1 /* 2 * Simple MTD partitioning layer 3 * 4 * (C) 2000 Nicolas Pitre <nico@cam.org> 5 * 6 * This code is GPL 7 * 8 * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $ 9 * 10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> 11 * added support for read_oob, write_oob 12 */ 13 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/list.h> 19 #include <linux/kmod.h> 20 #include <linux/mtd/mtd.h> 21 #include <linux/mtd/partitions.h> 22 #include <linux/mtd/compatmac.h> 23 24 /* Our partition linked list */ 25 static LIST_HEAD(mtd_partitions); 26 27 /* Our partition node structure */ 28 struct mtd_part { 29 struct mtd_info mtd; 30 struct mtd_info *master; 31 u_int32_t offset; 32 int index; 33 struct list_head list; 34 int registered; 35 }; 36 37 /* 38 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 39 * the pointer to that structure with this macro. 40 */ 41 #define PART(x) ((struct mtd_part *)(x)) 42 43 44 /* 45 * MTD methods which simply translate the effective address and pass through 46 * to the _real_ device. 47 */ 48 49 static int part_read (struct mtd_info *mtd, loff_t from, size_t len, 50 size_t *retlen, u_char *buf) 51 { 52 struct mtd_part *part = PART(mtd); 53 int res; 54 55 if (from >= mtd->size) 56 len = 0; 57 else if (from + len > mtd->size) 58 len = mtd->size - from; 59 res = part->master->read (part->master, from + part->offset, 60 len, retlen, buf); 61 if (unlikely(res)) { 62 if (res == -EUCLEAN) 63 mtd->ecc_stats.corrected++; 64 if (res == -EBADMSG) 65 mtd->ecc_stats.failed++; 66 } 67 return res; 68 } 69 70 static int part_point (struct mtd_info *mtd, loff_t from, size_t len, 71 size_t *retlen, u_char **buf) 72 { 73 struct mtd_part *part = PART(mtd); 74 if (from >= mtd->size) 75 len = 0; 76 else if (from + len > mtd->size) 77 len = mtd->size - from; 78 return part->master->point (part->master, from + part->offset, 79 len, retlen, buf); 80 } 81 82 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) 83 { 84 struct mtd_part *part = PART(mtd); 85 86 part->master->unpoint (part->master, addr, from + part->offset, len); 87 } 88 89 static int part_read_oob(struct mtd_info *mtd, loff_t from, 90 struct mtd_oob_ops *ops) 91 { 92 struct mtd_part *part = PART(mtd); 93 int res; 94 95 if (from >= mtd->size) 96 return -EINVAL; 97 if (ops->datbuf && from + ops->len > mtd->size) 98 return -EINVAL; 99 res = part->master->read_oob(part->master, from + part->offset, ops); 100 101 if (unlikely(res)) { 102 if (res == -EUCLEAN) 103 mtd->ecc_stats.corrected++; 104 if (res == -EBADMSG) 105 mtd->ecc_stats.failed++; 106 } 107 return res; 108 } 109 110 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 111 size_t *retlen, u_char *buf) 112 { 113 struct mtd_part *part = PART(mtd); 114 return part->master->read_user_prot_reg (part->master, from, 115 len, retlen, buf); 116 } 117 118 static int part_get_user_prot_info (struct mtd_info *mtd, 119 struct otp_info *buf, size_t len) 120 { 121 struct mtd_part *part = PART(mtd); 122 return part->master->get_user_prot_info (part->master, buf, len); 123 } 124 125 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 126 size_t *retlen, u_char *buf) 127 { 128 struct mtd_part *part = PART(mtd); 129 return part->master->read_fact_prot_reg (part->master, from, 130 len, retlen, buf); 131 } 132 133 static int part_get_fact_prot_info (struct mtd_info *mtd, 134 struct otp_info *buf, size_t len) 135 { 136 struct mtd_part *part = PART(mtd); 137 return part->master->get_fact_prot_info (part->master, buf, len); 138 } 139 140 static int part_write (struct mtd_info *mtd, loff_t to, size_t len, 141 size_t *retlen, const u_char *buf) 142 { 143 struct mtd_part *part = PART(mtd); 144 if (!(mtd->flags & MTD_WRITEABLE)) 145 return -EROFS; 146 if (to >= mtd->size) 147 len = 0; 148 else if (to + len > mtd->size) 149 len = mtd->size - to; 150 return part->master->write (part->master, to + part->offset, 151 len, retlen, buf); 152 } 153 154 static int part_write_oob(struct mtd_info *mtd, loff_t to, 155 struct mtd_oob_ops *ops) 156 { 157 struct mtd_part *part = PART(mtd); 158 159 if (!