1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 #include <linux/kconfig.h> 34 35 #include "mtdcore.h" 36 37 /* Our partition linked list */ 38 static LIST_HEAD(mtd_partitions); 39 static DEFINE_MUTEX(mtd_partitions_mutex); 40 41 /* Our partition node structure */ 42 struct mtd_part { 43 struct mtd_info mtd; 44 struct mtd_info *master; 45 uint64_t offset; 46 struct list_head list; 47 }; 48 49 /* 50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 51 * the pointer to that structure. 52 */ 53 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) 54 { 55 return container_of(mtd, struct mtd_part, mtd); 56 } 57 58 59 /* 60 * MTD methods which simply translate the effective address and pass through 61 * to the _real_ device. 62 */ 63 64 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 65 size_t *retlen, u_char *buf) 66 { 67 struct mtd_part *part = mtd_to_part(mtd); 68 struct mtd_ecc_stats stats; 69 int res; 70 71 stats = part->master->ecc_stats; 72 res = part->master->_read(part->master, from + part->offset, len, 73 retlen, buf); 74 if (unlikely(mtd_is_eccerr(res))) 75 mtd->ecc_stats.failed += 76 part->master->ecc_stats.failed - stats.failed; 77 else 78 mtd->ecc_stats.corrected += 79 part->master->ecc_stats.corrected - stats.corrected; 80 return res; 81 } 82 83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 84 size_t *retlen, void **virt, resource_size_t *phys) 85 { 86 struct mtd_part *part = mtd_to_part(mtd); 87 88 return part->master->_point(part->master, from + part->offset, len, 89 retlen, virt, phys); 90 } 91 92 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 93 { 94 struct mtd_part *part = mtd_to_part(mtd); 95 96 return part->master->_unpoint(part->master, from + part->offset, len); 97 } 98 99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 100 unsigned long len, 101 unsigned long offset, 102 unsigned long flags) 103 { 104 struct mtd_part *part = mtd_to_part(mtd); 105 106 offset += part->offset; 107 return part->master->_get_unmapped_area(part->master, len, offset, 108 flags); 109 } 110 111 static int part_read_oob(struct mtd_info *mtd, loff_t from, 112 struct mtd_oob_ops *ops) 113 { 114 struct mtd_part *part = mtd_to_part(mtd); 115 int res; 116 117 if (from >= mtd->size) 118 return -EINVAL; 119 if (ops->datbuf && from + ops->len > mtd->size) 120 return -EINVAL; 121 122 /* 123 * If OOB is also requested, make sure that we do not read past the end 124 * of this partition. 125 */ 126 if (ops->oobbuf) { 127 size_t len, pages; 128 129 len = mtd_oobavail(mtd, ops); 130 pages = mtd_div_by_ws(mtd->size, mtd); 131 pages -= mtd_div_by_ws(from, mtd); 132 if (ops->ooboffs + ops->ooblen > pages * len) 133 return -EINVAL; 134 } 135 136 res = part->master->_read_oob(part->master, from + part->offset, ops); 137 if (unlikely(res)) { 138 if (mtd_is_bitflip(res)) 139 mtd->ecc_stats.corrected++; 140 if (mtd_is_eccerr(res)) 141 mtd->ecc_stats.failed++; 142 } 143 return res; 144 } 145 146 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 147 size_t len, size_t *retlen, u_char *buf) 148 { 149 struct mtd_part *part = mtd_to_part(mtd); 150 return part->master->_read_user_prot_reg(part->master, from, len, 151 retlen, buf); 152 } 153 154 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 155 size_t *retlen, struct otp_info *buf) 156 { 157 struct mtd_part *part = mtd_to_part(mtd); 158 return part->master->_get_user_prot_info(part->master, len, retlen, 159 buf); 160 } 161 162 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 163 size_t len, size_t *retlen, u_char *buf) 164 { 165 struct mtd_part *part = mtd_to_part(mtd); 166 return part->master->_read_fact_prot_reg(part->master, from, len, 167 retlen, buf); 168 } 169 170 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 171 size_t *retlen, struct otp_info *buf) 172 { 173 struct mtd_part *part = mtd_to_part(mtd); 174 return part->master->_get_fact_prot_info(part->master, len, retlen, 175 buf); 176 } 177 178 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 179 size_t *retlen, const u_char *buf) 180 { 181 struct mtd_part *part = mtd_to_part(mtd); 182 return