xref: /linux/drivers/mtd/mtdpart.c (revision 79e24da00b1137031245f3341828e4215b1b5b59)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/kconfig.h>
34 
35 #include "mtdcore.h"
36 
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40 
41 /* Our partition node structure */
42 struct mtd_part {
43 	struct mtd_info mtd;
44 	struct mtd_info *master;
45 	uint64_t offset;
46 	struct list_head list;
47 };
48 
49 /*
50  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
51  * the pointer to that structure.
52  */
53 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
54 {
55 	return container_of(mtd, struct mtd_part, mtd);
56 }
57 
58 
59 /*
60  * MTD methods which simply translate the effective address and pass through
61  * to the _real_ device.
62  */
63 
64 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
65 		size_t *retlen, u_char *buf)
66 {
67 	struct mtd_part *part = mtd_to_part(mtd);
68 	struct mtd_ecc_stats stats;
69 	int res;
70 
71 	stats = part->master->ecc_stats;
72 	res = part->master->_read(part->master, from + part->offset, len,
73 				  retlen, buf);
74 	if (unlikely(mtd_is_eccerr(res)))
75 		mtd->ecc_stats.failed +=
76 			part->master->ecc_stats.failed - stats.failed;
77 	else
78 		mtd->ecc_stats.corrected +=
79 			part->master->ecc_stats.corrected - stats.corrected;
80 	return res;
81 }
82 
83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
84 		size_t *retlen, void **virt, resource_size_t *phys)
85 {
86 	struct mtd_part *part = mtd_to_part(mtd);
87 
88 	return part->master->_point(part->master, from + part->offset, len,
89 				    retlen, virt, phys);
90 }
91 
92 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
93 {
94 	struct mtd_part *part = mtd_to_part(mtd);
95 
96 	return part->master->_unpoint(part->master, from + part->offset, len);
97 }
98 
99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
100 					    unsigned long len,
101 					    unsigned long offset,
102 					    unsigned long flags)
103 {
104 	struct mtd_part *part = mtd_to_part(mtd);
105 
106 	offset += part->offset;
107 	return part->master->_get_unmapped_area(part->master, len, offset,
108 						flags);
109 }
110 
111 static int part_read_oob(struct mtd_info *mtd, loff_t from,
112 		struct mtd_oob_ops *ops)
113 {
114 	struct mtd_part *part = mtd_to_part(mtd);
115 	int res;
116 
117 	if (from >= mtd->size)
118 		return -EINVAL;
119 	if (ops->datbuf && from + ops->len > mtd->size)
120 		return -EINVAL;
121 
122 	/*
123 	 * If OOB is also requested, make sure that we do not read past the end
124 	 * of this partition.
125 	 */
126 	if (ops->oobbuf) {
127 		size_t len, pages;
128 
129 		if (ops->mode == MTD_OPS_AUTO_OOB)
130 			len = mtd->oobavail;
131 		else
132 			len = mtd->oobsize;
133 		pages = mtd_div_by_ws(mtd->size, mtd);
134 		pages -= mtd_div_by_ws(from, mtd);
135 		if (ops->ooboffs + ops->ooblen > pages * len)
136 			return -EINVAL;
137 	}
138 
139 	res = part->master->_read_oob(part->master, from + part->offset, ops);
140 	if (unlikely(res)) {
141 		if (mtd_is_bitflip(res))
142 			mtd->ecc_stats.corrected++;
143 		if (mtd_is_eccerr(res))
144 			mtd->ecc_stats.failed++;
145 	}
146 	return res;
147 }
148 
149 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
150 		size_t len, size_t *retlen, u_char *buf)
151 {
152 	struct mtd_part *part = mtd_to_part(mtd);
153 	return part->master->_read_user_prot_reg(part->master, from, len,
154 						 retlen, buf);
155 }
156 
157 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
158 				   size_t *retlen, struct otp_info *buf)
159 {
160 	struct mtd_part *part = mtd_to_part(mtd);
161 	return part->master->_get_user_prot_info(part->master, len, retlen,
162 						 buf);
163 }
164 
165 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
166 		size_t len, size_t *retlen, u_char *buf)
167 {
168 	struct mtd_part *part = mtd_to_part(mtd);
169 	return part->master->_read_fact_prot_reg(part->master, from, len,
170 						 retlen, buf);
171 }
172 
173 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
174 				   size_t *retlen, struct otp_info *buf)
175 {
176 	struct mtd_part *part = mtd_to_part(mtd);
177 	return part->master->_get_fact_prot_info(part->master, len, retlen,
178 						 buf);
179 }
180 
181 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
182 		size_t *retlen, const u_char *buf)
183 {
