xref: /linux/drivers/mtd/mtdpart.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/kconfig.h>
34 
35 #include "mtdcore.h"
36 
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40 
41 /* Our partition node structure */
42 struct mtd_part {
43 	struct mtd_info mtd;
44 	struct mtd_info *master;
45 	uint64_t offset;
46 	struct list_head list;
47 };
48 
49 /*
50  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
51  * the pointer to that structure with this macro.
52  */
53 #define PART(x)  ((struct mtd_part *)(x))
54 
55 
56 /*
57  * MTD methods which simply translate the effective address and pass through
58  * to the _real_ device.
59  */
60 
61 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
62 		size_t *retlen, u_char *buf)
63 {
64 	struct mtd_part *part = PART(mtd);
65 	struct mtd_ecc_stats stats;
66 	int res;
67 
68 	stats = part->master->ecc_stats;
69 	res = part->master->_read(part->master, from + part->offset, len,
70 				  retlen, buf);
71 	if (unlikely(mtd_is_eccerr(res)))
72 		mtd->ecc_stats.failed +=
73 			part->master->ecc_stats.failed - stats.failed;
74 	else
75 		mtd->ecc_stats.corrected +=
76 			part->master->ecc_stats.corrected - stats.corrected;
77 	return res;
78 }
79 
80 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
81 		size_t *retlen, void **virt, resource_size_t *phys)
82 {
83 	struct mtd_part *part = PART(mtd);
84 
85 	return part->master->_point(part->master, from + part->offset, len,
86 				    retlen, virt, phys);
87 }
88 
89 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
90 {
91 	struct mtd_part *part = PART(mtd);
92 
93 	return part->master->_unpoint(part->master, from + part->offset, len);
94 }
95 
96 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
97 					    unsigned long len,
98 					    unsigned long offset,
99 					    unsigned long flags)
100 {
101 	struct mtd_part *part = PART(mtd);
102 
103 	offset += part->offset;
104 	return part->master->_get_unmapped_area(part->master, len, offset,
105 						flags);
106 }
107 
108 static int part_read_oob(struct mtd_info *mtd, loff_t from,
109 		struct mtd_oob_ops *ops)
110 {
111 	struct mtd_part *part = PART(mtd);
112 	int res;
113 
114 	if (from >= mtd->size)
115 		return -EINVAL;
116 	if (ops->datbuf && from + ops->len > mtd->size)
117 		return -EINVAL;
118 
119 	/*
120 	 * If OOB is also requested, make sure that we do not read past the end
121 	 * of this partition.
122 	 */
123 	if (ops->oobbuf) {
124 		size_t len, pages;
125 
126 		if (ops->mode == MTD_OPS_AUTO_OOB)
127 			len = mtd->oobavail;
128 		else
129 			len = mtd->oobsize;
130 		pages = mtd_div_by_ws(mtd->size, mtd);
131 		pages -= mtd_div_by_ws(from, mtd);
132 		if (ops->ooboffs + ops->ooblen > pages * len)
133 			return -EINVAL;
134 	}
135 
136 	res = part->master->_read_oob(part->master, from + part->offset, ops);
137 	if (unlikely(res)) {
138 		if (mtd_is_bitflip(res))
139 			mtd->ecc_stats.corrected++;
140 		if (mtd_is_eccerr(res))
141 			mtd->ecc_stats.failed++;
142 	}
143 	return res;
144 }
145 
146 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
147 		size_t len, size_t *retlen, u_char *buf)
148 {
149 	struct mtd_part *part = PART(mtd);
150 	return part->master->_read_user_prot_reg(part->master, from, len,
151 						 retlen, buf);
152 }
153 
154 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
155 				   size_t *retlen, struct otp_info *buf)
156 {
157 	struct mtd_part *part = PART(mtd);
158 	return part->master->_get_user_prot_info(part->master, len, retlen,
159 						 buf);
160 }
161 
162 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
163 		size_t len, size_t *retlen, u_char *buf)
164 {
165 	struct mtd_part *part = PART(mtd);
166 	return part->master->_read_fact_prot_reg(part->master, from, len,
167 						 retlen, buf);
168 }
169 
170 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
171 				   size_t *retlen, struct otp_info *buf)
172 {
173 	struct mtd_part *part = PART(mtd);
174 	return part->master->_get_fact_prot_info(part->master, len, retlen,
175 						 buf);
176 }
177 
178 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
179 		size_t *retlen, const u_char *buf)
180 {
181 	struct mtd_part *part = PART(mtd);
