slave->mtd.size) { 560 if (mtd_block_isreserved(parent, offs + slave->offset)) 561 slave->mtd.ecc_stats.bbtblocks++; 562 else if (mtd_block_isbad(parent, offs + slave->offset)) 563 slave->mtd.ecc_stats.badblocks++; 564 offs += slave->mtd.erasesize; 565 } 566 } 567 568 out_register: 569 return slave; 570 } 571 572 static ssize_t mtd_partition_offset_show(struct device *dev, 573 struct device_attribute *attr, char *buf) 574 { 575 struct mtd_info *mtd = dev_get_drvdata(dev); 576 struct mtd_part *part = mtd_to_part(mtd); 577 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); 578 } 579 580 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); 581 582 static const struct attribute *mtd_partition_attrs[] = { 583 &dev_attr_offset.attr, 584 NULL 585 }; 586 587 static int mtd_add_partition_attrs(struct mtd_part *new) 588 { 589 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); 590 if (ret) 591 printk(KERN_WARNING 592 "mtd: failed to create partition attrs, err=%d\n", ret); 593 return ret; 594 } 595 596 int mtd_add_partition(struct mtd_info *parent, const char *name, 597 long long offset, long long length) 598 { 599 struct mtd_partition part; 600 struct mtd_part *new; 601 int ret = 0; 602 603 /* the direct offset is expected */ 604 if (offset == MTDPART_OFS_APPEND || 605 offset == MTDPART_OFS_NXTBLK) 606 return -EINVAL; 607 608 if (length == MTDPART_SIZ_FULL) 609 length = parent->size - offset; 610 611 if (length <= 0) 612 return -EINVAL; 613 614 memset(&part, 0, sizeof(part)); 615 part.name = name; 616 part.size = length; 617 part.offset = offset; 618 619 new = allocate_partition(parent, &part, -1, offset); 620 if (IS_ERR(new)) 621 return PTR_ERR(new); 622 623 mutex_lock(&mtd_partitions_mutex); 624 list_add(&new->list, &mtd_partitions); 625 mutex_unlock(&mtd_partitions_mutex); 626 627 add_mtd_device(&new->mtd); 628 629 mtd_add_partition_attrs(new); 630 631 return ret; 632 } 633 EXPORT_SYMBOL_GPL(mtd_add_partition); 634 635 /** 636 * __mtd_del_partition - delete MTD partition 637 * 638 * @priv: internal MTD struct for partition to be deleted 639 * 640 * This function must be called with the partitions mutex locked. 641 */ 642 static int __mtd_del_partition(struct mtd_part *priv) 643 { 644 struct mtd_part *child, *next; 645 int err; 646 647 list_for_each_entry_safe(child, next, &mtd_partitions, list) { 648 if (child->parent == &priv->mtd) { 649 err = __mtd_del_partition(child); 650 if (err) 651 return err; 652 } 653 } 654 655 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs); 656 657 err = del_mtd_device(&priv->mtd); 658 if (err) 659 return err; 660 661 list_del(&priv->list); 662 free_partition(priv); 663 664 return 0; 665 } 666 667 /* 668 * This function unregisters and destroy all slave MTD objects which are 669 * attached to the given MTD object. 670 */ 671 int del_mtd_partitions(struct mtd_info *mtd) 672 { 673 struct mtd_part *slave, *next; 674 int ret, err = 0; 675 676 mutex_lock(&mtd_partitions_mutex); 677 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 678 if (slave->parent == mtd) { 679 ret = __mtd_del_partition(slave); 680 if (ret < 0) 681 err = ret; 682 } 683 mutex_unlock(&mtd_partitions_mutex); 684 685 return err; 686 } 687 688 int mtd_del_partition(struct mtd_info *mtd, int partno) 689 { 690 struct mtd_part *slave, *next; 691 int ret = -EINVAL; 692 693 mutex_lock(&mtd_partitions_mutex); 694 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 695 if ((slave->parent == mtd) && 696 (slave->mtd.index == partno)) { 697 ret = __mtd_del_partition(slave); 698 break; 699 } 700 mutex_unlock(&mtd_partitions_mutex); 701 702 return ret; 703 } 704 EXPORT_SYMBOL_GPL(mtd_del_partition); 705 706 /* 707 * This function, given a master MTD object and a partition table, creates 708 * and registers slave MTD objects which are bound to the master according to 709 * the partition definitions. 