184 	struct mtd_part *part = mtd_to_part(mtd);
185 	return part->master->_write(part->master, to + part->offset, len,
186 				    retlen, buf);
187 }
188 
189 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
190 		size_t *retlen, const u_char *buf)
191 {
192 	struct mtd_part *part = mtd_to_part(mtd);
193 	return part->master->_panic_write(part->master, to + part->offset, len,
194 					  retlen, buf);
195 }
196 
197 static int part_write_oob(struct mtd_info *mtd, loff_t to,
198 		struct mtd_oob_ops *ops)
199 {
200 	struct mtd_part *part = mtd_to_part(mtd);
201 
202 	if (to >= mtd->size)
203 		return -EINVAL;
204 	if (ops->datbuf && to + ops->len > mtd->size)
205 		return -EINVAL;
206 	return part->master->_write_oob(part->master, to + part->offset, ops);
207 }
208 
209 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
210 		size_t len, size_t *retlen, u_char *buf)
211 {
212 	struct mtd_part *part = mtd_to_part(mtd);
213 	return part->master->_write_user_prot_reg(part->master, from, len,
214 						  retlen, buf);
215 }
216 
217 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
218 		size_t len)
219 {
220 	struct mtd_part *part = mtd_to_part(mtd);
221 	return part->master->_lock_user_prot_reg(part->master, from, len);
222 }
223 
224 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
225 		unsigned long count, loff_t to, size_t *retlen)
226 {
227 	struct mtd_part *part = mtd_to_part(mtd);
228 	return part->master->_writev(part->master, vecs, count,
229 				     to + part->offset, retlen);
230 }
231 
232 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
233 {
234 	struct mtd_part *part = mtd_to_part(mtd);
235 	int ret;
236 
237 	instr->addr += part->offset;
238 	ret = part->master->_erase(part->master, instr);
239 	if (ret) {
240 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
241 			instr->fail_addr -= part->offset;
242 		instr->addr -= part->offset;
243 	}
244 	return ret;
245 }
246 
247 void mtd_erase_callback(struct erase_info *instr)
248 {
249 	if (instr->mtd->_erase == part_erase) {
250 		struct mtd_part *part = mtd_to_part(instr->mtd);
251 
252 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
253 			instr->fail_addr -= part->offset;
254 		instr->addr -= part->offset;
255 	}
256 	if (instr->callback)
257 		instr->callback(instr);
258 }
259 EXPORT_SYMBOL_GPL(mtd_erase_callback);
260 
261 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
262 {
263 	struct mtd_part *part = mtd_to_part(mtd);
264 	return part->master->_lock(part->master, ofs + part->offset, len);
265 }
266 
267 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
268 {
269 	struct mtd_part *part = mtd_to_part(mtd);
270 	return part->master->_unlock(part->master, ofs + part->offset, len);
271 }
272 
273 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
274 {
275 	struct mtd_part *part = mtd_to_part(mtd);
276 	return part->master->_is_locked(part->master, ofs + part->offset, len);
277 }
278 
279 static void part_sync(struct mtd_info *mtd)
280 {
281 	struct mtd_part *part = mtd_to_part(mtd);
282 	part->master->_sync(part->master);
283 }
284 
285 static int part_suspend(struct mtd_info *mtd)
286 {
287 	struct mtd_part *part = mtd_to_part(mtd);
288 	return part->master->_suspend(part->master);
289 }
290 
291 static void part_resume(struct mtd_info *mtd)
292 {
293 	struct mtd_part *part = mtd_to_part(mtd);
294 	part->master->_resume(part->master);
295 }
296 
297 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
298 {
299 	struct mtd_part *part = mtd_to_part(mtd);
300 	ofs += part->offset;
301 	return part->master->_block_isreserved(part->master, ofs);
302 }
303 
304 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
305 {
306 	struct mtd_part *part = mtd_to_part(mtd);
307 	ofs += part->offset;
308 	return part->master->_block_isbad(part->master, ofs);
309 }
310 
311 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
312 {
313 	struct mtd_part *part = mtd_to_part(mtd);
314 	int res;
315 
316 	ofs += part->offset;
317 	res = part->master->_block_markbad(part->master, ofs);
318 	if (!res)
319 		mtd->ecc_stats.badblocks++;
320 	return res;
321 }
322 
323 static inline void free_partition(struct mtd_part *p)
324 {
325 	kfree(p->mtd.name);
326 	kfree(p);
327 }
328 
329 /*
330  * This function unregisters and destroy all slave MTD objects which are
331  * attached to the given master MTD object.