182 	return part->master->_write(part->master, to + part->offset, len,
183 				    retlen, buf);
184 }
185 
186 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
187 		size_t *retlen, const u_char *buf)
188 {
189 	struct mtd_part *part = PART(mtd);
190 	return part->master->_panic_write(part->master, to + part->offset, len,
191 					  retlen, buf);
192 }
193 
194 static int part_write_oob(struct mtd_info *mtd, loff_t to,
195 		struct mtd_oob_ops *ops)
196 {
197 	struct mtd_part *part = PART(mtd);
198 
199 	if (to >= mtd->size)
200 		return -EINVAL;
201 	if (ops->datbuf && to + ops->len > mtd->size)
202 		return -EINVAL;
203 	return part->master->_write_oob(part->master, to + part->offset, ops);
204 }
205 
206 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
207 		size_t len, size_t *retlen, u_char *buf)
208 {
209 	struct mtd_part *part = PART(mtd);
210 	return part->master->_write_user_prot_reg(part->master, from, len,
211 						  retlen, buf);
212 }
213 
214 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
215 		size_t len)
216 {
217 	struct mtd_part *part = PART(mtd);
218 	return part->master->_lock_user_prot_reg(part->master, from, len);
219 }
220 
221 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
222 		unsigned long count, loff_t to, size_t *retlen)
223 {
224 	struct mtd_part *part = PART(mtd);
225 	return part->master->_writev(part->master, vecs, count,
226 				     to + part->offset, retlen);
227 }
228 
229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
230 {
231 	struct mtd_part *part = PART(mtd);
232 	int ret;
233 
234 	instr->addr += part->offset;
235 	ret = part->master->_erase(part->master, instr);
236 	if (ret) {
237 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
238 			instr->fail_addr -= part->offset;
239 		instr->addr -= part->offset;
240 	}
241 	return ret;
242 }
243 
244 void mtd_erase_callback(struct erase_info *instr)
245 {
246 	if (instr->mtd->_erase == part_erase) {
247 		struct mtd_part *part = PART(instr->mtd);
248 
249 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
250 			instr->fail_addr -= part->offset;
251 		instr->addr -= part->offset;
252 	}
253 	if (instr->callback)
254 		instr->callback(instr);
255 }
256 EXPORT_SYMBOL_GPL(mtd_erase_callback);
257 
258 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
259 {
260 	struct mtd_part *part = PART(mtd);
261 	return part->master->_lock(part->master, ofs + part->offset, len);
262 }
263 
264 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
265 {
266 	struct mtd_part *part = PART(mtd);
267 	return part->master->_unlock(part->master, ofs + part->offset, len);
268 }
269 
270 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
271 {
272 	struct mtd_part *part = PART(mtd);
273 	return part->master->_is_locked(part->master, ofs + part->offset, len);
274 }
275 
276 static void part_sync(struct mtd_info *mtd)
277 {
278 	struct mtd_part *part = PART(mtd);
279 	part->master->_sync(part->master);
280 }
281 
282 static int part_suspend(struct mtd_info *mtd)
283 {
284 	struct mtd_part *part = PART(mtd);
285 	return part->master->_suspend(part->master);
286 }
287 
288 static void part_resume(struct mtd_info *mtd)
289 {
290 	struct mtd_part *part = PART(mtd);
291 	part->master->_resume(part->master);
292 }
293 
294 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
295 {
296 	struct mtd_part *part = PART(mtd);
297 	ofs += part->offset;
298 	return part->master->_block_isreserved(part->master, ofs);
299 }
300 
301 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
302 {
303 	struct mtd_part *part = PART(mtd);
304 	ofs += part->offset;
305 	return part->master->_block_isbad(part->master, ofs);
306 }
307 
308 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
309 {
310 	struct mtd_part *part = PART(mtd);
311 	int res;
312 
313 	ofs += part->offset;
314 	res = part->master->_block_markbad(part->master, ofs);
315 	if (!res)
316 		mtd->ecc_stats.badblocks++;
317 	return res;
318 }
319 
320 static inline void free_partition(struct mtd_part *p)
321 {
322 	kfree(p->mtd.name);
323 	kfree(p);
324 }
325 
326 /*
327  * This function unregisters and destroy all slave MTD objects which are
328  * attached to the given master MTD object.