(mtd->flags & MTD_WRITEABLE)) 160 return -EROFS; 161 162 if (to >= mtd->size) 163 return -EINVAL; 164 if (ops->datbuf && to + ops->len > mtd->size) 165 return -EINVAL; 166 return part->master->write_oob(part->master, to + part->offset, ops); 167 } 168 169 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 170 size_t *retlen, u_char *buf) 171 { 172 struct mtd_part *part = PART(mtd); 173 return part->master->write_user_prot_reg (part->master, from, 174 len, retlen, buf); 175 } 176 177 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len) 178 { 179 struct mtd_part *part = PART(mtd); 180 return part->master->lock_user_prot_reg (part->master, from, len); 181 } 182 183 static int part_writev (struct mtd_info *mtd, const struct kvec *vecs, 184 unsigned long count, loff_t to, size_t *retlen) 185 { 186 struct mtd_part *part = PART(mtd); 187 if (!(mtd->flags & MTD_WRITEABLE)) 188 return -EROFS; 189 return part->master->writev (part->master, vecs, count, 190 to + part->offset, retlen); 191 } 192 193 static int part_erase (struct mtd_info *mtd, struct erase_info *instr) 194 { 195 struct mtd_part *part = PART(mtd); 196 int ret; 197 if (!(mtd->flags & MTD_WRITEABLE)) 198 return -EROFS; 199 if (instr->addr >= mtd->size) 200 return -EINVAL; 201 instr->addr += part->offset; 202 ret = part->master->erase(part->master, instr); 203 return ret; 204 } 205 206 void mtd_erase_callback(struct erase_info *instr) 207 { 208 if (instr->mtd->erase == part_erase) { 209 struct mtd_part *part = PART(instr->mtd); 210 211 if (instr->fail_addr != 0xffffffff) 212 instr->fail_addr -= part->offset; 213 instr->addr -= part->offset; 214 } 215 if (instr->callback) 216 instr->callback(instr); 217 } 218 EXPORT_SYMBOL_GPL(mtd_erase_callback); 219 220 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len) 221 { 222 struct mtd_part *part = PART(mtd); 223 if ((len + ofs) > mtd->size) 224 return -EINVAL; 225 return part->master->lock(part->master, ofs + part->offset, len); 226 } 227 228 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len) 229 { 230 struct mtd_part *part = PART(mtd); 231 if ((len + ofs) > mtd->size) 232 return -EINVAL; 233 return part->master->unlock(part->master, ofs + part->offset, len); 234 } 235 236 static void part_sync(struct mtd_info *mtd) 237 { 238 struct mtd_part *part = PART(mtd); 239 part->master->sync(part->master); 240 } 241 242 static int part_suspend(struct mtd_info *mtd) 243 { 244 struct mtd_part *part = PART(mtd); 245 return part->master->suspend(part->master); 246 } 247 248 static void part_resume(struct mtd_info *mtd) 249 { 250 struct mtd_part *part = PART(mtd); 251 part->master->resume(part->master); 252 } 253 254 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs) 255 { 256 struct mtd_part *part = PART(mtd); 257 if (ofs >= mtd->size) 258 return -EINVAL; 259 ofs += part->offset; 260 return part->master->block_isbad(part->master, ofs); 261 } 262 263 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs) 264 { 265 struct mtd_part *part = PART(mtd); 266 int res; 267 268 if (!(mtd->flags & MTD_WRITEABLE)) 269 return -EROFS; 270 if (ofs >= mtd->size) 271 return -EINVAL; 272 ofs += part->offset; 273 res = part->master->block_markbad(part->master, ofs); 274 if (!res) 275 mtd->ecc_stats.badblocks++; 276 return res; 277 } 278 279 /* 280 * This function unregisters and destroy all slave MTD objects which are 281 * attached to the given master MTD object. 282 */ 283 284 int del_mtd_partitions(struct mtd_info *master) 285 { 286 struct list_head *node; 287 struct mtd_part *slave; 288 289 for (node = mtd_partitions.next; 290 node != &mtd_partitions; 291 node = node->next) { 292 slave = list_entry(node, struct mtd_part, list); 293 if (slave->master == master) { 294 struct list_head *prev = node->prev; 295 __list_del(prev, node->next); 296 if(slave->registered) 297 del_mtd_device(&slave->mtd); 298 kfree(slave); 299 node = prev; 300 } 301 } 302 303 return 0; 304 } 305 306 /* 307 * This function, given a master MTD object and a partition table, creates 308 * and registers slave MTD objects which are bound to the master according to 309 * the partition definitions. 