332  */
333 
334 int del_mtd_partitions(struct mtd_info *master)
335 {
336 	struct mtd_part *slave, *next;
337 	int ret, err = 0;
338 
339 	mutex_lock(&mtd_partitions_mutex);
340 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
341 		if (slave->master == master) {
342 			ret = del_mtd_device(&slave->mtd);
343 			if (ret < 0) {
344 				err = ret;
345 				continue;
346 			}
347 			list_del(&slave->list);
348 			free_partition(slave);
349 		}
350 	mutex_unlock(&mtd_partitions_mutex);
351 
352 	return err;
353 }
354 
355 static struct mtd_part *allocate_partition(struct mtd_info *master,
356 			const struct mtd_partition *part, int partno,
357 			uint64_t cur_offset)
358 {
359 	struct mtd_part *slave;
360 	char *name;
361 
362 	/* allocate the partition structure */
363 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
364 	name = kstrdup(part->name, GFP_KERNEL);
365 	if (!name || !slave) {
366 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
367 		       master->name);
368 		kfree(name);
369 		kfree(slave);
370 		return ERR_PTR(-ENOMEM);
371 	}
372 
373 	/* set up the MTD object for this partition */
374 	slave->mtd.type = master->type;
375 	slave->mtd.flags = master->flags & ~part->mask_flags;
376 	slave->mtd.size = part->size;
377 	slave->mtd.writesize = master->writesize;
378 	slave->mtd.writebufsize = master->writebufsize;
379 	slave->mtd.oobsize = master->oobsize;
380 	slave->mtd.oobavail = master->oobavail;
381 	slave->mtd.subpage_sft = master->subpage_sft;
382 
383 	slave->mtd.name = name;
384 	slave->mtd.owner = master->owner;
385 
386 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
387 	 * concern for showing the same data in multiple partitions.
388 	 * However, it is very useful to have the master node present,
389 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
390 	 * will have device nodes etc only if this is set, so make the
391 	 * parent conditional on that option. Note, this is a way to
392 	 * distinguish between the master and the partition in sysfs.
393 	 */
394 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
395 				&master->dev :
396 				master->dev.parent;
397 
398 	slave->mtd._read = part_read;
399 	slave->mtd._write = part_write;
400 
401 	if (master->_panic_write)
402 		slave->mtd._panic_write = part_panic_write;
403 
404 	if (master->_point && master->_unpoint) {
405 		slave->mtd._point = part_point;
406 		slave->mtd._unpoint = part_unpoint;
407 	}
408 
409 	if (master->_get_unmapped_area)
410 		slave->mtd._get_unmapped_area = part_get_unmapped_area;
411 	if (master->_read_oob)
412 		slave->mtd._read_oob = part_read_oob;
413 	if (master->_write_oob)
414 		slave->mtd._write_oob = part_write_oob;
415 	if (master->_read_user_prot_reg)
416 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
417 	if (master->_read_fact_prot_reg)
418 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
419 	if (master->_write_user_prot_reg)
420 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
421 	if (master->_lock_user_prot_reg)
422 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
423 	if (master->_get_user_prot_info)
424 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
425 	if (master->_get_fact_prot_info)
426 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
427 	if (master->_sync)
428 		slave->mtd._sync = part_sync;
429 	if (!partno && !master->dev.class && master->_suspend &&
430 	    master->_resume) {
431 			slave->mtd._suspend = part_suspend;
432 			slave->mtd._resume = part_resume;
433 	}
434 	if (master->_writev)
435 		slave->mtd._writev = part_writev;
436 	if (master->_lock)
437 		slave->mtd._lock = part_lock;
438 	if (master->_unlock)
439 		slave->mtd._unlock = part_unlock;
440 	if (master->_is_locked)
441 		slave->mtd._is_locked = part_is_locked;
442 	if (master->_block_isreserved)
443 		slave->mtd._block_isreserved = part_block_isreserved;
444 	if (master->_block_isbad)
445 		slave->mtd._block_isbad = part_block_isbad;
446 	if (master->_block_markbad)
447 		slave->mtd._block_markbad = part_block_markbad;
448 	slave->mtd._erase = part_erase;