329  */
330 
331 int del_mtd_partitions(struct mtd_info *master)
332 {
333 	struct mtd_part *slave, *next;
334 	int ret, err = 0;
335 
336 	mutex_lock(&mtd_partitions_mutex);
337 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
338 		if (slave->master == master) {
339 			ret = del_mtd_device(&slave->mtd);
340 			if (ret < 0) {
341 				err = ret;
342 				continue;
343 			}
344 			list_del(&slave->list);
345 			free_partition(slave);
346 		}
347 	mutex_unlock(&mtd_partitions_mutex);
348 
349 	return err;
350 }
351 
352 static struct mtd_part *allocate_partition(struct mtd_info *master,
353 			const struct mtd_partition *part, int partno,
354 			uint64_t cur_offset)
355 {
356 	struct mtd_part *slave;
357 	char *name;
358 
359 	/* allocate the partition structure */
360 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
361 	name = kstrdup(part->name, GFP_KERNEL);
362 	if (!name || !slave) {
363 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
364 		       master->name);
365 		kfree(name);
366 		kfree(slave);
367 		return ERR_PTR(-ENOMEM);
368 	}
369 
370 	/* set up the MTD object for this partition */
371 	slave->mtd.type = master->type;
372 	slave->mtd.flags = master->flags & ~part->mask_flags;
373 	slave->mtd.size = part->size;
374 	slave->mtd.writesize = master->writesize;
375 	slave->mtd.writebufsize = master->writebufsize;
376 	slave->mtd.oobsize = master->oobsize;
377 	slave->mtd.oobavail = master->oobavail;
378 	slave->mtd.subpage_sft = master->subpage_sft;
379 
380 	slave->mtd.name = name;
381 	slave->mtd.owner = master->owner;
382 
383 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
384 	 * concern for showing the same data in multiple partitions.
385 	 * However, it is very useful to have the master node present,
386 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
387 	 * will have device nodes etc only if this is set, so make the
388 	 * parent conditional on that option. Note, this is a way to
389 	 * distinguish between the master and the partition in sysfs.
390 	 */
391 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
392 				&master->dev :
393 				master->dev.parent;
394 
395 	slave->mtd._read = part_read;
396 	slave->mtd._write = part_write;
397 
398 	if (master->_panic_write)
399 		slave->mtd._panic_write = part_panic_write;
400 
401 	if (master->_point && master->_unpoint) {
402 		slave->mtd._point = part_point;
403 		slave->mtd._unpoint = part_unpoint;
404 	}
405 
406 	if (master->_get_unmapped_area)
407 		slave->mtd._get_unmapped_area = part_get_unmapped_area;
408 	if (master->_read_oob)
409 		slave->mtd._read_oob = part_read_oob;
410 	if (master->_write_oob)
411 		slave->mtd._write_oob = part_write_oob;
412 	if (master->_read_user_prot_reg)
413 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
414 	if (master->_read_fact_prot_reg)
415 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
416 	if (master->_write_user_prot_reg)
417 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
418 	if (master->_lock_user_prot_reg)
419 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
420 	if (master->_get_user_prot_info)
421 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
422 	if (master->_get_fact_prot_info)
423 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
424 	if (master->_sync)
425 		slave->mtd._sync = part_sync;
426 	if (!partno && !master->dev.class && master->_suspend &&
427 	    master->_resume) {
428 			slave->mtd._suspend = part_suspend;
429 			slave->mtd._resume = part_resume;
430 	}
431 	if (master->_writev)
432 		slave->mtd._writev = part_writev;
433 	if (master->_lock)