part->master->_write(part->master, to + part->offset, len, 183 retlen, buf); 184 } 185 186 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 187 size_t *retlen, const u_char *buf) 188 { 189 struct mtd_part *part = mtd_to_part(mtd); 190 return part->master->_panic_write(part->master, to + part->offset, len, 191 retlen, buf); 192 } 193 194 static int part_write_oob(struct mtd_info *mtd, loff_t to, 195 struct mtd_oob_ops *ops) 196 { 197 struct mtd_part *part = mtd_to_part(mtd); 198 199 if (to >= mtd->size) 200 return -EINVAL; 201 if (ops->datbuf && to + ops->len > mtd->size) 202 return -EINVAL; 203 return part->master->_write_oob(part->master, to + part->offset, ops); 204 } 205 206 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 207 size_t len, size_t *retlen, u_char *buf) 208 { 209 struct mtd_part *part = mtd_to_part(mtd); 210 return part->master->_write_user_prot_reg(part->master, from, len, 211 retlen, buf); 212 } 213 214 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 215 size_t len) 216 { 217 struct mtd_part *part = mtd_to_part(mtd); 218 return part->master->_lock_user_prot_reg(part->master, from, len); 219 } 220 221 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 222 unsigned long count, loff_t to, size_t *retlen) 223 { 224 struct mtd_part *part = mtd_to_part(mtd); 225 return part->master->_writev(part->master, vecs, count, 226 to + part->offset, retlen); 227 } 228 229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 230 { 231 struct mtd_part *part = mtd_to_part(mtd); 232 int ret; 233 234 instr->addr += part->offset; 235 ret = part->master->_erase(part->master, instr); 236 if (ret) { 237 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 238 instr->fail_addr -= part->offset; 239 instr->addr -= part->offset; 240 } 241 return ret; 242 } 243 244 void mtd_erase_callback(struct erase_info *instr) 245 { 246 if (instr->mtd->_erase == part_erase) { 247 struct mtd_part *part = mtd_to_part(instr->mtd); 248 249 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 250 instr->fail_addr -= part->offset; 251 instr->addr -= part->offset; 252 } 253 if (instr->callback) 254 instr->callback(instr); 255 } 256 EXPORT_SYMBOL_GPL(mtd_erase_callback); 257 258 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 259 { 260 struct mtd_part *part = mtd_to_part(mtd); 261 return part->master->_lock(part->master, ofs + part->offset, len); 262 } 263 264 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 265 { 266 struct mtd_part *part = mtd_to_part(mtd); 267 return part->master->_unlock(part->master, ofs + part->offset, len); 268 } 269 270 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 271 { 272 struct mtd_part *part = mtd_to_part(mtd); 273 return part->master->_is_locked(part->master, ofs + part->offset, len); 274 } 275 276 static void part_sync(struct mtd_info *mtd) 277 { 278 struct mtd_part *part = mtd_to_part(mtd); 279 part->master->_sync(part->master); 280 } 281 282 static int part_suspend(struct mtd_info *mtd) 283 { 284 struct mtd_part *part = mtd_to_part(mtd); 285 return part->master->_suspend(part->master); 286 } 287 288 static void part_resume(struct mtd_info *mtd) 289 { 290 struct mtd_part *part = mtd_to_part(mtd); 291 part->master->_resume(part->master); 292 } 293 294 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 295 { 296 struct mtd_part *part = mtd_to_part(mtd); 297 ofs += part->offset; 298 return part->master->_block_isreserved(part->master, ofs); 299 } 300 301 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 302 { 303 struct mtd_part *part = mtd_to_part(mtd); 304 ofs += part->offset; 305 return part->master->_block_isbad(part->master, ofs); 306 } 307 308 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 309 { 310 struct mtd_part *part = mtd_to_part(mtd); 311 int res; 312 313 ofs += part->offset; 314 res = part->master->_block_markbad(part->master, ofs); 315 if (!res) 316 mtd->ecc_stats.badblocks++; 317 return res; 318 } 319 320 static int part_ooblayout_ecc(struct mtd_info *mtd, int section, 321 struct mtd_oob_region *oobregion) 322 { 323 struct mtd_part *part = mtd_to_part(mtd); 324 325 return