310 * (Q: should we register the master MTD object as well?) 311 */ 312 313 int add_mtd_partitions(struct mtd_info *master, 314 const struct mtd_partition *parts, 315 int nbparts) 316 { 317 struct mtd_part *slave; 318 u_int32_t cur_offset = 0; 319 int i; 320 321 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 322 323 for (i = 0; i < nbparts; i++) { 324 325 /* allocate the partition structure */ 326 slave = kmalloc (sizeof(*slave), GFP_KERNEL); 327 if (!slave) { 328 printk ("memory allocation error while creating partitions for \"%s\"\n", 329 master->name); 330 del_mtd_partitions(master); 331 return -ENOMEM; 332 } 333 memset(slave, 0, sizeof(*slave)); 334 list_add(&slave->list, &mtd_partitions); 335 336 /* set up the MTD object for this partition */ 337 slave->mtd.type = master->type; 338 slave->mtd.flags = master->flags & ~parts[i].mask_flags; 339 slave->mtd.size = parts[i].size; 340 slave->mtd.writesize = master->writesize; 341 slave->mtd.oobsize = master->oobsize; 342 slave->mtd.ecctype = master->ecctype; 343 slave->mtd.eccsize = master->eccsize; 344 345 slave->mtd.name = parts[i].name; 346 slave->mtd.bank_size = master->bank_size; 347 slave->mtd.owner = master->owner; 348 349 slave->mtd.read = part_read; 350 slave->mtd.write = part_write; 351 352 if(master->point && master->unpoint){ 353 slave->mtd.point = part_point; 354 slave->mtd.unpoint = part_unpoint; 355 } 356 357 if (master->read_oob) 358 slave->mtd.read_oob = part_read_oob; 359 if (master->write_oob) 360 slave->mtd.write_oob = part_write_oob; 361 if(master->read_user_prot_reg) 362 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 363 if(master->read_fact_prot_reg) 364 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 365 if(master->write_user_prot_reg) 366 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 367 if(master->lock_user_prot_reg) 368 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 369 if(master->get_user_prot_info) 370 slave->mtd.get_user_prot_info = part_get_user_prot_info; 371 if(master->get_fact_prot_info) 372 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 373 if (master->sync) 374 slave->mtd.sync = part_sync; 375 if (!i && master->suspend && master->resume) { 376 slave->mtd.suspend = part_suspend; 377 slave->mtd.resume = part_resume; 378 } 379 if (master->writev) 380 slave->mtd.writev = part_writev; 381 if (master->lock) 382 slave->mtd.lock = part_lock; 383 if (master->unlock) 384 slave->mtd.unlock = part_unlock; 385 if (master->block_isbad) 386 slave->mtd.block_isbad = part_block_isbad; 387 if (master->block_markbad) 388 slave->mtd.block_markbad = part_block_markbad; 389 slave->mtd.erase = part_erase; 390 slave->master = master; 391 slave->offset = parts[i].offset; 392 slave->index = i; 393 394 if (slave->offset == MTDPART_OFS_APPEND) 395 slave->offset = cur_offset; 396 if (slave->offset == MTDPART_OFS_NXTBLK) { 397 slave->offset = cur_offset; 398 if ((cur_offset % master->erasesize) != 0) { 399 /* Round up to next erasesize */ 400 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize; 401 printk(KERN_NOTICE "Moving partition %d: " 402 "0x%08x -> 0x%08x\n", i, 403 cur_offset, slave->offset); 404 } 405 } 406 if (slave->mtd.size == MTDPART_SIZ_FULL) 407 slave->mtd.size = master->size - slave->offset; 408 cur_offset = slave->offset + slave->mtd.size; 409 410 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset, 411 slave->offset + slave->mtd.size, slave->mtd.name); 412 413 /* let's do some sanity checks */ 414 if (slave->offset >= master->size) { 415 /* let's register it anyway to preserve ordering */ 416 slave->offset = 0; 417 slave->mtd.size = 0; 418 printk ("mtd: partition \"%s\" is out of reach -- disabled\n", 419 parts[i].name); 420 } 421 if (slave->offset + slave->mtd.size > master->size) { 422 slave->mtd.size = master->size - slave->offset; 423 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n", 424 parts[i].name, master->name, slave->mtd.size); 425 } 426 if (master->numeraseregions>1) { 427 /* Deal with variable erase size stuff */ 428 int i; 429 struct mtd_erase_region_info *regions = master->eraseregions; 430 431 /* Find the first erase regions which is part of this partition. */ 432 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++) 433 ; 434 435 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) { 436 if (slave->mtd.erasesize < regions[i].erasesize) { 437 slave->mtd.erasesize = regions[i].erasesize; 438 } 439 } 440 } else { 441 /* Single erase size */ 442 slave->mtd.erasesize = master->erasesize; 443 } 444 445 if ((slave->mtd.flags & MTD_WRITEABLE) && 446 (slave->offset % slave->mtd.erasesize)) { 447 /* Doesn't start on a boundary of major erase size */ 448 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */ 449 slave->mtd.flags &= ~MTD_WRITEABLE; 450 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 451 parts[i].name); 452 } 453 if ((slave->mtd.flags & MTD_WRITEABLE) && 454 (slave->mtd.size % slave->mtd.erasesize)) { 455 slave->mtd.flags &= ~MTD_WRITEABLE; 456 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 457 parts[i].name); 458 } 459 460 slave->mtd.ecclayout = master->ecclayout; 461 if (master->block_isbad) { 462 uint32_t offs = 0; 463 464 while(offs < slave->mtd.size) { 465 if (master->block_isbad(master, 466 offs + slave->offset)) 467 slave->mtd.ecc_stats.badblocks++; 468 offs += slave->mtd.erasesize; 469 } 470 } 471 472 if(parts[i].mtdp) 473 { /* store the object pointer (caller may or may not register it */ 474 *parts[i].mtdp = &slave->mtd; 475 slave->registered = 0; 476 } 477 else 478 { 479 /* register our partition */ 480 add_mtd_device(&slave->mtd); 481 slave->registered = 1; 482 } 483 } 484 485 return 0; 486 } 487 488 EXPORT_SYMBOL(add_mtd_partitions); 489 EXPORT_SYMBOL(del_mtd_partitions); 490 491 static DEFINE_SPINLOCK(part_parser_lock); 492 static LIST_HEAD(part_parsers); 493 494 static struct mtd_part_parser *get_partition_parser(const char *name) 495 { 496 struct list_head *this; 497 void *ret = NULL; 498 spin_lock(&part_parser_lock); 499 500 list_for_each(this, &part_parsers) { 501 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list); 502 503 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 504 ret = p; 505 break; 506 } 507 } 508 spin_unlock(&part_parser_lock); 509 510 return ret; 511 } 512 513 int register_mtd_parser(struct mtd_part_parser *p) 514 { 515 spin_lock(&part_parser_lock); 516 list_add(&p->list, &part_parsers); 517 spin_unlock(&part_parser_lock); 518 519 return 0; 520 } 521 522 int deregister_mtd_parser(struct mtd_part_parser *p) 523 { 524 spin_lock(&part_parser_lock); 525 list_del(&p->list); 526 spin_unlock(&part_parser_lock); 527 return 0; 528 } 529 530 int parse_mtd_partitions(struct mtd_info *master, const char **types, 531 struct mtd_partition **pparts, unsigned long origin) 532 { 533 struct mtd_part_parser *parser; 534 int ret = 0; 535 536 for ( ; ret <= 0 && *types; types++) { 537 parser = get_partition_parser(*types); 538 #ifdef CONFIG_KMOD 539 if (!parser && !request_module("%s", *types)) 540 parser = get_partition_parser(*types); 541 #endif 542 if (!parser) { 543 printk(KERN_NOTICE "%s partition parsing not available\n", 544 *types); 545 continue; 546 } 547 ret = (*parser->parse_fn)(master, pparts, origin); 548 if (ret > 0) { 549 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 550 ret, parser->name, master->name); 551 } 552 put_partition_parser(parser); 553 } 554 return ret; 555 } 556 557 EXPORT_SYMBOL_GPL(parse_mtd_partitions); 558 EXPORT_SYMBOL_GPL(register_mtd_parser); 559 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 560 561 MODULE_LICENSE("GPL"); 562 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>"); 563 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices"); 564 565