434 		slave->mtd._lock = part_lock;
435 	if (master->_unlock)
436 		slave->mtd._unlock = part_unlock;
437 	if (master->_is_locked)
438 		slave->mtd._is_locked = part_is_locked;
439 	if (master->_block_isreserved)
440 		slave->mtd._block_isreserved = part_block_isreserved;
441 	if (master->_block_isbad)
442 		slave->mtd._block_isbad = part_block_isbad;
443 	if (master->_block_markbad)
444 		slave->mtd._block_markbad = part_block_markbad;
445 	slave->mtd._erase = part_erase;
446 	slave->master = master;
447 	slave->offset = part->offset;
448 
449 	if (slave->offset == MTDPART_OFS_APPEND)
450 		slave->offset = cur_offset;
451 	if (slave->offset == MTDPART_OFS_NXTBLK) {
452 		slave->offset = cur_offset;
453 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
454 			/* Round up to next erasesize */
455 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
456 			printk(KERN_NOTICE "Moving partition %d: "
457 			       "0x%012llx -> 0x%012llx\n", partno,
458 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
459 		}
460 	}
461 	if (slave->offset == MTDPART_OFS_RETAIN) {
462 		slave->offset = cur_offset;
463 		if (master->size - slave->offset >= slave->mtd.size) {
464 			slave->mtd.size = master->size - slave->offset
465 							- slave->mtd.size;
466 		} else {
467 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
468 				part->name, master->size - slave->offset,
469 				slave->mtd.size);
470 			/* register to preserve ordering */
471 			goto out_register;
472 		}
473 	}
474 	if (slave->mtd.size == MTDPART_SIZ_FULL)
475 		slave->mtd.size = master->size - slave->offset;
476 
477 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
478 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
479 
480 	/* let's do some sanity checks */
481 	if (slave->offset >= master->size) {
482 		/* let's register it anyway to preserve ordering */
483 		slave->offset = 0;
484 		slave->mtd.size = 0;
485 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
486 			part->name);
487 		goto out_register;
488 	}
489 	if (slave->offset + slave->mtd.size > master->size) {
490 		slave->mtd.size = master->size - slave->offset;
491 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
492 			part->name, master->name, (unsigned long long)slave->mtd.size);
493 	}
494 	if (master->numeraseregions > 1) {
495 		/* Deal with variable erase size stuff */
496 		int i, max = master->numeraseregions;
497 		u64 end = slave->offset + slave->mtd.size;
498 		struct mtd_erase_region_info *regions = master->eraseregions;
499 
500 		/* Find the first erase regions which is part of this
501 		 * partition. */
502 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
503 			;
504 		/* The loop searched for the region _behind_ the first one */
505 		if (i > 0)
506 			i--;
507 
508 		/* Pick biggest erasesize */
509 		for (; i < max && regions[i].offset < end; i++) {
510 			if (slave->mtd.erasesize < regions[i].erasesize) {
511 				slave->mtd.erasesize = regions[i].erasesize;
512 			}
513 		}
514 		BUG_ON(slave->mtd.erasesize == 0);
515 	} else {
516 		/* Single erase size */
517 		slave->mtd.erasesize = master->erasesize;
518 	}
519 
520 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
521 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
522 		/* Doesn't start on a boundary of major erase size */
523 		/* FIXME: Let it be writable if it is on a boundary of
524 		 * _minor_ erase size though */
525 		slave->mtd.flags &= ~MTD_WRITEABLE;
526 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
527 			part->name);
528 	}
529 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