449 	slave->master = master;
450 	slave->offset = part->offset;
451 
452 	if (slave->offset == MTDPART_OFS_APPEND)
453 		slave->offset = cur_offset;
454 	if (slave->offset == MTDPART_OFS_NXTBLK) {
455 		slave->offset = cur_offset;
456 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
457 			/* Round up to next erasesize */
458 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
459 			printk(KERN_NOTICE "Moving partition %d: "
460 			       "0x%012llx -> 0x%012llx\n", partno,
461 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
462 		}
463 	}
464 	if (slave->offset == MTDPART_OFS_RETAIN) {
465 		slave->offset = cur_offset;
466 		if (master->size - slave->offset >= slave->mtd.size) {
467 			slave->mtd.size = master->size - slave->offset
468 							- slave->mtd.size;
469 		} else {
470 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
471 				part->name, master->size - slave->offset,
472 				slave->mtd.size);
473 			/* register to preserve ordering */
474 			goto out_register;
475 		}
476 	}
477 	if (slave->mtd.size == MTDPART_SIZ_FULL)
478 		slave->mtd.size = master->size - slave->offset;
479 
480 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
481 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
482 
483 	/* let's do some sanity checks */
484 	if (slave->offset >= master->size) {
485 		/* let's register it anyway to preserve ordering */
486 		slave->offset = 0;
487 		slave->mtd.size = 0;
488 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
489 			part->name);
490 		goto out_register;
491 	}
492 	if (slave->offset + slave->mtd.size > master->size) {
493 		slave->mtd.size = master->size - slave->offset;
494 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
495 			part->name, master->name, (unsigned long long)slave->mtd.size);
496 	}
497 	if (master->numeraseregions > 1) {
498 		/* Deal with variable erase size stuff */
499 		int i, max = master->numeraseregions;
500 		u64 end = slave->offset + slave->mtd.size;
501 		struct mtd_erase_region_info *regions = master->eraseregions;
502 
503 		/* Find the first erase regions which is part of this
504 		 * partition. */
505 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
506 			;
507 		/* The loop searched for the region _behind_ the first one */
508 		if (i > 0)
509 			i--;
510 
511 		/* Pick biggest erasesize */
512 		for (; i < max && regions[i].offset < end; i++) {
513 			if (slave->mtd.erasesize < regions[i].erasesize) {
514 				slave->mtd.erasesize = regions[i].erasesize;
515 			}
516 		}
517 		BUG_ON(slave->mtd.erasesize == 0);
518 	} else {
519 		/* Single erase size */
520 		slave->mtd.erasesize = master->erasesize;
521 	}
522 
523 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
524 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
525 		/* Doesn't start on a boundary of major erase size */
526 		/* FIXME: Let it be writable if it is on a boundary of
527 		 * _minor_ erase size though */
528 		slave->mtd.flags &= ~MTD_WRITEABLE;
529 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
530 			part->name);
531 	}
532 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
533 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
534 		slave->mtd.flags &= ~MTD_WRITEABLE;
535 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
536 			part->name);
537 	}
538 
539 	slave->mtd.ecclayout = master->ecclayout;
540 	slave->mtd.ecc_step_size = master->ecc_step_size;
541 	slave->mtd.ecc_strength = master->ecc_strength;
542 	slave->mtd.bitflip_threshold = master->bitflip_threshold;
543 
544 	if (master->_block_isbad) {
545 		uint64_t offs = 0;
546 
547 		while (offs < slave->mtd.size) {
548 			if (mtd_block_isreserved(master, offs + slave->offset))
549 				slave->mtd.ecc_stats.bbtblocks++;
550 			else if (mtd_block_isbad(master, offs + slave->offset))
551 				slave->mtd.ecc_stats.badblocks++;
552 			offs += slave->mtd.erasesize;
553 		}
554 	}
555 
556 out_register:
557 	return slave;
558 }
559 
560 static ssize_t mtd_partition_offset_show(struct device *dev,
561 		struct device_attribute *attr, char *buf)
562 {