710 * 711 * For historical reasons, this function's caller only registers the master 712 * if the MTD_PARTITIONED_MASTER config option is set. 713 */ 714 715 int add_mtd_partitions(struct mtd_info *master, 716 const struct mtd_partition *parts, 717 int nbparts) 718 { 719 struct mtd_part *slave; 720 uint64_t cur_offset = 0; 721 int i; 722 723 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 724 725 for (i = 0; i < nbparts; i++) { 726 slave = allocate_partition(master, parts + i, i, cur_offset); 727 if (IS_ERR(slave)) { 728 del_mtd_partitions(master); 729 return PTR_ERR(slave); 730 } 731 732 mutex_lock(&mtd_partitions_mutex); 733 list_add(&slave->list, &mtd_partitions); 734 mutex_unlock(&mtd_partitions_mutex); 735 736 add_mtd_device(&slave->mtd); 737 mtd_add_partition_attrs(slave); 738 if (parts[i].types) 739 mtd_parse_part(slave, parts[i].types); 740 741 cur_offset = slave->offset + slave->mtd.size; 742 } 743 744 return 0; 745 } 746 747 static DEFINE_SPINLOCK(part_parser_lock); 748 static LIST_HEAD(part_parsers); 749 750 static struct mtd_part_parser *mtd_part_parser_get(const char *name) 751 { 752 struct mtd_part_parser *p, *ret = NULL; 753 754 spin_lock(&part_parser_lock); 755 756 list_for_each_entry(p, &part_parsers, list) 757 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 758 ret = p; 759 break; 760 } 761 762 spin_unlock(&part_parser_lock); 763 764 return ret; 765 } 766 767 static inline void mtd_part_parser_put(const struct mtd_part_parser *p) 768 { 769 module_put(p->owner); 770 } 771 772 /* 773 * Many partition parsers just expected the core to kfree() all their data in 774 * one chunk. Do that by default. 775 */ 776 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, 777 int nr_parts) 778 { 779 kfree(pparts); 780 } 781 782 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) 783 { 784 p->owner = owner; 785 786 if (!p->cleanup) 787 p->cleanup = &mtd_part_parser_cleanup_default; 788 789 spin_lock(&part_parser_lock); 790 list_add(&p->list, &part_parsers); 791 spin_unlock(&part_parser_lock); 792 793 return 0; 794 } 795 EXPORT_SYMBOL_GPL(__register_mtd_parser); 796 797 void deregister_mtd_parser(struct mtd_part_parser *p) 798 { 799 spin_lock(&part_parser_lock); 800 list_del(&p->list); 801 spin_unlock(&part_parser_lock); 802 } 803 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 804 805 /* 806 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 807 * are changing this array! 808 */ 809 static const char * const default_mtd_part_types[] = { 810 "cmdlinepart", 811 "ofpart", 812 NULL 813 }; 814 815 static int mtd_part_do_parse(struct mtd_part_parser *parser, 816 struct mtd_info *master, 817 struct mtd_partitions *pparts, 818 struct mtd_part_parser_data *data) 819 { 820 int ret; 821 822 ret = (*parser->parse_fn)(master, &pparts->parts, data); 823 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret); 824 if (ret <= 0) 825 return ret; 826 827 pr_notice("%d %s partitions found on MTD device %s\n", ret, 828 parser->name, master->name); 829 830 pparts->nr_parts = ret; 831 pparts->parser = parser; 832 833 return ret; 834 } 835 836 /** 837 * mtd_part_get_compatible_parser - find MTD parser by a compatible string 838 * 839 * @compat: compatible string describing partitions in a device tree 840 * 841 * MTD parsers can specify supported partitions by providing a table of 842 * compatibility strings. This function finds a parser that advertises support 843 * for a passed value of "compatible". 844 */ 845 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat) 846 { 847 struct mtd_part_parser *p, *ret = NULL; 848 849 spin_lock(&part_parser_lock); 850 851 list_for_each_entry(p, &part_parsers, list) { 852 const struct of_device_id *matches; 853 854 matches = p->of_match_table; 855 if (!matches) 856 continue; 857 858 for (; matches->compatible[0]; matches++) { 859 if (!strcmp(matches->compatible, compat) && 860 try_module_get(p->owner)) { 861 ret = p; 862 break; 863 } 864 } 865 866 if (ret) 867 break; 868 } 869 870 spin_unlock(&part_parser_lock); 871 872 return ret; 873 } 874 875 static int mtd_part_of_parse(struct mtd_info *master, 876 struct mtd_partitions *pparts) 877 { 878 struct mtd_part_parser *parser; 879 struct device_node *np; 880 struct property *prop; 881 const char *compat; 882 const char *fixed = "fixed-partitions"; 883 int ret, err = 0; 884 885 np = of_get_child_by_name(mtd_get_of_node(master), "partitions"); 886 of_property_for_each_string(np, "compatible", prop, compat) { 887 parser = mtd_part_get_compatible_parser(compat); 888 if (!parser) 889 continue; 890 ret = mtd_part_do_parse(parser, master, pparts, NULL); 891 if (ret > 0) { 892 of_node_put(np); 893 return ret; 894 } 895 mtd_part_parser_put(parser); 896 if (ret < 0 && !err) 897 err = ret; 898 } 899 of_node_put(np); 900 901 /* 902 * For backward compatibility we have to try the "fixed-partitions" 903 * parser. It supports old DT format with partitions specified as a 904 * direct subnodes of a flash device DT node without any compatibility 905 * specified we could match. 