530 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
531 		slave->mtd.flags &= ~MTD_WRITEABLE;
532 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
533 			part->name);
534 	}
535 
536 	slave->mtd.ecclayout = master->ecclayout;
537 	slave->mtd.ecc_step_size = master->ecc_step_size;
538 	slave->mtd.ecc_strength = master->ecc_strength;
539 	slave->mtd.bitflip_threshold = master->bitflip_threshold;
540 
541 	if (master->_block_isbad) {
542 		uint64_t offs = 0;
543 
544 		while (offs < slave->mtd.size) {
545 			if (mtd_block_isreserved(master, offs + slave->offset))
546 				slave->mtd.ecc_stats.bbtblocks++;
547 			else if (mtd_block_isbad(master, offs + slave->offset))
548 				slave->mtd.ecc_stats.badblocks++;
549 			offs += slave->mtd.erasesize;
550 		}
551 	}
552 
553 out_register:
554 	return slave;
555 }
556 
557 static ssize_t mtd_partition_offset_show(struct device *dev,
558 		struct device_attribute *attr, char *buf)
559 {
560 	struct mtd_info *mtd = dev_get_drvdata(dev);
561 	struct mtd_part *part = PART(mtd);
562 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
563 }
564 
565 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
566 
567 static const struct attribute *mtd_partition_attrs[] = {
568 	&dev_attr_offset.attr,
569 	NULL
570 };
571 
572 static int mtd_add_partition_attrs(struct mtd_part *new)
573 {
574 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
575 	if (ret)
576 		printk(KERN_WARNING
577 		       "mtd: failed to create partition attrs, err=%d\n", ret);
578 	return ret;
579 }
580 
581 int mtd_add_partition(struct mtd_info *master, const char *name,
582 		      long long offset, long long length)
583 {
584 	struct mtd_partition part;
585 	struct mtd_part *new;
586 	int ret = 0;
587 
588 	/* the direct offset is expected */
589 	if (offset == MTDPART_OFS_APPEND ||
590 	    offset == MTDPART_OFS_NXTBLK)
591 		return -EINVAL;
592 
593 	if (length == MTDPART_SIZ_FULL)
594 		length = master->size - offset;
595 
596 	if (length <= 0)
597 		return -EINVAL;
598 
599 	part.name = name;
600 	part.size = length;
601 	part.offset = offset;
602 	part.mask_flags = 0;
603 	part.ecclayout = NULL;
604 
605 	new = allocate_partition(master, &part, -1, offset);
606 	if (IS_ERR(new))
607 		return PTR_ERR(new);
608 
609 	mutex_lock(&mtd_partitions_mutex);
610 	list_add(&new->list, &mtd_partitions);
611 	mutex_unlock(&mtd_partitions_mutex);
612 
613 	add_mtd_device(&new->mtd);
614 
615 	mtd_add_partition_attrs(new);
616 
617 	return ret;
618 }
619 EXPORT_SYMBOL_GPL(mtd_add_partition);
620 
621 int mtd_del_partition(struct mtd_info *master, int partno)
622 {
623 	struct mtd_part *slave, *next;
624 	int ret = -EINVAL;
625 
626 	mutex_lock(&mtd_partitions_mutex);
627 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
628 		if ((slave->master == master) &&
629 		    (slave->mtd.index == partno)) {
630 			sysfs_remove_files(&slave->mtd.dev.kobj,
631 					   mtd_partition_attrs);
632 			ret = del_mtd_device(&slave->mtd);
633 			if (ret < 0)
634 				break;
635 
636 			list_del(&slave->list);
637 			free_partition(slave);
638 			break;
639 		}
640 	mutex_unlock(&mtd_partitions_mutex);
641 
642 	return ret;
643 }
644 EXPORT_SYMBOL_GPL(mtd_del_partition);
645 
646 /*
647  * This function, given a master MTD object and a partition table, creates
648  * and registers slave MTD objects which are bound to the master according to
649  * the partition definitions.
650  *
651  * For historical reasons, this function's caller only registers the master
652  * if the MTD_PARTITIONED_MASTER config option is set.