563 	struct mtd_info *mtd = dev_get_drvdata(dev);
564 	struct mtd_part *part = mtd_to_part(mtd);
565 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
566 }
567 
568 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
569 
570 static const struct attribute *mtd_partition_attrs[] = {
571 	&dev_attr_offset.attr,
572 	NULL
573 };
574 
575 static int mtd_add_partition_attrs(struct mtd_part *new)
576 {
577 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
578 	if (ret)
579 		printk(KERN_WARNING
580 		       "mtd: failed to create partition attrs, err=%d\n", ret);
581 	return ret;
582 }
583 
584 int mtd_add_partition(struct mtd_info *master, const char *name,
585 		      long long offset, long long length)
586 {
587 	struct mtd_partition part;
588 	struct mtd_part *new;
589 	int ret = 0;
590 
591 	/* the direct offset is expected */
592 	if (offset == MTDPART_OFS_APPEND ||
593 	    offset == MTDPART_OFS_NXTBLK)
594 		return -EINVAL;
595 
596 	if (length == MTDPART_SIZ_FULL)
597 		length = master->size - offset;
598 
599 	if (length <= 0)
600 		return -EINVAL;
601 
602 	memset(&part, 0, sizeof(part));
603 	part.name = name;
604 	part.size = length;
605 	part.offset = offset;
606 
607 	new = allocate_partition(master, &part, -1, offset);
608 	if (IS_ERR(new))
609 		return PTR_ERR(new);
610 
611 	mutex_lock(&mtd_partitions_mutex);
612 	list_add(&new->list, &mtd_partitions);
613 	mutex_unlock(&mtd_partitions_mutex);
614 
615 	add_mtd_device(&new->mtd);
616 
617 	mtd_add_partition_attrs(new);
618 
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(mtd_add_partition);
622 
623 int mtd_del_partition(struct mtd_info *master, int partno)
624 {
625 	struct mtd_part *slave, *next;
626 	int ret = -EINVAL;
627 
628 	mutex_lock(&mtd_partitions_mutex);
629 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
630 		if ((slave->master == master) &&
631 		    (slave->mtd.index == partno)) {
632 			sysfs_remove_files(&slave->mtd.dev.kobj,
633 					   mtd_partition_attrs);
634 			ret = del_mtd_device(&slave->mtd);
635 			if (ret < 0)
636 				break;
637 
638 			list_del(&slave->list);
639 			free_partition(slave);
640 			break;
641 		}
642 	mutex_unlock(&mtd_partitions_mutex);
643 
644 	return ret;
645 }
646 EXPORT_SYMBOL_GPL(mtd_del_partition);
647 
648 /*
649  * This function, given a master MTD object and a partition table, creates
650  * and registers slave MTD objects which are bound to the master according to
651  * the partition definitions.
652  *
653  * For historical reasons, this function's caller only registers the master
654  * if the MTD_PARTITIONED_MASTER config option is set.
655  */
656 
657 int add_mtd_partitions(struct mtd_info *master,
658 		       const struct mtd_partition *parts,
659 		       int nbparts)
660 {
661 	struct mtd_part *slave;
662 	uint64_t cur_offset = 0;
663 	int i;
664 
665 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
666 
667 	for (i = 0; i < nbparts; i++) {
668 		slave = allocate_partition(master, parts + i, i, cur_offset);
669 		if (IS_ERR(slave)) {
670 			del_mtd_partitions(master);
671 			return PTR_ERR(slave);
672 		}
673 
674 		mutex_lock(&mtd_partitions_mutex);
675 		list_add(&slave->list, &mtd_partitions);
676 		mutex_unlock(&mtd_partitions_mutex);
677 
678 		add_mtd_device(&slave->mtd);
679 		mtd_add_partition_attrs(slave);
680 
681 		cur_offset = slave->offset + slave->mtd.size;
682 	}
683 
684 	return 0;
685 }
686 
687 static DEFINE_SPINLOCK(part_parser_lock);
688 static LIST_HEAD(part_parsers);
689 
690 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
691 {
692 	struct mtd_part_parser *p, *ret = NULL;
693 
694 	spin_lock(&part_parser_lock);
695 
696 	list_for_each_entry(p, &part_parsers, list)
697 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
698 			ret = p;
699 			break;
700 		}
701 
702 	spin_unlock(&part_parser_lock);
703 
704 	return ret;
705 }
706 
707 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
708 {
709 	module_put(p->owner);
710 }
711 
712 /*
713  * Many partition parsers just expected the core to kfree() all their data in
714  * one chunk. Do that by default.