mtd_ooblayout_ecc(part->master, section, oobregion); 326 } 327 328 static int part_ooblayout_free(struct mtd_info *mtd, int section, 329 struct mtd_oob_region *oobregion) 330 { 331 struct mtd_part *part = mtd_to_part(mtd); 332 333 return mtd_ooblayout_free(part->master, section, oobregion); 334 } 335 336 static const struct mtd_ooblayout_ops part_ooblayout_ops = { 337 .ecc = part_ooblayout_ecc, 338 .free = part_ooblayout_free, 339 }; 340 341 static inline void free_partition(struct mtd_part *p) 342 { 343 kfree(p->mtd.name); 344 kfree(p); 345 } 346 347 /* 348 * This function unregisters and destroy all slave MTD objects which are 349 * attached to the given master MTD object. 350 */ 351 352 int del_mtd_partitions(struct mtd_info *master) 353 { 354 struct mtd_part *slave, *next; 355 int ret, err = 0; 356 357 mutex_lock(&mtd_partitions_mutex); 358 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 359 if (slave->master == master) { 360 ret = del_mtd_device(&slave->mtd); 361 if (ret < 0) { 362 err = ret; 363 continue; 364 } 365 list_del(&slave->list); 366 free_partition(slave); 367 } 368 mutex_unlock(&mtd_partitions_mutex); 369 370 return err; 371 } 372 373 static struct mtd_part *allocate_partition(struct mtd_info *master, 374 const struct mtd_partition *part, int partno, 375 uint64_t cur_offset) 376 { 377 struct mtd_part *slave; 378 char *name; 379 380 /* allocate the partition structure */ 381 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 382 name = kstrdup(part->name, GFP_KERNEL); 383 if (!name || !slave) { 384 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 385 master->name); 386 kfree(name); 387 kfree(slave); 388 return ERR_PTR(-ENOMEM); 389 } 390 391 /* set up the MTD object for this partition */ 392 slave->mtd.type = master->type; 393 slave->mtd.flags = master->flags & ~part->mask_flags; 394 slave->mtd.size = part->size; 395 slave->mtd.writesize = master->writesize; 396 slave->mtd.writebufsize = master->writebufsize; 397 slave->mtd.oobsize = master->oobsize; 398 slave->mtd.oobavail = master->oobavail; 399 slave->mtd.subpage_sft = master->subpage_sft; 400 401 slave->mtd.name = name; 402 slave->mtd.owner = master->owner; 403 404 /* NOTE: Historically, we didn't arrange MTDs as a tree out of 405 * concern for showing the same data in multiple partitions. 406 * However, it is very useful to have the master node present, 407 * so the MTD_PARTITIONED_MASTER option allows that. The master 408 * will have device nodes etc only if this is set, so make the 409 * parent conditional on that option. Note, this is a way to 410 * distinguish between the master and the partition in sysfs. 411 */ 412 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ? 413 &master->dev : 414 master->dev.parent; 415 416 slave->mtd._read = part_read; 417 slave->mtd._write = part_write; 418 419 if (master->_panic_write) 420 slave->mtd._panic_write = part_panic_write; 421 422 if (master->_point && master->_unpoint) { 423 slave->mtd._point = part_point; 424 slave->mtd._unpoint = part_unpoint; 425 } 426 427 if (master->_get_unmapped_area) 428 slave->mtd._get_unmapped_area = part_get_unmapped_area; 429 if (master->_read_oob) 430 slave->mtd._read_oob = part_read_oob; 431 if (master->_write_oob) 432 slave->mtd._write_oob = part_write_oob; 433 if (master->_read_user_prot_reg) 434 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 435 if (master->_read_fact_prot_reg) 436 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 437 if (master->_write_user_prot_reg) 438 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 439 if (master->_lock_user_prot_reg) 440 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 441 if (master->_get_user_prot_info) 442 slave->mtd._get_user_prot_info = part_get_user_prot_info; 443 if (master->_get_fact_prot_info) 444 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 445 if (master->_sync) 446 slave->mtd._sync = part_sync; 447 if (!partno && !master->dev.class && master->_suspend && 448 master->_resume) { 449 slave->mtd._suspend = part_suspend; 450 slave->mtd._resume = part_resume; 451 } 452 if (master->_writev) 453 slave->mtd._writev = part_writev; 454 if (master->_lock) 455 slave->mtd._lock = part_lock; 456 if (master->_unlock) 457 slave->mtd._unlock = part_unlock; 458 if (master->_is_locked) 459 slave->mtd._is_locked = part_is_locked; 460 if (master->_block_isreserved) 461 slave->mtd._block_isreserved = part_block_isreserved; 462 if (master->_block_isbad) 463 slave->mtd._block_isbad = part_block_isbad; 464 if (master->_block_markbad) 465 slave->mtd._block_markbad = part_block_markbad; 466 slave->mtd._erase = part_erase; 467 slave->master = master; 468 slave->offset = part->offset; 469 470 if (slave->offset == MTDPART_OFS_APPEND) 471 slave->offset = cur_offset; 472 if (slave->offset == MTDPART_OFS_NXTBLK) { 473 slave->offset = cur_offset; 474 if (mtd_mod_by_eb(cur_offset, master) != 0) { 475 /* Round up to next erasesize */ 476 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 477 printk(KERN_NOTICE "Moving partition %d: " 478 "0x%012llx -> 0x%012llx\n", partno, 479 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 480 } 481 } 482 if (slave->offset == MTDPART_OFS_RETAIN) { 483 slave->offset = cur_offset; 484 if (master->size - slave->offset >= slave->mtd.size) { 485 slave->mtd.size = master->size - slave->offset 486 - slave->mtd.size; 487 } else { 488 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 489 part->name, master->size - slave->offset, 490 slave->mtd.size); 491 /* register to preserve ordering */ 492 goto out_register; 493 } 494 } 495 if (slave->mtd.size == MTDPART_SIZ_FULL) 496 slave->mtd.size = master->size - slave->offset; 497 498 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 499 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 500 501 /* let's do some sanity checks */ 502 if (slave->offset >= master->size) { 503 /* let's register it anyway to preserve ordering */ 504 slave->offset = 0; 505 slave->mtd.size = 0; 506 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 507 part->name); 508 goto out_register; 509 } 510 if (slave->offset + slave->mtd.size > master->size) { 511 slave->mtd.size = master->size - slave->offset; 512 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 513 part->name, master->name, (unsigned long long)slave->mtd.size); 514 } 515 if (master->numeraseregions > 1) { 516 /* Deal with variable erase size stuff */ 517 int i, max = master->numeraseregions; 518 u64 end = slave->offset + slave->mtd.size; 519 struct mtd_erase_region_info *regions = master->eraseregions; 520 521 /* Find the first erase regions which is part of this 522 * partition. */ 523 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 524 ; 525 /* The loop searched for the region _behind_ the first one */ 526 if (i > 0) 527 i--; 528 529 /* Pick biggest erasesize */ 530 for (; i < max && regions[i].offset < end; i++) { 531 if (slave->mtd.erasesize < regions[i].erasesize) { 532 slave->mtd.erasesize = regions[i].erasesize; 533 } 534 } 535 BUG_ON(slave->mtd.erasesize == 0); 536 } else { 537 /* Single erase size */ 538 slave->mtd.erasesize = master->erasesize; 539 } 540 541 if ((slave->mtd.flags & MTD_WRITEABLE) && 542 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 543 /* Doesn't start on a boundary of major erase size */ 544 /* FIXME: Let it be writable if it is on a boundary of 545 * _minor_ erase size though */ 546 slave->mtd.flags &= ~MTD_WRITEABLE; 547 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 548 part->name); 549 } 550 if ((slave->mtd.flags & MTD_WRITEABLE) && 551 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 552 slave->mtd.flags &= ~MTD_WRITEABLE; 553 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 554 part->name); 555 } 556 557 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops); 558 slave->mtd.ecc_step_size = master->ecc_step_size; 559 slave->mtd.ecc_strength = master->ecc_strength; 560 slave->mtd.bitflip_threshold = master->bitflip_threshold; 561 562 if (master->_block_isbad) { 563 uint64_t offs = 0; 564 565 while (offs < slave->mtd.size) { 566 if (mtd_block_isreserved(master, offs + slave->offset)) 567 slave->mtd.ecc_stats.bbtblocks++; 568 else if (mtd_block_isbad(master, offs + slave->offset)) 569 