653  */
654 
655 int add_mtd_partitions(struct mtd_info *master,
656 		       const struct mtd_partition *parts,
657 		       int nbparts)
658 {
659 	struct mtd_part *slave;
660 	uint64_t cur_offset = 0;
661 	int i;
662 
663 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
664 
665 	for (i = 0; i < nbparts; i++) {
666 		slave = allocate_partition(master, parts + i, i, cur_offset);
667 		if (IS_ERR(slave))
668 			return PTR_ERR(slave);
669 
670 		mutex_lock(&mtd_partitions_mutex);
671 		list_add(&slave->list, &mtd_partitions);
672 		mutex_unlock(&mtd_partitions_mutex);
673 
674 		add_mtd_device(&slave->mtd);
675 		mtd_add_partition_attrs(slave);
676 
677 		cur_offset = slave->offset + slave->mtd.size;
678 	}
679 
680 	return 0;
681 }
682 
683 static DEFINE_SPINLOCK(part_parser_lock);
684 static LIST_HEAD(part_parsers);
685 
686 static struct mtd_part_parser *get_partition_parser(const char *name)
687 {
688 	struct mtd_part_parser *p, *ret = NULL;
689 
690 	spin_lock(&part_parser_lock);
691 
692 	list_for_each_entry(p, &part_parsers, list)
693 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
694 			ret = p;
695 			break;
696 		}
697 
698 	spin_unlock(&part_parser_lock);
699 
700 	return ret;
701 }
702 
703 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
704 
705 void register_mtd_parser(struct mtd_part_parser *p)
706 {
707 	spin_lock(&part_parser_lock);
708 	list_add(&p->list, &part_parsers);
709 	spin_unlock(&part_parser_lock);
710 }
711 EXPORT_SYMBOL_GPL(register_mtd_parser);
712 
713 void deregister_mtd_parser(struct mtd_part_parser *p)
714 {
715 	spin_lock(&part_parser_lock);
716 	list_del(&p->list);
717 	spin_unlock(&part_parser_lock);
718 }
719 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
720 
721 /*
722  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
723  * are changing this array!
724  */
725 static const char * const default_mtd_part_types[] = {
726 	"cmdlinepart",
727 	"ofpart",
728 	NULL
729 };
730 
731 /**
732  * parse_mtd_partitions - parse MTD partitions
733  * @master: the master partition (describes whole MTD device)
734  * @types: names of partition parsers to try or %NULL
735  * @pparts: array of partitions found is returned here
736  * @data: MTD partition parser-specific data
737  *
738  * This function tries to find partition on MTD device @master. It uses MTD
739  * partition parsers, specified in @types. However, if @types is %NULL, then
740  * the default list of parsers is used. The default list contains only the
741  * "cmdlinepart" and "ofpart" parsers ATM.
742  * Note: If there are more then one parser in @types, the kernel only takes the
743  * partitions parsed out by the first parser.
744  *
745  * This function may return:
746  * o a negative error code in case of failure
747  * o zero if no partitions were found
748  * o a positive number of found partitions, in which case on exit @pparts will
749  *   point to an array containing this number of &struct mtd_info objects.
750  */
751 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
752 			 struct mtd_partition **pparts,
753 			 struct mtd_part_parser_data *data)
754 {
755 	struct mtd_part_parser *parser;
756 	int ret = 0;
757 
758 	if (!types)
759 		types = default_mtd_part_types;
760 
761 	for ( ; ret <= 0 && *types; types++) {
762 		parser = get_partition_parser(*types);
763 		if (!parser && !request_module("%s", *types))
764 			parser = get_partition_parser(*types);
765 		if (!parser)
766 			continue;
767 		ret = (*parser->parse_fn)(master, pparts, data);
768 		put_partition_parser(parser);
769 		if (ret > 0) {
770 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
771 			       ret, parser->name, master->name);
772 			break;
773 		}
774 	}
775 	return ret;
776 }
777 
778 int mtd_is_partition(const struct mtd_info *mtd)
779 {
780 	struct mtd_part *part;
781 	int ispart = 0;
782 
783 	mutex_lock(&mtd_partitions_mutex);
784 	list_for_each_entry(part, &mtd_partitions, list)
785 		if (&part->mtd == mtd) {
786 			ispart = 1;
787 			break;
788 		}
789 	mutex_unlock(&mtd_partitions_mutex);
790 
791 	return ispart;
792 }
793 EXPORT_SYMBOL_GPL(mtd_is_partition);
794 
795 /* Returns the size of the entire flash chip */
796 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
797 {
798 	if (!mtd_is_partition(mtd))
799 		return mtd->size;
800 
801 	return PART(mtd)->master->size;
802 }
803 EXPORT_SYMBOL_GPL(mtd_get_device_size);
804