715  */
716 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
717 					    int nr_parts)
718 {
719 	kfree(pparts);
720 }
721 
722 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
723 {
724 	p->owner = owner;
725 
726 	if (!p->cleanup)
727 		p->cleanup = &mtd_part_parser_cleanup_default;
728 
729 	spin_lock(&part_parser_lock);
730 	list_add(&p->list, &part_parsers);
731 	spin_unlock(&part_parser_lock);
732 
733 	return 0;
734 }
735 EXPORT_SYMBOL_GPL(__register_mtd_parser);
736 
737 void deregister_mtd_parser(struct mtd_part_parser *p)
738 {
739 	spin_lock(&part_parser_lock);
740 	list_del(&p->list);
741 	spin_unlock(&part_parser_lock);
742 }
743 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
744 
745 /*
746  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
747  * are changing this array!
748  */
749 static const char * const default_mtd_part_types[] = {
750 	"cmdlinepart",
751 	"ofpart",
752 	NULL
753 };
754 
755 /**
756  * parse_mtd_partitions - parse MTD partitions
757  * @master: the master partition (describes whole MTD device)
758  * @types: names of partition parsers to try or %NULL
759  * @pparts: info about partitions found is returned here
760  * @data: MTD partition parser-specific data
761  *
762  * This function tries to find partition on MTD device @master. It uses MTD
763  * partition parsers, specified in @types. However, if @types is %NULL, then
764  * the default list of parsers is used. The default list contains only the
765  * "cmdlinepart" and "ofpart" parsers ATM.
766  * Note: If there are more then one parser in @types, the kernel only takes the
767  * partitions parsed out by the first parser.
768  *
769  * This function may return:
770  * o a negative error code in case of failure
771  * o zero otherwise, and @pparts will describe the partitions, number of
772  *   partitions, and the parser which parsed them. Caller must release
773  *   resources with mtd_part_parser_cleanup() when finished with the returned
774  *   data.
775  */
776 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
777 			 struct mtd_partitions *pparts,
778 			 struct mtd_part_parser_data *data)
779 {
780 	struct mtd_part_parser *parser;
781 	int ret, err = 0;
782 
783 	if (!types)
784 		types = default_mtd_part_types;
785 
786 	for ( ; *types; types++) {
787 		pr_debug("%s: parsing partitions %s\n", master->name, *types);
788 		parser = mtd_part_parser_get(*types);
789 		if (!parser && !request_module("%s", *types))
790 			parser = mtd_part_parser_get(*types);
791 		pr_debug("%s: got parser %s\n", master->name,
792 			 parser ? parser->name : NULL);
793 		if (!parser)
794 			continue;
795 		ret = (*parser->parse_fn)(master, &pparts->parts, data);
796 		pr_debug("%s: parser %s: %i\n",
797 			 master->name, parser->name, ret);
798 		if (ret > 0) {
799 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
800 			       ret, parser->name, master->name);
801 			pparts->nr_parts = ret;
802 			pparts->parser = parser;
803 			return 0;
804 		}
805 		mtd_part_parser_put(parser);
806 		/*
807 		 * Stash the first error we see; only report it if no parser
808 		 * succeeds
809 		 */
810 		if (ret < 0 && !err)
811 			err = ret;
812 	}
813 	return err;
814 }
815 
816 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
817 {
818 	const struct mtd_part_parser *parser;
819 
820 	if (!parts)
821 		return;
822 
823 	parser = parts->parser;
824 	if (parser) {
825 		if (parser->cleanup)
826 			parser->cleanup(parts->parts, parts->nr_parts);
827 
828 		mtd_part_parser_put(parser);
829 	}
830 }
831 
832 int mtd_is_partition(const struct mtd_info *mtd)
833 {
834 	struct mtd_part *part;
835 	int ispart = 0;
836 
837 	mutex_lock(&mtd_partitions_mutex);
838 	list_for_each_entry(part, &mtd_partitions, list)
839 		if (&part->mtd == mtd) {
840 			ispart = 1;
841 			break;
842 		}
843 	mutex_unlock(&mtd_partitions_mutex);
844 
845 	return ispart;
846 }
847 EXPORT_SYMBOL_GPL(mtd_is_partition);
848 
849 /* Returns the size of the entire flash chip */
850 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
851 {
852 	if (!mtd_is_partition(mtd))
853 		return mtd->size;
854 
855 	return mtd_to_part(mtd)->master->size;
856 }
857 EXPORT_SYMBOL_GPL(mtd_get_device_size);
858