906 */ 907 parser = mtd_part_parser_get(fixed); 908 if (!parser && !request_module("%s", fixed)) 909 parser = mtd_part_parser_get(fixed); 910 if (parser) { 911 ret = mtd_part_do_parse(parser, master, pparts, NULL); 912 if (ret > 0) 913 return ret; 914 mtd_part_parser_put(parser); 915 if (ret < 0 && !err) 916 err = ret; 917 } 918 919 return err; 920 } 921 922 /** 923 * parse_mtd_partitions - parse and register MTD partitions 924 * 925 * @master: the master partition (describes whole MTD device) 926 * @types: names of partition parsers to try or %NULL 927 * @data: MTD partition parser-specific data 928 * 929 * This function tries to find & register partitions on MTD device @master. It 930 * uses MTD partition parsers, specified in @types. However, if @types is %NULL, 931 * then the default list of parsers is used. The default list contains only the 932 * "cmdlinepart" and "ofpart" parsers ATM. 933 * Note: If there are more then one parser in @types, the kernel only takes the 934 * partitions parsed out by the first parser. 935 * 936 * This function may return: 937 * o a negative error code in case of failure 938 * o number of found partitions otherwise 939 */ 940 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 941 struct mtd_part_parser_data *data) 942 { 943 struct mtd_partitions pparts = { }; 944 struct mtd_part_parser *parser; 945 int ret, err = 0; 946 947 if (!types) 948 types = default_mtd_part_types; 949 950 for ( ; *types; types++) { 951 /* 952 * ofpart is a special type that means OF partitioning info 953 * should be used. It requires a bit different logic so it is 954 * handled in a separated function. 955 */ 956 if (!strcmp(*types, "ofpart")) { 957 ret = mtd_part_of_parse(master, &pparts); 958 } else { 959 pr_debug("%s: parsing partitions %s\n", master->name, 960 *types); 961 parser = mtd_part_parser_get(*types); 962 if (!parser && !request_module("%s", *types)) 963 parser = mtd_part_parser_get(*types); 964 pr_debug("%s: got parser %s\n", master->name, 965 parser ? parser->name : NULL); 966 if (!parser) 967 continue; 968 ret = mtd_part_do_parse(parser, master, &pparts, data); 969 if (ret <= 0) 970 mtd_part_parser_put(parser); 971 } 972 /* Found partitions! */ 973 if (ret > 0) { 974 err = add_mtd_partitions(master, pparts.parts, 975 pparts.nr_parts); 976 mtd_part_parser_cleanup(&pparts); 977 return err ? err : pparts.nr_parts; 978 } 979 /* 980 * Stash the first error we see; only report it if no parser 981 * succeeds 982 */ 983 if (ret < 0 && !err) 984 err = ret; 985 } 986 return err; 987 } 988 989 void mtd_part_parser_cleanup(struct mtd_partitions *parts) 990 { 991 const struct mtd_part_parser *parser; 992 993 if (!parts) 994 return; 995 996 parser = parts->parser; 997 if (parser) { 998 if (parser->cleanup) 999 parser->cleanup(parts->parts, parts->nr_parts); 1000 1001 mtd_part_parser_put(parser); 1002 } 1003 } 1004 1005 int mtd_is_partition(const struct mtd_info *mtd) 1006 { 1007 struct mtd_part *part; 1008 int ispart = 0; 1009 1010 mutex_lock(&mtd_partitions_mutex); 1011 list_for_each_entry(part, &mtd_partitions, list) 1012 if (&part->mtd == mtd) { 1013 ispart = 1; 1014 break; 1015 } 1016 mutex_unlock(&mtd_partitions_mutex); 1017 1018 return ispart; 1019 } 1020 EXPORT_SYMBOL_GPL(mtd_is_partition); 1021 1022 /* Returns the size of the entire flash chip */ 1023 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 1024 { 1025 if (!mtd_is_partition(mtd)) 1026 return mtd->size; 1027 1028 return mtd_get_device_size(mtd_to_part(mtd)->parent); 1029 } 1030 EXPORT_SYMBOL_GPL(mtd_get_device_size); 1031