slave->mtd.ecc_stats.badblocks++; 570 offs += slave->mtd.erasesize; 571 } 572 } 573 574 out_register: 575 return slave; 576 } 577 578 static ssize_t mtd_partition_offset_show(struct device *dev, 579 struct device_attribute *attr, char *buf) 580 { 581 struct mtd_info *mtd = dev_get_drvdata(dev); 582 struct mtd_part *part = mtd_to_part(mtd); 583 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); 584 } 585 586 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); 587 588 static const struct attribute *mtd_partition_attrs[] = { 589 &dev_attr_offset.attr, 590 NULL 591 }; 592 593 static int mtd_add_partition_attrs(struct mtd_part *new) 594 { 595 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); 596 if (ret) 597 printk(KERN_WARNING 598 "mtd: failed to create partition attrs, err=%d\n", ret); 599 return ret; 600 } 601 602 int mtd_add_partition(struct mtd_info *master, const char *name, 603 long long offset, long long length) 604 { 605 struct mtd_partition part; 606 struct mtd_part *new; 607 int ret = 0; 608 609 /* the direct offset is expected */ 610 if (offset == MTDPART_OFS_APPEND || 611 offset == MTDPART_OFS_NXTBLK) 612 return -EINVAL; 613 614 if (length == MTDPART_SIZ_FULL) 615 length = master->size - offset; 616 617 if (length <= 0) 618 return -EINVAL; 619 620 memset(&part, 0, sizeof(part)); 621 part.name = name; 622 part.size = length; 623 part.offset = offset; 624 625 new = allocate_partition(master, &part, -1, offset); 626 if (IS_ERR(new)) 627 return PTR_ERR(new); 628 629 mutex_lock(&mtd_partitions_mutex); 630 list_add(&new->list, &mtd_partitions); 631 mutex_unlock(&mtd_partitions_mutex); 632 633 add_mtd_device(&new->mtd); 634 635 mtd_add_partition_attrs(new); 636 637 return ret; 638 } 639 EXPORT_SYMBOL_GPL(mtd_add_partition); 640 641 int mtd_del_partition(struct mtd_info *master, int partno) 642 { 643 struct mtd_part *slave, *next; 644 int ret = -EINVAL; 645 646 mutex_lock(&mtd_partitions_mutex); 647 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 648 if ((slave->master == master) && 649 (slave->mtd.index == partno)) { 650 sysfs_remove_files(&slave->mtd.dev.kobj, 651 mtd_partition_attrs); 652 ret = del_mtd_device(&slave->mtd); 653 if (ret < 0) 654 break; 655 656 list_del(&slave->list); 657 free_partition(slave); 658 break; 659 } 660 mutex_unlock(&mtd_partitions_mutex); 661 662 return ret; 663 } 664 EXPORT_SYMBOL_GPL(mtd_del_partition); 665 666 /* 667 * This function, given a master MTD object and a partition table, creates 668 * and registers slave MTD objects which are bound to the master according to 669 * the partition definitions. 670 * 671 * For historical reasons, this function's caller only registers the master 672 * if the MTD_PARTITIONED_MASTER config option is set. 673 */ 674 675 int add_mtd_partitions(struct mtd_info *master, 676 const struct mtd_partition *parts, 677 int nbparts) 678 { 679 struct mtd_part *slave; 680 uint64_t cur_offset = 0; 681 int i; 682 683 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 684 685 for (i = 0; i < nbparts; i++) { 686 slave = allocate_partition(master, parts + i, i, cur_offset); 687 if (IS_ERR(slave)) { 688 del_mtd_partitions(master); 689 return PTR_ERR(slave); 690 } 691 692 mutex_lock(&mtd_partitions_mutex); 693 list_add(&slave->list, &mtd_partitions); 694 mutex_unlock(&mtd_partitions_mutex); 695 696 add_mtd_device(&slave->mtd); 697 mtd_add_partition_attrs(slave); 698 699 cur_offset = slave->offset + slave->mtd.size; 700 } 701 702 return 0; 703 } 704 705 static DEFINE_SPINLOCK(part_parser_lock); 706 static LIST_HEAD(part_parsers); 707 708 static struct mtd_part_parser *mtd_part_parser_get(const char *name) 709 { 710 struct mtd_part_parser *p, *ret = NULL; 711 712 spin_lock(&part_parser_lock); 713 714 list_for_each_entry(p, &part_parsers, list) 715 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 716 ret = p; 717 break; 718 } 719 720 spin_unlock(&part_parser_lock); 721 722 return ret; 723 } 724 725 static inline void mtd_part_parser_put(const struct mtd_part_parser *p) 726 { 727 module_put(p->owner); 728 } 729 730 /* 731 * Many partition parsers just expected the core to kfree() all their data in 732 * one chunk. Do that by default. 733 */ 734 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, 735 int nr_parts) 736 { 737 kfree(pparts); 738 } 739 740 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) 741 { 742 p->owner = owner; 743 744 if (!p->cleanup) 745 p->cleanup = &mtd_part_parser_cleanup_default; 746 747 spin_lock(&part_parser_lock); 748 list_add(&p->list, &part_parsers); 749 spin_unlock(&part_parser_lock); 750 751 return 0; 752 } 753 EXPORT_SYMBOL_GPL(__register_mtd_parser); 754 755 void deregister_mtd_parser(struct mtd_part_parser *p) 756 { 757 spin_lock(&part_parser_lock); 758 list_del(&p->list); 759 spin_unlock(&part_parser_lock); 760 } 761 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 762 763 /* 764 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 765 * are changing this array! 766 */ 767 static const char * const default_mtd_part_types[] = { 768 "cmdlinepart", 769 "ofpart", 770 NULL 771 }; 772 773 /** 774 * parse_mtd_partitions - parse MTD partitions 775 * @master: the master partition (describes whole MTD device) 776 * @types: names of partition parsers to try or %NULL 777 * @pparts: info about partitions found is returned here 778 * @data: MTD partition parser-specific data 779 * 780 * This function tries to find partition on MTD device @master. It uses MTD 781 * partition parsers, specified in @types. However, if @types is %NULL, then 782 * the default list of parsers is used. The default list contains only the 783 * "cmdlinepart" and "ofpart" parsers ATM. 784 * Note: If there are more then one parser in @types, the kernel only takes the 785 * partitions parsed out by the first parser. 786 * 787 * This function may return: 788 * o a negative error code in case of failure 789 * o zero otherwise, and @pparts will describe the partitions, number of 790 * partitions, and the parser which parsed them. Caller must release 791 * resources with mtd_part_parser_cleanup() when finished with the returned 792 * data. 793 */ 794 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 795 struct mtd_partitions *pparts, 796 struct mtd_part_parser_data *data) 797 { 798 struct mtd_part_parser *parser; 799 int ret, err = 0; 800 801 if (!types) 802 types = default_mtd_part_types; 803 804 for ( ; *types; types++) { 805 pr_debug("%s: parsing partitions %s\n", master->name, *types); 806 parser = mtd_part_parser_get(*types); 807 if (!parser && !request_module("%s", *types)) 808 parser = mtd_part_parser_get(*types); 809 pr_debug("%s: got parser %s\n", master->name, 810 parser ? parser->name : NULL); 811 if (!parser) 812 continue; 813 ret = (*parser->parse_fn)(master, &pparts->parts, data); 814 pr_debug("%s: parser %s: %i\n", 815 master->name, parser->name, ret); 816 if (ret > 0) { 817 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 818 ret, parser->name, master->name); 819 pparts->nr_parts = ret; 820 pparts->parser = parser; 821 return 0; 822 } 823 mtd_part_parser_put(parser); 824 /* 825 * Stash the first error we see; only report it if no parser 826 * succeeds 827 */ 828 if (ret < 0 && !err) 829 err = ret; 830 } 831 return err; 832 } 833 834 void mtd_part_parser_cleanup(struct mtd_partitions *parts) 835 { 836 const struct mtd_part_parser *parser; 837 838 if (!parts) 839 return; 840 841 parser = parts->parser; 842 if (parser) { 843 if (parser->cleanup) 844 parser->cleanup(parts->parts, parts->nr_parts); 845 846 mtd_part_parser_put(parser); 847 } 848 } 849 850 int mtd_is_partition(const struct mtd_info *mtd) 851 { 852 struct mtd_part *part; 853 int ispart = 0; 854 855 mutex_lock(&mtd_partitions_mutex); 856 list_for_each_entry(part, &mtd_partitions, list) 857 if (&part->mtd == mtd) { 858 ispart = 1; 859 break; 860 } 861 mutex_unlock(&mtd_partitions_mutex); 862 863 return ispart; 864 } 865 EXPORT_SYMBOL_GPL(mtd_is_partition); 866 867 /* Returns the size of the entire flash chip */ 868 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 869 { 870 if (!mtd_is_partition(mtd)) 871 return mtd->size; 872 873 return mtd_to_part(mtd)->master->size; 874 } 875 EXPORT_SYMBOL_GPL(mtd_get_device_size); 876